* python/py-utils.c (gdb_pymodule_addobject): Cast away const.
[deliverable/binutils-gdb.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "gdb_string.h"
23 #include "regcache.h"
24 #include "target.h"
25 #include "linux-nat.h"
26 #include "target-descriptions.h"
27 #include "auxv.h"
28 #include "observer.h"
29 #include "gdbthread.h"
30
31 #include "arm-tdep.h"
32 #include "arm-linux-tdep.h"
33
34 #include <elf/common.h>
35 #include <sys/user.h>
36 #include <sys/ptrace.h>
37 #include <sys/utsname.h>
38 #include <sys/procfs.h>
39
40 /* Prototypes for supply_gregset etc. */
41 #include "gregset.h"
42
43 /* Defines ps_err_e, struct ps_prochandle. */
44 #include "gdb_proc_service.h"
45
46 #ifndef PTRACE_GET_THREAD_AREA
47 #define PTRACE_GET_THREAD_AREA 22
48 #endif
49
50 #ifndef PTRACE_GETWMMXREGS
51 #define PTRACE_GETWMMXREGS 18
52 #define PTRACE_SETWMMXREGS 19
53 #endif
54
55 #ifndef PTRACE_GETVFPREGS
56 #define PTRACE_GETVFPREGS 27
57 #define PTRACE_SETVFPREGS 28
58 #endif
59
60 #ifndef PTRACE_GETHBPREGS
61 #define PTRACE_GETHBPREGS 29
62 #define PTRACE_SETHBPREGS 30
63 #endif
64
65 /* A flag for whether the WMMX registers are available. */
66 static int arm_linux_has_wmmx_registers;
67
68 /* The number of 64-bit VFP registers we have (expect this to be 0,
69 16, or 32). */
70 static int arm_linux_vfp_register_count;
71
72 extern int arm_apcs_32;
73
74 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
75 case we may be tracing more than one process at a time. In that
76 case, inferior_ptid will contain the main process ID and the
77 individual thread (process) ID. get_thread_id () is used to get
78 the thread id if it's available, and the process id otherwise. */
79
80 static int
81 get_thread_id (ptid_t ptid)
82 {
83 int tid = TIDGET (ptid);
84 if (0 == tid)
85 tid = PIDGET (ptid);
86 return tid;
87 }
88
89 #define GET_THREAD_ID(PTID) get_thread_id (PTID)
90
91 /* Get the value of a particular register from the floating point
92 state of the process and store it into regcache. */
93
94 static void
95 fetch_fpregister (struct regcache *regcache, int regno)
96 {
97 int ret, tid;
98 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
99
100 /* Get the thread id for the ptrace call. */
101 tid = GET_THREAD_ID (inferior_ptid);
102
103 /* Read the floating point state. */
104 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
105 if (ret < 0)
106 {
107 warning (_("Unable to fetch floating point register."));
108 return;
109 }
110
111 /* Fetch fpsr. */
112 if (ARM_FPS_REGNUM == regno)
113 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
114 fp + NWFPE_FPSR_OFFSET);
115
116 /* Fetch the floating point register. */
117 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
118 supply_nwfpe_register (regcache, regno, fp);
119 }
120
121 /* Get the whole floating point state of the process and store it
122 into regcache. */
123
124 static void
125 fetch_fpregs (struct regcache *regcache)
126 {
127 int ret, regno, tid;
128 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
129
130 /* Get the thread id for the ptrace call. */
131 tid = GET_THREAD_ID (inferior_ptid);
132
133 /* Read the floating point state. */
134 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
135 if (ret < 0)
136 {
137 warning (_("Unable to fetch the floating point registers."));
138 return;
139 }
140
141 /* Fetch fpsr. */
142 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
143 fp + NWFPE_FPSR_OFFSET);
144
145 /* Fetch the floating point registers. */
146 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
147 supply_nwfpe_register (regcache, regno, fp);
148 }
149
150 /* Save a particular register into the floating point state of the
151 process using the contents from regcache. */
152
153 static void
154 store_fpregister (const struct regcache *regcache, int regno)
155 {
156 int ret, tid;
157 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
158
159 /* Get the thread id for the ptrace call. */
160 tid = GET_THREAD_ID (inferior_ptid);
161
162 /* Read the floating point state. */
163 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
164 if (ret < 0)
165 {
166 warning (_("Unable to fetch the floating point registers."));
167 return;
168 }
169
170 /* Store fpsr. */
171 if (ARM_FPS_REGNUM == regno
172 && REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
173 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
174
175 /* Store the floating point register. */
176 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
177 collect_nwfpe_register (regcache, regno, fp);
178
179 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
180 if (ret < 0)
181 {
182 warning (_("Unable to store floating point register."));
183 return;
184 }
185 }
186
187 /* Save the whole floating point state of the process using
188 the contents from regcache. */
189
190 static void
191 store_fpregs (const struct regcache *regcache)
192 {
193 int ret, regno, tid;
194 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
195
196 /* Get the thread id for the ptrace call. */
197 tid = GET_THREAD_ID (inferior_ptid);
198
199 /* Read the floating point state. */
200 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
201 if (ret < 0)
202 {
203 warning (_("Unable to fetch the floating point registers."));
204 return;
205 }
206
207 /* Store fpsr. */
208 if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
209 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
210
211 /* Store the floating point registers. */
212 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
213 if (REG_VALID == regcache_register_status (regcache, regno))
214 collect_nwfpe_register (regcache, regno, fp);
215
216 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
217 if (ret < 0)
218 {
219 warning (_("Unable to store floating point registers."));
220 return;
221 }
222 }
223
224 /* Fetch a general register of the process and store into
225 regcache. */
226
227 static void
228 fetch_register (struct regcache *regcache, int regno)
229 {
230 int ret, tid;
231 elf_gregset_t regs;
232
233 /* Get the thread id for the ptrace call. */
234 tid = GET_THREAD_ID (inferior_ptid);
235
236 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
237 if (ret < 0)
238 {
239 warning (_("Unable to fetch general register."));
240 return;
241 }
242
243 if (regno >= ARM_A1_REGNUM && regno < ARM_PC_REGNUM)
244 regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
245
246 if (ARM_PS_REGNUM == regno)
247 {
248 if (arm_apcs_32)
249 regcache_raw_supply (regcache, ARM_PS_REGNUM,
250 (char *) &regs[ARM_CPSR_GREGNUM]);
251 else
252 regcache_raw_supply (regcache, ARM_PS_REGNUM,
253 (char *) &regs[ARM_PC_REGNUM]);
254 }
255
256 if (ARM_PC_REGNUM == regno)
257 {
258 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
259 (get_regcache_arch (regcache),
260 regs[ARM_PC_REGNUM]);
261 regcache_raw_supply (regcache, ARM_PC_REGNUM,
262 (char *) &regs[ARM_PC_REGNUM]);
263 }
264 }
265
266 /* Fetch all general registers of the process and store into
267 regcache. */
268
269 static void
270 fetch_regs (struct regcache *regcache)
271 {
272 int ret, regno, tid;
273 elf_gregset_t regs;
274
275 /* Get the thread id for the ptrace call. */
276 tid = GET_THREAD_ID (inferior_ptid);
277
278 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
279 if (ret < 0)
280 {
281 warning (_("Unable to fetch general registers."));
282 return;
283 }
284
285 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
286 regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
287
288 if (arm_apcs_32)
289 regcache_raw_supply (regcache, ARM_PS_REGNUM,
290 (char *) &regs[ARM_CPSR_GREGNUM]);
291 else
292 regcache_raw_supply (regcache, ARM_PS_REGNUM,
293 (char *) &regs[ARM_PC_REGNUM]);
294
295 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
296 (get_regcache_arch (regcache), regs[ARM_PC_REGNUM]);
297 regcache_raw_supply (regcache, ARM_PC_REGNUM,
298 (char *) &regs[ARM_PC_REGNUM]);
299 }
300
301 /* Store all general registers of the process from the values in
302 regcache. */
303
304 static void
305 store_register (const struct regcache *regcache, int regno)
306 {
307 int ret, tid;
308 elf_gregset_t regs;
309
310 if (REG_VALID != regcache_register_status (regcache, regno))
311 return;
312
313 /* Get the thread id for the ptrace call. */
314 tid = GET_THREAD_ID (inferior_ptid);
315
316 /* Get the general registers from the process. */
317 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
318 if (ret < 0)
319 {
320 warning (_("Unable to fetch general registers."));
321 return;
322 }
323
324 if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM)
325 regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
326 else if (arm_apcs_32 && regno == ARM_PS_REGNUM)
327 regcache_raw_collect (regcache, regno,
328 (char *) &regs[ARM_CPSR_GREGNUM]);
329 else if (!arm_apcs_32 && regno == ARM_PS_REGNUM)
330 regcache_raw_collect (regcache, ARM_PC_REGNUM,
331 (char *) &regs[ARM_PC_REGNUM]);
332
333 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
334 if (ret < 0)
335 {
336 warning (_("Unable to store general register."));
337 return;
338 }
339 }
340
341 static void
342 store_regs (const struct regcache *regcache)
343 {
344 int ret, regno, tid;
345 elf_gregset_t regs;
346
347 /* Get the thread id for the ptrace call. */
348 tid = GET_THREAD_ID (inferior_ptid);
349
350 /* Fetch the general registers. */
351 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
352 if (ret < 0)
353 {
354 warning (_("Unable to fetch general registers."));
355 return;
356 }
357
358 for (regno = ARM_A1_REGNUM; regno <= ARM_PC_REGNUM; regno++)
359 {
360 if (REG_VALID == regcache_register_status (regcache, regno))
361 regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
362 }
363
364 if (arm_apcs_32 && REG_VALID == regcache_register_status (regcache, ARM_PS_REGNUM))
365 regcache_raw_collect (regcache, ARM_PS_REGNUM,
366 (char *) &regs[ARM_CPSR_GREGNUM]);
367
368 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
369
370 if (ret < 0)
371 {
372 warning (_("Unable to store general registers."));
373 return;
374 }
375 }
376
377 /* Fetch all WMMX registers of the process and store into
378 regcache. */
379
380 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
381
382 static void
383 fetch_wmmx_regs (struct regcache *regcache)
384 {
385 char regbuf[IWMMXT_REGS_SIZE];
386 int ret, regno, tid;
387
388 /* Get the thread id for the ptrace call. */
389 tid = GET_THREAD_ID (inferior_ptid);
390
391 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
392 if (ret < 0)
393 {
394 warning (_("Unable to fetch WMMX registers."));
395 return;
396 }
397
398 for (regno = 0; regno < 16; regno++)
399 regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM,
400 &regbuf[regno * 8]);
401
402 for (regno = 0; regno < 2; regno++)
403 regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM,
404 &regbuf[16 * 8 + regno * 4]);
405
406 for (regno = 0; regno < 4; regno++)
407 regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM,
408 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
409 }
410
411 static void
412 store_wmmx_regs (const struct regcache *regcache)
413 {
414 char regbuf[IWMMXT_REGS_SIZE];
415 int ret, regno, tid;
416
417 /* Get the thread id for the ptrace call. */
418 tid = GET_THREAD_ID (inferior_ptid);
419
420 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
421 if (ret < 0)
422 {
423 warning (_("Unable to fetch WMMX registers."));
424 return;
425 }
426
427 for (regno = 0; regno < 16; regno++)
428 if (REG_VALID == regcache_register_status (regcache,
429 regno + ARM_WR0_REGNUM))
430 regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM,
431 &regbuf[regno * 8]);
432
433 for (regno = 0; regno < 2; regno++)
434 if (REG_VALID == regcache_register_status (regcache,
435 regno + ARM_WCSSF_REGNUM))
436 regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM,
437 &regbuf[16 * 8 + regno * 4]);
438
439 for (regno = 0; regno < 4; regno++)
440 if (REG_VALID == regcache_register_status (regcache,
441 regno + ARM_WCGR0_REGNUM))
442 regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM,
443 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
444
445 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
446
447 if (ret < 0)
448 {
449 warning (_("Unable to store WMMX registers."));
450 return;
451 }
452 }
453
454 /* Fetch and store VFP Registers. The kernel object has space for 32
455 64-bit registers, and the FPSCR. This is even when on a VFPv2 or
456 VFPv3D16 target. */
457 #define VFP_REGS_SIZE (32 * 8 + 4)
458
459 static void
460 fetch_vfp_regs (struct regcache *regcache)
461 {
462 char regbuf[VFP_REGS_SIZE];
463 int ret, regno, tid;
464
465 /* Get the thread id for the ptrace call. */
466 tid = GET_THREAD_ID (inferior_ptid);
467
468 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
469 if (ret < 0)
470 {
471 warning (_("Unable to fetch VFP registers."));
472 return;
473 }
474
475 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
476 regcache_raw_supply (regcache, regno + ARM_D0_REGNUM,
477 (char *) regbuf + regno * 8);
478
479 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM,
480 (char *) regbuf + 32 * 8);
481 }
482
483 static void
484 store_vfp_regs (const struct regcache *regcache)
485 {
486 char regbuf[VFP_REGS_SIZE];
487 int ret, regno, tid;
488
489 /* Get the thread id for the ptrace call. */
490 tid = GET_THREAD_ID (inferior_ptid);
491
492 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
493 if (ret < 0)
494 {
495 warning (_("Unable to fetch VFP registers (for update)."));
496 return;
497 }
498
499 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
500 regcache_raw_collect (regcache, regno + ARM_D0_REGNUM,
501 (char *) regbuf + regno * 8);
502
503 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM,
504 (char *) regbuf + 32 * 8);
505
506 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
507
508 if (ret < 0)
509 {
510 warning (_("Unable to store VFP registers."));
511 return;
512 }
513 }
514
515 /* Fetch registers from the child process. Fetch all registers if
516 regno == -1, otherwise fetch all general registers or all floating
517 point registers depending upon the value of regno. */
518
519 static void
520 arm_linux_fetch_inferior_registers (struct target_ops *ops,
521 struct regcache *regcache, int regno)
522 {
523 if (-1 == regno)
524 {
525 fetch_regs (regcache);
526 fetch_fpregs (regcache);
527 if (arm_linux_has_wmmx_registers)
528 fetch_wmmx_regs (regcache);
529 if (arm_linux_vfp_register_count > 0)
530 fetch_vfp_regs (regcache);
531 }
532 else
533 {
534 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
535 fetch_register (regcache, regno);
536 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
537 fetch_fpregister (regcache, regno);
538 else if (arm_linux_has_wmmx_registers
539 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
540 fetch_wmmx_regs (regcache);
541 else if (arm_linux_vfp_register_count > 0
542 && regno >= ARM_D0_REGNUM
543 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
544 fetch_vfp_regs (regcache);
545 }
546 }
547
548 /* Store registers back into the inferior. Store all registers if
549 regno == -1, otherwise store all general registers or all floating
550 point registers depending upon the value of regno. */
551
552 static void
553 arm_linux_store_inferior_registers (struct target_ops *ops,
554 struct regcache *regcache, int regno)
555 {
556 if (-1 == regno)
557 {
558 store_regs (regcache);
559 store_fpregs (regcache);
560 if (arm_linux_has_wmmx_registers)
561 store_wmmx_regs (regcache);
562 if (arm_linux_vfp_register_count > 0)
563 store_vfp_regs (regcache);
564 }
565 else
566 {
567 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
568 store_register (regcache, regno);
569 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
570 store_fpregister (regcache, regno);
571 else if (arm_linux_has_wmmx_registers
572 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
573 store_wmmx_regs (regcache);
574 else if (arm_linux_vfp_register_count > 0
575 && regno >= ARM_D0_REGNUM
576 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
577 store_vfp_regs (regcache);
578 }
579 }
580
581 /* Wrapper functions for the standard regset handling, used by
582 thread debugging. */
583
584 void
585 fill_gregset (const struct regcache *regcache,
586 gdb_gregset_t *gregsetp, int regno)
587 {
588 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
589 }
590
591 void
592 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
593 {
594 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
595 }
596
597 void
598 fill_fpregset (const struct regcache *regcache,
599 gdb_fpregset_t *fpregsetp, int regno)
600 {
601 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
602 }
603
604 /* Fill GDB's register array with the floating-point register values
605 in *fpregsetp. */
606
607 void
608 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
609 {
610 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
611 }
612
613 /* Fetch the thread-local storage pointer for libthread_db. */
614
615 ps_err_e
616 ps_get_thread_area (const struct ps_prochandle *ph,
617 lwpid_t lwpid, int idx, void **base)
618 {
619 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
620 return PS_ERR;
621
622 /* IDX is the bias from the thread pointer to the beginning of the
623 thread descriptor. It has to be subtracted due to implementation
624 quirks in libthread_db. */
625 *base = (void *) ((char *)*base - idx);
626
627 return PS_OK;
628 }
629
630 static const struct target_desc *
631 arm_linux_read_description (struct target_ops *ops)
632 {
633 CORE_ADDR arm_hwcap = 0;
634 arm_linux_has_wmmx_registers = 0;
635 arm_linux_vfp_register_count = 0;
636
637 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
638 {
639 return NULL;
640 }
641
642 if (arm_hwcap & HWCAP_IWMMXT)
643 {
644 arm_linux_has_wmmx_registers = 1;
645 return tdesc_arm_with_iwmmxt;
646 }
647
648 if (arm_hwcap & HWCAP_VFP)
649 {
650 int pid;
651 char *buf;
652 const struct target_desc * result = NULL;
653
654 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
655 Neon with VFPv3-D32. */
656 if (arm_hwcap & HWCAP_NEON)
657 {
658 arm_linux_vfp_register_count = 32;
659 result = tdesc_arm_with_neon;
660 }
661 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
662 {
663 arm_linux_vfp_register_count = 32;
664 result = tdesc_arm_with_vfpv3;
665 }
666 else
667 {
668 arm_linux_vfp_register_count = 16;
669 result = tdesc_arm_with_vfpv2;
670 }
671
672 /* Now make sure that the kernel supports reading these
673 registers. Support was added in 2.6.30. */
674 pid = GET_LWP (inferior_ptid);
675 errno = 0;
676 buf = alloca (VFP_REGS_SIZE);
677 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
678 && errno == EIO)
679 result = NULL;
680
681 return result;
682 }
683
684 return NULL;
685 }
686
687 /* Information describing the hardware breakpoint capabilities. */
688 struct arm_linux_hwbp_cap
689 {
690 gdb_byte arch;
691 gdb_byte max_wp_length;
692 gdb_byte wp_count;
693 gdb_byte bp_count;
694 };
695
696 /* Get hold of the Hardware Breakpoint information for the target we are
697 attached to. Returns NULL if the kernel doesn't support Hardware
698 breakpoints at all, or a pointer to the information structure. */
699 static const struct arm_linux_hwbp_cap *
700 arm_linux_get_hwbp_cap (void)
701 {
702 /* The info structure we return. */
703 static struct arm_linux_hwbp_cap info;
704
705 /* Is INFO in a good state? -1 means that no attempt has been made to
706 initialize INFO; 0 means an attempt has been made, but it failed; 1
707 means INFO is in an initialized state. */
708 static int available = -1;
709
710 if (available == -1)
711 {
712 int tid;
713 unsigned int val;
714
715 tid = GET_THREAD_ID (inferior_ptid);
716 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
717 available = 0;
718 else
719 {
720 info.arch = (gdb_byte)((val >> 24) & 0xff);
721 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
722 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
723 info.bp_count = (gdb_byte)(val & 0xff);
724 available = (info.arch != 0);
725 }
726 }
727
728 return available == 1 ? &info : NULL;
729 }
730
731 /* How many hardware breakpoints are available? */
732 static int
733 arm_linux_get_hw_breakpoint_count (void)
734 {
735 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
736 return cap != NULL ? cap->bp_count : 0;
737 }
738
739 /* How many hardware watchpoints are available? */
740 static int
741 arm_linux_get_hw_watchpoint_count (void)
742 {
743 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
744 return cap != NULL ? cap->wp_count : 0;
745 }
746
747 /* Have we got a free break-/watch-point available for use? Returns -1 if
748 there is not an appropriate resource available, otherwise returns 1. */
749 static int
750 arm_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
751 {
752 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
753 || type == bp_access_watchpoint || type == bp_watchpoint)
754 {
755 if (cnt + ot > arm_linux_get_hw_watchpoint_count ())
756 return -1;
757 }
758 else if (type == bp_hardware_breakpoint)
759 {
760 if (cnt > arm_linux_get_hw_breakpoint_count ())
761 return -1;
762 }
763 else
764 gdb_assert (FALSE);
765
766 return 1;
767 }
768
769 /* Enum describing the different types of ARM hardware break-/watch-points. */
770 typedef enum
771 {
772 arm_hwbp_break = 0,
773 arm_hwbp_load = 1,
774 arm_hwbp_store = 2,
775 arm_hwbp_access = 3
776 } arm_hwbp_type;
777
778 /* Type describing an ARM Hardware Breakpoint Control register value. */
779 typedef unsigned int arm_hwbp_control_t;
780
781 /* Structure used to keep track of hardware break-/watch-points. */
782 struct arm_linux_hw_breakpoint
783 {
784 /* Address to break on, or being watched. */
785 unsigned int address;
786 /* Control register for break-/watch- point. */
787 arm_hwbp_control_t control;
788 };
789
790 /* Structure containing arrays of the break and watch points which are have
791 active in each thread.
792
793 The Linux ptrace interface to hardware break-/watch-points presents the
794 values in a vector centred around 0 (which is used fo generic information).
795 Positive indicies refer to breakpoint addresses/control registers, negative
796 indices to watchpoint addresses/control registers.
797
798 The Linux vector is indexed as follows:
799 -((i << 1) + 2): Control register for watchpoint i.
800 -((i << 1) + 1): Address register for watchpoint i.
801 0: Information register.
802 ((i << 1) + 1): Address register for breakpoint i.
803 ((i << 1) + 2): Control register for breakpoint i.
804
805 This structure is used as a per-thread cache of the state stored by the
806 kernel, so that we don't need to keep calling into the kernel to find a
807 free breakpoint.
808
809 We treat break-/watch-points with their enable bit clear as being deleted.
810 */
811 typedef struct arm_linux_thread_points
812 {
813 /* Thread ID. */
814 int tid;
815 /* Breakpoints for thread. */
816 struct arm_linux_hw_breakpoint *bpts;
817 /* Watchpoint for threads. */
818 struct arm_linux_hw_breakpoint *wpts;
819 } *arm_linux_thread_points_p;
820 DEF_VEC_P (arm_linux_thread_points_p);
821
822 /* Vector of hardware breakpoints for each thread. */
823 VEC(arm_linux_thread_points_p) *arm_threads = NULL;
824
825 /* Find the list of hardware break-/watch-points for a thread with id TID.
826 If no list exists for TID we return NULL if ALLOC_NEW is 0, otherwise we
827 create a new list and return that. */
828 static struct arm_linux_thread_points *
829 arm_linux_find_breakpoints_by_tid (int tid, int alloc_new)
830 {
831 int i;
832 struct arm_linux_thread_points *t;
833
834 for (i = 0; VEC_iterate (arm_linux_thread_points_p, arm_threads, i, t); ++i)
835 {
836 if (t->tid == tid)
837 return t;
838 }
839
840 t = NULL;
841
842 if (alloc_new)
843 {
844 t = xmalloc (sizeof (struct arm_linux_thread_points));
845 t->tid = tid;
846 t->bpts = xzalloc (arm_linux_get_hw_breakpoint_count ()
847 * sizeof (struct arm_linux_hw_breakpoint));
848 t->wpts = xzalloc (arm_linux_get_hw_watchpoint_count ()
849 * sizeof (struct arm_linux_hw_breakpoint));
850 VEC_safe_push (arm_linux_thread_points_p, arm_threads, t);
851 }
852
853 return t;
854 }
855
856 /* Initialize an ARM hardware break-/watch-point control register value.
857 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
858 type of break-/watch-point; ENABLE indicates whether the point is enabled.
859 */
860 static arm_hwbp_control_t
861 arm_hwbp_control_initialize (unsigned byte_address_select,
862 arm_hwbp_type hwbp_type,
863 int enable)
864 {
865 gdb_assert ((byte_address_select & ~0xffU) == 0);
866 gdb_assert (hwbp_type != arm_hwbp_break
867 || ((byte_address_select & 0xfU) != 0));
868
869 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
870 }
871
872 /* Does the breakpoint control value CONTROL have the enable bit set? */
873 static int
874 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
875 {
876 return control & 0x1;
877 }
878
879 /* Change a breakpoint control word so that it is in the disabled state. */
880 static arm_hwbp_control_t
881 arm_hwbp_control_disable (arm_hwbp_control_t control)
882 {
883 return control & ~0x1;
884 }
885
886 /* Initialise the hardware breakpoint structure P. The breakpoint will be
887 enabled, and will point to the placed address of BP_TGT. */
888 static void
889 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
890 struct bp_target_info *bp_tgt,
891 struct arm_linux_hw_breakpoint *p)
892 {
893 unsigned mask;
894 CORE_ADDR address = bp_tgt->placed_address;
895
896 /* We have to create a mask for the control register which says which bits
897 of the word pointed to by address to break on. */
898 if (arm_pc_is_thumb (gdbarch, address))
899 {
900 mask = 0x3;
901 address &= ~1;
902 }
903 else
904 {
905 mask = 0xf;
906 address &= ~3;
907 }
908
909 p->address = (unsigned int) address;
910 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
911 }
912
913 /* Get the ARM hardware breakpoint type from the RW value we're given when
914 asked to set a watchpoint. */
915 static arm_hwbp_type
916 arm_linux_get_hwbp_type (int rw)
917 {
918 if (rw == hw_read)
919 return arm_hwbp_load;
920 else if (rw == hw_write)
921 return arm_hwbp_store;
922 else
923 return arm_hwbp_access;
924 }
925
926 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
927 to LEN. The type of watchpoint is given in RW. */
928 static void
929 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, int rw,
930 struct arm_linux_hw_breakpoint *p)
931 {
932 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
933 unsigned mask;
934
935 gdb_assert (cap != NULL);
936 gdb_assert (cap->max_wp_length != 0);
937
938 mask = (1 << len) - 1;
939
940 p->address = (unsigned int) addr;
941 p->control = arm_hwbp_control_initialize (mask,
942 arm_linux_get_hwbp_type (rw), 1);
943 }
944
945 /* Are two break-/watch-points equal? */
946 static int
947 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
948 const struct arm_linux_hw_breakpoint *p2)
949 {
950 return p1->address == p2->address && p1->control == p2->control;
951 }
952
953 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
954 =1) BPT for thread TID. */
955 static void
956 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
957 int tid, int watchpoint)
958 {
959 struct arm_linux_thread_points *t = arm_linux_find_breakpoints_by_tid (tid, 1);
960 gdb_byte count, i;
961 struct arm_linux_hw_breakpoint* bpts;
962 int dir;
963
964 gdb_assert (t != NULL);
965
966 if (watchpoint)
967 {
968 count = arm_linux_get_hw_watchpoint_count ();
969 bpts = t->wpts;
970 dir = -1;
971 }
972 else
973 {
974 count = arm_linux_get_hw_breakpoint_count ();
975 bpts = t->bpts;
976 dir = 1;
977 }
978
979 for (i = 0; i < count; ++i)
980 if (!arm_hwbp_control_is_enabled (bpts[i].control))
981 {
982 errno = 0;
983 if (ptrace (PTRACE_SETHBPREGS, tid, dir * ((i << 1) + 1),
984 &bpt->address) < 0)
985 perror_with_name (_("Unexpected error setting breakpoint address"));
986 if (ptrace (PTRACE_SETHBPREGS, tid, dir * ((i << 1) + 2),
987 &bpt->control) < 0)
988 perror_with_name (_("Unexpected error setting breakpoint"));
989
990 memcpy (bpts + i, bpt, sizeof (struct arm_linux_hw_breakpoint));
991 break;
992 }
993
994 gdb_assert (i != count);
995 }
996
997 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
998 (WATCHPOINT = 1) BPT for thread TID. */
999 static void
1000 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1001 int tid, int watchpoint)
1002 {
1003 struct arm_linux_thread_points *t = arm_linux_find_breakpoints_by_tid (tid, 0);
1004 gdb_byte count, i;
1005 struct arm_linux_hw_breakpoint *bpts;
1006 int dir;
1007
1008 gdb_assert (t != NULL);
1009
1010 if (watchpoint)
1011 {
1012 count = arm_linux_get_hw_watchpoint_count ();
1013 bpts = t->wpts;
1014 dir = -1;
1015 }
1016 else
1017 {
1018 count = arm_linux_get_hw_breakpoint_count ();
1019 bpts = t->bpts;
1020 dir = 1;
1021 }
1022
1023 for (i = 0; i < count; ++i)
1024 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1025 {
1026 errno = 0;
1027 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1028 if (ptrace (PTRACE_SETHBPREGS, tid, dir * ((i << 1) + 2),
1029 &bpts[i].control) < 0)
1030 perror_with_name (_("Unexpected error clearing breakpoint"));
1031 break;
1032 }
1033
1034 gdb_assert (i != count);
1035 }
1036
1037 /* Insert a Hardware breakpoint. */
1038 static int
1039 arm_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1040 struct bp_target_info *bp_tgt)
1041 {
1042 struct lwp_info *lp;
1043 struct arm_linux_hw_breakpoint p;
1044
1045 if (arm_linux_get_hw_breakpoint_count () == 0)
1046 return -1;
1047
1048 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1049 ALL_LWPS (lp)
1050 arm_linux_insert_hw_breakpoint1 (&p, TIDGET (lp->ptid), 0);
1051
1052 return 0;
1053 }
1054
1055 /* Remove a hardware breakpoint. */
1056 static int
1057 arm_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1058 struct bp_target_info *bp_tgt)
1059 {
1060 struct lwp_info *lp;
1061 struct arm_linux_hw_breakpoint p;
1062
1063 if (arm_linux_get_hw_breakpoint_count () == 0)
1064 return -1;
1065
1066 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1067 ALL_LWPS (lp)
1068 arm_linux_remove_hw_breakpoint1 (&p, TIDGET (lp->ptid), 0);
1069
1070 return 0;
1071 }
1072
1073 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1074 ADDR? */
1075 static int
1076 arm_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1077 {
1078 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1079 CORE_ADDR max_wp_length, aligned_addr;
1080
1081 /* Can not set watchpoints for zero or negative lengths. */
1082 if (len <= 0)
1083 return 0;
1084
1085 /* Need to be able to use the ptrace interface. */
1086 if (cap == NULL || cap->wp_count == 0)
1087 return 0;
1088
1089 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1090 range covered by a watchpoint. */
1091 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1092 aligned_addr = addr & ~(max_wp_length - 1);
1093
1094 if (aligned_addr + max_wp_length < addr + len)
1095 return 0;
1096
1097 /* The current ptrace interface can only handle watchpoints that are a
1098 power of 2. */
1099 if ((len & (len - 1)) != 0)
1100 return 0;
1101
1102 /* All tests passed so we must be able to set a watchpoint. */
1103 return 1;
1104 }
1105
1106 /* Insert a Hardware breakpoint. */
1107 static int
1108 arm_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
1109 struct expression *cond)
1110 {
1111 struct lwp_info *lp;
1112 struct arm_linux_hw_breakpoint p;
1113
1114 if (arm_linux_get_hw_watchpoint_count () == 0)
1115 return -1;
1116
1117 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1118 ALL_LWPS (lp)
1119 arm_linux_insert_hw_breakpoint1 (&p, TIDGET (lp->ptid), 1);
1120
1121 return 0;
1122 }
1123
1124 /* Remove a hardware breakpoint. */
1125 static int
1126 arm_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
1127 struct expression *cond)
1128 {
1129 struct lwp_info *lp;
1130 struct arm_linux_hw_breakpoint p;
1131
1132 if (arm_linux_get_hw_watchpoint_count () == 0)
1133 return -1;
1134
1135 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1136 ALL_LWPS (lp)
1137 arm_linux_remove_hw_breakpoint1 (&p, TIDGET (lp->ptid), 1);
1138
1139 return 0;
1140 }
1141
1142 /* What was the data address the target was stopped on accessing. */
1143 static int
1144 arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
1145 {
1146 siginfo_t siginfo;
1147 int slot;
1148
1149 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1150 return 0;
1151
1152 /* This must be a hardware breakpoint. */
1153 if (siginfo.si_signo != SIGTRAP
1154 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1155 return 0;
1156
1157 /* We must be able to set hardware watchpoints. */
1158 if (arm_linux_get_hw_watchpoint_count () == 0)
1159 return 0;
1160
1161 slot = siginfo.si_errno;
1162
1163 /* If we are in a positive slot then we're looking at a breakpoint and not
1164 a watchpoint. */
1165 if (slot >= 0)
1166 return 0;
1167
1168 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1169 return 1;
1170 }
1171
1172 /* Has the target been stopped by hitting a watchpoint? */
1173 static int
1174 arm_linux_stopped_by_watchpoint (void)
1175 {
1176 CORE_ADDR addr;
1177 return arm_linux_stopped_data_address (&current_target, &addr);
1178 }
1179
1180 static int
1181 arm_linux_watchpoint_addr_within_range (struct target_ops *target,
1182 CORE_ADDR addr,
1183 CORE_ADDR start, int length)
1184 {
1185 return start <= addr && start + length - 1 >= addr;
1186 }
1187
1188 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1189 in the parent thread to the child thread. */
1190 static void
1191 arm_linux_new_thread (struct lwp_info *lp)
1192 {
1193 int tid = TIDGET (lp->ptid);
1194 const struct arm_linux_hwbp_cap *info = arm_linux_get_hwbp_cap ();
1195
1196 if (info != NULL)
1197 {
1198 int i;
1199 struct arm_linux_thread_points *p;
1200 struct arm_linux_hw_breakpoint *bpts;
1201
1202 if (VEC_empty (arm_linux_thread_points_p, arm_threads))
1203 return;
1204
1205 /* Get a list of breakpoints from any thread. */
1206 p = VEC_last (arm_linux_thread_points_p, arm_threads);
1207
1208 /* Copy that thread's breakpoints and watchpoints to the new thread. */
1209 for (i = 0; i < info->bp_count; i++)
1210 if (arm_hwbp_control_is_enabled (p->bpts[i].control))
1211 arm_linux_insert_hw_breakpoint1 (p->bpts + i, tid, 0);
1212 for (i = 0; i < info->wp_count; i++)
1213 if (arm_hwbp_control_is_enabled (p->wpts[i].control))
1214 arm_linux_insert_hw_breakpoint1 (p->wpts + i, tid, 1);
1215 }
1216 }
1217
1218 /* Handle thread exit. Tidy up the memory that has been allocated for the
1219 thread. */
1220 static void
1221 arm_linux_thread_exit (struct thread_info *tp, int silent)
1222 {
1223 const struct arm_linux_hwbp_cap *info = arm_linux_get_hwbp_cap ();
1224
1225 if (info != NULL)
1226 {
1227 int i;
1228 int tid = TIDGET (tp->ptid);
1229 struct arm_linux_thread_points *t = NULL, *p;
1230
1231 for (i = 0;
1232 VEC_iterate (arm_linux_thread_points_p, arm_threads, i, p); i++)
1233 {
1234 if (p->tid == tid)
1235 {
1236 t = p;
1237 break;
1238 }
1239 }
1240
1241 if (t == NULL)
1242 return;
1243
1244 VEC_unordered_remove (arm_linux_thread_points_p, arm_threads, i);
1245
1246 xfree (t->bpts);
1247 xfree (t->wpts);
1248 xfree (t);
1249 }
1250 }
1251
1252 void _initialize_arm_linux_nat (void);
1253
1254 void
1255 _initialize_arm_linux_nat (void)
1256 {
1257 struct target_ops *t;
1258
1259 /* Fill in the generic GNU/Linux methods. */
1260 t = linux_target ();
1261
1262 /* Add our register access methods. */
1263 t->to_fetch_registers = arm_linux_fetch_inferior_registers;
1264 t->to_store_registers = arm_linux_store_inferior_registers;
1265
1266 /* Add our hardware breakpoint and watchpoint implementation. */
1267 t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint;
1268 t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint;
1269 t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint;
1270 t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint;
1271 t->to_insert_watchpoint = arm_linux_insert_watchpoint;
1272 t->to_remove_watchpoint = arm_linux_remove_watchpoint;
1273 t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint;
1274 t->to_stopped_data_address = arm_linux_stopped_data_address;
1275 t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range;
1276
1277 t->to_read_description = arm_linux_read_description;
1278
1279 /* Register the target. */
1280 linux_nat_add_target (t);
1281
1282 /* Handle thread creation and exit */
1283 observer_attach_thread_exit (arm_linux_thread_exit);
1284 linux_nat_set_new_thread (t, arm_linux_new_thread);
1285 }
This page took 0.05966 seconds and 4 git commands to generate.