5b0b5ce9ea129f34e062dadaacbd8d83b95091c0
[deliverable/binutils-gdb.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "gdb_string.h"
24 #include "regcache.h"
25 #include "target.h"
26 #include "linux-nat.h"
27 #include "target-descriptions.h"
28 #include "auxv.h"
29 #include "observer.h"
30 #include "gdbthread.h"
31
32 #include "arm-tdep.h"
33 #include "arm-linux-tdep.h"
34
35 #include <elf/common.h>
36 #include <sys/user.h>
37 #include <sys/ptrace.h>
38 #include <sys/utsname.h>
39 #include <sys/procfs.h>
40
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
43
44 /* Defines ps_err_e, struct ps_prochandle. */
45 #include "gdb_proc_service.h"
46
47 #ifndef PTRACE_GET_THREAD_AREA
48 #define PTRACE_GET_THREAD_AREA 22
49 #endif
50
51 #ifndef PTRACE_GETWMMXREGS
52 #define PTRACE_GETWMMXREGS 18
53 #define PTRACE_SETWMMXREGS 19
54 #endif
55
56 #ifndef PTRACE_GETVFPREGS
57 #define PTRACE_GETVFPREGS 27
58 #define PTRACE_SETVFPREGS 28
59 #endif
60
61 #ifndef PTRACE_GETHBPREGS
62 #define PTRACE_GETHBPREGS 29
63 #define PTRACE_SETHBPREGS 30
64 #endif
65
66 /* A flag for whether the WMMX registers are available. */
67 static int arm_linux_has_wmmx_registers;
68
69 /* The number of 64-bit VFP registers we have (expect this to be 0,
70 16, or 32). */
71 static int arm_linux_vfp_register_count;
72
73 extern int arm_apcs_32;
74
75 /* The following variables are used to determine the version of the
76 underlying GNU/Linux operating system. Examples:
77
78 GNU/Linux 2.0.35 GNU/Linux 2.2.12
79 os_version = 0x00020023 os_version = 0x0002020c
80 os_major = 2 os_major = 2
81 os_minor = 0 os_minor = 2
82 os_release = 35 os_release = 12
83
84 Note: os_version = (os_major << 16) | (os_minor << 8) | os_release
85
86 These are initialized using get_linux_version() from
87 _initialize_arm_linux_nat(). */
88
89 static unsigned int os_version, os_major, os_minor, os_release;
90
91 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
92 case we may be tracing more than one process at a time. In that
93 case, inferior_ptid will contain the main process ID and the
94 individual thread (process) ID. get_thread_id () is used to get
95 the thread id if it's available, and the process id otherwise. */
96
97 int
98 get_thread_id (ptid_t ptid)
99 {
100 int tid = TIDGET (ptid);
101 if (0 == tid)
102 tid = PIDGET (ptid);
103 return tid;
104 }
105
106 #define GET_THREAD_ID(PTID) get_thread_id (PTID)
107
108 /* Get the value of a particular register from the floating point
109 state of the process and store it into regcache. */
110
111 static void
112 fetch_fpregister (struct regcache *regcache, int regno)
113 {
114 int ret, tid;
115 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
116
117 /* Get the thread id for the ptrace call. */
118 tid = GET_THREAD_ID (inferior_ptid);
119
120 /* Read the floating point state. */
121 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
122 if (ret < 0)
123 {
124 warning (_("Unable to fetch floating point register."));
125 return;
126 }
127
128 /* Fetch fpsr. */
129 if (ARM_FPS_REGNUM == regno)
130 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
131 fp + NWFPE_FPSR_OFFSET);
132
133 /* Fetch the floating point register. */
134 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
135 supply_nwfpe_register (regcache, regno, fp);
136 }
137
138 /* Get the whole floating point state of the process and store it
139 into regcache. */
140
141 static void
142 fetch_fpregs (struct regcache *regcache)
143 {
144 int ret, regno, tid;
145 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
146
147 /* Get the thread id for the ptrace call. */
148 tid = GET_THREAD_ID (inferior_ptid);
149
150 /* Read the floating point state. */
151 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
152 if (ret < 0)
153 {
154 warning (_("Unable to fetch the floating point registers."));
155 return;
156 }
157
158 /* Fetch fpsr. */
159 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
160 fp + NWFPE_FPSR_OFFSET);
161
162 /* Fetch the floating point registers. */
163 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
164 supply_nwfpe_register (regcache, regno, fp);
165 }
166
167 /* Save a particular register into the floating point state of the
168 process using the contents from regcache. */
169
170 static void
171 store_fpregister (const struct regcache *regcache, int regno)
172 {
173 int ret, tid;
174 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
175
176 /* Get the thread id for the ptrace call. */
177 tid = GET_THREAD_ID (inferior_ptid);
178
179 /* Read the floating point state. */
180 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
181 if (ret < 0)
182 {
183 warning (_("Unable to fetch the floating point registers."));
184 return;
185 }
186
187 /* Store fpsr. */
188 if (ARM_FPS_REGNUM == regno
189 && REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
190 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
191
192 /* Store the floating point register. */
193 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
194 collect_nwfpe_register (regcache, regno, fp);
195
196 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
197 if (ret < 0)
198 {
199 warning (_("Unable to store floating point register."));
200 return;
201 }
202 }
203
204 /* Save the whole floating point state of the process using
205 the contents from regcache. */
206
207 static void
208 store_fpregs (const struct regcache *regcache)
209 {
210 int ret, regno, tid;
211 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
212
213 /* Get the thread id for the ptrace call. */
214 tid = GET_THREAD_ID (inferior_ptid);
215
216 /* Read the floating point state. */
217 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
218 if (ret < 0)
219 {
220 warning (_("Unable to fetch the floating point registers."));
221 return;
222 }
223
224 /* Store fpsr. */
225 if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
226 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
227
228 /* Store the floating point registers. */
229 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
230 if (REG_VALID == regcache_register_status (regcache, regno))
231 collect_nwfpe_register (regcache, regno, fp);
232
233 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
234 if (ret < 0)
235 {
236 warning (_("Unable to store floating point registers."));
237 return;
238 }
239 }
240
241 /* Fetch a general register of the process and store into
242 regcache. */
243
244 static void
245 fetch_register (struct regcache *regcache, int regno)
246 {
247 int ret, tid;
248 elf_gregset_t regs;
249
250 /* Get the thread id for the ptrace call. */
251 tid = GET_THREAD_ID (inferior_ptid);
252
253 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
254 if (ret < 0)
255 {
256 warning (_("Unable to fetch general register."));
257 return;
258 }
259
260 if (regno >= ARM_A1_REGNUM && regno < ARM_PC_REGNUM)
261 regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
262
263 if (ARM_PS_REGNUM == regno)
264 {
265 if (arm_apcs_32)
266 regcache_raw_supply (regcache, ARM_PS_REGNUM,
267 (char *) &regs[ARM_CPSR_GREGNUM]);
268 else
269 regcache_raw_supply (regcache, ARM_PS_REGNUM,
270 (char *) &regs[ARM_PC_REGNUM]);
271 }
272
273 if (ARM_PC_REGNUM == regno)
274 {
275 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
276 (get_regcache_arch (regcache),
277 regs[ARM_PC_REGNUM]);
278 regcache_raw_supply (regcache, ARM_PC_REGNUM,
279 (char *) &regs[ARM_PC_REGNUM]);
280 }
281 }
282
283 /* Fetch all general registers of the process and store into
284 regcache. */
285
286 static void
287 fetch_regs (struct regcache *regcache)
288 {
289 int ret, regno, tid;
290 elf_gregset_t regs;
291
292 /* Get the thread id for the ptrace call. */
293 tid = GET_THREAD_ID (inferior_ptid);
294
295 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
296 if (ret < 0)
297 {
298 warning (_("Unable to fetch general registers."));
299 return;
300 }
301
302 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
303 regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
304
305 if (arm_apcs_32)
306 regcache_raw_supply (regcache, ARM_PS_REGNUM,
307 (char *) &regs[ARM_CPSR_GREGNUM]);
308 else
309 regcache_raw_supply (regcache, ARM_PS_REGNUM,
310 (char *) &regs[ARM_PC_REGNUM]);
311
312 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
313 (get_regcache_arch (regcache), regs[ARM_PC_REGNUM]);
314 regcache_raw_supply (regcache, ARM_PC_REGNUM,
315 (char *) &regs[ARM_PC_REGNUM]);
316 }
317
318 /* Store all general registers of the process from the values in
319 regcache. */
320
321 static void
322 store_register (const struct regcache *regcache, int regno)
323 {
324 int ret, tid;
325 elf_gregset_t regs;
326
327 if (REG_VALID != regcache_register_status (regcache, regno))
328 return;
329
330 /* Get the thread id for the ptrace call. */
331 tid = GET_THREAD_ID (inferior_ptid);
332
333 /* Get the general registers from the process. */
334 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
335 if (ret < 0)
336 {
337 warning (_("Unable to fetch general registers."));
338 return;
339 }
340
341 if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM)
342 regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
343 else if (arm_apcs_32 && regno == ARM_PS_REGNUM)
344 regcache_raw_collect (regcache, regno,
345 (char *) &regs[ARM_CPSR_GREGNUM]);
346 else if (!arm_apcs_32 && regno == ARM_PS_REGNUM)
347 regcache_raw_collect (regcache, ARM_PC_REGNUM,
348 (char *) &regs[ARM_PC_REGNUM]);
349
350 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
351 if (ret < 0)
352 {
353 warning (_("Unable to store general register."));
354 return;
355 }
356 }
357
358 static void
359 store_regs (const struct regcache *regcache)
360 {
361 int ret, regno, tid;
362 elf_gregset_t regs;
363
364 /* Get the thread id for the ptrace call. */
365 tid = GET_THREAD_ID (inferior_ptid);
366
367 /* Fetch the general registers. */
368 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
369 if (ret < 0)
370 {
371 warning (_("Unable to fetch general registers."));
372 return;
373 }
374
375 for (regno = ARM_A1_REGNUM; regno <= ARM_PC_REGNUM; regno++)
376 {
377 if (REG_VALID == regcache_register_status (regcache, regno))
378 regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
379 }
380
381 if (arm_apcs_32 && REG_VALID == regcache_register_status (regcache, ARM_PS_REGNUM))
382 regcache_raw_collect (regcache, ARM_PS_REGNUM,
383 (char *) &regs[ARM_CPSR_GREGNUM]);
384
385 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
386
387 if (ret < 0)
388 {
389 warning (_("Unable to store general registers."));
390 return;
391 }
392 }
393
394 /* Fetch all WMMX registers of the process and store into
395 regcache. */
396
397 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
398
399 static void
400 fetch_wmmx_regs (struct regcache *regcache)
401 {
402 char regbuf[IWMMXT_REGS_SIZE];
403 int ret, regno, tid;
404
405 /* Get the thread id for the ptrace call. */
406 tid = GET_THREAD_ID (inferior_ptid);
407
408 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
409 if (ret < 0)
410 {
411 warning (_("Unable to fetch WMMX registers."));
412 return;
413 }
414
415 for (regno = 0; regno < 16; regno++)
416 regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM,
417 &regbuf[regno * 8]);
418
419 for (regno = 0; regno < 2; regno++)
420 regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM,
421 &regbuf[16 * 8 + regno * 4]);
422
423 for (regno = 0; regno < 4; regno++)
424 regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM,
425 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
426 }
427
428 static void
429 store_wmmx_regs (const struct regcache *regcache)
430 {
431 char regbuf[IWMMXT_REGS_SIZE];
432 int ret, regno, tid;
433
434 /* Get the thread id for the ptrace call. */
435 tid = GET_THREAD_ID (inferior_ptid);
436
437 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
438 if (ret < 0)
439 {
440 warning (_("Unable to fetch WMMX registers."));
441 return;
442 }
443
444 for (regno = 0; regno < 16; regno++)
445 if (REG_VALID == regcache_register_status (regcache,
446 regno + ARM_WR0_REGNUM))
447 regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM,
448 &regbuf[regno * 8]);
449
450 for (regno = 0; regno < 2; regno++)
451 if (REG_VALID == regcache_register_status (regcache,
452 regno + ARM_WCSSF_REGNUM))
453 regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM,
454 &regbuf[16 * 8 + regno * 4]);
455
456 for (regno = 0; regno < 4; regno++)
457 if (REG_VALID == regcache_register_status (regcache,
458 regno + ARM_WCGR0_REGNUM))
459 regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM,
460 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
461
462 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
463
464 if (ret < 0)
465 {
466 warning (_("Unable to store WMMX registers."));
467 return;
468 }
469 }
470
471 /* Fetch and store VFP Registers. The kernel object has space for 32
472 64-bit registers, and the FPSCR. This is even when on a VFPv2 or
473 VFPv3D16 target. */
474 #define VFP_REGS_SIZE (32 * 8 + 4)
475
476 static void
477 fetch_vfp_regs (struct regcache *regcache)
478 {
479 char regbuf[VFP_REGS_SIZE];
480 int ret, regno, tid;
481
482 /* Get the thread id for the ptrace call. */
483 tid = GET_THREAD_ID (inferior_ptid);
484
485 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
486 if (ret < 0)
487 {
488 warning (_("Unable to fetch VFP registers."));
489 return;
490 }
491
492 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
493 regcache_raw_supply (regcache, regno + ARM_D0_REGNUM,
494 (char *) regbuf + regno * 8);
495
496 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM,
497 (char *) regbuf + 32 * 8);
498 }
499
500 static void
501 store_vfp_regs (const struct regcache *regcache)
502 {
503 char regbuf[VFP_REGS_SIZE];
504 int ret, regno, tid;
505
506 /* Get the thread id for the ptrace call. */
507 tid = GET_THREAD_ID (inferior_ptid);
508
509 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
510 if (ret < 0)
511 {
512 warning (_("Unable to fetch VFP registers (for update)."));
513 return;
514 }
515
516 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
517 regcache_raw_collect (regcache, regno + ARM_D0_REGNUM,
518 (char *) regbuf + regno * 8);
519
520 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM,
521 (char *) regbuf + 32 * 8);
522
523 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
524
525 if (ret < 0)
526 {
527 warning (_("Unable to store VFP registers."));
528 return;
529 }
530 }
531
532 /* Fetch registers from the child process. Fetch all registers if
533 regno == -1, otherwise fetch all general registers or all floating
534 point registers depending upon the value of regno. */
535
536 static void
537 arm_linux_fetch_inferior_registers (struct target_ops *ops,
538 struct regcache *regcache, int regno)
539 {
540 if (-1 == regno)
541 {
542 fetch_regs (regcache);
543 fetch_fpregs (regcache);
544 if (arm_linux_has_wmmx_registers)
545 fetch_wmmx_regs (regcache);
546 if (arm_linux_vfp_register_count > 0)
547 fetch_vfp_regs (regcache);
548 }
549 else
550 {
551 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
552 fetch_register (regcache, regno);
553 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
554 fetch_fpregister (regcache, regno);
555 else if (arm_linux_has_wmmx_registers
556 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
557 fetch_wmmx_regs (regcache);
558 else if (arm_linux_vfp_register_count > 0
559 && regno >= ARM_D0_REGNUM
560 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
561 fetch_vfp_regs (regcache);
562 }
563 }
564
565 /* Store registers back into the inferior. Store all registers if
566 regno == -1, otherwise store all general registers or all floating
567 point registers depending upon the value of regno. */
568
569 static void
570 arm_linux_store_inferior_registers (struct target_ops *ops,
571 struct regcache *regcache, int regno)
572 {
573 if (-1 == regno)
574 {
575 store_regs (regcache);
576 store_fpregs (regcache);
577 if (arm_linux_has_wmmx_registers)
578 store_wmmx_regs (regcache);
579 if (arm_linux_vfp_register_count > 0)
580 store_vfp_regs (regcache);
581 }
582 else
583 {
584 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
585 store_register (regcache, regno);
586 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
587 store_fpregister (regcache, regno);
588 else if (arm_linux_has_wmmx_registers
589 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
590 store_wmmx_regs (regcache);
591 else if (arm_linux_vfp_register_count > 0
592 && regno >= ARM_D0_REGNUM
593 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
594 store_vfp_regs (regcache);
595 }
596 }
597
598 /* Wrapper functions for the standard regset handling, used by
599 thread debugging. */
600
601 void
602 fill_gregset (const struct regcache *regcache,
603 gdb_gregset_t *gregsetp, int regno)
604 {
605 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
606 }
607
608 void
609 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
610 {
611 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
612 }
613
614 void
615 fill_fpregset (const struct regcache *regcache,
616 gdb_fpregset_t *fpregsetp, int regno)
617 {
618 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
619 }
620
621 /* Fill GDB's register array with the floating-point register values
622 in *fpregsetp. */
623
624 void
625 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
626 {
627 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
628 }
629
630 /* Fetch the thread-local storage pointer for libthread_db. */
631
632 ps_err_e
633 ps_get_thread_area (const struct ps_prochandle *ph,
634 lwpid_t lwpid, int idx, void **base)
635 {
636 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
637 return PS_ERR;
638
639 /* IDX is the bias from the thread pointer to the beginning of the
640 thread descriptor. It has to be subtracted due to implementation
641 quirks in libthread_db. */
642 *base = (void *) ((char *)*base - idx);
643
644 return PS_OK;
645 }
646
647 static unsigned int
648 get_linux_version (unsigned int *vmajor,
649 unsigned int *vminor,
650 unsigned int *vrelease)
651 {
652 struct utsname info;
653 char *pmajor, *pminor, *prelease, *tail;
654
655 if (-1 == uname (&info))
656 {
657 warning (_("Unable to determine GNU/Linux version."));
658 return -1;
659 }
660
661 pmajor = strtok (info.release, ".");
662 pminor = strtok (NULL, ".");
663 prelease = strtok (NULL, ".");
664
665 *vmajor = (unsigned int) strtoul (pmajor, &tail, 0);
666 *vminor = (unsigned int) strtoul (pminor, &tail, 0);
667 *vrelease = (unsigned int) strtoul (prelease, &tail, 0);
668
669 return ((*vmajor << 16) | (*vminor << 8) | *vrelease);
670 }
671
672 static const struct target_desc *
673 arm_linux_read_description (struct target_ops *ops)
674 {
675 CORE_ADDR arm_hwcap = 0;
676 arm_linux_has_wmmx_registers = 0;
677 arm_linux_vfp_register_count = 0;
678
679 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
680 {
681 return NULL;
682 }
683
684 if (arm_hwcap & HWCAP_IWMMXT)
685 {
686 arm_linux_has_wmmx_registers = 1;
687 return tdesc_arm_with_iwmmxt;
688 }
689
690 if (arm_hwcap & HWCAP_VFP)
691 {
692 int pid;
693 char *buf;
694 const struct target_desc * result = NULL;
695
696 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
697 Neon with VFPv3-D32. */
698 if (arm_hwcap & HWCAP_NEON)
699 {
700 arm_linux_vfp_register_count = 32;
701 result = tdesc_arm_with_neon;
702 }
703 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
704 {
705 arm_linux_vfp_register_count = 32;
706 result = tdesc_arm_with_vfpv3;
707 }
708 else
709 {
710 arm_linux_vfp_register_count = 16;
711 result = tdesc_arm_with_vfpv2;
712 }
713
714 /* Now make sure that the kernel supports reading these
715 registers. Support was added in 2.6.30. */
716 pid = GET_LWP (inferior_ptid);
717 errno = 0;
718 buf = alloca (VFP_REGS_SIZE);
719 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
720 && errno == EIO)
721 result = NULL;
722
723 return result;
724 }
725
726 return NULL;
727 }
728
729 /* Information describing the hardware breakpoint capabilities. */
730 struct arm_linux_hwbp_cap
731 {
732 gdb_byte arch;
733 gdb_byte max_wp_length;
734 gdb_byte wp_count;
735 gdb_byte bp_count;
736 };
737
738 /* Get hold of the Hardware Breakpoint information for the target we are
739 attached to. Returns NULL if the kernel doesn't support Hardware
740 breakpoints at all, or a pointer to the information structure. */
741 static const struct arm_linux_hwbp_cap *
742 arm_linux_get_hwbp_cap (void)
743 {
744 /* The info structure we return. */
745 static struct arm_linux_hwbp_cap info;
746
747 /* Is INFO in a good state? -1 means that no attempt has been made to
748 initialize INFO; 0 means an attempt has been made, but it failed; 1
749 means INFO is in an initialized state. */
750 static int available = -1;
751
752 if (available == -1)
753 {
754 int tid;
755 unsigned int val;
756
757 tid = GET_THREAD_ID (inferior_ptid);
758 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
759 available = 0;
760 else
761 {
762 info.arch = (gdb_byte)((val >> 24) & 0xff);
763 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
764 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
765 info.bp_count = (gdb_byte)(val & 0xff);
766 available = (info.arch != 0);
767 }
768 }
769
770 return available == 1 ? &info : NULL;
771 }
772
773 /* How many hardware breakpoints are available? */
774 static int
775 arm_linux_get_hw_breakpoint_count (void)
776 {
777 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
778 return cap != NULL ? cap->bp_count : 0;
779 }
780
781 /* How many hardware watchpoints are available? */
782 static int
783 arm_linux_get_hw_watchpoint_count (void)
784 {
785 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
786 return cap != NULL ? cap->wp_count : 0;
787 }
788
789 /* Have we got a free break-/watch-point available for use? Returns -1 if
790 there is not an appropriate resource available, otherwise returns 1. */
791 static int
792 arm_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
793 {
794 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
795 || type == bp_access_watchpoint || type == bp_watchpoint)
796 {
797 if (cnt + ot > arm_linux_get_hw_watchpoint_count ())
798 return -1;
799 }
800 else if (type == bp_hardware_breakpoint)
801 {
802 if (cnt > arm_linux_get_hw_breakpoint_count ())
803 return -1;
804 }
805 else
806 gdb_assert (FALSE);
807
808 return 1;
809 }
810
811 /* Enum describing the different types of ARM hardware break-/watch-points. */
812 typedef enum
813 {
814 arm_hwbp_break = 0,
815 arm_hwbp_load = 1,
816 arm_hwbp_store = 2,
817 arm_hwbp_access = 3
818 } arm_hwbp_type;
819
820 /* Type describing an ARM Hardware Breakpoint Control register value. */
821 typedef unsigned int arm_hwbp_control_t;
822
823 /* Structure used to keep track of hardware break-/watch-points. */
824 struct arm_linux_hw_breakpoint
825 {
826 /* Address to break on, or being watched. */
827 unsigned int address;
828 /* Control register for break-/watch- point. */
829 arm_hwbp_control_t control;
830 };
831
832 /* Structure containing arrays of the break and watch points which are have
833 active in each thread.
834
835 The Linux ptrace interface to hardware break-/watch-points presents the
836 values in a vector centred around 0 (which is used fo generic information).
837 Positive indicies refer to breakpoint addresses/control registers, negative
838 indices to watchpoint addresses/control registers.
839
840 The Linux vector is indexed as follows:
841 -((i << 1) + 2): Control register for watchpoint i.
842 -((i << 1) + 1): Address register for watchpoint i.
843 0: Information register.
844 ((i << 1) + 1): Address register for breakpoint i.
845 ((i << 1) + 2): Control register for breakpoint i.
846
847 This structure is used as a per-thread cache of the state stored by the
848 kernel, so that we don't need to keep calling into the kernel to find a
849 free breakpoint.
850
851 We treat break-/watch-points with their enable bit clear as being deleted.
852 */
853 typedef struct arm_linux_thread_points
854 {
855 /* Thread ID. */
856 int tid;
857 /* Breakpoints for thread. */
858 struct arm_linux_hw_breakpoint *bpts;
859 /* Watchpoint for threads. */
860 struct arm_linux_hw_breakpoint *wpts;
861 } *arm_linux_thread_points_p;
862 DEF_VEC_P (arm_linux_thread_points_p);
863
864 /* Vector of hardware breakpoints for each thread. */
865 VEC(arm_linux_thread_points_p) *arm_threads = NULL;
866
867 /* Find the list of hardware break-/watch-points for a thread with id TID.
868 If no list exists for TID we return NULL if ALLOC_NEW is 0, otherwise we
869 create a new list and return that. */
870 static struct arm_linux_thread_points *
871 arm_linux_find_breakpoints_by_tid (int tid, int alloc_new)
872 {
873 int i;
874 struct arm_linux_thread_points *t;
875
876 for (i = 0; VEC_iterate (arm_linux_thread_points_p, arm_threads, i, t); ++i)
877 {
878 if (t->tid == tid)
879 return t;
880 }
881
882 t = NULL;
883
884 if (alloc_new)
885 {
886 t = xmalloc (sizeof (struct arm_linux_thread_points));
887 t->tid = tid;
888 t->bpts = xzalloc (arm_linux_get_hw_breakpoint_count ()
889 * sizeof (struct arm_linux_hw_breakpoint));
890 t->wpts = xzalloc (arm_linux_get_hw_watchpoint_count ()
891 * sizeof (struct arm_linux_hw_breakpoint));
892 VEC_safe_push (arm_linux_thread_points_p, arm_threads, t);
893 }
894
895 return t;
896 }
897
898 /* Initialize an ARM hardware break-/watch-point control register value.
899 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
900 type of break-/watch-point; ENABLE indicates whether the point is enabled.
901 */
902 static arm_hwbp_control_t
903 arm_hwbp_control_initialize (unsigned byte_address_select,
904 arm_hwbp_type hwbp_type,
905 int enable)
906 {
907 gdb_assert ((byte_address_select & ~0xffU) == 0);
908 gdb_assert (hwbp_type != arm_hwbp_break
909 || ((byte_address_select & 0xfU) != 0));
910
911 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
912 }
913
914 /* Does the breakpoint control value CONTROL have the enable bit set? */
915 static int
916 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
917 {
918 return control & 0x1;
919 }
920
921 /* Change a breakpoint control word so that it is in the disabled state. */
922 static arm_hwbp_control_t
923 arm_hwbp_control_disable (arm_hwbp_control_t control)
924 {
925 return control & ~0x1;
926 }
927
928 /* Initialise the hardware breakpoint structure P. The breakpoint will be
929 enabled, and will point to the placed address of BP_TGT. */
930 static void
931 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
932 struct bp_target_info *bp_tgt,
933 struct arm_linux_hw_breakpoint *p)
934 {
935 unsigned mask;
936 CORE_ADDR address = bp_tgt->placed_address;
937
938 /* We have to create a mask for the control register which says which bits
939 of the word pointed to by address to break on. */
940 if (arm_pc_is_thumb (gdbarch, address))
941 mask = 0x3 << (address & 2);
942 else
943 mask = 0xf;
944
945 p->address = (unsigned int) (address & ~3);
946 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
947 }
948
949 /* Get the ARM hardware breakpoint type from the RW value we're given when
950 asked to set a watchpoint. */
951 static arm_hwbp_type
952 arm_linux_get_hwbp_type (int rw)
953 {
954 if (rw == hw_read)
955 return arm_hwbp_load;
956 else if (rw == hw_write)
957 return arm_hwbp_store;
958 else
959 return arm_hwbp_access;
960 }
961
962 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
963 to LEN. The type of watchpoint is given in RW. */
964 static void
965 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, int rw,
966 struct arm_linux_hw_breakpoint *p)
967 {
968 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
969 unsigned mask;
970
971 gdb_assert (cap != NULL);
972 gdb_assert (cap->max_wp_length != 0);
973
974 mask = (1 << len) - 1;
975
976 p->address = (unsigned int) addr;
977 p->control = arm_hwbp_control_initialize (mask,
978 arm_linux_get_hwbp_type (rw), 1);
979 }
980
981 /* Are two break-/watch-points equal? */
982 static int
983 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
984 const struct arm_linux_hw_breakpoint *p2)
985 {
986 return p1->address == p2->address && p1->control == p2->control;
987 }
988
989 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
990 =1) BPT for thread TID. */
991 static void
992 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
993 int tid, int watchpoint)
994 {
995 struct arm_linux_thread_points *t = arm_linux_find_breakpoints_by_tid (tid, 1);
996 gdb_byte count, i;
997 struct arm_linux_hw_breakpoint* bpts;
998 int dir;
999
1000 gdb_assert (t != NULL);
1001
1002 if (watchpoint)
1003 {
1004 count = arm_linux_get_hw_watchpoint_count ();
1005 bpts = t->wpts;
1006 dir = -1;
1007 }
1008 else
1009 {
1010 count = arm_linux_get_hw_breakpoint_count ();
1011 bpts = t->bpts;
1012 dir = 1;
1013 }
1014
1015 for (i = 0; i < count; ++i)
1016 if (!arm_hwbp_control_is_enabled (bpts[i].control))
1017 {
1018 errno = 0;
1019 if (ptrace (PTRACE_SETHBPREGS, tid, dir * ((i << 1) + 1),
1020 &bpt->address) < 0)
1021 perror_with_name (_("Unexpected error setting breakpoint address"));
1022 if (ptrace (PTRACE_SETHBPREGS, tid, dir * ((i << 1) + 2),
1023 &bpt->control) < 0)
1024 perror_with_name (_("Unexpected error setting breakpoint"));
1025
1026 memcpy (bpts + i, bpt, sizeof (struct arm_linux_hw_breakpoint));
1027 break;
1028 }
1029
1030 gdb_assert (i != count);
1031 }
1032
1033 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1034 (WATCHPOINT = 1) BPT for thread TID. */
1035 static void
1036 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1037 int tid, int watchpoint)
1038 {
1039 struct arm_linux_thread_points *t = arm_linux_find_breakpoints_by_tid (tid, 0);
1040 gdb_byte count, i;
1041 struct arm_linux_hw_breakpoint *bpts;
1042 int dir;
1043
1044 gdb_assert (t != NULL);
1045
1046 if (watchpoint)
1047 {
1048 count = arm_linux_get_hw_watchpoint_count ();
1049 bpts = t->wpts;
1050 dir = -1;
1051 }
1052 else
1053 {
1054 count = arm_linux_get_hw_breakpoint_count ();
1055 bpts = t->bpts;
1056 dir = 1;
1057 }
1058
1059 for (i = 0; i < count; ++i)
1060 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1061 {
1062 errno = 0;
1063 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1064 if (ptrace (PTRACE_SETHBPREGS, tid, dir * ((i << 1) + 2),
1065 &bpts[i].control) < 0)
1066 perror_with_name (_("Unexpected error clearing breakpoint"));
1067 break;
1068 }
1069
1070 gdb_assert (i != count);
1071 }
1072
1073 /* Insert a Hardware breakpoint. */
1074 static int
1075 arm_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1076 struct bp_target_info *bp_tgt)
1077 {
1078 struct lwp_info *lp;
1079 struct arm_linux_hw_breakpoint p;
1080
1081 if (arm_linux_get_hw_breakpoint_count () == 0)
1082 return -1;
1083
1084 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1085 ALL_LWPS (lp)
1086 arm_linux_insert_hw_breakpoint1 (&p, TIDGET (lp->ptid), 0);
1087
1088 return 0;
1089 }
1090
1091 /* Remove a hardware breakpoint. */
1092 static int
1093 arm_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1094 struct bp_target_info *bp_tgt)
1095 {
1096 struct lwp_info *lp;
1097 struct arm_linux_hw_breakpoint p;
1098
1099 if (arm_linux_get_hw_breakpoint_count () == 0)
1100 return -1;
1101
1102 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1103 ALL_LWPS (lp)
1104 arm_linux_remove_hw_breakpoint1 (&p, TIDGET (lp->ptid), 0);
1105
1106 return 0;
1107 }
1108
1109 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1110 ADDR? */
1111 static int
1112 arm_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1113 {
1114 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1115 CORE_ADDR max_wp_length, aligned_addr;
1116
1117 /* Can not set watchpoints for zero or negative lengths. */
1118 if (len <= 0)
1119 return 0;
1120
1121 /* Need to be able to use the ptrace interface. */
1122 if (cap == NULL || cap->wp_count == 0)
1123 return 0;
1124
1125 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1126 range covered by a watchpoint. */
1127 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1128 aligned_addr = addr & ~(max_wp_length - 1);
1129
1130 if (aligned_addr + max_wp_length < addr + len)
1131 return 0;
1132
1133 /* The current ptrace interface can only handle watchpoints that are a
1134 power of 2. */
1135 if ((len & (len - 1)) != 0)
1136 return 0;
1137
1138 /* All tests passed so we must be able to set a watchpoint. */
1139 return 1;
1140 }
1141
1142 /* Insert a Hardware breakpoint. */
1143 static int
1144 arm_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
1145 struct expression *cond)
1146 {
1147 struct lwp_info *lp;
1148 struct arm_linux_hw_breakpoint p;
1149
1150 if (arm_linux_get_hw_watchpoint_count () == 0)
1151 return -1;
1152
1153 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1154 ALL_LWPS (lp)
1155 arm_linux_insert_hw_breakpoint1 (&p, TIDGET (lp->ptid), 1);
1156
1157 return 0;
1158 }
1159
1160 /* Remove a hardware breakpoint. */
1161 static int
1162 arm_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
1163 struct expression *cond)
1164 {
1165 struct lwp_info *lp;
1166 struct arm_linux_hw_breakpoint p;
1167
1168 if (arm_linux_get_hw_watchpoint_count () == 0)
1169 return -1;
1170
1171 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1172 ALL_LWPS (lp)
1173 arm_linux_remove_hw_breakpoint1 (&p, TIDGET (lp->ptid), 1);
1174
1175 return 0;
1176 }
1177
1178 /* What was the data address the target was stopped on accessing. */
1179 static int
1180 arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
1181 {
1182 struct siginfo *siginfo_p = linux_nat_get_siginfo (inferior_ptid);
1183 int slot = siginfo_p->si_errno;
1184
1185 /* This must be a hardware breakpoint. */
1186 if (siginfo_p->si_signo != SIGTRAP
1187 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1188 return 0;
1189
1190 /* We must be able to set hardware watchpoints. */
1191 if (arm_linux_get_hw_watchpoint_count () == 0)
1192 return 0;
1193
1194 /* If we are in a positive slot then we're looking at a breakpoint and not
1195 a watchpoint. */
1196 if (slot >= 0)
1197 return 0;
1198
1199 *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
1200 return 1;
1201 }
1202
1203 /* Has the target been stopped by hitting a watchpoint? */
1204 static int
1205 arm_linux_stopped_by_watchpoint (void)
1206 {
1207 CORE_ADDR addr;
1208 return arm_linux_stopped_data_address (&current_target, &addr);
1209 }
1210
1211 static int
1212 arm_linux_watchpoint_addr_within_range (struct target_ops *target,
1213 CORE_ADDR addr,
1214 CORE_ADDR start, int length)
1215 {
1216 return start <= addr && start + length - 1 >= addr;
1217 }
1218
1219 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1220 in the parent thread to the child thread. */
1221 static void
1222 arm_linux_new_thread (ptid_t ptid)
1223 {
1224 int tid = TIDGET (ptid);
1225 const struct arm_linux_hwbp_cap *info = arm_linux_get_hwbp_cap ();
1226
1227 if (info != NULL)
1228 {
1229 int i;
1230 struct arm_linux_thread_points *p;
1231 struct arm_linux_hw_breakpoint *bpts;
1232
1233 if (VEC_empty (arm_linux_thread_points_p, arm_threads))
1234 return;
1235
1236 /* Get a list of breakpoints from any thread. */
1237 p = VEC_last (arm_linux_thread_points_p, arm_threads);
1238
1239 /* Copy that thread's breakpoints and watchpoints to the new thread. */
1240 for (i = 0; i < info->bp_count; i++)
1241 if (arm_hwbp_control_is_enabled (p->bpts[i].control))
1242 arm_linux_insert_hw_breakpoint1 (p->bpts + i, tid, 0);
1243 for (i = 0; i < info->wp_count; i++)
1244 if (arm_hwbp_control_is_enabled (p->wpts[i].control))
1245 arm_linux_insert_hw_breakpoint1 (p->wpts + i, tid, 1);
1246 }
1247 }
1248
1249 /* Handle thread exit. Tidy up the memory that has been allocated for the
1250 thread. */
1251 static void
1252 arm_linux_thread_exit (struct thread_info *tp, int silent)
1253 {
1254 const struct arm_linux_hwbp_cap *info = arm_linux_get_hwbp_cap ();
1255
1256 if (info != NULL)
1257 {
1258 int i;
1259 int tid = TIDGET (tp->ptid);
1260 struct arm_linux_thread_points *t = NULL, *p;
1261
1262 for (i = 0;
1263 VEC_iterate (arm_linux_thread_points_p, arm_threads, i, p); i++)
1264 {
1265 if (p->tid == tid)
1266 {
1267 t = p;
1268 break;
1269 }
1270 }
1271
1272 if (t == NULL)
1273 return;
1274
1275 VEC_unordered_remove (arm_linux_thread_points_p, arm_threads, i);
1276
1277 xfree (t->bpts);
1278 xfree (t->wpts);
1279 xfree (t);
1280 }
1281 }
1282
1283 void _initialize_arm_linux_nat (void);
1284
1285 void
1286 _initialize_arm_linux_nat (void)
1287 {
1288 struct target_ops *t;
1289
1290 os_version = get_linux_version (&os_major, &os_minor, &os_release);
1291
1292 /* Fill in the generic GNU/Linux methods. */
1293 t = linux_target ();
1294
1295 /* Add our register access methods. */
1296 t->to_fetch_registers = arm_linux_fetch_inferior_registers;
1297 t->to_store_registers = arm_linux_store_inferior_registers;
1298
1299 /* Add our hardware breakpoint and watchpoint implementation. */
1300 t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint;
1301 t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint;
1302 t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint;
1303 t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint;
1304 t->to_insert_watchpoint = arm_linux_insert_watchpoint;
1305 t->to_remove_watchpoint = arm_linux_remove_watchpoint;
1306 t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint;
1307 t->to_stopped_data_address = arm_linux_stopped_data_address;
1308 t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range;
1309
1310 t->to_read_description = arm_linux_read_description;
1311
1312 /* Register the target. */
1313 linux_nat_add_target (t);
1314
1315 /* Handle thread creation and exit */
1316 observer_attach_thread_exit (arm_linux_thread_exit);
1317 linux_nat_set_new_thread (t, arm_linux_new_thread);
1318 }
This page took 0.087395 seconds and 4 git commands to generate.