*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "target.h"
23 #include "value.h"
24 #include "gdbtypes.h"
25 #include "floatformat.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "regcache.h"
29 #include "doublest.h"
30 #include "solib-svr4.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "trad-frame.h"
34 #include "tramp-frame.h"
35 #include "breakpoint.h"
36
37 #include "arm-tdep.h"
38 #include "arm-linux-tdep.h"
39 #include "linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "arch-utils.h"
42 #include "inferior.h"
43 #include "gdbthread.h"
44 #include "symfile.h"
45
46 #include "gdb_string.h"
47
48 extern int arm_apcs_32;
49
50 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
51 is to execute a particular software interrupt, rather than use a
52 particular undefined instruction to provoke a trap. Upon exection
53 of the software interrupt the kernel stops the inferior with a
54 SIGTRAP, and wakes the debugger. */
55
56 static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
57
58 static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
59
60 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
61 the operand of the swi if old-ABI compatibility is disabled. Therefore,
62 use an undefined instruction instead. This is supported as of kernel
63 version 2.5.70 (May 2003), so should be a safe assumption for EABI
64 binaries. */
65
66 static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
67
68 static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
69
70 /* All the kernels which support Thumb support using a specific undefined
71 instruction for the Thumb breakpoint. */
72
73 static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
74
75 static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
76
77 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
78 we must use a length-appropriate breakpoint for 32-bit Thumb
79 instructions. See also thumb_get_next_pc. */
80
81 static const char arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
82
83 static const char arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
84
85 /* Description of the longjmp buffer. The buffer is treated as an array of
86 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
87
88 The location of saved registers in this buffer (in particular the PC
89 to use after longjmp is called) varies depending on the ABI (in
90 particular the FP model) and also (possibly) the C Library.
91
92 For glibc, eglibc, and uclibc the following holds: If the FP model is
93 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
94 buffer. This is also true for the SoftFPA model. However, for the FPA
95 model the PC is at offset 21 in the buffer. */
96 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
97 #define ARM_LINUX_JB_PC_FPA 21
98 #define ARM_LINUX_JB_PC_EABI 9
99
100 /*
101 Dynamic Linking on ARM GNU/Linux
102 --------------------------------
103
104 Note: PLT = procedure linkage table
105 GOT = global offset table
106
107 As much as possible, ELF dynamic linking defers the resolution of
108 jump/call addresses until the last minute. The technique used is
109 inspired by the i386 ELF design, and is based on the following
110 constraints.
111
112 1) The calling technique should not force a change in the assembly
113 code produced for apps; it MAY cause changes in the way assembly
114 code is produced for position independent code (i.e. shared
115 libraries).
116
117 2) The technique must be such that all executable areas must not be
118 modified; and any modified areas must not be executed.
119
120 To do this, there are three steps involved in a typical jump:
121
122 1) in the code
123 2) through the PLT
124 3) using a pointer from the GOT
125
126 When the executable or library is first loaded, each GOT entry is
127 initialized to point to the code which implements dynamic name
128 resolution and code finding. This is normally a function in the
129 program interpreter (on ARM GNU/Linux this is usually
130 ld-linux.so.2, but it does not have to be). On the first
131 invocation, the function is located and the GOT entry is replaced
132 with the real function address. Subsequent calls go through steps
133 1, 2 and 3 and end up calling the real code.
134
135 1) In the code:
136
137 b function_call
138 bl function_call
139
140 This is typical ARM code using the 26 bit relative branch or branch
141 and link instructions. The target of the instruction
142 (function_call is usually the address of the function to be called.
143 In position independent code, the target of the instruction is
144 actually an entry in the PLT when calling functions in a shared
145 library. Note that this call is identical to a normal function
146 call, only the target differs.
147
148 2) In the PLT:
149
150 The PLT is a synthetic area, created by the linker. It exists in
151 both executables and libraries. It is an array of stubs, one per
152 imported function call. It looks like this:
153
154 PLT[0]:
155 str lr, [sp, #-4]! @push the return address (lr)
156 ldr lr, [pc, #16] @load from 6 words ahead
157 add lr, pc, lr @form an address for GOT[0]
158 ldr pc, [lr, #8]! @jump to the contents of that addr
159
160 The return address (lr) is pushed on the stack and used for
161 calculations. The load on the second line loads the lr with
162 &GOT[3] - . - 20. The addition on the third leaves:
163
164 lr = (&GOT[3] - . - 20) + (. + 8)
165 lr = (&GOT[3] - 12)
166 lr = &GOT[0]
167
168 On the fourth line, the pc and lr are both updated, so that:
169
170 pc = GOT[2]
171 lr = &GOT[0] + 8
172 = &GOT[2]
173
174 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
175 "tight", but allows us to keep all the PLT entries the same size.
176
177 PLT[n+1]:
178 ldr ip, [pc, #4] @load offset from gotoff
179 add ip, pc, ip @add the offset to the pc
180 ldr pc, [ip] @jump to that address
181 gotoff: .word GOT[n+3] - .
182
183 The load on the first line, gets an offset from the fourth word of
184 the PLT entry. The add on the second line makes ip = &GOT[n+3],
185 which contains either a pointer to PLT[0] (the fixup trampoline) or
186 a pointer to the actual code.
187
188 3) In the GOT:
189
190 The GOT contains helper pointers for both code (PLT) fixups and
191 data fixups. The first 3 entries of the GOT are special. The next
192 M entries (where M is the number of entries in the PLT) belong to
193 the PLT fixups. The next D (all remaining) entries belong to
194 various data fixups. The actual size of the GOT is 3 + M + D.
195
196 The GOT is also a synthetic area, created by the linker. It exists
197 in both executables and libraries. When the GOT is first
198 initialized , all the GOT entries relating to PLT fixups are
199 pointing to code back at PLT[0].
200
201 The special entries in the GOT are:
202
203 GOT[0] = linked list pointer used by the dynamic loader
204 GOT[1] = pointer to the reloc table for this module
205 GOT[2] = pointer to the fixup/resolver code
206
207 The first invocation of function call comes through and uses the
208 fixup/resolver code. On the entry to the fixup/resolver code:
209
210 ip = &GOT[n+3]
211 lr = &GOT[2]
212 stack[0] = return address (lr) of the function call
213 [r0, r1, r2, r3] are still the arguments to the function call
214
215 This is enough information for the fixup/resolver code to work
216 with. Before the fixup/resolver code returns, it actually calls
217 the requested function and repairs &GOT[n+3]. */
218
219 /* The constants below were determined by examining the following files
220 in the linux kernel sources:
221
222 arch/arm/kernel/signal.c
223 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
224 include/asm-arm/unistd.h
225 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
226
227 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
228 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
229
230 /* For ARM EABI, the syscall number is not in the SWI instruction
231 (instead it is loaded into r7). We recognize the pattern that
232 glibc uses... alternatively, we could arrange to do this by
233 function name, but they are not always exported. */
234 #define ARM_SET_R7_SIGRETURN 0xe3a07077
235 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
236 #define ARM_EABI_SYSCALL 0xef000000
237
238 /* OABI syscall restart trampoline, used for EABI executables too
239 whenever OABI support has been enabled in the kernel. */
240 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
241 #define ARM_LDR_PC_SP_12 0xe49df00c
242
243 static void
244 arm_linux_sigtramp_cache (struct frame_info *this_frame,
245 struct trad_frame_cache *this_cache,
246 CORE_ADDR func, int regs_offset)
247 {
248 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
249 CORE_ADDR base = sp + regs_offset;
250 int i;
251
252 for (i = 0; i < 16; i++)
253 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
254
255 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
256
257 /* The VFP or iWMMXt registers may be saved on the stack, but there's
258 no reliable way to restore them (yet). */
259
260 /* Save a frame ID. */
261 trad_frame_set_id (this_cache, frame_id_build (sp, func));
262 }
263
264 /* There are a couple of different possible stack layouts that
265 we need to support.
266
267 Before version 2.6.18, the kernel used completely independent
268 layouts for non-RT and RT signals. For non-RT signals the stack
269 began directly with a struct sigcontext. For RT signals the stack
270 began with two redundant pointers (to the siginfo and ucontext),
271 and then the siginfo and ucontext.
272
273 As of version 2.6.18, the non-RT signal frame layout starts with
274 a ucontext and the RT signal frame starts with a siginfo and then
275 a ucontext. Also, the ucontext now has a designated save area
276 for coprocessor registers.
277
278 For RT signals, it's easy to tell the difference: we look for
279 pinfo, the pointer to the siginfo. If it has the expected
280 value, we have an old layout. If it doesn't, we have the new
281 layout.
282
283 For non-RT signals, it's a bit harder. We need something in one
284 layout or the other with a recognizable offset and value. We can't
285 use the return trampoline, because ARM usually uses SA_RESTORER,
286 in which case the stack return trampoline is not filled in.
287 We can't use the saved stack pointer, because sigaltstack might
288 be in use. So for now we guess the new layout... */
289
290 /* There are three words (trap_no, error_code, oldmask) in
291 struct sigcontext before r0. */
292 #define ARM_SIGCONTEXT_R0 0xc
293
294 /* There are five words (uc_flags, uc_link, and three for uc_stack)
295 in the ucontext_t before the sigcontext. */
296 #define ARM_UCONTEXT_SIGCONTEXT 0x14
297
298 /* There are three elements in an rt_sigframe before the ucontext:
299 pinfo, puc, and info. The first two are pointers and the third
300 is a struct siginfo, with size 128 bytes. We could follow puc
301 to the ucontext, but it's simpler to skip the whole thing. */
302 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
303 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
304
305 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
306
307 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
308
309 static void
310 arm_linux_sigreturn_init (const struct tramp_frame *self,
311 struct frame_info *this_frame,
312 struct trad_frame_cache *this_cache,
313 CORE_ADDR func)
314 {
315 struct gdbarch *gdbarch = get_frame_arch (this_frame);
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
318 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
319
320 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
321 arm_linux_sigtramp_cache (this_frame, this_cache, func,
322 ARM_UCONTEXT_SIGCONTEXT
323 + ARM_SIGCONTEXT_R0);
324 else
325 arm_linux_sigtramp_cache (this_frame, this_cache, func,
326 ARM_SIGCONTEXT_R0);
327 }
328
329 static void
330 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
331 struct frame_info *this_frame,
332 struct trad_frame_cache *this_cache,
333 CORE_ADDR func)
334 {
335 struct gdbarch *gdbarch = get_frame_arch (this_frame);
336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
337 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
338 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
339
340 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
341 arm_linux_sigtramp_cache (this_frame, this_cache, func,
342 ARM_OLD_RT_SIGFRAME_UCONTEXT
343 + ARM_UCONTEXT_SIGCONTEXT
344 + ARM_SIGCONTEXT_R0);
345 else
346 arm_linux_sigtramp_cache (this_frame, this_cache, func,
347 ARM_NEW_RT_SIGFRAME_UCONTEXT
348 + ARM_UCONTEXT_SIGCONTEXT
349 + ARM_SIGCONTEXT_R0);
350 }
351
352 static void
353 arm_linux_restart_syscall_init (const struct tramp_frame *self,
354 struct frame_info *this_frame,
355 struct trad_frame_cache *this_cache,
356 CORE_ADDR func)
357 {
358 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
359
360 trad_frame_set_reg_addr (this_cache, ARM_PC_REGNUM, sp);
361 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + 12);
362
363 /* Save a frame ID. */
364 trad_frame_set_id (this_cache, frame_id_build (sp, func));
365 }
366
367 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
368 SIGTRAMP_FRAME,
369 4,
370 {
371 { ARM_LINUX_SIGRETURN_INSTR, -1 },
372 { TRAMP_SENTINEL_INSN }
373 },
374 arm_linux_sigreturn_init
375 };
376
377 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
378 SIGTRAMP_FRAME,
379 4,
380 {
381 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
382 { TRAMP_SENTINEL_INSN }
383 },
384 arm_linux_rt_sigreturn_init
385 };
386
387 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
388 SIGTRAMP_FRAME,
389 4,
390 {
391 { ARM_SET_R7_SIGRETURN, -1 },
392 { ARM_EABI_SYSCALL, -1 },
393 { TRAMP_SENTINEL_INSN }
394 },
395 arm_linux_sigreturn_init
396 };
397
398 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
399 SIGTRAMP_FRAME,
400 4,
401 {
402 { ARM_SET_R7_RT_SIGRETURN, -1 },
403 { ARM_EABI_SYSCALL, -1 },
404 { TRAMP_SENTINEL_INSN }
405 },
406 arm_linux_rt_sigreturn_init
407 };
408
409 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
410 NORMAL_FRAME,
411 4,
412 {
413 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
414 { ARM_LDR_PC_SP_12, -1 },
415 { TRAMP_SENTINEL_INSN }
416 },
417 arm_linux_restart_syscall_init
418 };
419
420 /* Core file and register set support. */
421
422 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
423
424 void
425 arm_linux_supply_gregset (const struct regset *regset,
426 struct regcache *regcache,
427 int regnum, const void *gregs_buf, size_t len)
428 {
429 struct gdbarch *gdbarch = get_regcache_arch (regcache);
430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
431 const gdb_byte *gregs = gregs_buf;
432 int regno;
433 CORE_ADDR reg_pc;
434 gdb_byte pc_buf[INT_REGISTER_SIZE];
435
436 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
437 if (regnum == -1 || regnum == regno)
438 regcache_raw_supply (regcache, regno,
439 gregs + INT_REGISTER_SIZE * regno);
440
441 if (regnum == ARM_PS_REGNUM || regnum == -1)
442 {
443 if (arm_apcs_32)
444 regcache_raw_supply (regcache, ARM_PS_REGNUM,
445 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
446 else
447 regcache_raw_supply (regcache, ARM_PS_REGNUM,
448 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
449 }
450
451 if (regnum == ARM_PC_REGNUM || regnum == -1)
452 {
453 reg_pc = extract_unsigned_integer (gregs
454 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
455 INT_REGISTER_SIZE, byte_order);
456 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
457 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
458 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
459 }
460 }
461
462 void
463 arm_linux_collect_gregset (const struct regset *regset,
464 const struct regcache *regcache,
465 int regnum, void *gregs_buf, size_t len)
466 {
467 gdb_byte *gregs = gregs_buf;
468 int regno;
469
470 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
471 if (regnum == -1 || regnum == regno)
472 regcache_raw_collect (regcache, regno,
473 gregs + INT_REGISTER_SIZE * regno);
474
475 if (regnum == ARM_PS_REGNUM || regnum == -1)
476 {
477 if (arm_apcs_32)
478 regcache_raw_collect (regcache, ARM_PS_REGNUM,
479 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
480 else
481 regcache_raw_collect (regcache, ARM_PS_REGNUM,
482 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
483 }
484
485 if (regnum == ARM_PC_REGNUM || regnum == -1)
486 regcache_raw_collect (regcache, ARM_PC_REGNUM,
487 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
488 }
489
490 /* Support for register format used by the NWFPE FPA emulator. */
491
492 #define typeNone 0x00
493 #define typeSingle 0x01
494 #define typeDouble 0x02
495 #define typeExtended 0x03
496
497 void
498 supply_nwfpe_register (struct regcache *regcache, int regno,
499 const gdb_byte *regs)
500 {
501 const gdb_byte *reg_data;
502 gdb_byte reg_tag;
503 gdb_byte buf[FP_REGISTER_SIZE];
504
505 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
506 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
507 memset (buf, 0, FP_REGISTER_SIZE);
508
509 switch (reg_tag)
510 {
511 case typeSingle:
512 memcpy (buf, reg_data, 4);
513 break;
514 case typeDouble:
515 memcpy (buf, reg_data + 4, 4);
516 memcpy (buf + 4, reg_data, 4);
517 break;
518 case typeExtended:
519 /* We want sign and exponent, then least significant bits,
520 then most significant. NWFPE does sign, most, least. */
521 memcpy (buf, reg_data, 4);
522 memcpy (buf + 4, reg_data + 8, 4);
523 memcpy (buf + 8, reg_data + 4, 4);
524 break;
525 default:
526 break;
527 }
528
529 regcache_raw_supply (regcache, regno, buf);
530 }
531
532 void
533 collect_nwfpe_register (const struct regcache *regcache, int regno,
534 gdb_byte *regs)
535 {
536 gdb_byte *reg_data;
537 gdb_byte reg_tag;
538 gdb_byte buf[FP_REGISTER_SIZE];
539
540 regcache_raw_collect (regcache, regno, buf);
541
542 /* NOTE drow/2006-06-07: This code uses the tag already in the
543 register buffer. I've preserved that when moving the code
544 from the native file to the target file. But this doesn't
545 always make sense. */
546
547 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
548 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
549
550 switch (reg_tag)
551 {
552 case typeSingle:
553 memcpy (reg_data, buf, 4);
554 break;
555 case typeDouble:
556 memcpy (reg_data, buf + 4, 4);
557 memcpy (reg_data + 4, buf, 4);
558 break;
559 case typeExtended:
560 memcpy (reg_data, buf, 4);
561 memcpy (reg_data + 4, buf + 8, 4);
562 memcpy (reg_data + 8, buf + 4, 4);
563 break;
564 default:
565 break;
566 }
567 }
568
569 void
570 arm_linux_supply_nwfpe (const struct regset *regset,
571 struct regcache *regcache,
572 int regnum, const void *regs_buf, size_t len)
573 {
574 const gdb_byte *regs = regs_buf;
575 int regno;
576
577 if (regnum == ARM_FPS_REGNUM || regnum == -1)
578 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
579 regs + NWFPE_FPSR_OFFSET);
580
581 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
582 if (regnum == -1 || regnum == regno)
583 supply_nwfpe_register (regcache, regno, regs);
584 }
585
586 void
587 arm_linux_collect_nwfpe (const struct regset *regset,
588 const struct regcache *regcache,
589 int regnum, void *regs_buf, size_t len)
590 {
591 gdb_byte *regs = regs_buf;
592 int regno;
593
594 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
595 if (regnum == -1 || regnum == regno)
596 collect_nwfpe_register (regcache, regno, regs);
597
598 if (regnum == ARM_FPS_REGNUM || regnum == -1)
599 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
600 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
601 }
602
603 /* Return the appropriate register set for the core section identified
604 by SECT_NAME and SECT_SIZE. */
605
606 static const struct regset *
607 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
608 const char *sect_name, size_t sect_size)
609 {
610 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
611
612 if (strcmp (sect_name, ".reg") == 0
613 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
614 {
615 if (tdep->gregset == NULL)
616 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
617 arm_linux_collect_gregset);
618 return tdep->gregset;
619 }
620
621 if (strcmp (sect_name, ".reg2") == 0
622 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
623 {
624 if (tdep->fpregset == NULL)
625 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
626 arm_linux_collect_nwfpe);
627 return tdep->fpregset;
628 }
629
630 return NULL;
631 }
632
633 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
634 and return 1. Return 0 if it is not a rt_sigreturn/sigreturn
635 syscall. */
636 static int
637 arm_linux_sigreturn_return_addr (struct frame_info *frame,
638 unsigned long svc_number,
639 CORE_ADDR *pc)
640 {
641 /* Is this a sigreturn or rt_sigreturn syscall? */
642 if (svc_number == 119 || svc_number == 173)
643 {
644 if (get_frame_type (frame) == SIGTRAMP_FRAME)
645 {
646 *pc = frame_unwind_caller_pc (frame);
647 return 1;
648 }
649 }
650 return 0;
651 }
652
653 /* When FRAME is at a syscall instruction, return the PC of the next
654 instruction to be executed. */
655
656 static CORE_ADDR
657 arm_linux_syscall_next_pc (struct frame_info *frame)
658 {
659 CORE_ADDR pc = get_frame_pc (frame);
660 CORE_ADDR return_addr = 0;
661 int is_thumb = arm_frame_is_thumb (frame);
662 ULONGEST svc_number = 0;
663 int is_sigreturn = 0;
664
665 if (is_thumb)
666 {
667 svc_number = get_frame_register_unsigned (frame, 7);
668 }
669 else
670 {
671 struct gdbarch *gdbarch = get_frame_arch (frame);
672 enum bfd_endian byte_order_for_code =
673 gdbarch_byte_order_for_code (gdbarch);
674 unsigned long this_instr =
675 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
676
677 unsigned long svc_operand = (0x00ffffff & this_instr);
678 if (svc_operand) /* OABI. */
679 {
680 svc_number = svc_operand - 0x900000;
681 }
682 else /* EABI. */
683 {
684 svc_number = get_frame_register_unsigned (frame, 7);
685 }
686 }
687
688 is_sigreturn = arm_linux_sigreturn_return_addr (frame, svc_number,
689 &return_addr);
690
691 if (is_sigreturn)
692 return return_addr;
693
694 if (is_thumb)
695 {
696 return_addr = pc + 2;
697 /* Addresses for calling Thumb functions have the bit 0 set. */
698 return_addr |= 1;
699 }
700 else
701 {
702 return_addr = pc + 4;
703 }
704
705 return return_addr;
706 }
707
708
709 /* Insert a single step breakpoint at the next executed instruction. */
710
711 static int
712 arm_linux_software_single_step (struct frame_info *frame)
713 {
714 struct gdbarch *gdbarch = get_frame_arch (frame);
715 struct address_space *aspace = get_frame_address_space (frame);
716 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
717
718 /* The Linux kernel offers some user-mode helpers in a high page. We can
719 not read this page (as of 2.6.23), and even if we could then we couldn't
720 set breakpoints in it, and even if we could then the atomic operations
721 would fail when interrupted. They are all called as functions and return
722 to the address in LR, so step to there instead. */
723 if (next_pc > 0xffff0000)
724 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
725
726 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
727
728 return 1;
729 }
730
731 /* Support for displaced stepping of Linux SVC instructions. */
732
733 static void
734 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
735 struct regcache *regs,
736 struct displaced_step_closure *dsc)
737 {
738 CORE_ADDR from = dsc->insn_addr;
739 ULONGEST apparent_pc;
740 int within_scratch;
741
742 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
743
744 within_scratch = (apparent_pc >= dsc->scratch_base
745 && apparent_pc < (dsc->scratch_base
746 + DISPLACED_MODIFIED_INSNS * 4 + 4));
747
748 if (debug_displaced)
749 {
750 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
751 "SVC step ", (unsigned long) apparent_pc);
752 if (within_scratch)
753 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
754 else
755 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
756 }
757
758 if (within_scratch)
759 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
760 }
761
762 static int
763 arm_linux_copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
764 struct regcache *regs, struct displaced_step_closure *dsc)
765 {
766 CORE_ADDR from = dsc->insn_addr;
767 CORE_ADDR return_to = 0;
768
769 struct frame_info *frame;
770 unsigned int svc_number = displaced_read_reg (regs, from, 7);
771 int is_sigreturn = 0;
772
773 if (debug_displaced)
774 fprintf_unfiltered (gdb_stdlog, "displaced: copying Linux svc insn %.8lx\n",
775 (unsigned long) insn);
776
777 frame = get_current_frame ();
778
779 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
780 &return_to);
781 if (is_sigreturn)
782 {
783 struct symtab_and_line sal;
784
785 if (debug_displaced)
786 fprintf_unfiltered (gdb_stdlog, "displaced: found "
787 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
788 (unsigned long) get_frame_pc (frame));
789
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
792 "Setting momentary breakpoint.\n", (unsigned long) return_to);
793
794 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
795
796 sal = find_pc_line (return_to, 0);
797 sal.pc = return_to;
798 sal.section = find_pc_overlay (return_to);
799 sal.explicit_pc = 1;
800
801 frame = get_prev_frame (frame);
802
803 if (frame)
804 {
805 inferior_thread ()->step_resume_breakpoint
806 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
807 bp_step_resume);
808
809 /* We need to make sure we actually insert the momentary
810 breakpoint set above. */
811 insert_breakpoints ();
812 }
813 else if (debug_displaced)
814 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
815 "frame to set momentary breakpoint for "
816 "sigreturn/rt_sigreturn\n");
817 }
818 else if (debug_displaced)
819 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
820 "SVC call not in signal trampoline frame\n");
821
822
823 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
824 location, else nothing.
825 Insn: unmodified svc.
826 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
827 else leave pc alone. */
828
829 dsc->modinsn[0] = insn;
830
831 dsc->cleanup = &arm_linux_cleanup_svc;
832 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
833 instruction. */
834 dsc->wrote_to_pc = 1;
835
836 return 0;
837 }
838
839
840 /* The following two functions implement single-stepping over calls to Linux
841 kernel helper routines, which perform e.g. atomic operations on architecture
842 variants which don't support them natively.
843
844 When this function is called, the PC will be pointing at the kernel helper
845 (at an address inaccessible to GDB), and r14 will point to the return
846 address. Displaced stepping always executes code in the copy area:
847 so, make the copy-area instruction branch back to the kernel helper (the
848 "from" address), and make r14 point to the breakpoint in the copy area. In
849 that way, we regain control once the kernel helper returns, and can clean
850 up appropriately (as if we had just returned from the kernel helper as it
851 would have been called from the non-displaced location). */
852
853 static void
854 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
855 struct regcache *regs,
856 struct displaced_step_closure *dsc)
857 {
858 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
859 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
860 }
861
862 static void
863 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
864 CORE_ADDR to, struct regcache *regs,
865 struct displaced_step_closure *dsc)
866 {
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868
869 dsc->numinsns = 1;
870 dsc->insn_addr = from;
871 dsc->cleanup = &cleanup_kernel_helper_return;
872 /* Say we wrote to the PC, else cleanup will set PC to the next
873 instruction in the helper, which isn't helpful. */
874 dsc->wrote_to_pc = 1;
875
876 /* Preparation: tmp[0] <- r14
877 r14 <- <scratch space>+4
878 *(<scratch space>+8) <- from
879 Insn: ldr pc, [r14, #4]
880 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
881
882 dsc->tmp[0] = displaced_read_reg (regs, from, ARM_LR_REGNUM);
883 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
884 CANNOT_WRITE_PC);
885 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
886
887 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
888 }
889
890 /* Linux-specific displaced step instruction copying function. Detects when
891 the program has stepped into a Linux kernel helper routine (which must be
892 handled as a special case), falling back to arm_displaced_step_copy_insn()
893 if it hasn't. */
894
895 static struct displaced_step_closure *
896 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
897 CORE_ADDR from, CORE_ADDR to,
898 struct regcache *regs)
899 {
900 struct displaced_step_closure *dsc
901 = xmalloc (sizeof (struct displaced_step_closure));
902
903 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
904 stop at the return location. */
905 if (from > 0xffff0000)
906 {
907 if (debug_displaced)
908 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
909 "at %.8lx\n", (unsigned long) from);
910
911 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
912 }
913 else
914 {
915 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
916 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order);
917
918 if (debug_displaced)
919 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
920 "at %.8lx\n", (unsigned long) insn,
921 (unsigned long) from);
922
923 /* Override the default handling of SVC instructions. */
924 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
925
926 arm_process_displaced_insn (gdbarch, insn, from, to, regs, dsc);
927 }
928
929 arm_displaced_init_closure (gdbarch, from, to, dsc);
930
931 return dsc;
932 }
933
934 static void
935 arm_linux_init_abi (struct gdbarch_info info,
936 struct gdbarch *gdbarch)
937 {
938 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
939
940 linux_init_abi (info, gdbarch);
941
942 tdep->lowest_pc = 0x8000;
943 if (info.byte_order == BFD_ENDIAN_BIG)
944 {
945 if (tdep->arm_abi == ARM_ABI_AAPCS)
946 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
947 else
948 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
949 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
950 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
951 }
952 else
953 {
954 if (tdep->arm_abi == ARM_ABI_AAPCS)
955 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
956 else
957 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
958 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
959 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
960 }
961 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
962 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
963 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
964
965 if (tdep->fp_model == ARM_FLOAT_AUTO)
966 tdep->fp_model = ARM_FLOAT_FPA;
967
968 switch (tdep->fp_model)
969 {
970 case ARM_FLOAT_FPA:
971 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
972 break;
973 case ARM_FLOAT_SOFT_FPA:
974 case ARM_FLOAT_SOFT_VFP:
975 case ARM_FLOAT_VFP:
976 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
977 break;
978 default:
979 internal_error
980 (__FILE__, __LINE__,
981 _("arm_linux_init_abi: Floating point model not supported"));
982 break;
983 }
984 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
985
986 set_solib_svr4_fetch_link_map_offsets
987 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
988
989 /* Single stepping. */
990 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
991
992 /* Shared library handling. */
993 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
994 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
995
996 /* Enable TLS support. */
997 set_gdbarch_fetch_tls_load_module_address (gdbarch,
998 svr4_fetch_objfile_link_map);
999
1000 tramp_frame_prepend_unwinder (gdbarch,
1001 &arm_linux_sigreturn_tramp_frame);
1002 tramp_frame_prepend_unwinder (gdbarch,
1003 &arm_linux_rt_sigreturn_tramp_frame);
1004 tramp_frame_prepend_unwinder (gdbarch,
1005 &arm_eabi_linux_sigreturn_tramp_frame);
1006 tramp_frame_prepend_unwinder (gdbarch,
1007 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1008 tramp_frame_prepend_unwinder (gdbarch,
1009 &arm_linux_restart_syscall_tramp_frame);
1010
1011 /* Core file support. */
1012 set_gdbarch_regset_from_core_section (gdbarch,
1013 arm_linux_regset_from_core_section);
1014
1015 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1016
1017 /* Displaced stepping. */
1018 set_gdbarch_displaced_step_copy_insn (gdbarch,
1019 arm_linux_displaced_step_copy_insn);
1020 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1021 set_gdbarch_displaced_step_free_closure (gdbarch,
1022 simple_displaced_step_free_closure);
1023 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1024
1025
1026 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1027 }
1028
1029 /* Provide a prototype to silence -Wmissing-prototypes. */
1030 extern initialize_file_ftype _initialize_arm_linux_tdep;
1031
1032 void
1033 _initialize_arm_linux_tdep (void)
1034 {
1035 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1036 arm_linux_init_abi);
1037 }
This page took 0.056799 seconds and 4 git commands to generate.