2011-03-18 Phil Muldoon <pmuldoon@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "target.h"
23 #include "value.h"
24 #include "gdbtypes.h"
25 #include "floatformat.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "regcache.h"
29 #include "doublest.h"
30 #include "solib-svr4.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "trad-frame.h"
34 #include "tramp-frame.h"
35 #include "breakpoint.h"
36
37 #include "arm-tdep.h"
38 #include "arm-linux-tdep.h"
39 #include "linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "arch-utils.h"
42 #include "inferior.h"
43 #include "gdbthread.h"
44 #include "symfile.h"
45
46 #include "gdb_string.h"
47
48 extern int arm_apcs_32;
49
50 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
51 is to execute a particular software interrupt, rather than use a
52 particular undefined instruction to provoke a trap. Upon exection
53 of the software interrupt the kernel stops the inferior with a
54 SIGTRAP, and wakes the debugger. */
55
56 static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
57
58 static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
59
60 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
61 the operand of the swi if old-ABI compatibility is disabled. Therefore,
62 use an undefined instruction instead. This is supported as of kernel
63 version 2.5.70 (May 2003), so should be a safe assumption for EABI
64 binaries. */
65
66 static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
67
68 static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
69
70 /* All the kernels which support Thumb support using a specific undefined
71 instruction for the Thumb breakpoint. */
72
73 static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
74
75 static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
76
77 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
78 we must use a length-appropriate breakpoint for 32-bit Thumb
79 instructions. See also thumb_get_next_pc. */
80
81 static const char arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
82
83 static const char arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
84
85 /* Description of the longjmp buffer. The buffer is treated as an array of
86 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
87
88 The location of saved registers in this buffer (in particular the PC
89 to use after longjmp is called) varies depending on the ABI (in
90 particular the FP model) and also (possibly) the C Library.
91
92 For glibc, eglibc, and uclibc the following holds: If the FP model is
93 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
94 buffer. This is also true for the SoftFPA model. However, for the FPA
95 model the PC is at offset 21 in the buffer. */
96 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
97 #define ARM_LINUX_JB_PC_FPA 21
98 #define ARM_LINUX_JB_PC_EABI 9
99
100 /*
101 Dynamic Linking on ARM GNU/Linux
102 --------------------------------
103
104 Note: PLT = procedure linkage table
105 GOT = global offset table
106
107 As much as possible, ELF dynamic linking defers the resolution of
108 jump/call addresses until the last minute. The technique used is
109 inspired by the i386 ELF design, and is based on the following
110 constraints.
111
112 1) The calling technique should not force a change in the assembly
113 code produced for apps; it MAY cause changes in the way assembly
114 code is produced for position independent code (i.e. shared
115 libraries).
116
117 2) The technique must be such that all executable areas must not be
118 modified; and any modified areas must not be executed.
119
120 To do this, there are three steps involved in a typical jump:
121
122 1) in the code
123 2) through the PLT
124 3) using a pointer from the GOT
125
126 When the executable or library is first loaded, each GOT entry is
127 initialized to point to the code which implements dynamic name
128 resolution and code finding. This is normally a function in the
129 program interpreter (on ARM GNU/Linux this is usually
130 ld-linux.so.2, but it does not have to be). On the first
131 invocation, the function is located and the GOT entry is replaced
132 with the real function address. Subsequent calls go through steps
133 1, 2 and 3 and end up calling the real code.
134
135 1) In the code:
136
137 b function_call
138 bl function_call
139
140 This is typical ARM code using the 26 bit relative branch or branch
141 and link instructions. The target of the instruction
142 (function_call is usually the address of the function to be called.
143 In position independent code, the target of the instruction is
144 actually an entry in the PLT when calling functions in a shared
145 library. Note that this call is identical to a normal function
146 call, only the target differs.
147
148 2) In the PLT:
149
150 The PLT is a synthetic area, created by the linker. It exists in
151 both executables and libraries. It is an array of stubs, one per
152 imported function call. It looks like this:
153
154 PLT[0]:
155 str lr, [sp, #-4]! @push the return address (lr)
156 ldr lr, [pc, #16] @load from 6 words ahead
157 add lr, pc, lr @form an address for GOT[0]
158 ldr pc, [lr, #8]! @jump to the contents of that addr
159
160 The return address (lr) is pushed on the stack and used for
161 calculations. The load on the second line loads the lr with
162 &GOT[3] - . - 20. The addition on the third leaves:
163
164 lr = (&GOT[3] - . - 20) + (. + 8)
165 lr = (&GOT[3] - 12)
166 lr = &GOT[0]
167
168 On the fourth line, the pc and lr are both updated, so that:
169
170 pc = GOT[2]
171 lr = &GOT[0] + 8
172 = &GOT[2]
173
174 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
175 "tight", but allows us to keep all the PLT entries the same size.
176
177 PLT[n+1]:
178 ldr ip, [pc, #4] @load offset from gotoff
179 add ip, pc, ip @add the offset to the pc
180 ldr pc, [ip] @jump to that address
181 gotoff: .word GOT[n+3] - .
182
183 The load on the first line, gets an offset from the fourth word of
184 the PLT entry. The add on the second line makes ip = &GOT[n+3],
185 which contains either a pointer to PLT[0] (the fixup trampoline) or
186 a pointer to the actual code.
187
188 3) In the GOT:
189
190 The GOT contains helper pointers for both code (PLT) fixups and
191 data fixups. The first 3 entries of the GOT are special. The next
192 M entries (where M is the number of entries in the PLT) belong to
193 the PLT fixups. The next D (all remaining) entries belong to
194 various data fixups. The actual size of the GOT is 3 + M + D.
195
196 The GOT is also a synthetic area, created by the linker. It exists
197 in both executables and libraries. When the GOT is first
198 initialized , all the GOT entries relating to PLT fixups are
199 pointing to code back at PLT[0].
200
201 The special entries in the GOT are:
202
203 GOT[0] = linked list pointer used by the dynamic loader
204 GOT[1] = pointer to the reloc table for this module
205 GOT[2] = pointer to the fixup/resolver code
206
207 The first invocation of function call comes through and uses the
208 fixup/resolver code. On the entry to the fixup/resolver code:
209
210 ip = &GOT[n+3]
211 lr = &GOT[2]
212 stack[0] = return address (lr) of the function call
213 [r0, r1, r2, r3] are still the arguments to the function call
214
215 This is enough information for the fixup/resolver code to work
216 with. Before the fixup/resolver code returns, it actually calls
217 the requested function and repairs &GOT[n+3]. */
218
219 /* The constants below were determined by examining the following files
220 in the linux kernel sources:
221
222 arch/arm/kernel/signal.c
223 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
224 include/asm-arm/unistd.h
225 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
226
227 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
228 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
229
230 /* For ARM EABI, the syscall number is not in the SWI instruction
231 (instead it is loaded into r7). We recognize the pattern that
232 glibc uses... alternatively, we could arrange to do this by
233 function name, but they are not always exported. */
234 #define ARM_SET_R7_SIGRETURN 0xe3a07077
235 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
236 #define ARM_EABI_SYSCALL 0xef000000
237
238 /* OABI syscall restart trampoline, used for EABI executables too
239 whenever OABI support has been enabled in the kernel. */
240 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
241 #define ARM_LDR_PC_SP_12 0xe49df00c
242 #define ARM_LDR_PC_SP_4 0xe49df004
243
244 static void
245 arm_linux_sigtramp_cache (struct frame_info *this_frame,
246 struct trad_frame_cache *this_cache,
247 CORE_ADDR func, int regs_offset)
248 {
249 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
250 CORE_ADDR base = sp + regs_offset;
251 int i;
252
253 for (i = 0; i < 16; i++)
254 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
255
256 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
257
258 /* The VFP or iWMMXt registers may be saved on the stack, but there's
259 no reliable way to restore them (yet). */
260
261 /* Save a frame ID. */
262 trad_frame_set_id (this_cache, frame_id_build (sp, func));
263 }
264
265 /* There are a couple of different possible stack layouts that
266 we need to support.
267
268 Before version 2.6.18, the kernel used completely independent
269 layouts for non-RT and RT signals. For non-RT signals the stack
270 began directly with a struct sigcontext. For RT signals the stack
271 began with two redundant pointers (to the siginfo and ucontext),
272 and then the siginfo and ucontext.
273
274 As of version 2.6.18, the non-RT signal frame layout starts with
275 a ucontext and the RT signal frame starts with a siginfo and then
276 a ucontext. Also, the ucontext now has a designated save area
277 for coprocessor registers.
278
279 For RT signals, it's easy to tell the difference: we look for
280 pinfo, the pointer to the siginfo. If it has the expected
281 value, we have an old layout. If it doesn't, we have the new
282 layout.
283
284 For non-RT signals, it's a bit harder. We need something in one
285 layout or the other with a recognizable offset and value. We can't
286 use the return trampoline, because ARM usually uses SA_RESTORER,
287 in which case the stack return trampoline is not filled in.
288 We can't use the saved stack pointer, because sigaltstack might
289 be in use. So for now we guess the new layout... */
290
291 /* There are three words (trap_no, error_code, oldmask) in
292 struct sigcontext before r0. */
293 #define ARM_SIGCONTEXT_R0 0xc
294
295 /* There are five words (uc_flags, uc_link, and three for uc_stack)
296 in the ucontext_t before the sigcontext. */
297 #define ARM_UCONTEXT_SIGCONTEXT 0x14
298
299 /* There are three elements in an rt_sigframe before the ucontext:
300 pinfo, puc, and info. The first two are pointers and the third
301 is a struct siginfo, with size 128 bytes. We could follow puc
302 to the ucontext, but it's simpler to skip the whole thing. */
303 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
304 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
305
306 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
307
308 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
309
310 static void
311 arm_linux_sigreturn_init (const struct tramp_frame *self,
312 struct frame_info *this_frame,
313 struct trad_frame_cache *this_cache,
314 CORE_ADDR func)
315 {
316 struct gdbarch *gdbarch = get_frame_arch (this_frame);
317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
318 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
319 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
320
321 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
322 arm_linux_sigtramp_cache (this_frame, this_cache, func,
323 ARM_UCONTEXT_SIGCONTEXT
324 + ARM_SIGCONTEXT_R0);
325 else
326 arm_linux_sigtramp_cache (this_frame, this_cache, func,
327 ARM_SIGCONTEXT_R0);
328 }
329
330 static void
331 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
332 struct frame_info *this_frame,
333 struct trad_frame_cache *this_cache,
334 CORE_ADDR func)
335 {
336 struct gdbarch *gdbarch = get_frame_arch (this_frame);
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
339 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
340
341 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
342 arm_linux_sigtramp_cache (this_frame, this_cache, func,
343 ARM_OLD_RT_SIGFRAME_UCONTEXT
344 + ARM_UCONTEXT_SIGCONTEXT
345 + ARM_SIGCONTEXT_R0);
346 else
347 arm_linux_sigtramp_cache (this_frame, this_cache, func,
348 ARM_NEW_RT_SIGFRAME_UCONTEXT
349 + ARM_UCONTEXT_SIGCONTEXT
350 + ARM_SIGCONTEXT_R0);
351 }
352
353 static void
354 arm_linux_restart_syscall_init (const struct tramp_frame *self,
355 struct frame_info *this_frame,
356 struct trad_frame_cache *this_cache,
357 CORE_ADDR func)
358 {
359 struct gdbarch *gdbarch = get_frame_arch (this_frame);
360 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
361 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
362 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
363 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
364 int sp_offset;
365
366 /* There are two variants of this trampoline; with older kernels, the
367 stub is placed on the stack, while newer kernels use the stub from
368 the vector page. They are identical except that the older version
369 increments SP by 12 (to skip stored PC and the stub itself), while
370 the newer version increments SP only by 4 (just the stored PC). */
371 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
372 sp_offset = 4;
373 else
374 sp_offset = 12;
375
376 /* Update Thumb bit in CPSR. */
377 if (pc & 1)
378 cpsr |= t_bit;
379 else
380 cpsr &= ~t_bit;
381
382 /* Remove Thumb bit from PC. */
383 pc = gdbarch_addr_bits_remove (gdbarch, pc);
384
385 /* Save previous register values. */
386 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
387 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
388 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
389
390 /* Save a frame ID. */
391 trad_frame_set_id (this_cache, frame_id_build (sp, func));
392 }
393
394 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
395 SIGTRAMP_FRAME,
396 4,
397 {
398 { ARM_LINUX_SIGRETURN_INSTR, -1 },
399 { TRAMP_SENTINEL_INSN }
400 },
401 arm_linux_sigreturn_init
402 };
403
404 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
405 SIGTRAMP_FRAME,
406 4,
407 {
408 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
409 { TRAMP_SENTINEL_INSN }
410 },
411 arm_linux_rt_sigreturn_init
412 };
413
414 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
415 SIGTRAMP_FRAME,
416 4,
417 {
418 { ARM_SET_R7_SIGRETURN, -1 },
419 { ARM_EABI_SYSCALL, -1 },
420 { TRAMP_SENTINEL_INSN }
421 },
422 arm_linux_sigreturn_init
423 };
424
425 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
426 SIGTRAMP_FRAME,
427 4,
428 {
429 { ARM_SET_R7_RT_SIGRETURN, -1 },
430 { ARM_EABI_SYSCALL, -1 },
431 { TRAMP_SENTINEL_INSN }
432 },
433 arm_linux_rt_sigreturn_init
434 };
435
436 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
437 NORMAL_FRAME,
438 4,
439 {
440 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
441 { ARM_LDR_PC_SP_12, -1 },
442 { TRAMP_SENTINEL_INSN }
443 },
444 arm_linux_restart_syscall_init
445 };
446
447 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
448 NORMAL_FRAME,
449 4,
450 {
451 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
452 { ARM_LDR_PC_SP_4, -1 },
453 { TRAMP_SENTINEL_INSN }
454 },
455 arm_linux_restart_syscall_init
456 };
457
458 /* Core file and register set support. */
459
460 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
461
462 void
463 arm_linux_supply_gregset (const struct regset *regset,
464 struct regcache *regcache,
465 int regnum, const void *gregs_buf, size_t len)
466 {
467 struct gdbarch *gdbarch = get_regcache_arch (regcache);
468 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
469 const gdb_byte *gregs = gregs_buf;
470 int regno;
471 CORE_ADDR reg_pc;
472 gdb_byte pc_buf[INT_REGISTER_SIZE];
473
474 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
475 if (regnum == -1 || regnum == regno)
476 regcache_raw_supply (regcache, regno,
477 gregs + INT_REGISTER_SIZE * regno);
478
479 if (regnum == ARM_PS_REGNUM || regnum == -1)
480 {
481 if (arm_apcs_32)
482 regcache_raw_supply (regcache, ARM_PS_REGNUM,
483 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
484 else
485 regcache_raw_supply (regcache, ARM_PS_REGNUM,
486 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
487 }
488
489 if (regnum == ARM_PC_REGNUM || regnum == -1)
490 {
491 reg_pc = extract_unsigned_integer (gregs
492 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
493 INT_REGISTER_SIZE, byte_order);
494 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
495 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
496 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
497 }
498 }
499
500 void
501 arm_linux_collect_gregset (const struct regset *regset,
502 const struct regcache *regcache,
503 int regnum, void *gregs_buf, size_t len)
504 {
505 gdb_byte *gregs = gregs_buf;
506 int regno;
507
508 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
509 if (regnum == -1 || regnum == regno)
510 regcache_raw_collect (regcache, regno,
511 gregs + INT_REGISTER_SIZE * regno);
512
513 if (regnum == ARM_PS_REGNUM || regnum == -1)
514 {
515 if (arm_apcs_32)
516 regcache_raw_collect (regcache, ARM_PS_REGNUM,
517 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
518 else
519 regcache_raw_collect (regcache, ARM_PS_REGNUM,
520 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
521 }
522
523 if (regnum == ARM_PC_REGNUM || regnum == -1)
524 regcache_raw_collect (regcache, ARM_PC_REGNUM,
525 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
526 }
527
528 /* Support for register format used by the NWFPE FPA emulator. */
529
530 #define typeNone 0x00
531 #define typeSingle 0x01
532 #define typeDouble 0x02
533 #define typeExtended 0x03
534
535 void
536 supply_nwfpe_register (struct regcache *regcache, int regno,
537 const gdb_byte *regs)
538 {
539 const gdb_byte *reg_data;
540 gdb_byte reg_tag;
541 gdb_byte buf[FP_REGISTER_SIZE];
542
543 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
544 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
545 memset (buf, 0, FP_REGISTER_SIZE);
546
547 switch (reg_tag)
548 {
549 case typeSingle:
550 memcpy (buf, reg_data, 4);
551 break;
552 case typeDouble:
553 memcpy (buf, reg_data + 4, 4);
554 memcpy (buf + 4, reg_data, 4);
555 break;
556 case typeExtended:
557 /* We want sign and exponent, then least significant bits,
558 then most significant. NWFPE does sign, most, least. */
559 memcpy (buf, reg_data, 4);
560 memcpy (buf + 4, reg_data + 8, 4);
561 memcpy (buf + 8, reg_data + 4, 4);
562 break;
563 default:
564 break;
565 }
566
567 regcache_raw_supply (regcache, regno, buf);
568 }
569
570 void
571 collect_nwfpe_register (const struct regcache *regcache, int regno,
572 gdb_byte *regs)
573 {
574 gdb_byte *reg_data;
575 gdb_byte reg_tag;
576 gdb_byte buf[FP_REGISTER_SIZE];
577
578 regcache_raw_collect (regcache, regno, buf);
579
580 /* NOTE drow/2006-06-07: This code uses the tag already in the
581 register buffer. I've preserved that when moving the code
582 from the native file to the target file. But this doesn't
583 always make sense. */
584
585 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
586 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
587
588 switch (reg_tag)
589 {
590 case typeSingle:
591 memcpy (reg_data, buf, 4);
592 break;
593 case typeDouble:
594 memcpy (reg_data, buf + 4, 4);
595 memcpy (reg_data + 4, buf, 4);
596 break;
597 case typeExtended:
598 memcpy (reg_data, buf, 4);
599 memcpy (reg_data + 4, buf + 8, 4);
600 memcpy (reg_data + 8, buf + 4, 4);
601 break;
602 default:
603 break;
604 }
605 }
606
607 void
608 arm_linux_supply_nwfpe (const struct regset *regset,
609 struct regcache *regcache,
610 int regnum, const void *regs_buf, size_t len)
611 {
612 const gdb_byte *regs = regs_buf;
613 int regno;
614
615 if (regnum == ARM_FPS_REGNUM || regnum == -1)
616 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
617 regs + NWFPE_FPSR_OFFSET);
618
619 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
620 if (regnum == -1 || regnum == regno)
621 supply_nwfpe_register (regcache, regno, regs);
622 }
623
624 void
625 arm_linux_collect_nwfpe (const struct regset *regset,
626 const struct regcache *regcache,
627 int regnum, void *regs_buf, size_t len)
628 {
629 gdb_byte *regs = regs_buf;
630 int regno;
631
632 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
633 if (regnum == -1 || regnum == regno)
634 collect_nwfpe_register (regcache, regno, regs);
635
636 if (regnum == ARM_FPS_REGNUM || regnum == -1)
637 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
638 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
639 }
640
641 /* Return the appropriate register set for the core section identified
642 by SECT_NAME and SECT_SIZE. */
643
644 static const struct regset *
645 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
646 const char *sect_name, size_t sect_size)
647 {
648 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
649
650 if (strcmp (sect_name, ".reg") == 0
651 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
652 {
653 if (tdep->gregset == NULL)
654 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
655 arm_linux_collect_gregset);
656 return tdep->gregset;
657 }
658
659 if (strcmp (sect_name, ".reg2") == 0
660 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
661 {
662 if (tdep->fpregset == NULL)
663 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
664 arm_linux_collect_nwfpe);
665 return tdep->fpregset;
666 }
667
668 return NULL;
669 }
670
671 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
672 and return 1. Return 0 if it is not a rt_sigreturn/sigreturn
673 syscall. */
674 static int
675 arm_linux_sigreturn_return_addr (struct frame_info *frame,
676 unsigned long svc_number,
677 CORE_ADDR *pc)
678 {
679 /* Is this a sigreturn or rt_sigreturn syscall? */
680 if (svc_number == 119 || svc_number == 173)
681 {
682 if (get_frame_type (frame) == SIGTRAMP_FRAME)
683 {
684 *pc = frame_unwind_caller_pc (frame);
685 return 1;
686 }
687 }
688 return 0;
689 }
690
691 /* When FRAME is at a syscall instruction, return the PC of the next
692 instruction to be executed. */
693
694 static CORE_ADDR
695 arm_linux_syscall_next_pc (struct frame_info *frame)
696 {
697 CORE_ADDR pc = get_frame_pc (frame);
698 CORE_ADDR return_addr = 0;
699 int is_thumb = arm_frame_is_thumb (frame);
700 ULONGEST svc_number = 0;
701 int is_sigreturn = 0;
702
703 if (is_thumb)
704 {
705 svc_number = get_frame_register_unsigned (frame, 7);
706 }
707 else
708 {
709 struct gdbarch *gdbarch = get_frame_arch (frame);
710 enum bfd_endian byte_order_for_code =
711 gdbarch_byte_order_for_code (gdbarch);
712 unsigned long this_instr =
713 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
714
715 unsigned long svc_operand = (0x00ffffff & this_instr);
716 if (svc_operand) /* OABI. */
717 {
718 svc_number = svc_operand - 0x900000;
719 }
720 else /* EABI. */
721 {
722 svc_number = get_frame_register_unsigned (frame, 7);
723 }
724 }
725
726 is_sigreturn = arm_linux_sigreturn_return_addr (frame, svc_number,
727 &return_addr);
728
729 if (is_sigreturn)
730 return return_addr;
731
732 if (is_thumb)
733 {
734 return_addr = pc + 2;
735 /* Addresses for calling Thumb functions have the bit 0 set. */
736 return_addr |= 1;
737 }
738 else
739 {
740 return_addr = pc + 4;
741 }
742
743 return return_addr;
744 }
745
746
747 /* Insert a single step breakpoint at the next executed instruction. */
748
749 static int
750 arm_linux_software_single_step (struct frame_info *frame)
751 {
752 struct gdbarch *gdbarch = get_frame_arch (frame);
753 struct address_space *aspace = get_frame_address_space (frame);
754 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
755
756 /* The Linux kernel offers some user-mode helpers in a high page. We can
757 not read this page (as of 2.6.23), and even if we could then we couldn't
758 set breakpoints in it, and even if we could then the atomic operations
759 would fail when interrupted. They are all called as functions and return
760 to the address in LR, so step to there instead. */
761 if (next_pc > 0xffff0000)
762 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
763
764 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
765
766 return 1;
767 }
768
769 /* Support for displaced stepping of Linux SVC instructions. */
770
771 static void
772 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
773 struct regcache *regs,
774 struct displaced_step_closure *dsc)
775 {
776 CORE_ADDR from = dsc->insn_addr;
777 ULONGEST apparent_pc;
778 int within_scratch;
779
780 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
781
782 within_scratch = (apparent_pc >= dsc->scratch_base
783 && apparent_pc < (dsc->scratch_base
784 + DISPLACED_MODIFIED_INSNS * 4 + 4));
785
786 if (debug_displaced)
787 {
788 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
789 "SVC step ", (unsigned long) apparent_pc);
790 if (within_scratch)
791 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
792 else
793 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
794 }
795
796 if (within_scratch)
797 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
798 }
799
800 static int
801 arm_linux_copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
802 struct regcache *regs, struct displaced_step_closure *dsc)
803 {
804 CORE_ADDR return_to = 0;
805
806 struct frame_info *frame;
807 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
808 int is_sigreturn = 0;
809
810 if (debug_displaced)
811 fprintf_unfiltered (gdb_stdlog, "displaced: copying Linux svc insn %.8lx\n",
812 (unsigned long) insn);
813
814 frame = get_current_frame ();
815
816 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
817 &return_to);
818 if (is_sigreturn)
819 {
820 struct symtab_and_line sal;
821
822 if (debug_displaced)
823 fprintf_unfiltered (gdb_stdlog, "displaced: found "
824 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
825 (unsigned long) get_frame_pc (frame));
826
827 if (debug_displaced)
828 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
829 "Setting momentary breakpoint.\n", (unsigned long) return_to);
830
831 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
832 == NULL);
833
834 sal = find_pc_line (return_to, 0);
835 sal.pc = return_to;
836 sal.section = find_pc_overlay (return_to);
837 sal.explicit_pc = 1;
838
839 frame = get_prev_frame (frame);
840
841 if (frame)
842 {
843 inferior_thread ()->control.step_resume_breakpoint
844 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
845 bp_step_resume);
846
847 /* We need to make sure we actually insert the momentary
848 breakpoint set above. */
849 insert_breakpoints ();
850 }
851 else if (debug_displaced)
852 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
853 "frame to set momentary breakpoint for "
854 "sigreturn/rt_sigreturn\n");
855 }
856 else if (debug_displaced)
857 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
858 "SVC call not in signal trampoline frame\n");
859
860
861 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
862 location, else nothing.
863 Insn: unmodified svc.
864 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
865 else leave pc alone. */
866
867 dsc->modinsn[0] = insn;
868
869 dsc->cleanup = &arm_linux_cleanup_svc;
870 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
871 instruction. */
872 dsc->wrote_to_pc = 1;
873
874 return 0;
875 }
876
877
878 /* The following two functions implement single-stepping over calls to Linux
879 kernel helper routines, which perform e.g. atomic operations on architecture
880 variants which don't support them natively.
881
882 When this function is called, the PC will be pointing at the kernel helper
883 (at an address inaccessible to GDB), and r14 will point to the return
884 address. Displaced stepping always executes code in the copy area:
885 so, make the copy-area instruction branch back to the kernel helper (the
886 "from" address), and make r14 point to the breakpoint in the copy area. In
887 that way, we regain control once the kernel helper returns, and can clean
888 up appropriately (as if we had just returned from the kernel helper as it
889 would have been called from the non-displaced location). */
890
891 static void
892 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
893 struct regcache *regs,
894 struct displaced_step_closure *dsc)
895 {
896 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
897 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
898 }
899
900 static void
901 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
902 CORE_ADDR to, struct regcache *regs,
903 struct displaced_step_closure *dsc)
904 {
905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
906
907 dsc->numinsns = 1;
908 dsc->insn_addr = from;
909 dsc->cleanup = &cleanup_kernel_helper_return;
910 /* Say we wrote to the PC, else cleanup will set PC to the next
911 instruction in the helper, which isn't helpful. */
912 dsc->wrote_to_pc = 1;
913
914 /* Preparation: tmp[0] <- r14
915 r14 <- <scratch space>+4
916 *(<scratch space>+8) <- from
917 Insn: ldr pc, [r14, #4]
918 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
919
920 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
921 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
922 CANNOT_WRITE_PC);
923 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
924
925 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
926 }
927
928 /* Linux-specific displaced step instruction copying function. Detects when
929 the program has stepped into a Linux kernel helper routine (which must be
930 handled as a special case), falling back to arm_displaced_step_copy_insn()
931 if it hasn't. */
932
933 static struct displaced_step_closure *
934 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
935 CORE_ADDR from, CORE_ADDR to,
936 struct regcache *regs)
937 {
938 struct displaced_step_closure *dsc
939 = xmalloc (sizeof (struct displaced_step_closure));
940
941 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
942 stop at the return location. */
943 if (from > 0xffff0000)
944 {
945 if (debug_displaced)
946 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
947 "at %.8lx\n", (unsigned long) from);
948
949 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
950 }
951 else
952 {
953 /* Override the default handling of SVC instructions. */
954 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
955
956 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
957 }
958
959 arm_displaced_init_closure (gdbarch, from, to, dsc);
960
961 return dsc;
962 }
963
964 static void
965 arm_linux_init_abi (struct gdbarch_info info,
966 struct gdbarch *gdbarch)
967 {
968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
969
970 linux_init_abi (info, gdbarch);
971
972 tdep->lowest_pc = 0x8000;
973 if (info.byte_order == BFD_ENDIAN_BIG)
974 {
975 if (tdep->arm_abi == ARM_ABI_AAPCS)
976 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
977 else
978 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
979 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
980 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
981 }
982 else
983 {
984 if (tdep->arm_abi == ARM_ABI_AAPCS)
985 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
986 else
987 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
988 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
989 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
990 }
991 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
992 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
993 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
994
995 if (tdep->fp_model == ARM_FLOAT_AUTO)
996 tdep->fp_model = ARM_FLOAT_FPA;
997
998 switch (tdep->fp_model)
999 {
1000 case ARM_FLOAT_FPA:
1001 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1002 break;
1003 case ARM_FLOAT_SOFT_FPA:
1004 case ARM_FLOAT_SOFT_VFP:
1005 case ARM_FLOAT_VFP:
1006 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1007 break;
1008 default:
1009 internal_error
1010 (__FILE__, __LINE__,
1011 _("arm_linux_init_abi: Floating point model not supported"));
1012 break;
1013 }
1014 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1015
1016 set_solib_svr4_fetch_link_map_offsets
1017 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1018
1019 /* Single stepping. */
1020 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1021
1022 /* Shared library handling. */
1023 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1024 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1025
1026 /* Enable TLS support. */
1027 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1028 svr4_fetch_objfile_link_map);
1029
1030 tramp_frame_prepend_unwinder (gdbarch,
1031 &arm_linux_sigreturn_tramp_frame);
1032 tramp_frame_prepend_unwinder (gdbarch,
1033 &arm_linux_rt_sigreturn_tramp_frame);
1034 tramp_frame_prepend_unwinder (gdbarch,
1035 &arm_eabi_linux_sigreturn_tramp_frame);
1036 tramp_frame_prepend_unwinder (gdbarch,
1037 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1038 tramp_frame_prepend_unwinder (gdbarch,
1039 &arm_linux_restart_syscall_tramp_frame);
1040 tramp_frame_prepend_unwinder (gdbarch,
1041 &arm_kernel_linux_restart_syscall_tramp_frame);
1042
1043 /* Core file support. */
1044 set_gdbarch_regset_from_core_section (gdbarch,
1045 arm_linux_regset_from_core_section);
1046
1047 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1048
1049 /* Displaced stepping. */
1050 set_gdbarch_displaced_step_copy_insn (gdbarch,
1051 arm_linux_displaced_step_copy_insn);
1052 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1053 set_gdbarch_displaced_step_free_closure (gdbarch,
1054 simple_displaced_step_free_closure);
1055 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1056
1057
1058 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1059 }
1060
1061 /* Provide a prototype to silence -Wmissing-prototypes. */
1062 extern initialize_file_ftype _initialize_arm_linux_tdep;
1063
1064 void
1065 _initialize_arm_linux_tdep (void)
1066 {
1067 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1068 arm_linux_init_abi);
1069 }
This page took 0.085193 seconds and 4 git commands to generate.