2004-10-21 msnyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "target.h"
23 #include "value.h"
24 #include "gdbtypes.h"
25 #include "floatformat.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "regcache.h"
29 #include "doublest.h"
30 #include "solib-svr4.h"
31 #include "osabi.h"
32
33 #include "arm-tdep.h"
34 #include "glibc-tdep.h"
35
36 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
37 is to execute a particular software interrupt, rather than use a
38 particular undefined instruction to provoke a trap. Upon exection
39 of the software interrupt the kernel stops the inferior with a
40 SIGTRAP, and wakes the debugger. Since ARM GNU/Linux doesn't support
41 Thumb at the moment we only override the ARM breakpoints. */
42
43 static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
44
45 static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
46
47 /* Description of the longjmp buffer. */
48 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
49 #define ARM_LINUX_JB_PC 21
50
51 /* Extract from an array REGBUF containing the (raw) register state
52 a function return value of type TYPE, and copy that, in virtual format,
53 into VALBUF. */
54 /* FIXME rearnsha/2002-02-23: This function shouldn't be necessary.
55 The ARM generic one should be able to handle the model used by
56 linux and the low-level formatting of the registers should be
57 hidden behind the regcache abstraction. */
58 static void
59 arm_linux_extract_return_value (struct type *type,
60 char regbuf[],
61 char *valbuf)
62 {
63 /* ScottB: This needs to be looked at to handle the different
64 floating point emulators on ARM GNU/Linux. Right now the code
65 assumes that fetch inferior registers does the right thing for
66 GDB. I suspect this won't handle NWFPE registers correctly, nor
67 will the default ARM version (arm_extract_return_value()). */
68
69 int regnum = ((TYPE_CODE_FLT == TYPE_CODE (type))
70 ? ARM_F0_REGNUM : ARM_A1_REGNUM);
71 memcpy (valbuf, &regbuf[DEPRECATED_REGISTER_BYTE (regnum)], TYPE_LENGTH (type));
72 }
73
74 /* Note: ScottB
75
76 This function does not support passing parameters using the FPA
77 variant of the APCS. It passes any floating point arguments in the
78 general registers and/or on the stack.
79
80 FIXME: This and arm_push_arguments should be merged. However this
81 function breaks on a little endian host, big endian target
82 using the COFF file format. ELF is ok.
83
84 ScottB. */
85
86 /* Addresses for calling Thumb functions have the bit 0 set.
87 Here are some macros to test, set, or clear bit 0 of addresses. */
88 #define IS_THUMB_ADDR(addr) ((addr) & 1)
89 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
90 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
91
92 static CORE_ADDR
93 arm_linux_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
94 int struct_return, CORE_ADDR struct_addr)
95 {
96 char *fp;
97 int argnum, argreg, nstack_size;
98
99 /* Walk through the list of args and determine how large a temporary
100 stack is required. Need to take care here as structs may be
101 passed on the stack, and we have to to push them. */
102 nstack_size = -4 * DEPRECATED_REGISTER_SIZE; /* Some arguments go into A1-A4. */
103
104 if (struct_return) /* The struct address goes in A1. */
105 nstack_size += DEPRECATED_REGISTER_SIZE;
106
107 /* Walk through the arguments and add their size to nstack_size. */
108 for (argnum = 0; argnum < nargs; argnum++)
109 {
110 int len;
111 struct type *arg_type;
112
113 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
114 len = TYPE_LENGTH (arg_type);
115
116 /* ANSI C code passes float arguments as integers, K&R code
117 passes float arguments as doubles. Correct for this here. */
118 if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && DEPRECATED_REGISTER_SIZE == len)
119 nstack_size += TARGET_DOUBLE_BIT / TARGET_CHAR_BIT;
120 else
121 nstack_size += len;
122 }
123
124 /* Allocate room on the stack, and initialize our stack frame
125 pointer. */
126 fp = NULL;
127 if (nstack_size > 0)
128 {
129 sp -= nstack_size;
130 fp = (char *) sp;
131 }
132
133 /* Initialize the integer argument register pointer. */
134 argreg = ARM_A1_REGNUM;
135
136 /* The struct_return pointer occupies the first parameter passing
137 register. */
138 if (struct_return)
139 write_register (argreg++, struct_addr);
140
141 /* Process arguments from left to right. Store as many as allowed
142 in the parameter passing registers (A1-A4), and save the rest on
143 the temporary stack. */
144 for (argnum = 0; argnum < nargs; argnum++)
145 {
146 int len;
147 char *val;
148 CORE_ADDR regval;
149 enum type_code typecode;
150 struct type *arg_type, *target_type;
151
152 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
153 target_type = TYPE_TARGET_TYPE (arg_type);
154 len = TYPE_LENGTH (arg_type);
155 typecode = TYPE_CODE (arg_type);
156 val = (char *) VALUE_CONTENTS (args[argnum]);
157
158 /* ANSI C code passes float arguments as integers, K&R code
159 passes float arguments as doubles. The .stabs record for
160 for ANSI prototype floating point arguments records the
161 type as FP_INTEGER, while a K&R style (no prototype)
162 .stabs records the type as FP_FLOAT. In this latter case
163 the compiler converts the float arguments to double before
164 calling the function. */
165 if (TYPE_CODE_FLT == typecode && DEPRECATED_REGISTER_SIZE == len)
166 {
167 DOUBLEST dblval;
168 dblval = deprecated_extract_floating (val, len);
169 len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT;
170 val = alloca (len);
171 deprecated_store_floating (val, len, dblval);
172 }
173
174 /* If the argument is a pointer to a function, and it is a Thumb
175 function, set the low bit of the pointer. */
176 if (TYPE_CODE_PTR == typecode
177 && NULL != target_type
178 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
179 {
180 CORE_ADDR regval = extract_unsigned_integer (val, len);
181 if (arm_pc_is_thumb (regval))
182 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
183 }
184
185 /* Copy the argument to general registers or the stack in
186 register-sized pieces. Large arguments are split between
187 registers and stack. */
188 while (len > 0)
189 {
190 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
191
192 if (argreg <= ARM_LAST_ARG_REGNUM)
193 {
194 /* It's an argument being passed in a general register. */
195 regval = extract_unsigned_integer (val, partial_len);
196 write_register (argreg++, regval);
197 }
198 else
199 {
200 /* Push the arguments onto the stack. */
201 write_memory ((CORE_ADDR) fp, val, DEPRECATED_REGISTER_SIZE);
202 fp += DEPRECATED_REGISTER_SIZE;
203 }
204
205 len -= partial_len;
206 val += partial_len;
207 }
208 }
209
210 /* Return adjusted stack pointer. */
211 return sp;
212 }
213
214 /*
215 Dynamic Linking on ARM GNU/Linux
216 --------------------------------
217
218 Note: PLT = procedure linkage table
219 GOT = global offset table
220
221 As much as possible, ELF dynamic linking defers the resolution of
222 jump/call addresses until the last minute. The technique used is
223 inspired by the i386 ELF design, and is based on the following
224 constraints.
225
226 1) The calling technique should not force a change in the assembly
227 code produced for apps; it MAY cause changes in the way assembly
228 code is produced for position independent code (i.e. shared
229 libraries).
230
231 2) The technique must be such that all executable areas must not be
232 modified; and any modified areas must not be executed.
233
234 To do this, there are three steps involved in a typical jump:
235
236 1) in the code
237 2) through the PLT
238 3) using a pointer from the GOT
239
240 When the executable or library is first loaded, each GOT entry is
241 initialized to point to the code which implements dynamic name
242 resolution and code finding. This is normally a function in the
243 program interpreter (on ARM GNU/Linux this is usually
244 ld-linux.so.2, but it does not have to be). On the first
245 invocation, the function is located and the GOT entry is replaced
246 with the real function address. Subsequent calls go through steps
247 1, 2 and 3 and end up calling the real code.
248
249 1) In the code:
250
251 b function_call
252 bl function_call
253
254 This is typical ARM code using the 26 bit relative branch or branch
255 and link instructions. The target of the instruction
256 (function_call is usually the address of the function to be called.
257 In position independent code, the target of the instruction is
258 actually an entry in the PLT when calling functions in a shared
259 library. Note that this call is identical to a normal function
260 call, only the target differs.
261
262 2) In the PLT:
263
264 The PLT is a synthetic area, created by the linker. It exists in
265 both executables and libraries. It is an array of stubs, one per
266 imported function call. It looks like this:
267
268 PLT[0]:
269 str lr, [sp, #-4]! @push the return address (lr)
270 ldr lr, [pc, #16] @load from 6 words ahead
271 add lr, pc, lr @form an address for GOT[0]
272 ldr pc, [lr, #8]! @jump to the contents of that addr
273
274 The return address (lr) is pushed on the stack and used for
275 calculations. The load on the second line loads the lr with
276 &GOT[3] - . - 20. The addition on the third leaves:
277
278 lr = (&GOT[3] - . - 20) + (. + 8)
279 lr = (&GOT[3] - 12)
280 lr = &GOT[0]
281
282 On the fourth line, the pc and lr are both updated, so that:
283
284 pc = GOT[2]
285 lr = &GOT[0] + 8
286 = &GOT[2]
287
288 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
289 "tight", but allows us to keep all the PLT entries the same size.
290
291 PLT[n+1]:
292 ldr ip, [pc, #4] @load offset from gotoff
293 add ip, pc, ip @add the offset to the pc
294 ldr pc, [ip] @jump to that address
295 gotoff: .word GOT[n+3] - .
296
297 The load on the first line, gets an offset from the fourth word of
298 the PLT entry. The add on the second line makes ip = &GOT[n+3],
299 which contains either a pointer to PLT[0] (the fixup trampoline) or
300 a pointer to the actual code.
301
302 3) In the GOT:
303
304 The GOT contains helper pointers for both code (PLT) fixups and
305 data fixups. The first 3 entries of the GOT are special. The next
306 M entries (where M is the number of entries in the PLT) belong to
307 the PLT fixups. The next D (all remaining) entries belong to
308 various data fixups. The actual size of the GOT is 3 + M + D.
309
310 The GOT is also a synthetic area, created by the linker. It exists
311 in both executables and libraries. When the GOT is first
312 initialized , all the GOT entries relating to PLT fixups are
313 pointing to code back at PLT[0].
314
315 The special entries in the GOT are:
316
317 GOT[0] = linked list pointer used by the dynamic loader
318 GOT[1] = pointer to the reloc table for this module
319 GOT[2] = pointer to the fixup/resolver code
320
321 The first invocation of function call comes through and uses the
322 fixup/resolver code. On the entry to the fixup/resolver code:
323
324 ip = &GOT[n+3]
325 lr = &GOT[2]
326 stack[0] = return address (lr) of the function call
327 [r0, r1, r2, r3] are still the arguments to the function call
328
329 This is enough information for the fixup/resolver code to work
330 with. Before the fixup/resolver code returns, it actually calls
331 the requested function and repairs &GOT[n+3]. */
332
333 /* Fetch, and possibly build, an appropriate link_map_offsets structure
334 for ARM linux targets using the struct offsets defined in <link.h>.
335 Note, however, that link.h is not actually referred to in this file.
336 Instead, the relevant structs offsets were obtained from examining
337 link.h. (We can't refer to link.h from this file because the host
338 system won't necessarily have it, or if it does, the structs which
339 it defines will refer to the host system, not the target). */
340
341 static struct link_map_offsets *
342 arm_linux_svr4_fetch_link_map_offsets (void)
343 {
344 static struct link_map_offsets lmo;
345 static struct link_map_offsets *lmp = 0;
346
347 if (lmp == 0)
348 {
349 lmp = &lmo;
350
351 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
352 need. */
353
354 lmo.r_map_offset = 4;
355 lmo.r_map_size = 4;
356
357 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
358 need. */
359
360 lmo.l_addr_offset = 0;
361 lmo.l_addr_size = 4;
362
363 lmo.l_name_offset = 4;
364 lmo.l_name_size = 4;
365
366 lmo.l_next_offset = 12;
367 lmo.l_next_size = 4;
368
369 lmo.l_prev_offset = 16;
370 lmo.l_prev_size = 4;
371 }
372
373 return lmp;
374 }
375
376 /* The constants below were determined by examining the following files
377 in the linux kernel sources:
378
379 arch/arm/kernel/signal.c
380 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
381 include/asm-arm/unistd.h
382 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
383
384 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
385 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
386
387 /* arm_linux_in_sigtramp determines if PC points at one of the
388 instructions which cause control to return to the Linux kernel upon
389 return from a signal handler. FUNC_NAME is unused. */
390
391 int
392 arm_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
393 {
394 unsigned long inst;
395
396 inst = read_memory_integer (pc, 4);
397
398 return (inst == ARM_LINUX_SIGRETURN_INSTR
399 || inst == ARM_LINUX_RT_SIGRETURN_INSTR);
400
401 }
402
403 /* arm_linux_sigcontext_register_address returns the address in the
404 sigcontext of register REGNO given a stack pointer value SP and
405 program counter value PC. The value 0 is returned if PC is not
406 pointing at one of the signal return instructions or if REGNO is
407 not saved in the sigcontext struct. */
408
409 CORE_ADDR
410 arm_linux_sigcontext_register_address (CORE_ADDR sp, CORE_ADDR pc, int regno)
411 {
412 unsigned long inst;
413 CORE_ADDR reg_addr = 0;
414
415 inst = read_memory_integer (pc, 4);
416
417 if (inst == ARM_LINUX_SIGRETURN_INSTR
418 || inst == ARM_LINUX_RT_SIGRETURN_INSTR)
419 {
420 CORE_ADDR sigcontext_addr;
421
422 /* The sigcontext structure is at different places for the two
423 signal return instructions. For ARM_LINUX_SIGRETURN_INSTR,
424 it starts at the SP value. For ARM_LINUX_RT_SIGRETURN_INSTR,
425 it is at SP+8. For the latter instruction, it may also be
426 the case that the address of this structure may be determined
427 by reading the 4 bytes at SP, but I'm not convinced this is
428 reliable.
429
430 In any event, these magic constants (0 and 8) may be
431 determined by examining struct sigframe and struct
432 rt_sigframe in arch/arm/kernel/signal.c in the Linux kernel
433 sources. */
434
435 if (inst == ARM_LINUX_RT_SIGRETURN_INSTR)
436 sigcontext_addr = sp + 8;
437 else /* inst == ARM_LINUX_SIGRETURN_INSTR */
438 sigcontext_addr = sp + 0;
439
440 /* The layout of the sigcontext structure for ARM GNU/Linux is
441 in include/asm-arm/sigcontext.h in the Linux kernel sources.
442
443 There are three 4-byte fields which precede the saved r0
444 field. (This accounts for the 12 in the code below.) The
445 sixteen registers (4 bytes per field) follow in order. The
446 PSR value follows the sixteen registers which accounts for
447 the constant 19 below. */
448
449 if (0 <= regno && regno <= ARM_PC_REGNUM)
450 reg_addr = sigcontext_addr + 12 + (4 * regno);
451 else if (regno == ARM_PS_REGNUM)
452 reg_addr = sigcontext_addr + 19 * 4;
453 }
454
455 return reg_addr;
456 }
457
458 static void
459 arm_linux_init_abi (struct gdbarch_info info,
460 struct gdbarch *gdbarch)
461 {
462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
463
464 tdep->lowest_pc = 0x8000;
465 if (info.byte_order == BFD_ENDIAN_BIG)
466 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
467 else
468 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
469 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
470
471 tdep->fp_model = ARM_FLOAT_FPA;
472
473 tdep->jb_pc = ARM_LINUX_JB_PC;
474 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
475
476 set_solib_svr4_fetch_link_map_offsets
477 (gdbarch, arm_linux_svr4_fetch_link_map_offsets);
478
479 /* The following two overrides shouldn't be needed. */
480 set_gdbarch_deprecated_extract_return_value (gdbarch, arm_linux_extract_return_value);
481 set_gdbarch_deprecated_push_arguments (gdbarch, arm_linux_push_arguments);
482
483 /* Shared library handling. */
484 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
485 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
486 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
487 }
488
489 void
490 _initialize_arm_linux_tdep (void)
491 {
492 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
493 arm_linux_init_abi);
494 }
This page took 0.039472 seconds and 4 git commands to generate.