Fix grammar in error message.
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "floatformat.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "doublest.h"
29 #include "solib-svr4.h"
30 #include "osabi.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34 #include "breakpoint.h"
35 #include "auxv.h"
36 #include "xml-syscall.h"
37
38 #include "arch/arm.h"
39 #include "arch/arm-get-next-pcs.h"
40 #include "arch/arm-linux.h"
41 #include "arm-tdep.h"
42 #include "arm-linux-tdep.h"
43 #include "linux-tdep.h"
44 #include "glibc-tdep.h"
45 #include "arch-utils.h"
46 #include "inferior.h"
47 #include "infrun.h"
48 #include "gdbthread.h"
49 #include "symfile.h"
50
51 #include "record-full.h"
52 #include "linux-record.h"
53
54 #include "cli/cli-utils.h"
55 #include "stap-probe.h"
56 #include "parser-defs.h"
57 #include "user-regs.h"
58 #include <ctype.h>
59 #include "elf/common.h"
60 extern int arm_apcs_32;
61
62 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
63 is to execute a particular software interrupt, rather than use a
64 particular undefined instruction to provoke a trap. Upon exection
65 of the software interrupt the kernel stops the inferior with a
66 SIGTRAP, and wakes the debugger. */
67
68 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
69
70 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
71
72 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
73 the operand of the swi if old-ABI compatibility is disabled. Therefore,
74 use an undefined instruction instead. This is supported as of kernel
75 version 2.5.70 (May 2003), so should be a safe assumption for EABI
76 binaries. */
77
78 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
79
80 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
81
82 /* All the kernels which support Thumb support using a specific undefined
83 instruction for the Thumb breakpoint. */
84
85 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
86
87 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
88
89 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
90 we must use a length-appropriate breakpoint for 32-bit Thumb
91 instructions. See also thumb_get_next_pc. */
92
93 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
94
95 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
96
97 /* Description of the longjmp buffer. The buffer is treated as an array of
98 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
99
100 The location of saved registers in this buffer (in particular the PC
101 to use after longjmp is called) varies depending on the ABI (in
102 particular the FP model) and also (possibly) the C Library.
103
104 For glibc, eglibc, and uclibc the following holds: If the FP model is
105 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
106 buffer. This is also true for the SoftFPA model. However, for the FPA
107 model the PC is at offset 21 in the buffer. */
108 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
109 #define ARM_LINUX_JB_PC_FPA 21
110 #define ARM_LINUX_JB_PC_EABI 9
111
112 /*
113 Dynamic Linking on ARM GNU/Linux
114 --------------------------------
115
116 Note: PLT = procedure linkage table
117 GOT = global offset table
118
119 As much as possible, ELF dynamic linking defers the resolution of
120 jump/call addresses until the last minute. The technique used is
121 inspired by the i386 ELF design, and is based on the following
122 constraints.
123
124 1) The calling technique should not force a change in the assembly
125 code produced for apps; it MAY cause changes in the way assembly
126 code is produced for position independent code (i.e. shared
127 libraries).
128
129 2) The technique must be such that all executable areas must not be
130 modified; and any modified areas must not be executed.
131
132 To do this, there are three steps involved in a typical jump:
133
134 1) in the code
135 2) through the PLT
136 3) using a pointer from the GOT
137
138 When the executable or library is first loaded, each GOT entry is
139 initialized to point to the code which implements dynamic name
140 resolution and code finding. This is normally a function in the
141 program interpreter (on ARM GNU/Linux this is usually
142 ld-linux.so.2, but it does not have to be). On the first
143 invocation, the function is located and the GOT entry is replaced
144 with the real function address. Subsequent calls go through steps
145 1, 2 and 3 and end up calling the real code.
146
147 1) In the code:
148
149 b function_call
150 bl function_call
151
152 This is typical ARM code using the 26 bit relative branch or branch
153 and link instructions. The target of the instruction
154 (function_call is usually the address of the function to be called.
155 In position independent code, the target of the instruction is
156 actually an entry in the PLT when calling functions in a shared
157 library. Note that this call is identical to a normal function
158 call, only the target differs.
159
160 2) In the PLT:
161
162 The PLT is a synthetic area, created by the linker. It exists in
163 both executables and libraries. It is an array of stubs, one per
164 imported function call. It looks like this:
165
166 PLT[0]:
167 str lr, [sp, #-4]! @push the return address (lr)
168 ldr lr, [pc, #16] @load from 6 words ahead
169 add lr, pc, lr @form an address for GOT[0]
170 ldr pc, [lr, #8]! @jump to the contents of that addr
171
172 The return address (lr) is pushed on the stack and used for
173 calculations. The load on the second line loads the lr with
174 &GOT[3] - . - 20. The addition on the third leaves:
175
176 lr = (&GOT[3] - . - 20) + (. + 8)
177 lr = (&GOT[3] - 12)
178 lr = &GOT[0]
179
180 On the fourth line, the pc and lr are both updated, so that:
181
182 pc = GOT[2]
183 lr = &GOT[0] + 8
184 = &GOT[2]
185
186 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
187 "tight", but allows us to keep all the PLT entries the same size.
188
189 PLT[n+1]:
190 ldr ip, [pc, #4] @load offset from gotoff
191 add ip, pc, ip @add the offset to the pc
192 ldr pc, [ip] @jump to that address
193 gotoff: .word GOT[n+3] - .
194
195 The load on the first line, gets an offset from the fourth word of
196 the PLT entry. The add on the second line makes ip = &GOT[n+3],
197 which contains either a pointer to PLT[0] (the fixup trampoline) or
198 a pointer to the actual code.
199
200 3) In the GOT:
201
202 The GOT contains helper pointers for both code (PLT) fixups and
203 data fixups. The first 3 entries of the GOT are special. The next
204 M entries (where M is the number of entries in the PLT) belong to
205 the PLT fixups. The next D (all remaining) entries belong to
206 various data fixups. The actual size of the GOT is 3 + M + D.
207
208 The GOT is also a synthetic area, created by the linker. It exists
209 in both executables and libraries. When the GOT is first
210 initialized , all the GOT entries relating to PLT fixups are
211 pointing to code back at PLT[0].
212
213 The special entries in the GOT are:
214
215 GOT[0] = linked list pointer used by the dynamic loader
216 GOT[1] = pointer to the reloc table for this module
217 GOT[2] = pointer to the fixup/resolver code
218
219 The first invocation of function call comes through and uses the
220 fixup/resolver code. On the entry to the fixup/resolver code:
221
222 ip = &GOT[n+3]
223 lr = &GOT[2]
224 stack[0] = return address (lr) of the function call
225 [r0, r1, r2, r3] are still the arguments to the function call
226
227 This is enough information for the fixup/resolver code to work
228 with. Before the fixup/resolver code returns, it actually calls
229 the requested function and repairs &GOT[n+3]. */
230
231 /* The constants below were determined by examining the following files
232 in the linux kernel sources:
233
234 arch/arm/kernel/signal.c
235 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
236 include/asm-arm/unistd.h
237 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
238
239 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
240 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
241
242 /* For ARM EABI, the syscall number is not in the SWI instruction
243 (instead it is loaded into r7). We recognize the pattern that
244 glibc uses... alternatively, we could arrange to do this by
245 function name, but they are not always exported. */
246 #define ARM_SET_R7_SIGRETURN 0xe3a07077
247 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
248 #define ARM_EABI_SYSCALL 0xef000000
249
250 /* Equivalent patterns for Thumb2. */
251 #define THUMB2_SET_R7_SIGRETURN1 0xf04f
252 #define THUMB2_SET_R7_SIGRETURN2 0x0777
253 #define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
254 #define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
255 #define THUMB2_EABI_SYSCALL 0xdf00
256
257 /* OABI syscall restart trampoline, used for EABI executables too
258 whenever OABI support has been enabled in the kernel. */
259 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
260 #define ARM_LDR_PC_SP_12 0xe49df00c
261 #define ARM_LDR_PC_SP_4 0xe49df004
262
263 /* Syscall number for sigreturn. */
264 #define ARM_SIGRETURN 119
265 /* Syscall number for rt_sigreturn. */
266 #define ARM_RT_SIGRETURN 173
267
268 static CORE_ADDR
269 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
270
271 /* Operation function pointers for get_next_pcs. */
272 static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops = {
273 arm_get_next_pcs_read_memory_unsigned_integer,
274 arm_linux_get_next_pcs_syscall_next_pc,
275 arm_get_next_pcs_addr_bits_remove,
276 arm_get_next_pcs_is_thumb,
277 arm_linux_get_next_pcs_fixup,
278 };
279
280 static void
281 arm_linux_sigtramp_cache (struct frame_info *this_frame,
282 struct trad_frame_cache *this_cache,
283 CORE_ADDR func, int regs_offset)
284 {
285 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
286 CORE_ADDR base = sp + regs_offset;
287 int i;
288
289 for (i = 0; i < 16; i++)
290 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
291
292 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
293
294 /* The VFP or iWMMXt registers may be saved on the stack, but there's
295 no reliable way to restore them (yet). */
296
297 /* Save a frame ID. */
298 trad_frame_set_id (this_cache, frame_id_build (sp, func));
299 }
300
301 /* See arm-linux.h for stack layout details. */
302 static void
303 arm_linux_sigreturn_init (const struct tramp_frame *self,
304 struct frame_info *this_frame,
305 struct trad_frame_cache *this_cache,
306 CORE_ADDR func)
307 {
308 struct gdbarch *gdbarch = get_frame_arch (this_frame);
309 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
310 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
311 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
312
313 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
314 arm_linux_sigtramp_cache (this_frame, this_cache, func,
315 ARM_UCONTEXT_SIGCONTEXT
316 + ARM_SIGCONTEXT_R0);
317 else
318 arm_linux_sigtramp_cache (this_frame, this_cache, func,
319 ARM_SIGCONTEXT_R0);
320 }
321
322 static void
323 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
324 struct frame_info *this_frame,
325 struct trad_frame_cache *this_cache,
326 CORE_ADDR func)
327 {
328 struct gdbarch *gdbarch = get_frame_arch (this_frame);
329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
330 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
331 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
332
333 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
334 arm_linux_sigtramp_cache (this_frame, this_cache, func,
335 ARM_OLD_RT_SIGFRAME_UCONTEXT
336 + ARM_UCONTEXT_SIGCONTEXT
337 + ARM_SIGCONTEXT_R0);
338 else
339 arm_linux_sigtramp_cache (this_frame, this_cache, func,
340 ARM_NEW_RT_SIGFRAME_UCONTEXT
341 + ARM_UCONTEXT_SIGCONTEXT
342 + ARM_SIGCONTEXT_R0);
343 }
344
345 static void
346 arm_linux_restart_syscall_init (const struct tramp_frame *self,
347 struct frame_info *this_frame,
348 struct trad_frame_cache *this_cache,
349 CORE_ADDR func)
350 {
351 struct gdbarch *gdbarch = get_frame_arch (this_frame);
352 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
353 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
354 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
355 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
356 int sp_offset;
357
358 /* There are two variants of this trampoline; with older kernels, the
359 stub is placed on the stack, while newer kernels use the stub from
360 the vector page. They are identical except that the older version
361 increments SP by 12 (to skip stored PC and the stub itself), while
362 the newer version increments SP only by 4 (just the stored PC). */
363 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
364 sp_offset = 4;
365 else
366 sp_offset = 12;
367
368 /* Update Thumb bit in CPSR. */
369 if (pc & 1)
370 cpsr |= t_bit;
371 else
372 cpsr &= ~t_bit;
373
374 /* Remove Thumb bit from PC. */
375 pc = gdbarch_addr_bits_remove (gdbarch, pc);
376
377 /* Save previous register values. */
378 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
379 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
380 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
381
382 /* Save a frame ID. */
383 trad_frame_set_id (this_cache, frame_id_build (sp, func));
384 }
385
386 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
387 SIGTRAMP_FRAME,
388 4,
389 {
390 { ARM_LINUX_SIGRETURN_INSTR, -1 },
391 { TRAMP_SENTINEL_INSN }
392 },
393 arm_linux_sigreturn_init
394 };
395
396 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
397 SIGTRAMP_FRAME,
398 4,
399 {
400 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
401 { TRAMP_SENTINEL_INSN }
402 },
403 arm_linux_rt_sigreturn_init
404 };
405
406 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
407 SIGTRAMP_FRAME,
408 4,
409 {
410 { ARM_SET_R7_SIGRETURN, -1 },
411 { ARM_EABI_SYSCALL, -1 },
412 { TRAMP_SENTINEL_INSN }
413 },
414 arm_linux_sigreturn_init
415 };
416
417 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
418 SIGTRAMP_FRAME,
419 4,
420 {
421 { ARM_SET_R7_RT_SIGRETURN, -1 },
422 { ARM_EABI_SYSCALL, -1 },
423 { TRAMP_SENTINEL_INSN }
424 },
425 arm_linux_rt_sigreturn_init
426 };
427
428 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
429 SIGTRAMP_FRAME,
430 2,
431 {
432 { THUMB2_SET_R7_SIGRETURN1, -1 },
433 { THUMB2_SET_R7_SIGRETURN2, -1 },
434 { THUMB2_EABI_SYSCALL, -1 },
435 { TRAMP_SENTINEL_INSN }
436 },
437 arm_linux_sigreturn_init
438 };
439
440 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
441 SIGTRAMP_FRAME,
442 2,
443 {
444 { THUMB2_SET_R7_RT_SIGRETURN1, -1 },
445 { THUMB2_SET_R7_RT_SIGRETURN2, -1 },
446 { THUMB2_EABI_SYSCALL, -1 },
447 { TRAMP_SENTINEL_INSN }
448 },
449 arm_linux_rt_sigreturn_init
450 };
451
452 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
453 NORMAL_FRAME,
454 4,
455 {
456 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
457 { ARM_LDR_PC_SP_12, -1 },
458 { TRAMP_SENTINEL_INSN }
459 },
460 arm_linux_restart_syscall_init
461 };
462
463 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
464 NORMAL_FRAME,
465 4,
466 {
467 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
468 { ARM_LDR_PC_SP_4, -1 },
469 { TRAMP_SENTINEL_INSN }
470 },
471 arm_linux_restart_syscall_init
472 };
473
474 /* Core file and register set support. */
475
476 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
477
478 void
479 arm_linux_supply_gregset (const struct regset *regset,
480 struct regcache *regcache,
481 int regnum, const void *gregs_buf, size_t len)
482 {
483 struct gdbarch *gdbarch = get_regcache_arch (regcache);
484 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
485 const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
486 int regno;
487 CORE_ADDR reg_pc;
488 gdb_byte pc_buf[INT_REGISTER_SIZE];
489
490 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
491 if (regnum == -1 || regnum == regno)
492 regcache_raw_supply (regcache, regno,
493 gregs + INT_REGISTER_SIZE * regno);
494
495 if (regnum == ARM_PS_REGNUM || regnum == -1)
496 {
497 if (arm_apcs_32)
498 regcache_raw_supply (regcache, ARM_PS_REGNUM,
499 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
500 else
501 regcache_raw_supply (regcache, ARM_PS_REGNUM,
502 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
503 }
504
505 if (regnum == ARM_PC_REGNUM || regnum == -1)
506 {
507 reg_pc = extract_unsigned_integer (gregs
508 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
509 INT_REGISTER_SIZE, byte_order);
510 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
511 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
512 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
513 }
514 }
515
516 void
517 arm_linux_collect_gregset (const struct regset *regset,
518 const struct regcache *regcache,
519 int regnum, void *gregs_buf, size_t len)
520 {
521 gdb_byte *gregs = (gdb_byte *) gregs_buf;
522 int regno;
523
524 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
525 if (regnum == -1 || regnum == regno)
526 regcache_raw_collect (regcache, regno,
527 gregs + INT_REGISTER_SIZE * regno);
528
529 if (regnum == ARM_PS_REGNUM || regnum == -1)
530 {
531 if (arm_apcs_32)
532 regcache_raw_collect (regcache, ARM_PS_REGNUM,
533 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
534 else
535 regcache_raw_collect (regcache, ARM_PS_REGNUM,
536 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
537 }
538
539 if (regnum == ARM_PC_REGNUM || regnum == -1)
540 regcache_raw_collect (regcache, ARM_PC_REGNUM,
541 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
542 }
543
544 /* Support for register format used by the NWFPE FPA emulator. */
545
546 #define typeNone 0x00
547 #define typeSingle 0x01
548 #define typeDouble 0x02
549 #define typeExtended 0x03
550
551 void
552 supply_nwfpe_register (struct regcache *regcache, int regno,
553 const gdb_byte *regs)
554 {
555 const gdb_byte *reg_data;
556 gdb_byte reg_tag;
557 gdb_byte buf[FP_REGISTER_SIZE];
558
559 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
560 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
561 memset (buf, 0, FP_REGISTER_SIZE);
562
563 switch (reg_tag)
564 {
565 case typeSingle:
566 memcpy (buf, reg_data, 4);
567 break;
568 case typeDouble:
569 memcpy (buf, reg_data + 4, 4);
570 memcpy (buf + 4, reg_data, 4);
571 break;
572 case typeExtended:
573 /* We want sign and exponent, then least significant bits,
574 then most significant. NWFPE does sign, most, least. */
575 memcpy (buf, reg_data, 4);
576 memcpy (buf + 4, reg_data + 8, 4);
577 memcpy (buf + 8, reg_data + 4, 4);
578 break;
579 default:
580 break;
581 }
582
583 regcache_raw_supply (regcache, regno, buf);
584 }
585
586 void
587 collect_nwfpe_register (const struct regcache *regcache, int regno,
588 gdb_byte *regs)
589 {
590 gdb_byte *reg_data;
591 gdb_byte reg_tag;
592 gdb_byte buf[FP_REGISTER_SIZE];
593
594 regcache_raw_collect (regcache, regno, buf);
595
596 /* NOTE drow/2006-06-07: This code uses the tag already in the
597 register buffer. I've preserved that when moving the code
598 from the native file to the target file. But this doesn't
599 always make sense. */
600
601 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
602 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
603
604 switch (reg_tag)
605 {
606 case typeSingle:
607 memcpy (reg_data, buf, 4);
608 break;
609 case typeDouble:
610 memcpy (reg_data, buf + 4, 4);
611 memcpy (reg_data + 4, buf, 4);
612 break;
613 case typeExtended:
614 memcpy (reg_data, buf, 4);
615 memcpy (reg_data + 4, buf + 8, 4);
616 memcpy (reg_data + 8, buf + 4, 4);
617 break;
618 default:
619 break;
620 }
621 }
622
623 void
624 arm_linux_supply_nwfpe (const struct regset *regset,
625 struct regcache *regcache,
626 int regnum, const void *regs_buf, size_t len)
627 {
628 const gdb_byte *regs = (const gdb_byte *) regs_buf;
629 int regno;
630
631 if (regnum == ARM_FPS_REGNUM || regnum == -1)
632 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
633 regs + NWFPE_FPSR_OFFSET);
634
635 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
636 if (regnum == -1 || regnum == regno)
637 supply_nwfpe_register (regcache, regno, regs);
638 }
639
640 void
641 arm_linux_collect_nwfpe (const struct regset *regset,
642 const struct regcache *regcache,
643 int regnum, void *regs_buf, size_t len)
644 {
645 gdb_byte *regs = (gdb_byte *) regs_buf;
646 int regno;
647
648 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
649 if (regnum == -1 || regnum == regno)
650 collect_nwfpe_register (regcache, regno, regs);
651
652 if (regnum == ARM_FPS_REGNUM || regnum == -1)
653 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
654 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
655 }
656
657 /* Support VFP register format. */
658
659 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
660
661 static void
662 arm_linux_supply_vfp (const struct regset *regset,
663 struct regcache *regcache,
664 int regnum, const void *regs_buf, size_t len)
665 {
666 const gdb_byte *regs = (const gdb_byte *) regs_buf;
667 int regno;
668
669 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
670 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
671
672 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
673 if (regnum == -1 || regnum == regno)
674 regcache_raw_supply (regcache, regno,
675 regs + (regno - ARM_D0_REGNUM) * 8);
676 }
677
678 static void
679 arm_linux_collect_vfp (const struct regset *regset,
680 const struct regcache *regcache,
681 int regnum, void *regs_buf, size_t len)
682 {
683 gdb_byte *regs = (gdb_byte *) regs_buf;
684 int regno;
685
686 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
687 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
688
689 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
690 if (regnum == -1 || regnum == regno)
691 regcache_raw_collect (regcache, regno,
692 regs + (regno - ARM_D0_REGNUM) * 8);
693 }
694
695 static const struct regset arm_linux_gregset =
696 {
697 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
698 };
699
700 static const struct regset arm_linux_fpregset =
701 {
702 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
703 };
704
705 static const struct regset arm_linux_vfpregset =
706 {
707 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
708 };
709
710 /* Iterate over core file register note sections. */
711
712 static void
713 arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
714 iterate_over_regset_sections_cb *cb,
715 void *cb_data,
716 const struct regcache *regcache)
717 {
718 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
719
720 cb (".reg", ARM_LINUX_SIZEOF_GREGSET, &arm_linux_gregset, NULL, cb_data);
721
722 if (tdep->vfp_register_count > 0)
723 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, &arm_linux_vfpregset,
724 "VFP floating-point", cb_data);
725 else if (tdep->have_fpa_registers)
726 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, &arm_linux_fpregset,
727 "FPA floating-point", cb_data);
728 }
729
730 /* Determine target description from core file. */
731
732 static const struct target_desc *
733 arm_linux_core_read_description (struct gdbarch *gdbarch,
734 struct target_ops *target,
735 bfd *abfd)
736 {
737 CORE_ADDR arm_hwcap = 0;
738
739 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
740 return NULL;
741
742 if (arm_hwcap & HWCAP_VFP)
743 {
744 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
745 Neon with VFPv3-D32. */
746 if (arm_hwcap & HWCAP_NEON)
747 return tdesc_arm_with_neon;
748 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
749 return tdesc_arm_with_vfpv3;
750 else
751 return tdesc_arm_with_vfpv2;
752 }
753
754 return NULL;
755 }
756
757
758 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
759 return 1. In addition, set IS_THUMB depending on whether we
760 will return to ARM or Thumb code. Return 0 if it is not a
761 rt_sigreturn/sigreturn syscall. */
762 static int
763 arm_linux_sigreturn_return_addr (struct frame_info *frame,
764 unsigned long svc_number,
765 CORE_ADDR *pc, int *is_thumb)
766 {
767 /* Is this a sigreturn or rt_sigreturn syscall? */
768 if (svc_number == 119 || svc_number == 173)
769 {
770 if (get_frame_type (frame) == SIGTRAMP_FRAME)
771 {
772 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
773 CORE_ADDR cpsr
774 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
775
776 *is_thumb = (cpsr & t_bit) != 0;
777 *pc = frame_unwind_caller_pc (frame);
778 return 1;
779 }
780 }
781 return 0;
782 }
783
784 /* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
785 based on current processor state. In addition, set IS_THUMB depending
786 on whether we will return to ARM or Thumb code. */
787
788 static CORE_ADDR
789 arm_linux_sigreturn_next_pc (struct regcache *regcache,
790 unsigned long svc_number, int *is_thumb)
791 {
792 ULONGEST sp;
793 unsigned long sp_data;
794 CORE_ADDR next_pc = 0;
795 struct gdbarch *gdbarch = get_regcache_arch (regcache);
796 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
797 int pc_offset = 0;
798 int is_sigreturn = 0;
799 CORE_ADDR cpsr;
800
801 gdb_assert (svc_number == ARM_SIGRETURN
802 || svc_number == ARM_RT_SIGRETURN);
803
804 is_sigreturn = (svc_number == ARM_SIGRETURN);
805 regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
806 sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
807
808 pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
809 is_sigreturn);
810
811 next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
812
813 /* Set IS_THUMB according the CPSR saved on the stack. */
814 cpsr = read_memory_unsigned_integer (sp + pc_offset + 4, 4, byte_order);
815 *is_thumb = ((cpsr & arm_psr_thumb_bit (gdbarch)) != 0);
816
817 return next_pc;
818 }
819
820 /* At a ptrace syscall-stop, return the syscall number. This either
821 comes from the SWI instruction (OABI) or from r7 (EABI).
822
823 When the function fails, it should return -1. */
824
825 static LONGEST
826 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
827 ptid_t ptid)
828 {
829 struct regcache *regs = get_thread_regcache (ptid);
830
831 ULONGEST pc;
832 ULONGEST cpsr;
833 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
834 int is_thumb;
835 ULONGEST svc_number = -1;
836
837 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
838 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
839 is_thumb = (cpsr & t_bit) != 0;
840
841 if (is_thumb)
842 {
843 regcache_cooked_read_unsigned (regs, 7, &svc_number);
844 }
845 else
846 {
847 enum bfd_endian byte_order_for_code =
848 gdbarch_byte_order_for_code (gdbarch);
849
850 /* PC gets incremented before the syscall-stop, so read the
851 previous instruction. */
852 unsigned long this_instr =
853 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
854
855 unsigned long svc_operand = (0x00ffffff & this_instr);
856
857 if (svc_operand)
858 {
859 /* OABI */
860 svc_number = svc_operand - 0x900000;
861 }
862 else
863 {
864 /* EABI */
865 regcache_cooked_read_unsigned (regs, 7, &svc_number);
866 }
867 }
868
869 return svc_number;
870 }
871
872 static CORE_ADDR
873 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
874 {
875 CORE_ADDR next_pc = 0;
876 CORE_ADDR pc = regcache_read_pc (self->regcache);
877 int is_thumb = arm_is_thumb (self->regcache);
878 ULONGEST svc_number = 0;
879
880 if (is_thumb)
881 {
882 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
883 next_pc = pc + 2;
884 }
885 else
886 {
887 struct gdbarch *gdbarch = get_regcache_arch (self->regcache);
888 enum bfd_endian byte_order_for_code =
889 gdbarch_byte_order_for_code (gdbarch);
890 unsigned long this_instr =
891 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
892
893 unsigned long svc_operand = (0x00ffffff & this_instr);
894 if (svc_operand) /* OABI. */
895 {
896 svc_number = svc_operand - 0x900000;
897 }
898 else /* EABI. */
899 {
900 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
901 }
902
903 next_pc = pc + 4;
904 }
905
906 if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
907 {
908 /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
909 update IS_THUMB. */
910 next_pc = arm_linux_sigreturn_next_pc (self->regcache, svc_number,
911 &is_thumb);
912 }
913
914 /* Addresses for calling Thumb functions have the bit 0 set. */
915 if (is_thumb)
916 next_pc = MAKE_THUMB_ADDR (next_pc);
917
918 return next_pc;
919 }
920
921
922 /* Insert a single step breakpoint at the next executed instruction. */
923
924 static int
925 arm_linux_software_single_step (struct frame_info *frame)
926 {
927 struct regcache *regcache = get_current_regcache ();
928 struct gdbarch *gdbarch = get_regcache_arch (regcache);
929 struct address_space *aspace = get_regcache_aspace (regcache);
930 struct arm_get_next_pcs next_pcs_ctx;
931 CORE_ADDR pc;
932 int i;
933 VEC (CORE_ADDR) *next_pcs = NULL;
934 struct cleanup *old_chain;
935
936 /* If the target does have hardware single step, GDB doesn't have
937 to bother software single step. */
938 if (target_can_do_single_step () == 1)
939 return 0;
940
941 old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
942
943 arm_get_next_pcs_ctor (&next_pcs_ctx,
944 &arm_linux_get_next_pcs_ops,
945 gdbarch_byte_order (gdbarch),
946 gdbarch_byte_order_for_code (gdbarch),
947 1,
948 regcache);
949
950 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
951
952 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
953 arm_insert_single_step_breakpoint (gdbarch, aspace, pc);
954
955 do_cleanups (old_chain);
956
957 return 1;
958 }
959
960 /* Support for displaced stepping of Linux SVC instructions. */
961
962 static void
963 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
964 struct regcache *regs,
965 struct displaced_step_closure *dsc)
966 {
967 ULONGEST apparent_pc;
968 int within_scratch;
969
970 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
971
972 within_scratch = (apparent_pc >= dsc->scratch_base
973 && apparent_pc < (dsc->scratch_base
974 + DISPLACED_MODIFIED_INSNS * 4 + 4));
975
976 if (debug_displaced)
977 {
978 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
979 "SVC step ", (unsigned long) apparent_pc);
980 if (within_scratch)
981 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
982 else
983 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
984 }
985
986 if (within_scratch)
987 displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
988 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
989 }
990
991 static int
992 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
993 struct displaced_step_closure *dsc)
994 {
995 CORE_ADDR return_to = 0;
996
997 struct frame_info *frame;
998 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
999 int is_sigreturn = 0;
1000 int is_thumb;
1001
1002 frame = get_current_frame ();
1003
1004 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
1005 &return_to, &is_thumb);
1006 if (is_sigreturn)
1007 {
1008 struct symtab_and_line sal;
1009
1010 if (debug_displaced)
1011 fprintf_unfiltered (gdb_stdlog, "displaced: found "
1012 "sigreturn/rt_sigreturn SVC call. PC in "
1013 "frame = %lx\n",
1014 (unsigned long) get_frame_pc (frame));
1015
1016 if (debug_displaced)
1017 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
1018 "Setting momentary breakpoint.\n",
1019 (unsigned long) return_to);
1020
1021 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1022 == NULL);
1023
1024 sal = find_pc_line (return_to, 0);
1025 sal.pc = return_to;
1026 sal.section = find_pc_overlay (return_to);
1027 sal.explicit_pc = 1;
1028
1029 frame = get_prev_frame (frame);
1030
1031 if (frame)
1032 {
1033 inferior_thread ()->control.step_resume_breakpoint
1034 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1035 bp_step_resume);
1036
1037 /* set_momentary_breakpoint invalidates FRAME. */
1038 frame = NULL;
1039
1040 /* We need to make sure we actually insert the momentary
1041 breakpoint set above. */
1042 insert_breakpoints ();
1043 }
1044 else if (debug_displaced)
1045 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1046 "frame to set momentary breakpoint for "
1047 "sigreturn/rt_sigreturn\n");
1048 }
1049 else if (debug_displaced)
1050 fprintf_unfiltered (gdb_stdlog, "displaced: found SVC call\n");
1051
1052 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1053 location, else nothing.
1054 Insn: unmodified svc.
1055 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
1056 else leave pc alone. */
1057
1058
1059 dsc->cleanup = &arm_linux_cleanup_svc;
1060 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1061 instruction. */
1062 dsc->wrote_to_pc = 1;
1063
1064 return 0;
1065 }
1066
1067
1068 /* The following two functions implement single-stepping over calls to Linux
1069 kernel helper routines, which perform e.g. atomic operations on architecture
1070 variants which don't support them natively.
1071
1072 When this function is called, the PC will be pointing at the kernel helper
1073 (at an address inaccessible to GDB), and r14 will point to the return
1074 address. Displaced stepping always executes code in the copy area:
1075 so, make the copy-area instruction branch back to the kernel helper (the
1076 "from" address), and make r14 point to the breakpoint in the copy area. In
1077 that way, we regain control once the kernel helper returns, and can clean
1078 up appropriately (as if we had just returned from the kernel helper as it
1079 would have been called from the non-displaced location). */
1080
1081 static void
1082 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1083 struct regcache *regs,
1084 struct displaced_step_closure *dsc)
1085 {
1086 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1087 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1088 }
1089
1090 static void
1091 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1092 CORE_ADDR to, struct regcache *regs,
1093 struct displaced_step_closure *dsc)
1094 {
1095 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1096
1097 dsc->numinsns = 1;
1098 dsc->insn_addr = from;
1099 dsc->cleanup = &cleanup_kernel_helper_return;
1100 /* Say we wrote to the PC, else cleanup will set PC to the next
1101 instruction in the helper, which isn't helpful. */
1102 dsc->wrote_to_pc = 1;
1103
1104 /* Preparation: tmp[0] <- r14
1105 r14 <- <scratch space>+4
1106 *(<scratch space>+8) <- from
1107 Insn: ldr pc, [r14, #4]
1108 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1109
1110 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1111 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1112 CANNOT_WRITE_PC);
1113 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1114
1115 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1116 }
1117
1118 /* Linux-specific displaced step instruction copying function. Detects when
1119 the program has stepped into a Linux kernel helper routine (which must be
1120 handled as a special case). */
1121
1122 static struct displaced_step_closure *
1123 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1124 CORE_ADDR from, CORE_ADDR to,
1125 struct regcache *regs)
1126 {
1127 struct displaced_step_closure *dsc = XNEW (struct displaced_step_closure);
1128
1129 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1130 stop at the return location. */
1131 if (from > 0xffff0000)
1132 {
1133 if (debug_displaced)
1134 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1135 "at %.8lx\n", (unsigned long) from);
1136
1137 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1138 }
1139 else
1140 {
1141 /* Override the default handling of SVC instructions. */
1142 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1143
1144 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1145 }
1146
1147 arm_displaced_init_closure (gdbarch, from, to, dsc);
1148
1149 return dsc;
1150 }
1151
1152 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1153 gdbarch.h. */
1154
1155 static int
1156 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1157 {
1158 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
1159 || *s == '[' /* Register indirection or
1160 displacement. */
1161 || isalpha (*s)); /* Register value. */
1162 }
1163
1164 /* This routine is used to parse a special token in ARM's assembly.
1165
1166 The special tokens parsed by it are:
1167
1168 - Register displacement (e.g, [fp, #-8])
1169
1170 It returns one if the special token has been parsed successfully,
1171 or zero if the current token is not considered special. */
1172
1173 static int
1174 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1175 struct stap_parse_info *p)
1176 {
1177 if (*p->arg == '[')
1178 {
1179 /* Temporary holder for lookahead. */
1180 const char *tmp = p->arg;
1181 char *endp;
1182 /* Used to save the register name. */
1183 const char *start;
1184 char *regname;
1185 int len, offset;
1186 int got_minus = 0;
1187 long displacement;
1188 struct stoken str;
1189
1190 ++tmp;
1191 start = tmp;
1192
1193 /* Register name. */
1194 while (isalnum (*tmp))
1195 ++tmp;
1196
1197 if (*tmp != ',')
1198 return 0;
1199
1200 len = tmp - start;
1201 regname = (char *) alloca (len + 2);
1202
1203 offset = 0;
1204 if (isdigit (*start))
1205 {
1206 /* If we are dealing with a register whose name begins with a
1207 digit, it means we should prefix the name with the letter
1208 `r', because GDB expects this name pattern. Otherwise (e.g.,
1209 we are dealing with the register `fp'), we don't need to
1210 add such a prefix. */
1211 regname[0] = 'r';
1212 offset = 1;
1213 }
1214
1215 strncpy (regname + offset, start, len);
1216 len += offset;
1217 regname[len] = '\0';
1218
1219 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1220 error (_("Invalid register name `%s' on expression `%s'."),
1221 regname, p->saved_arg);
1222
1223 ++tmp;
1224 tmp = skip_spaces_const (tmp);
1225 if (*tmp == '#' || *tmp == '$')
1226 ++tmp;
1227
1228 if (*tmp == '-')
1229 {
1230 ++tmp;
1231 got_minus = 1;
1232 }
1233
1234 displacement = strtol (tmp, &endp, 10);
1235 tmp = endp;
1236
1237 /* Skipping last `]'. */
1238 if (*tmp++ != ']')
1239 return 0;
1240
1241 /* The displacement. */
1242 write_exp_elt_opcode (&p->pstate, OP_LONG);
1243 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1244 write_exp_elt_longcst (&p->pstate, displacement);
1245 write_exp_elt_opcode (&p->pstate, OP_LONG);
1246 if (got_minus)
1247 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
1248
1249 /* The register name. */
1250 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1251 str.ptr = regname;
1252 str.length = len;
1253 write_exp_string (&p->pstate, str);
1254 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1255
1256 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
1257
1258 /* Casting to the expected type. */
1259 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1260 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1261 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1262
1263 write_exp_elt_opcode (&p->pstate, UNOP_IND);
1264
1265 p->arg = tmp;
1266 }
1267 else
1268 return 0;
1269
1270 return 1;
1271 }
1272
1273 /* ARM process record-replay constructs: syscall, signal etc. */
1274
1275 struct linux_record_tdep arm_linux_record_tdep;
1276
1277 /* arm_canonicalize_syscall maps from the native arm Linux set
1278 of syscall ids into a canonical set of syscall ids used by
1279 process record. */
1280
1281 static enum gdb_syscall
1282 arm_canonicalize_syscall (int syscall)
1283 {
1284 switch (syscall)
1285 {
1286 case 0: return gdb_sys_restart_syscall;
1287 case 1: return gdb_sys_exit;
1288 case 2: return gdb_sys_fork;
1289 case 3: return gdb_sys_read;
1290 case 4: return gdb_sys_write;
1291 case 5: return gdb_sys_open;
1292 case 6: return gdb_sys_close;
1293 case 8: return gdb_sys_creat;
1294 case 9: return gdb_sys_link;
1295 case 10: return gdb_sys_unlink;
1296 case 11: return gdb_sys_execve;
1297 case 12: return gdb_sys_chdir;
1298 case 13: return gdb_sys_time;
1299 case 14: return gdb_sys_mknod;
1300 case 15: return gdb_sys_chmod;
1301 case 16: return gdb_sys_lchown16;
1302 case 19: return gdb_sys_lseek;
1303 case 20: return gdb_sys_getpid;
1304 case 21: return gdb_sys_mount;
1305 case 22: return gdb_sys_oldumount;
1306 case 23: return gdb_sys_setuid16;
1307 case 24: return gdb_sys_getuid16;
1308 case 25: return gdb_sys_stime;
1309 case 26: return gdb_sys_ptrace;
1310 case 27: return gdb_sys_alarm;
1311 case 29: return gdb_sys_pause;
1312 case 30: return gdb_sys_utime;
1313 case 33: return gdb_sys_access;
1314 case 34: return gdb_sys_nice;
1315 case 36: return gdb_sys_sync;
1316 case 37: return gdb_sys_kill;
1317 case 38: return gdb_sys_rename;
1318 case 39: return gdb_sys_mkdir;
1319 case 40: return gdb_sys_rmdir;
1320 case 41: return gdb_sys_dup;
1321 case 42: return gdb_sys_pipe;
1322 case 43: return gdb_sys_times;
1323 case 45: return gdb_sys_brk;
1324 case 46: return gdb_sys_setgid16;
1325 case 47: return gdb_sys_getgid16;
1326 case 49: return gdb_sys_geteuid16;
1327 case 50: return gdb_sys_getegid16;
1328 case 51: return gdb_sys_acct;
1329 case 52: return gdb_sys_umount;
1330 case 54: return gdb_sys_ioctl;
1331 case 55: return gdb_sys_fcntl;
1332 case 57: return gdb_sys_setpgid;
1333 case 60: return gdb_sys_umask;
1334 case 61: return gdb_sys_chroot;
1335 case 62: return gdb_sys_ustat;
1336 case 63: return gdb_sys_dup2;
1337 case 64: return gdb_sys_getppid;
1338 case 65: return gdb_sys_getpgrp;
1339 case 66: return gdb_sys_setsid;
1340 case 67: return gdb_sys_sigaction;
1341 case 70: return gdb_sys_setreuid16;
1342 case 71: return gdb_sys_setregid16;
1343 case 72: return gdb_sys_sigsuspend;
1344 case 73: return gdb_sys_sigpending;
1345 case 74: return gdb_sys_sethostname;
1346 case 75: return gdb_sys_setrlimit;
1347 case 76: return gdb_sys_getrlimit;
1348 case 77: return gdb_sys_getrusage;
1349 case 78: return gdb_sys_gettimeofday;
1350 case 79: return gdb_sys_settimeofday;
1351 case 80: return gdb_sys_getgroups16;
1352 case 81: return gdb_sys_setgroups16;
1353 case 82: return gdb_sys_select;
1354 case 83: return gdb_sys_symlink;
1355 case 85: return gdb_sys_readlink;
1356 case 86: return gdb_sys_uselib;
1357 case 87: return gdb_sys_swapon;
1358 case 88: return gdb_sys_reboot;
1359 case 89: return gdb_old_readdir;
1360 case 90: return gdb_old_mmap;
1361 case 91: return gdb_sys_munmap;
1362 case 92: return gdb_sys_truncate;
1363 case 93: return gdb_sys_ftruncate;
1364 case 94: return gdb_sys_fchmod;
1365 case 95: return gdb_sys_fchown16;
1366 case 96: return gdb_sys_getpriority;
1367 case 97: return gdb_sys_setpriority;
1368 case 99: return gdb_sys_statfs;
1369 case 100: return gdb_sys_fstatfs;
1370 case 102: return gdb_sys_socketcall;
1371 case 103: return gdb_sys_syslog;
1372 case 104: return gdb_sys_setitimer;
1373 case 105: return gdb_sys_getitimer;
1374 case 106: return gdb_sys_stat;
1375 case 107: return gdb_sys_lstat;
1376 case 108: return gdb_sys_fstat;
1377 case 111: return gdb_sys_vhangup;
1378 case 113: /* sys_syscall */
1379 return gdb_sys_no_syscall;
1380 case 114: return gdb_sys_wait4;
1381 case 115: return gdb_sys_swapoff;
1382 case 116: return gdb_sys_sysinfo;
1383 case 117: return gdb_sys_ipc;
1384 case 118: return gdb_sys_fsync;
1385 case 119: return gdb_sys_sigreturn;
1386 case 120: return gdb_sys_clone;
1387 case 121: return gdb_sys_setdomainname;
1388 case 122: return gdb_sys_uname;
1389 case 124: return gdb_sys_adjtimex;
1390 case 125: return gdb_sys_mprotect;
1391 case 126: return gdb_sys_sigprocmask;
1392 case 128: return gdb_sys_init_module;
1393 case 129: return gdb_sys_delete_module;
1394 case 131: return gdb_sys_quotactl;
1395 case 132: return gdb_sys_getpgid;
1396 case 133: return gdb_sys_fchdir;
1397 case 134: return gdb_sys_bdflush;
1398 case 135: return gdb_sys_sysfs;
1399 case 136: return gdb_sys_personality;
1400 case 138: return gdb_sys_setfsuid16;
1401 case 139: return gdb_sys_setfsgid16;
1402 case 140: return gdb_sys_llseek;
1403 case 141: return gdb_sys_getdents;
1404 case 142: return gdb_sys_select;
1405 case 143: return gdb_sys_flock;
1406 case 144: return gdb_sys_msync;
1407 case 145: return gdb_sys_readv;
1408 case 146: return gdb_sys_writev;
1409 case 147: return gdb_sys_getsid;
1410 case 148: return gdb_sys_fdatasync;
1411 case 149: return gdb_sys_sysctl;
1412 case 150: return gdb_sys_mlock;
1413 case 151: return gdb_sys_munlock;
1414 case 152: return gdb_sys_mlockall;
1415 case 153: return gdb_sys_munlockall;
1416 case 154: return gdb_sys_sched_setparam;
1417 case 155: return gdb_sys_sched_getparam;
1418 case 156: return gdb_sys_sched_setscheduler;
1419 case 157: return gdb_sys_sched_getscheduler;
1420 case 158: return gdb_sys_sched_yield;
1421 case 159: return gdb_sys_sched_get_priority_max;
1422 case 160: return gdb_sys_sched_get_priority_min;
1423 case 161: return gdb_sys_sched_rr_get_interval;
1424 case 162: return gdb_sys_nanosleep;
1425 case 163: return gdb_sys_mremap;
1426 case 164: return gdb_sys_setresuid16;
1427 case 165: return gdb_sys_getresuid16;
1428 case 168: return gdb_sys_poll;
1429 case 169: return gdb_sys_nfsservctl;
1430 case 170: return gdb_sys_setresgid;
1431 case 171: return gdb_sys_getresgid;
1432 case 172: return gdb_sys_prctl;
1433 case 173: return gdb_sys_rt_sigreturn;
1434 case 174: return gdb_sys_rt_sigaction;
1435 case 175: return gdb_sys_rt_sigprocmask;
1436 case 176: return gdb_sys_rt_sigpending;
1437 case 177: return gdb_sys_rt_sigtimedwait;
1438 case 178: return gdb_sys_rt_sigqueueinfo;
1439 case 179: return gdb_sys_rt_sigsuspend;
1440 case 180: return gdb_sys_pread64;
1441 case 181: return gdb_sys_pwrite64;
1442 case 182: return gdb_sys_chown;
1443 case 183: return gdb_sys_getcwd;
1444 case 184: return gdb_sys_capget;
1445 case 185: return gdb_sys_capset;
1446 case 186: return gdb_sys_sigaltstack;
1447 case 187: return gdb_sys_sendfile;
1448 case 190: return gdb_sys_vfork;
1449 case 191: return gdb_sys_getrlimit;
1450 case 192: return gdb_sys_mmap2;
1451 case 193: return gdb_sys_truncate64;
1452 case 194: return gdb_sys_ftruncate64;
1453 case 195: return gdb_sys_stat64;
1454 case 196: return gdb_sys_lstat64;
1455 case 197: return gdb_sys_fstat64;
1456 case 198: return gdb_sys_lchown;
1457 case 199: return gdb_sys_getuid;
1458 case 200: return gdb_sys_getgid;
1459 case 201: return gdb_sys_geteuid;
1460 case 202: return gdb_sys_getegid;
1461 case 203: return gdb_sys_setreuid;
1462 case 204: return gdb_sys_setregid;
1463 case 205: return gdb_sys_getgroups;
1464 case 206: return gdb_sys_setgroups;
1465 case 207: return gdb_sys_fchown;
1466 case 208: return gdb_sys_setresuid;
1467 case 209: return gdb_sys_getresuid;
1468 case 210: return gdb_sys_setresgid;
1469 case 211: return gdb_sys_getresgid;
1470 case 212: return gdb_sys_chown;
1471 case 213: return gdb_sys_setuid;
1472 case 214: return gdb_sys_setgid;
1473 case 215: return gdb_sys_setfsuid;
1474 case 216: return gdb_sys_setfsgid;
1475 case 217: return gdb_sys_getdents64;
1476 case 218: return gdb_sys_pivot_root;
1477 case 219: return gdb_sys_mincore;
1478 case 220: return gdb_sys_madvise;
1479 case 221: return gdb_sys_fcntl64;
1480 case 224: return gdb_sys_gettid;
1481 case 225: return gdb_sys_readahead;
1482 case 226: return gdb_sys_setxattr;
1483 case 227: return gdb_sys_lsetxattr;
1484 case 228: return gdb_sys_fsetxattr;
1485 case 229: return gdb_sys_getxattr;
1486 case 230: return gdb_sys_lgetxattr;
1487 case 231: return gdb_sys_fgetxattr;
1488 case 232: return gdb_sys_listxattr;
1489 case 233: return gdb_sys_llistxattr;
1490 case 234: return gdb_sys_flistxattr;
1491 case 235: return gdb_sys_removexattr;
1492 case 236: return gdb_sys_lremovexattr;
1493 case 237: return gdb_sys_fremovexattr;
1494 case 238: return gdb_sys_tkill;
1495 case 239: return gdb_sys_sendfile64;
1496 case 240: return gdb_sys_futex;
1497 case 241: return gdb_sys_sched_setaffinity;
1498 case 242: return gdb_sys_sched_getaffinity;
1499 case 243: return gdb_sys_io_setup;
1500 case 244: return gdb_sys_io_destroy;
1501 case 245: return gdb_sys_io_getevents;
1502 case 246: return gdb_sys_io_submit;
1503 case 247: return gdb_sys_io_cancel;
1504 case 248: return gdb_sys_exit_group;
1505 case 249: return gdb_sys_lookup_dcookie;
1506 case 250: return gdb_sys_epoll_create;
1507 case 251: return gdb_sys_epoll_ctl;
1508 case 252: return gdb_sys_epoll_wait;
1509 case 253: return gdb_sys_remap_file_pages;
1510 case 256: return gdb_sys_set_tid_address;
1511 case 257: return gdb_sys_timer_create;
1512 case 258: return gdb_sys_timer_settime;
1513 case 259: return gdb_sys_timer_gettime;
1514 case 260: return gdb_sys_timer_getoverrun;
1515 case 261: return gdb_sys_timer_delete;
1516 case 262: return gdb_sys_clock_settime;
1517 case 263: return gdb_sys_clock_gettime;
1518 case 264: return gdb_sys_clock_getres;
1519 case 265: return gdb_sys_clock_nanosleep;
1520 case 266: return gdb_sys_statfs64;
1521 case 267: return gdb_sys_fstatfs64;
1522 case 268: return gdb_sys_tgkill;
1523 case 269: return gdb_sys_utimes;
1524 /*
1525 case 270: return gdb_sys_arm_fadvise64_64;
1526 case 271: return gdb_sys_pciconfig_iobase;
1527 case 272: return gdb_sys_pciconfig_read;
1528 case 273: return gdb_sys_pciconfig_write;
1529 */
1530 case 274: return gdb_sys_mq_open;
1531 case 275: return gdb_sys_mq_unlink;
1532 case 276: return gdb_sys_mq_timedsend;
1533 case 277: return gdb_sys_mq_timedreceive;
1534 case 278: return gdb_sys_mq_notify;
1535 case 279: return gdb_sys_mq_getsetattr;
1536 case 280: return gdb_sys_waitid;
1537 case 281: return gdb_sys_socket;
1538 case 282: return gdb_sys_bind;
1539 case 283: return gdb_sys_connect;
1540 case 284: return gdb_sys_listen;
1541 case 285: return gdb_sys_accept;
1542 case 286: return gdb_sys_getsockname;
1543 case 287: return gdb_sys_getpeername;
1544 case 288: return gdb_sys_socketpair;
1545 case 289: /* send */ return gdb_sys_no_syscall;
1546 case 290: return gdb_sys_sendto;
1547 case 291: return gdb_sys_recv;
1548 case 292: return gdb_sys_recvfrom;
1549 case 293: return gdb_sys_shutdown;
1550 case 294: return gdb_sys_setsockopt;
1551 case 295: return gdb_sys_getsockopt;
1552 case 296: return gdb_sys_sendmsg;
1553 case 297: return gdb_sys_recvmsg;
1554 case 298: return gdb_sys_semop;
1555 case 299: return gdb_sys_semget;
1556 case 300: return gdb_sys_semctl;
1557 case 301: return gdb_sys_msgsnd;
1558 case 302: return gdb_sys_msgrcv;
1559 case 303: return gdb_sys_msgget;
1560 case 304: return gdb_sys_msgctl;
1561 case 305: return gdb_sys_shmat;
1562 case 306: return gdb_sys_shmdt;
1563 case 307: return gdb_sys_shmget;
1564 case 308: return gdb_sys_shmctl;
1565 case 309: return gdb_sys_add_key;
1566 case 310: return gdb_sys_request_key;
1567 case 311: return gdb_sys_keyctl;
1568 case 312: return gdb_sys_semtimedop;
1569 case 313: /* vserver */ return gdb_sys_no_syscall;
1570 case 314: return gdb_sys_ioprio_set;
1571 case 315: return gdb_sys_ioprio_get;
1572 case 316: return gdb_sys_inotify_init;
1573 case 317: return gdb_sys_inotify_add_watch;
1574 case 318: return gdb_sys_inotify_rm_watch;
1575 case 319: return gdb_sys_mbind;
1576 case 320: return gdb_sys_get_mempolicy;
1577 case 321: return gdb_sys_set_mempolicy;
1578 case 322: return gdb_sys_openat;
1579 case 323: return gdb_sys_mkdirat;
1580 case 324: return gdb_sys_mknodat;
1581 case 325: return gdb_sys_fchownat;
1582 case 326: return gdb_sys_futimesat;
1583 case 327: return gdb_sys_fstatat64;
1584 case 328: return gdb_sys_unlinkat;
1585 case 329: return gdb_sys_renameat;
1586 case 330: return gdb_sys_linkat;
1587 case 331: return gdb_sys_symlinkat;
1588 case 332: return gdb_sys_readlinkat;
1589 case 333: return gdb_sys_fchmodat;
1590 case 334: return gdb_sys_faccessat;
1591 case 335: return gdb_sys_pselect6;
1592 case 336: return gdb_sys_ppoll;
1593 case 337: return gdb_sys_unshare;
1594 case 338: return gdb_sys_set_robust_list;
1595 case 339: return gdb_sys_get_robust_list;
1596 case 340: return gdb_sys_splice;
1597 /*case 341: return gdb_sys_arm_sync_file_range;*/
1598 case 342: return gdb_sys_tee;
1599 case 343: return gdb_sys_vmsplice;
1600 case 344: return gdb_sys_move_pages;
1601 case 345: return gdb_sys_getcpu;
1602 case 346: return gdb_sys_epoll_pwait;
1603 case 347: return gdb_sys_kexec_load;
1604 /*
1605 case 348: return gdb_sys_utimensat;
1606 case 349: return gdb_sys_signalfd;
1607 case 350: return gdb_sys_timerfd_create;
1608 case 351: return gdb_sys_eventfd;
1609 */
1610 case 352: return gdb_sys_fallocate;
1611 /*
1612 case 353: return gdb_sys_timerfd_settime;
1613 case 354: return gdb_sys_timerfd_gettime;
1614 case 355: return gdb_sys_signalfd4;
1615 */
1616 case 356: return gdb_sys_eventfd2;
1617 case 357: return gdb_sys_epoll_create1;
1618 case 358: return gdb_sys_dup3;
1619 case 359: return gdb_sys_pipe2;
1620 case 360: return gdb_sys_inotify_init1;
1621 /*
1622 case 361: return gdb_sys_preadv;
1623 case 362: return gdb_sys_pwritev;
1624 case 363: return gdb_sys_rt_tgsigqueueinfo;
1625 case 364: return gdb_sys_perf_event_open;
1626 case 365: return gdb_sys_recvmmsg;
1627 case 366: return gdb_sys_accept4;
1628 case 367: return gdb_sys_fanotify_init;
1629 case 368: return gdb_sys_fanotify_mark;
1630 case 369: return gdb_sys_prlimit64;
1631 case 370: return gdb_sys_name_to_handle_at;
1632 case 371: return gdb_sys_open_by_handle_at;
1633 case 372: return gdb_sys_clock_adjtime;
1634 case 373: return gdb_sys_syncfs;
1635 case 374: return gdb_sys_sendmmsg;
1636 case 375: return gdb_sys_setns;
1637 case 376: return gdb_sys_process_vm_readv;
1638 case 377: return gdb_sys_process_vm_writev;
1639 case 378: return gdb_sys_kcmp;
1640 case 379: return gdb_sys_finit_module;
1641 */
1642 case 983041: /* ARM_breakpoint */ return gdb_sys_no_syscall;
1643 case 983042: /* ARM_cacheflush */ return gdb_sys_no_syscall;
1644 case 983043: /* ARM_usr26 */ return gdb_sys_no_syscall;
1645 case 983044: /* ARM_usr32 */ return gdb_sys_no_syscall;
1646 case 983045: /* ARM_set_tls */ return gdb_sys_no_syscall;
1647 default: return gdb_sys_no_syscall;
1648 }
1649 }
1650
1651 /* Record all registers but PC register for process-record. */
1652
1653 static int
1654 arm_all_but_pc_registers_record (struct regcache *regcache)
1655 {
1656 int i;
1657
1658 for (i = 0; i < ARM_PC_REGNUM; i++)
1659 {
1660 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1661 return -1;
1662 }
1663
1664 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1665 return -1;
1666
1667 return 0;
1668 }
1669
1670 /* Handler for arm system call instruction recording. */
1671
1672 static int
1673 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1674 {
1675 int ret = 0;
1676 enum gdb_syscall syscall_gdb;
1677
1678 syscall_gdb = arm_canonicalize_syscall (svc_number);
1679
1680 if (syscall_gdb == gdb_sys_no_syscall)
1681 {
1682 printf_unfiltered (_("Process record and replay target doesn't "
1683 "support syscall number %s\n"),
1684 plongest (svc_number));
1685 return -1;
1686 }
1687
1688 if (syscall_gdb == gdb_sys_sigreturn
1689 || syscall_gdb == gdb_sys_rt_sigreturn)
1690 {
1691 if (arm_all_but_pc_registers_record (regcache))
1692 return -1;
1693 return 0;
1694 }
1695
1696 ret = record_linux_system_call (syscall_gdb, regcache,
1697 &arm_linux_record_tdep);
1698 if (ret != 0)
1699 return ret;
1700
1701 /* Record the return value of the system call. */
1702 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1703 return -1;
1704 /* Record LR. */
1705 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1706 return -1;
1707 /* Record CPSR. */
1708 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1709 return -1;
1710
1711 return 0;
1712 }
1713
1714 /* Implement the skip_trampoline_code gdbarch method. */
1715
1716 static CORE_ADDR
1717 arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1718 {
1719 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1720
1721 if (target_pc != 0)
1722 return target_pc;
1723
1724 return find_solib_trampoline_target (frame, pc);
1725 }
1726
1727 static void
1728 arm_linux_init_abi (struct gdbarch_info info,
1729 struct gdbarch *gdbarch)
1730 {
1731 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1732 static const char *const stap_register_prefixes[] = { "r", NULL };
1733 static const char *const stap_register_indirection_prefixes[] = { "[",
1734 NULL };
1735 static const char *const stap_register_indirection_suffixes[] = { "]",
1736 NULL };
1737 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1738
1739 linux_init_abi (info, gdbarch);
1740
1741 tdep->lowest_pc = 0x8000;
1742 if (info.byte_order_for_code == BFD_ENDIAN_BIG)
1743 {
1744 if (tdep->arm_abi == ARM_ABI_AAPCS)
1745 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1746 else
1747 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1748 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1749 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1750 }
1751 else
1752 {
1753 if (tdep->arm_abi == ARM_ABI_AAPCS)
1754 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1755 else
1756 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1757 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1758 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1759 }
1760 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1761 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1762 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1763
1764 if (tdep->fp_model == ARM_FLOAT_AUTO)
1765 tdep->fp_model = ARM_FLOAT_FPA;
1766
1767 switch (tdep->fp_model)
1768 {
1769 case ARM_FLOAT_FPA:
1770 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1771 break;
1772 case ARM_FLOAT_SOFT_FPA:
1773 case ARM_FLOAT_SOFT_VFP:
1774 case ARM_FLOAT_VFP:
1775 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1776 break;
1777 default:
1778 internal_error
1779 (__FILE__, __LINE__,
1780 _("arm_linux_init_abi: Floating point model not supported"));
1781 break;
1782 }
1783 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1784
1785 set_solib_svr4_fetch_link_map_offsets
1786 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1787
1788 /* Single stepping. */
1789 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1790
1791 /* Shared library handling. */
1792 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1793 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1794
1795 /* Enable TLS support. */
1796 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1797 svr4_fetch_objfile_link_map);
1798
1799 tramp_frame_prepend_unwinder (gdbarch,
1800 &arm_linux_sigreturn_tramp_frame);
1801 tramp_frame_prepend_unwinder (gdbarch,
1802 &arm_linux_rt_sigreturn_tramp_frame);
1803 tramp_frame_prepend_unwinder (gdbarch,
1804 &arm_eabi_linux_sigreturn_tramp_frame);
1805 tramp_frame_prepend_unwinder (gdbarch,
1806 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1807 tramp_frame_prepend_unwinder (gdbarch,
1808 &thumb2_eabi_linux_sigreturn_tramp_frame);
1809 tramp_frame_prepend_unwinder (gdbarch,
1810 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1811 tramp_frame_prepend_unwinder (gdbarch,
1812 &arm_linux_restart_syscall_tramp_frame);
1813 tramp_frame_prepend_unwinder (gdbarch,
1814 &arm_kernel_linux_restart_syscall_tramp_frame);
1815
1816 /* Core file support. */
1817 set_gdbarch_iterate_over_regset_sections
1818 (gdbarch, arm_linux_iterate_over_regset_sections);
1819 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1820
1821 /* Displaced stepping. */
1822 set_gdbarch_displaced_step_copy_insn (gdbarch,
1823 arm_linux_displaced_step_copy_insn);
1824 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1825 set_gdbarch_displaced_step_free_closure (gdbarch,
1826 simple_displaced_step_free_closure);
1827 set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
1828
1829 /* Reversible debugging, process record. */
1830 set_gdbarch_process_record (gdbarch, arm_process_record);
1831
1832 /* SystemTap functions. */
1833 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1834 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1835 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1836 stap_register_indirection_prefixes);
1837 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1838 stap_register_indirection_suffixes);
1839 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1840 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1841 set_gdbarch_stap_parse_special_token (gdbarch,
1842 arm_stap_parse_special_token);
1843
1844 /* `catch syscall' */
1845 set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
1846 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1847
1848 /* Syscall record. */
1849 tdep->arm_syscall_record = arm_linux_syscall_record;
1850
1851 /* Initialize the arm_linux_record_tdep. */
1852 /* These values are the size of the type that will be used in a system
1853 call. They are obtained from Linux Kernel source. */
1854 arm_linux_record_tdep.size_pointer
1855 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1856 arm_linux_record_tdep.size__old_kernel_stat = 32;
1857 arm_linux_record_tdep.size_tms = 16;
1858 arm_linux_record_tdep.size_loff_t = 8;
1859 arm_linux_record_tdep.size_flock = 16;
1860 arm_linux_record_tdep.size_oldold_utsname = 45;
1861 arm_linux_record_tdep.size_ustat = 20;
1862 arm_linux_record_tdep.size_old_sigaction = 16;
1863 arm_linux_record_tdep.size_old_sigset_t = 4;
1864 arm_linux_record_tdep.size_rlimit = 8;
1865 arm_linux_record_tdep.size_rusage = 72;
1866 arm_linux_record_tdep.size_timeval = 8;
1867 arm_linux_record_tdep.size_timezone = 8;
1868 arm_linux_record_tdep.size_old_gid_t = 2;
1869 arm_linux_record_tdep.size_old_uid_t = 2;
1870 arm_linux_record_tdep.size_fd_set = 128;
1871 arm_linux_record_tdep.size_old_dirent = 268;
1872 arm_linux_record_tdep.size_statfs = 64;
1873 arm_linux_record_tdep.size_statfs64 = 84;
1874 arm_linux_record_tdep.size_sockaddr = 16;
1875 arm_linux_record_tdep.size_int
1876 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1877 arm_linux_record_tdep.size_long
1878 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1879 arm_linux_record_tdep.size_ulong
1880 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1881 arm_linux_record_tdep.size_msghdr = 28;
1882 arm_linux_record_tdep.size_itimerval = 16;
1883 arm_linux_record_tdep.size_stat = 88;
1884 arm_linux_record_tdep.size_old_utsname = 325;
1885 arm_linux_record_tdep.size_sysinfo = 64;
1886 arm_linux_record_tdep.size_msqid_ds = 88;
1887 arm_linux_record_tdep.size_shmid_ds = 84;
1888 arm_linux_record_tdep.size_new_utsname = 390;
1889 arm_linux_record_tdep.size_timex = 128;
1890 arm_linux_record_tdep.size_mem_dqinfo = 24;
1891 arm_linux_record_tdep.size_if_dqblk = 68;
1892 arm_linux_record_tdep.size_fs_quota_stat = 68;
1893 arm_linux_record_tdep.size_timespec = 8;
1894 arm_linux_record_tdep.size_pollfd = 8;
1895 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1896 arm_linux_record_tdep.size_knfsd_fh = 132;
1897 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1898 arm_linux_record_tdep.size_sigaction = 20;
1899 arm_linux_record_tdep.size_sigset_t = 8;
1900 arm_linux_record_tdep.size_siginfo_t = 128;
1901 arm_linux_record_tdep.size_cap_user_data_t = 12;
1902 arm_linux_record_tdep.size_stack_t = 12;
1903 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1904 arm_linux_record_tdep.size_stat64 = 96;
1905 arm_linux_record_tdep.size_gid_t = 4;
1906 arm_linux_record_tdep.size_uid_t = 4;
1907 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1908 arm_linux_record_tdep.size_flock64 = 24;
1909 arm_linux_record_tdep.size_user_desc = 16;
1910 arm_linux_record_tdep.size_io_event = 32;
1911 arm_linux_record_tdep.size_iocb = 64;
1912 arm_linux_record_tdep.size_epoll_event = 12;
1913 arm_linux_record_tdep.size_itimerspec
1914 = arm_linux_record_tdep.size_timespec * 2;
1915 arm_linux_record_tdep.size_mq_attr = 32;
1916 arm_linux_record_tdep.size_termios = 36;
1917 arm_linux_record_tdep.size_termios2 = 44;
1918 arm_linux_record_tdep.size_pid_t = 4;
1919 arm_linux_record_tdep.size_winsize = 8;
1920 arm_linux_record_tdep.size_serial_struct = 60;
1921 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1922 arm_linux_record_tdep.size_hayes_esp_config = 12;
1923 arm_linux_record_tdep.size_size_t = 4;
1924 arm_linux_record_tdep.size_iovec = 8;
1925 arm_linux_record_tdep.size_time_t = 4;
1926
1927 /* These values are the second argument of system call "sys_ioctl".
1928 They are obtained from Linux Kernel source. */
1929 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1930 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1931 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1932 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1933 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1934 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1935 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1936 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1937 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1938 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1939 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1940 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1941 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1942 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1943 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1944 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1945 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1946 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1947 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1948 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1949 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1950 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1951 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1952 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1953 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1954 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1955 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1956 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1957 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1958 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1959 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1960 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1961 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1962 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1963 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1964 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1965 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1966 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1967 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1968 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1969 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1970 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1971 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1972 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1973 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1974 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1975 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1976 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1977 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1978 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1979 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1980 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1981 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1982 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1983 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1984 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1985 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1986 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1987 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1988 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1989 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1990 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1991 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1992 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1993 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1994
1995 /* These values are the second argument of system call "sys_fcntl"
1996 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1997 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1998 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1999 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
2000 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
2001
2002 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM;
2003 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 1;
2004 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 2;
2005 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
2006 arm_linux_record_tdep.arg5 = ARM_A1_REGNUM + 4;
2007 arm_linux_record_tdep.arg6 = ARM_A1_REGNUM + 5;
2008 arm_linux_record_tdep.arg7 = ARM_A1_REGNUM + 6;
2009 }
2010
2011 /* Provide a prototype to silence -Wmissing-prototypes. */
2012 extern initialize_file_ftype _initialize_arm_linux_tdep;
2013
2014 void
2015 _initialize_arm_linux_tdep (void)
2016 {
2017 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
2018 arm_linux_init_abi);
2019 }
This page took 0.121361 seconds and 4 git commands to generate.