* arm-tdep.h (arm_deal_with_atomic_sequence): Add prototype.
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "target.h"
23 #include "value.h"
24 #include "gdbtypes.h"
25 #include "floatformat.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "regcache.h"
29 #include "doublest.h"
30 #include "solib-svr4.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "trad-frame.h"
34 #include "tramp-frame.h"
35 #include "breakpoint.h"
36 #include "auxv.h"
37
38 #include "arm-tdep.h"
39 #include "arm-linux-tdep.h"
40 #include "linux-tdep.h"
41 #include "glibc-tdep.h"
42 #include "arch-utils.h"
43 #include "inferior.h"
44 #include "gdbthread.h"
45 #include "symfile.h"
46
47 #include "gdb_string.h"
48
49 /* This is defined in <elf.h> on ARM GNU/Linux systems. */
50 #define AT_HWCAP 16
51
52 extern int arm_apcs_32;
53
54 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
55 is to execute a particular software interrupt, rather than use a
56 particular undefined instruction to provoke a trap. Upon exection
57 of the software interrupt the kernel stops the inferior with a
58 SIGTRAP, and wakes the debugger. */
59
60 static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
61
62 static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
63
64 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
65 the operand of the swi if old-ABI compatibility is disabled. Therefore,
66 use an undefined instruction instead. This is supported as of kernel
67 version 2.5.70 (May 2003), so should be a safe assumption for EABI
68 binaries. */
69
70 static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
71
72 static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
73
74 /* All the kernels which support Thumb support using a specific undefined
75 instruction for the Thumb breakpoint. */
76
77 static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
78
79 static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
80
81 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
82 we must use a length-appropriate breakpoint for 32-bit Thumb
83 instructions. See also thumb_get_next_pc. */
84
85 static const char arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
86
87 static const char arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
88
89 /* Description of the longjmp buffer. The buffer is treated as an array of
90 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
91
92 The location of saved registers in this buffer (in particular the PC
93 to use after longjmp is called) varies depending on the ABI (in
94 particular the FP model) and also (possibly) the C Library.
95
96 For glibc, eglibc, and uclibc the following holds: If the FP model is
97 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
98 buffer. This is also true for the SoftFPA model. However, for the FPA
99 model the PC is at offset 21 in the buffer. */
100 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
101 #define ARM_LINUX_JB_PC_FPA 21
102 #define ARM_LINUX_JB_PC_EABI 9
103
104 /*
105 Dynamic Linking on ARM GNU/Linux
106 --------------------------------
107
108 Note: PLT = procedure linkage table
109 GOT = global offset table
110
111 As much as possible, ELF dynamic linking defers the resolution of
112 jump/call addresses until the last minute. The technique used is
113 inspired by the i386 ELF design, and is based on the following
114 constraints.
115
116 1) The calling technique should not force a change in the assembly
117 code produced for apps; it MAY cause changes in the way assembly
118 code is produced for position independent code (i.e. shared
119 libraries).
120
121 2) The technique must be such that all executable areas must not be
122 modified; and any modified areas must not be executed.
123
124 To do this, there are three steps involved in a typical jump:
125
126 1) in the code
127 2) through the PLT
128 3) using a pointer from the GOT
129
130 When the executable or library is first loaded, each GOT entry is
131 initialized to point to the code which implements dynamic name
132 resolution and code finding. This is normally a function in the
133 program interpreter (on ARM GNU/Linux this is usually
134 ld-linux.so.2, but it does not have to be). On the first
135 invocation, the function is located and the GOT entry is replaced
136 with the real function address. Subsequent calls go through steps
137 1, 2 and 3 and end up calling the real code.
138
139 1) In the code:
140
141 b function_call
142 bl function_call
143
144 This is typical ARM code using the 26 bit relative branch or branch
145 and link instructions. The target of the instruction
146 (function_call is usually the address of the function to be called.
147 In position independent code, the target of the instruction is
148 actually an entry in the PLT when calling functions in a shared
149 library. Note that this call is identical to a normal function
150 call, only the target differs.
151
152 2) In the PLT:
153
154 The PLT is a synthetic area, created by the linker. It exists in
155 both executables and libraries. It is an array of stubs, one per
156 imported function call. It looks like this:
157
158 PLT[0]:
159 str lr, [sp, #-4]! @push the return address (lr)
160 ldr lr, [pc, #16] @load from 6 words ahead
161 add lr, pc, lr @form an address for GOT[0]
162 ldr pc, [lr, #8]! @jump to the contents of that addr
163
164 The return address (lr) is pushed on the stack and used for
165 calculations. The load on the second line loads the lr with
166 &GOT[3] - . - 20. The addition on the third leaves:
167
168 lr = (&GOT[3] - . - 20) + (. + 8)
169 lr = (&GOT[3] - 12)
170 lr = &GOT[0]
171
172 On the fourth line, the pc and lr are both updated, so that:
173
174 pc = GOT[2]
175 lr = &GOT[0] + 8
176 = &GOT[2]
177
178 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
179 "tight", but allows us to keep all the PLT entries the same size.
180
181 PLT[n+1]:
182 ldr ip, [pc, #4] @load offset from gotoff
183 add ip, pc, ip @add the offset to the pc
184 ldr pc, [ip] @jump to that address
185 gotoff: .word GOT[n+3] - .
186
187 The load on the first line, gets an offset from the fourth word of
188 the PLT entry. The add on the second line makes ip = &GOT[n+3],
189 which contains either a pointer to PLT[0] (the fixup trampoline) or
190 a pointer to the actual code.
191
192 3) In the GOT:
193
194 The GOT contains helper pointers for both code (PLT) fixups and
195 data fixups. The first 3 entries of the GOT are special. The next
196 M entries (where M is the number of entries in the PLT) belong to
197 the PLT fixups. The next D (all remaining) entries belong to
198 various data fixups. The actual size of the GOT is 3 + M + D.
199
200 The GOT is also a synthetic area, created by the linker. It exists
201 in both executables and libraries. When the GOT is first
202 initialized , all the GOT entries relating to PLT fixups are
203 pointing to code back at PLT[0].
204
205 The special entries in the GOT are:
206
207 GOT[0] = linked list pointer used by the dynamic loader
208 GOT[1] = pointer to the reloc table for this module
209 GOT[2] = pointer to the fixup/resolver code
210
211 The first invocation of function call comes through and uses the
212 fixup/resolver code. On the entry to the fixup/resolver code:
213
214 ip = &GOT[n+3]
215 lr = &GOT[2]
216 stack[0] = return address (lr) of the function call
217 [r0, r1, r2, r3] are still the arguments to the function call
218
219 This is enough information for the fixup/resolver code to work
220 with. Before the fixup/resolver code returns, it actually calls
221 the requested function and repairs &GOT[n+3]. */
222
223 /* The constants below were determined by examining the following files
224 in the linux kernel sources:
225
226 arch/arm/kernel/signal.c
227 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
228 include/asm-arm/unistd.h
229 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
230
231 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
232 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
233
234 /* For ARM EABI, the syscall number is not in the SWI instruction
235 (instead it is loaded into r7). We recognize the pattern that
236 glibc uses... alternatively, we could arrange to do this by
237 function name, but they are not always exported. */
238 #define ARM_SET_R7_SIGRETURN 0xe3a07077
239 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
240 #define ARM_EABI_SYSCALL 0xef000000
241
242 /* OABI syscall restart trampoline, used for EABI executables too
243 whenever OABI support has been enabled in the kernel. */
244 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
245 #define ARM_LDR_PC_SP_12 0xe49df00c
246 #define ARM_LDR_PC_SP_4 0xe49df004
247
248 static void
249 arm_linux_sigtramp_cache (struct frame_info *this_frame,
250 struct trad_frame_cache *this_cache,
251 CORE_ADDR func, int regs_offset)
252 {
253 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
254 CORE_ADDR base = sp + regs_offset;
255 int i;
256
257 for (i = 0; i < 16; i++)
258 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
259
260 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
261
262 /* The VFP or iWMMXt registers may be saved on the stack, but there's
263 no reliable way to restore them (yet). */
264
265 /* Save a frame ID. */
266 trad_frame_set_id (this_cache, frame_id_build (sp, func));
267 }
268
269 /* There are a couple of different possible stack layouts that
270 we need to support.
271
272 Before version 2.6.18, the kernel used completely independent
273 layouts for non-RT and RT signals. For non-RT signals the stack
274 began directly with a struct sigcontext. For RT signals the stack
275 began with two redundant pointers (to the siginfo and ucontext),
276 and then the siginfo and ucontext.
277
278 As of version 2.6.18, the non-RT signal frame layout starts with
279 a ucontext and the RT signal frame starts with a siginfo and then
280 a ucontext. Also, the ucontext now has a designated save area
281 for coprocessor registers.
282
283 For RT signals, it's easy to tell the difference: we look for
284 pinfo, the pointer to the siginfo. If it has the expected
285 value, we have an old layout. If it doesn't, we have the new
286 layout.
287
288 For non-RT signals, it's a bit harder. We need something in one
289 layout or the other with a recognizable offset and value. We can't
290 use the return trampoline, because ARM usually uses SA_RESTORER,
291 in which case the stack return trampoline is not filled in.
292 We can't use the saved stack pointer, because sigaltstack might
293 be in use. So for now we guess the new layout... */
294
295 /* There are three words (trap_no, error_code, oldmask) in
296 struct sigcontext before r0. */
297 #define ARM_SIGCONTEXT_R0 0xc
298
299 /* There are five words (uc_flags, uc_link, and three for uc_stack)
300 in the ucontext_t before the sigcontext. */
301 #define ARM_UCONTEXT_SIGCONTEXT 0x14
302
303 /* There are three elements in an rt_sigframe before the ucontext:
304 pinfo, puc, and info. The first two are pointers and the third
305 is a struct siginfo, with size 128 bytes. We could follow puc
306 to the ucontext, but it's simpler to skip the whole thing. */
307 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
308 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
309
310 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
311
312 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
313
314 static void
315 arm_linux_sigreturn_init (const struct tramp_frame *self,
316 struct frame_info *this_frame,
317 struct trad_frame_cache *this_cache,
318 CORE_ADDR func)
319 {
320 struct gdbarch *gdbarch = get_frame_arch (this_frame);
321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
322 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
323 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
324
325 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
326 arm_linux_sigtramp_cache (this_frame, this_cache, func,
327 ARM_UCONTEXT_SIGCONTEXT
328 + ARM_SIGCONTEXT_R0);
329 else
330 arm_linux_sigtramp_cache (this_frame, this_cache, func,
331 ARM_SIGCONTEXT_R0);
332 }
333
334 static void
335 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
336 struct frame_info *this_frame,
337 struct trad_frame_cache *this_cache,
338 CORE_ADDR func)
339 {
340 struct gdbarch *gdbarch = get_frame_arch (this_frame);
341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
342 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
343 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
344
345 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
346 arm_linux_sigtramp_cache (this_frame, this_cache, func,
347 ARM_OLD_RT_SIGFRAME_UCONTEXT
348 + ARM_UCONTEXT_SIGCONTEXT
349 + ARM_SIGCONTEXT_R0);
350 else
351 arm_linux_sigtramp_cache (this_frame, this_cache, func,
352 ARM_NEW_RT_SIGFRAME_UCONTEXT
353 + ARM_UCONTEXT_SIGCONTEXT
354 + ARM_SIGCONTEXT_R0);
355 }
356
357 static void
358 arm_linux_restart_syscall_init (const struct tramp_frame *self,
359 struct frame_info *this_frame,
360 struct trad_frame_cache *this_cache,
361 CORE_ADDR func)
362 {
363 struct gdbarch *gdbarch = get_frame_arch (this_frame);
364 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
365 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
366 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
367 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
368 int sp_offset;
369
370 /* There are two variants of this trampoline; with older kernels, the
371 stub is placed on the stack, while newer kernels use the stub from
372 the vector page. They are identical except that the older version
373 increments SP by 12 (to skip stored PC and the stub itself), while
374 the newer version increments SP only by 4 (just the stored PC). */
375 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
376 sp_offset = 4;
377 else
378 sp_offset = 12;
379
380 /* Update Thumb bit in CPSR. */
381 if (pc & 1)
382 cpsr |= t_bit;
383 else
384 cpsr &= ~t_bit;
385
386 /* Remove Thumb bit from PC. */
387 pc = gdbarch_addr_bits_remove (gdbarch, pc);
388
389 /* Save previous register values. */
390 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
391 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
392 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
393
394 /* Save a frame ID. */
395 trad_frame_set_id (this_cache, frame_id_build (sp, func));
396 }
397
398 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
399 SIGTRAMP_FRAME,
400 4,
401 {
402 { ARM_LINUX_SIGRETURN_INSTR, -1 },
403 { TRAMP_SENTINEL_INSN }
404 },
405 arm_linux_sigreturn_init
406 };
407
408 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
409 SIGTRAMP_FRAME,
410 4,
411 {
412 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
413 { TRAMP_SENTINEL_INSN }
414 },
415 arm_linux_rt_sigreturn_init
416 };
417
418 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
419 SIGTRAMP_FRAME,
420 4,
421 {
422 { ARM_SET_R7_SIGRETURN, -1 },
423 { ARM_EABI_SYSCALL, -1 },
424 { TRAMP_SENTINEL_INSN }
425 },
426 arm_linux_sigreturn_init
427 };
428
429 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
430 SIGTRAMP_FRAME,
431 4,
432 {
433 { ARM_SET_R7_RT_SIGRETURN, -1 },
434 { ARM_EABI_SYSCALL, -1 },
435 { TRAMP_SENTINEL_INSN }
436 },
437 arm_linux_rt_sigreturn_init
438 };
439
440 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
441 NORMAL_FRAME,
442 4,
443 {
444 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
445 { ARM_LDR_PC_SP_12, -1 },
446 { TRAMP_SENTINEL_INSN }
447 },
448 arm_linux_restart_syscall_init
449 };
450
451 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
452 NORMAL_FRAME,
453 4,
454 {
455 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
456 { ARM_LDR_PC_SP_4, -1 },
457 { TRAMP_SENTINEL_INSN }
458 },
459 arm_linux_restart_syscall_init
460 };
461
462 /* Core file and register set support. */
463
464 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
465
466 void
467 arm_linux_supply_gregset (const struct regset *regset,
468 struct regcache *regcache,
469 int regnum, const void *gregs_buf, size_t len)
470 {
471 struct gdbarch *gdbarch = get_regcache_arch (regcache);
472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
473 const gdb_byte *gregs = gregs_buf;
474 int regno;
475 CORE_ADDR reg_pc;
476 gdb_byte pc_buf[INT_REGISTER_SIZE];
477
478 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
479 if (regnum == -1 || regnum == regno)
480 regcache_raw_supply (regcache, regno,
481 gregs + INT_REGISTER_SIZE * regno);
482
483 if (regnum == ARM_PS_REGNUM || regnum == -1)
484 {
485 if (arm_apcs_32)
486 regcache_raw_supply (regcache, ARM_PS_REGNUM,
487 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
488 else
489 regcache_raw_supply (regcache, ARM_PS_REGNUM,
490 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
491 }
492
493 if (regnum == ARM_PC_REGNUM || regnum == -1)
494 {
495 reg_pc = extract_unsigned_integer (gregs
496 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
497 INT_REGISTER_SIZE, byte_order);
498 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
499 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
500 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
501 }
502 }
503
504 void
505 arm_linux_collect_gregset (const struct regset *regset,
506 const struct regcache *regcache,
507 int regnum, void *gregs_buf, size_t len)
508 {
509 gdb_byte *gregs = gregs_buf;
510 int regno;
511
512 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
513 if (regnum == -1 || regnum == regno)
514 regcache_raw_collect (regcache, regno,
515 gregs + INT_REGISTER_SIZE * regno);
516
517 if (regnum == ARM_PS_REGNUM || regnum == -1)
518 {
519 if (arm_apcs_32)
520 regcache_raw_collect (regcache, ARM_PS_REGNUM,
521 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
522 else
523 regcache_raw_collect (regcache, ARM_PS_REGNUM,
524 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
525 }
526
527 if (regnum == ARM_PC_REGNUM || regnum == -1)
528 regcache_raw_collect (regcache, ARM_PC_REGNUM,
529 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
530 }
531
532 /* Support for register format used by the NWFPE FPA emulator. */
533
534 #define typeNone 0x00
535 #define typeSingle 0x01
536 #define typeDouble 0x02
537 #define typeExtended 0x03
538
539 void
540 supply_nwfpe_register (struct regcache *regcache, int regno,
541 const gdb_byte *regs)
542 {
543 const gdb_byte *reg_data;
544 gdb_byte reg_tag;
545 gdb_byte buf[FP_REGISTER_SIZE];
546
547 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
548 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
549 memset (buf, 0, FP_REGISTER_SIZE);
550
551 switch (reg_tag)
552 {
553 case typeSingle:
554 memcpy (buf, reg_data, 4);
555 break;
556 case typeDouble:
557 memcpy (buf, reg_data + 4, 4);
558 memcpy (buf + 4, reg_data, 4);
559 break;
560 case typeExtended:
561 /* We want sign and exponent, then least significant bits,
562 then most significant. NWFPE does sign, most, least. */
563 memcpy (buf, reg_data, 4);
564 memcpy (buf + 4, reg_data + 8, 4);
565 memcpy (buf + 8, reg_data + 4, 4);
566 break;
567 default:
568 break;
569 }
570
571 regcache_raw_supply (regcache, regno, buf);
572 }
573
574 void
575 collect_nwfpe_register (const struct regcache *regcache, int regno,
576 gdb_byte *regs)
577 {
578 gdb_byte *reg_data;
579 gdb_byte reg_tag;
580 gdb_byte buf[FP_REGISTER_SIZE];
581
582 regcache_raw_collect (regcache, regno, buf);
583
584 /* NOTE drow/2006-06-07: This code uses the tag already in the
585 register buffer. I've preserved that when moving the code
586 from the native file to the target file. But this doesn't
587 always make sense. */
588
589 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
590 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
591
592 switch (reg_tag)
593 {
594 case typeSingle:
595 memcpy (reg_data, buf, 4);
596 break;
597 case typeDouble:
598 memcpy (reg_data, buf + 4, 4);
599 memcpy (reg_data + 4, buf, 4);
600 break;
601 case typeExtended:
602 memcpy (reg_data, buf, 4);
603 memcpy (reg_data + 4, buf + 8, 4);
604 memcpy (reg_data + 8, buf + 4, 4);
605 break;
606 default:
607 break;
608 }
609 }
610
611 void
612 arm_linux_supply_nwfpe (const struct regset *regset,
613 struct regcache *regcache,
614 int regnum, const void *regs_buf, size_t len)
615 {
616 const gdb_byte *regs = regs_buf;
617 int regno;
618
619 if (regnum == ARM_FPS_REGNUM || regnum == -1)
620 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
621 regs + NWFPE_FPSR_OFFSET);
622
623 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
624 if (regnum == -1 || regnum == regno)
625 supply_nwfpe_register (regcache, regno, regs);
626 }
627
628 void
629 arm_linux_collect_nwfpe (const struct regset *regset,
630 const struct regcache *regcache,
631 int regnum, void *regs_buf, size_t len)
632 {
633 gdb_byte *regs = regs_buf;
634 int regno;
635
636 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
637 if (regnum == -1 || regnum == regno)
638 collect_nwfpe_register (regcache, regno, regs);
639
640 if (regnum == ARM_FPS_REGNUM || regnum == -1)
641 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
642 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
643 }
644
645 /* Support VFP register format. */
646
647 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
648
649 static void
650 arm_linux_supply_vfp (const struct regset *regset,
651 struct regcache *regcache,
652 int regnum, const void *regs_buf, size_t len)
653 {
654 const gdb_byte *regs = regs_buf;
655 int regno;
656
657 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
658 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
659
660 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
661 if (regnum == -1 || regnum == regno)
662 regcache_raw_supply (regcache, regno,
663 regs + (regno - ARM_D0_REGNUM) * 8);
664 }
665
666 static void
667 arm_linux_collect_vfp (const struct regset *regset,
668 const struct regcache *regcache,
669 int regnum, void *regs_buf, size_t len)
670 {
671 gdb_byte *regs = regs_buf;
672 int regno;
673
674 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
675 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
676
677 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
678 if (regnum == -1 || regnum == regno)
679 regcache_raw_collect (regcache, regno,
680 regs + (regno - ARM_D0_REGNUM) * 8);
681 }
682
683 /* Return the appropriate register set for the core section identified
684 by SECT_NAME and SECT_SIZE. */
685
686 static const struct regset *
687 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
688 const char *sect_name, size_t sect_size)
689 {
690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
691
692 if (strcmp (sect_name, ".reg") == 0
693 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
694 {
695 if (tdep->gregset == NULL)
696 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
697 arm_linux_collect_gregset);
698 return tdep->gregset;
699 }
700
701 if (strcmp (sect_name, ".reg2") == 0
702 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
703 {
704 if (tdep->fpregset == NULL)
705 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
706 arm_linux_collect_nwfpe);
707 return tdep->fpregset;
708 }
709
710 if (strcmp (sect_name, ".reg-arm-vfp") == 0
711 && sect_size == ARM_LINUX_SIZEOF_VFP)
712 {
713 if (tdep->vfpregset == NULL)
714 tdep->vfpregset = regset_alloc (gdbarch, arm_linux_supply_vfp,
715 arm_linux_collect_vfp);
716 return tdep->vfpregset;
717 }
718
719 return NULL;
720 }
721
722 /* Core file register set sections. */
723
724 static struct core_regset_section arm_linux_fpa_regset_sections[] =
725 {
726 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
727 { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
728 { NULL, 0}
729 };
730
731 static struct core_regset_section arm_linux_vfp_regset_sections[] =
732 {
733 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
734 { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
735 { NULL, 0}
736 };
737
738 /* Determine target description from core file. */
739
740 static const struct target_desc *
741 arm_linux_core_read_description (struct gdbarch *gdbarch,
742 struct target_ops *target,
743 bfd *abfd)
744 {
745 CORE_ADDR arm_hwcap = 0;
746
747 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
748 return NULL;
749
750 if (arm_hwcap & HWCAP_VFP)
751 {
752 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
753 Neon with VFPv3-D32. */
754 if (arm_hwcap & HWCAP_NEON)
755 return tdesc_arm_with_neon;
756 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
757 return tdesc_arm_with_vfpv3;
758 else
759 return tdesc_arm_with_vfpv2;
760 }
761
762 return NULL;
763 }
764
765
766 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
767 return 1. In addition, set IS_THUMB depending on whether we
768 will return to ARM or Thumb code. Return 0 if it is not a
769 rt_sigreturn/sigreturn syscall. */
770 static int
771 arm_linux_sigreturn_return_addr (struct frame_info *frame,
772 unsigned long svc_number,
773 CORE_ADDR *pc, int *is_thumb)
774 {
775 /* Is this a sigreturn or rt_sigreturn syscall? */
776 if (svc_number == 119 || svc_number == 173)
777 {
778 if (get_frame_type (frame) == SIGTRAMP_FRAME)
779 {
780 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
781 CORE_ADDR cpsr
782 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
783
784 *is_thumb = (cpsr & t_bit) != 0;
785 *pc = frame_unwind_caller_pc (frame);
786 return 1;
787 }
788 }
789 return 0;
790 }
791
792 /* When FRAME is at a syscall instruction, return the PC of the next
793 instruction to be executed. */
794
795 static CORE_ADDR
796 arm_linux_syscall_next_pc (struct frame_info *frame)
797 {
798 CORE_ADDR pc = get_frame_pc (frame);
799 CORE_ADDR return_addr = 0;
800 int is_thumb = arm_frame_is_thumb (frame);
801 ULONGEST svc_number = 0;
802
803 if (is_thumb)
804 {
805 svc_number = get_frame_register_unsigned (frame, 7);
806 return_addr = pc + 2;
807 }
808 else
809 {
810 struct gdbarch *gdbarch = get_frame_arch (frame);
811 enum bfd_endian byte_order_for_code =
812 gdbarch_byte_order_for_code (gdbarch);
813 unsigned long this_instr =
814 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
815
816 unsigned long svc_operand = (0x00ffffff & this_instr);
817 if (svc_operand) /* OABI. */
818 {
819 svc_number = svc_operand - 0x900000;
820 }
821 else /* EABI. */
822 {
823 svc_number = get_frame_register_unsigned (frame, 7);
824 }
825
826 return_addr = pc + 4;
827 }
828
829 arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
830
831 /* Addresses for calling Thumb functions have the bit 0 set. */
832 if (is_thumb)
833 return_addr |= 1;
834
835 return return_addr;
836 }
837
838
839 /* Insert a single step breakpoint at the next executed instruction. */
840
841 static int
842 arm_linux_software_single_step (struct frame_info *frame)
843 {
844 struct gdbarch *gdbarch = get_frame_arch (frame);
845 struct address_space *aspace = get_frame_address_space (frame);
846 CORE_ADDR next_pc;
847
848 if (arm_deal_with_atomic_sequence (frame))
849 return 1;
850
851 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
852
853 /* The Linux kernel offers some user-mode helpers in a high page. We can
854 not read this page (as of 2.6.23), and even if we could then we couldn't
855 set breakpoints in it, and even if we could then the atomic operations
856 would fail when interrupted. They are all called as functions and return
857 to the address in LR, so step to there instead. */
858 if (next_pc > 0xffff0000)
859 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
860
861 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
862
863 return 1;
864 }
865
866 /* Support for displaced stepping of Linux SVC instructions. */
867
868 static void
869 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
870 struct regcache *regs,
871 struct displaced_step_closure *dsc)
872 {
873 CORE_ADDR from = dsc->insn_addr;
874 ULONGEST apparent_pc;
875 int within_scratch;
876
877 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
878
879 within_scratch = (apparent_pc >= dsc->scratch_base
880 && apparent_pc < (dsc->scratch_base
881 + DISPLACED_MODIFIED_INSNS * 4 + 4));
882
883 if (debug_displaced)
884 {
885 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
886 "SVC step ", (unsigned long) apparent_pc);
887 if (within_scratch)
888 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
889 else
890 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
891 }
892
893 if (within_scratch)
894 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
895 }
896
897 static int
898 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
899 struct displaced_step_closure *dsc)
900 {
901 CORE_ADDR return_to = 0;
902
903 struct frame_info *frame;
904 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
905 int is_sigreturn = 0;
906 int is_thumb;
907
908 frame = get_current_frame ();
909
910 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
911 &return_to, &is_thumb);
912 if (is_sigreturn)
913 {
914 struct symtab_and_line sal;
915
916 if (debug_displaced)
917 fprintf_unfiltered (gdb_stdlog, "displaced: found "
918 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
919 (unsigned long) get_frame_pc (frame));
920
921 if (debug_displaced)
922 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
923 "Setting momentary breakpoint.\n", (unsigned long) return_to);
924
925 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
926 == NULL);
927
928 sal = find_pc_line (return_to, 0);
929 sal.pc = return_to;
930 sal.section = find_pc_overlay (return_to);
931 sal.explicit_pc = 1;
932
933 frame = get_prev_frame (frame);
934
935 if (frame)
936 {
937 inferior_thread ()->control.step_resume_breakpoint
938 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
939 bp_step_resume);
940
941 /* We need to make sure we actually insert the momentary
942 breakpoint set above. */
943 insert_breakpoints ();
944 }
945 else if (debug_displaced)
946 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
947 "frame to set momentary breakpoint for "
948 "sigreturn/rt_sigreturn\n");
949 }
950 else if (debug_displaced)
951 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
952 "SVC call not in signal trampoline frame\n");
953
954
955 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
956 location, else nothing.
957 Insn: unmodified svc.
958 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
959 else leave pc alone. */
960
961
962 dsc->cleanup = &arm_linux_cleanup_svc;
963 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
964 instruction. */
965 dsc->wrote_to_pc = 1;
966
967 return 0;
968 }
969
970
971 /* The following two functions implement single-stepping over calls to Linux
972 kernel helper routines, which perform e.g. atomic operations on architecture
973 variants which don't support them natively.
974
975 When this function is called, the PC will be pointing at the kernel helper
976 (at an address inaccessible to GDB), and r14 will point to the return
977 address. Displaced stepping always executes code in the copy area:
978 so, make the copy-area instruction branch back to the kernel helper (the
979 "from" address), and make r14 point to the breakpoint in the copy area. In
980 that way, we regain control once the kernel helper returns, and can clean
981 up appropriately (as if we had just returned from the kernel helper as it
982 would have been called from the non-displaced location). */
983
984 static void
985 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
986 struct regcache *regs,
987 struct displaced_step_closure *dsc)
988 {
989 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
990 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
991 }
992
993 static void
994 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
995 CORE_ADDR to, struct regcache *regs,
996 struct displaced_step_closure *dsc)
997 {
998 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
999
1000 dsc->numinsns = 1;
1001 dsc->insn_addr = from;
1002 dsc->cleanup = &cleanup_kernel_helper_return;
1003 /* Say we wrote to the PC, else cleanup will set PC to the next
1004 instruction in the helper, which isn't helpful. */
1005 dsc->wrote_to_pc = 1;
1006
1007 /* Preparation: tmp[0] <- r14
1008 r14 <- <scratch space>+4
1009 *(<scratch space>+8) <- from
1010 Insn: ldr pc, [r14, #4]
1011 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1012
1013 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1014 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1015 CANNOT_WRITE_PC);
1016 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1017
1018 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1019 }
1020
1021 /* Linux-specific displaced step instruction copying function. Detects when
1022 the program has stepped into a Linux kernel helper routine (which must be
1023 handled as a special case), falling back to arm_displaced_step_copy_insn()
1024 if it hasn't. */
1025
1026 static struct displaced_step_closure *
1027 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1028 CORE_ADDR from, CORE_ADDR to,
1029 struct regcache *regs)
1030 {
1031 struct displaced_step_closure *dsc
1032 = xmalloc (sizeof (struct displaced_step_closure));
1033
1034 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1035 stop at the return location. */
1036 if (from > 0xffff0000)
1037 {
1038 if (debug_displaced)
1039 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1040 "at %.8lx\n", (unsigned long) from);
1041
1042 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1043 }
1044 else
1045 {
1046 /* Override the default handling of SVC instructions. */
1047 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1048
1049 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1050 }
1051
1052 arm_displaced_init_closure (gdbarch, from, to, dsc);
1053
1054 return dsc;
1055 }
1056
1057 static void
1058 arm_linux_init_abi (struct gdbarch_info info,
1059 struct gdbarch *gdbarch)
1060 {
1061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1062
1063 linux_init_abi (info, gdbarch);
1064
1065 tdep->lowest_pc = 0x8000;
1066 if (info.byte_order == BFD_ENDIAN_BIG)
1067 {
1068 if (tdep->arm_abi == ARM_ABI_AAPCS)
1069 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1070 else
1071 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1072 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1073 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1074 }
1075 else
1076 {
1077 if (tdep->arm_abi == ARM_ABI_AAPCS)
1078 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1079 else
1080 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1081 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1082 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1083 }
1084 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1085 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1086 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1087
1088 if (tdep->fp_model == ARM_FLOAT_AUTO)
1089 tdep->fp_model = ARM_FLOAT_FPA;
1090
1091 switch (tdep->fp_model)
1092 {
1093 case ARM_FLOAT_FPA:
1094 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1095 break;
1096 case ARM_FLOAT_SOFT_FPA:
1097 case ARM_FLOAT_SOFT_VFP:
1098 case ARM_FLOAT_VFP:
1099 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1100 break;
1101 default:
1102 internal_error
1103 (__FILE__, __LINE__,
1104 _("arm_linux_init_abi: Floating point model not supported"));
1105 break;
1106 }
1107 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1108
1109 set_solib_svr4_fetch_link_map_offsets
1110 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1111
1112 /* Single stepping. */
1113 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1114
1115 /* Shared library handling. */
1116 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1117 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1118
1119 /* Enable TLS support. */
1120 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1121 svr4_fetch_objfile_link_map);
1122
1123 tramp_frame_prepend_unwinder (gdbarch,
1124 &arm_linux_sigreturn_tramp_frame);
1125 tramp_frame_prepend_unwinder (gdbarch,
1126 &arm_linux_rt_sigreturn_tramp_frame);
1127 tramp_frame_prepend_unwinder (gdbarch,
1128 &arm_eabi_linux_sigreturn_tramp_frame);
1129 tramp_frame_prepend_unwinder (gdbarch,
1130 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1131 tramp_frame_prepend_unwinder (gdbarch,
1132 &arm_linux_restart_syscall_tramp_frame);
1133 tramp_frame_prepend_unwinder (gdbarch,
1134 &arm_kernel_linux_restart_syscall_tramp_frame);
1135
1136 /* Core file support. */
1137 set_gdbarch_regset_from_core_section (gdbarch,
1138 arm_linux_regset_from_core_section);
1139 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1140
1141 if (tdep->have_vfp_registers)
1142 set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1143 else if (tdep->have_fpa_registers)
1144 set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
1145
1146 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1147
1148 /* Displaced stepping. */
1149 set_gdbarch_displaced_step_copy_insn (gdbarch,
1150 arm_linux_displaced_step_copy_insn);
1151 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1152 set_gdbarch_displaced_step_free_closure (gdbarch,
1153 simple_displaced_step_free_closure);
1154 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1155
1156
1157 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1158 }
1159
1160 /* Provide a prototype to silence -Wmissing-prototypes. */
1161 extern initialize_file_ftype _initialize_arm_linux_tdep;
1162
1163 void
1164 _initialize_arm_linux_tdep (void)
1165 {
1166 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1167 arm_linux_init_abi);
1168 }
This page took 0.069464 seconds and 5 git commands to generate.