[Committing the `catch syscall' patch for ARM, from Samuel Bronson.]
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "floatformat.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "doublest.h"
29 #include "solib-svr4.h"
30 #include "osabi.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34 #include "breakpoint.h"
35 #include "auxv.h"
36 #include "xml-syscall.h"
37
38 #include "arm-tdep.h"
39 #include "arm-linux-tdep.h"
40 #include "linux-tdep.h"
41 #include "glibc-tdep.h"
42 #include "arch-utils.h"
43 #include "inferior.h"
44 #include "gdbthread.h"
45 #include "symfile.h"
46
47 #include "cli/cli-utils.h"
48 #include "stap-probe.h"
49 #include "parser-defs.h"
50 #include "user-regs.h"
51 #include <ctype.h>
52
53 #include "gdb_string.h"
54
55 /* This is defined in <elf.h> on ARM GNU/Linux systems. */
56 #define AT_HWCAP 16
57
58 extern int arm_apcs_32;
59
60 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
61 is to execute a particular software interrupt, rather than use a
62 particular undefined instruction to provoke a trap. Upon exection
63 of the software interrupt the kernel stops the inferior with a
64 SIGTRAP, and wakes the debugger. */
65
66 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
67
68 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
69
70 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
71 the operand of the swi if old-ABI compatibility is disabled. Therefore,
72 use an undefined instruction instead. This is supported as of kernel
73 version 2.5.70 (May 2003), so should be a safe assumption for EABI
74 binaries. */
75
76 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
77
78 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
79
80 /* All the kernels which support Thumb support using a specific undefined
81 instruction for the Thumb breakpoint. */
82
83 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
84
85 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
86
87 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
88 we must use a length-appropriate breakpoint for 32-bit Thumb
89 instructions. See also thumb_get_next_pc. */
90
91 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
92
93 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
94
95 /* Description of the longjmp buffer. The buffer is treated as an array of
96 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
97
98 The location of saved registers in this buffer (in particular the PC
99 to use after longjmp is called) varies depending on the ABI (in
100 particular the FP model) and also (possibly) the C Library.
101
102 For glibc, eglibc, and uclibc the following holds: If the FP model is
103 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
104 buffer. This is also true for the SoftFPA model. However, for the FPA
105 model the PC is at offset 21 in the buffer. */
106 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
107 #define ARM_LINUX_JB_PC_FPA 21
108 #define ARM_LINUX_JB_PC_EABI 9
109
110 /*
111 Dynamic Linking on ARM GNU/Linux
112 --------------------------------
113
114 Note: PLT = procedure linkage table
115 GOT = global offset table
116
117 As much as possible, ELF dynamic linking defers the resolution of
118 jump/call addresses until the last minute. The technique used is
119 inspired by the i386 ELF design, and is based on the following
120 constraints.
121
122 1) The calling technique should not force a change in the assembly
123 code produced for apps; it MAY cause changes in the way assembly
124 code is produced for position independent code (i.e. shared
125 libraries).
126
127 2) The technique must be such that all executable areas must not be
128 modified; and any modified areas must not be executed.
129
130 To do this, there are three steps involved in a typical jump:
131
132 1) in the code
133 2) through the PLT
134 3) using a pointer from the GOT
135
136 When the executable or library is first loaded, each GOT entry is
137 initialized to point to the code which implements dynamic name
138 resolution and code finding. This is normally a function in the
139 program interpreter (on ARM GNU/Linux this is usually
140 ld-linux.so.2, but it does not have to be). On the first
141 invocation, the function is located and the GOT entry is replaced
142 with the real function address. Subsequent calls go through steps
143 1, 2 and 3 and end up calling the real code.
144
145 1) In the code:
146
147 b function_call
148 bl function_call
149
150 This is typical ARM code using the 26 bit relative branch or branch
151 and link instructions. The target of the instruction
152 (function_call is usually the address of the function to be called.
153 In position independent code, the target of the instruction is
154 actually an entry in the PLT when calling functions in a shared
155 library. Note that this call is identical to a normal function
156 call, only the target differs.
157
158 2) In the PLT:
159
160 The PLT is a synthetic area, created by the linker. It exists in
161 both executables and libraries. It is an array of stubs, one per
162 imported function call. It looks like this:
163
164 PLT[0]:
165 str lr, [sp, #-4]! @push the return address (lr)
166 ldr lr, [pc, #16] @load from 6 words ahead
167 add lr, pc, lr @form an address for GOT[0]
168 ldr pc, [lr, #8]! @jump to the contents of that addr
169
170 The return address (lr) is pushed on the stack and used for
171 calculations. The load on the second line loads the lr with
172 &GOT[3] - . - 20. The addition on the third leaves:
173
174 lr = (&GOT[3] - . - 20) + (. + 8)
175 lr = (&GOT[3] - 12)
176 lr = &GOT[0]
177
178 On the fourth line, the pc and lr are both updated, so that:
179
180 pc = GOT[2]
181 lr = &GOT[0] + 8
182 = &GOT[2]
183
184 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
185 "tight", but allows us to keep all the PLT entries the same size.
186
187 PLT[n+1]:
188 ldr ip, [pc, #4] @load offset from gotoff
189 add ip, pc, ip @add the offset to the pc
190 ldr pc, [ip] @jump to that address
191 gotoff: .word GOT[n+3] - .
192
193 The load on the first line, gets an offset from the fourth word of
194 the PLT entry. The add on the second line makes ip = &GOT[n+3],
195 which contains either a pointer to PLT[0] (the fixup trampoline) or
196 a pointer to the actual code.
197
198 3) In the GOT:
199
200 The GOT contains helper pointers for both code (PLT) fixups and
201 data fixups. The first 3 entries of the GOT are special. The next
202 M entries (where M is the number of entries in the PLT) belong to
203 the PLT fixups. The next D (all remaining) entries belong to
204 various data fixups. The actual size of the GOT is 3 + M + D.
205
206 The GOT is also a synthetic area, created by the linker. It exists
207 in both executables and libraries. When the GOT is first
208 initialized , all the GOT entries relating to PLT fixups are
209 pointing to code back at PLT[0].
210
211 The special entries in the GOT are:
212
213 GOT[0] = linked list pointer used by the dynamic loader
214 GOT[1] = pointer to the reloc table for this module
215 GOT[2] = pointer to the fixup/resolver code
216
217 The first invocation of function call comes through and uses the
218 fixup/resolver code. On the entry to the fixup/resolver code:
219
220 ip = &GOT[n+3]
221 lr = &GOT[2]
222 stack[0] = return address (lr) of the function call
223 [r0, r1, r2, r3] are still the arguments to the function call
224
225 This is enough information for the fixup/resolver code to work
226 with. Before the fixup/resolver code returns, it actually calls
227 the requested function and repairs &GOT[n+3]. */
228
229 /* The constants below were determined by examining the following files
230 in the linux kernel sources:
231
232 arch/arm/kernel/signal.c
233 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
234 include/asm-arm/unistd.h
235 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
236
237 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
238 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
239
240 /* For ARM EABI, the syscall number is not in the SWI instruction
241 (instead it is loaded into r7). We recognize the pattern that
242 glibc uses... alternatively, we could arrange to do this by
243 function name, but they are not always exported. */
244 #define ARM_SET_R7_SIGRETURN 0xe3a07077
245 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
246 #define ARM_EABI_SYSCALL 0xef000000
247
248 /* OABI syscall restart trampoline, used for EABI executables too
249 whenever OABI support has been enabled in the kernel. */
250 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
251 #define ARM_LDR_PC_SP_12 0xe49df00c
252 #define ARM_LDR_PC_SP_4 0xe49df004
253
254 static void
255 arm_linux_sigtramp_cache (struct frame_info *this_frame,
256 struct trad_frame_cache *this_cache,
257 CORE_ADDR func, int regs_offset)
258 {
259 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
260 CORE_ADDR base = sp + regs_offset;
261 int i;
262
263 for (i = 0; i < 16; i++)
264 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
265
266 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
267
268 /* The VFP or iWMMXt registers may be saved on the stack, but there's
269 no reliable way to restore them (yet). */
270
271 /* Save a frame ID. */
272 trad_frame_set_id (this_cache, frame_id_build (sp, func));
273 }
274
275 /* There are a couple of different possible stack layouts that
276 we need to support.
277
278 Before version 2.6.18, the kernel used completely independent
279 layouts for non-RT and RT signals. For non-RT signals the stack
280 began directly with a struct sigcontext. For RT signals the stack
281 began with two redundant pointers (to the siginfo and ucontext),
282 and then the siginfo and ucontext.
283
284 As of version 2.6.18, the non-RT signal frame layout starts with
285 a ucontext and the RT signal frame starts with a siginfo and then
286 a ucontext. Also, the ucontext now has a designated save area
287 for coprocessor registers.
288
289 For RT signals, it's easy to tell the difference: we look for
290 pinfo, the pointer to the siginfo. If it has the expected
291 value, we have an old layout. If it doesn't, we have the new
292 layout.
293
294 For non-RT signals, it's a bit harder. We need something in one
295 layout or the other with a recognizable offset and value. We can't
296 use the return trampoline, because ARM usually uses SA_RESTORER,
297 in which case the stack return trampoline is not filled in.
298 We can't use the saved stack pointer, because sigaltstack might
299 be in use. So for now we guess the new layout... */
300
301 /* There are three words (trap_no, error_code, oldmask) in
302 struct sigcontext before r0. */
303 #define ARM_SIGCONTEXT_R0 0xc
304
305 /* There are five words (uc_flags, uc_link, and three for uc_stack)
306 in the ucontext_t before the sigcontext. */
307 #define ARM_UCONTEXT_SIGCONTEXT 0x14
308
309 /* There are three elements in an rt_sigframe before the ucontext:
310 pinfo, puc, and info. The first two are pointers and the third
311 is a struct siginfo, with size 128 bytes. We could follow puc
312 to the ucontext, but it's simpler to skip the whole thing. */
313 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
314 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
315
316 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
317
318 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
319
320 static void
321 arm_linux_sigreturn_init (const struct tramp_frame *self,
322 struct frame_info *this_frame,
323 struct trad_frame_cache *this_cache,
324 CORE_ADDR func)
325 {
326 struct gdbarch *gdbarch = get_frame_arch (this_frame);
327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
328 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
329 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
330
331 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
332 arm_linux_sigtramp_cache (this_frame, this_cache, func,
333 ARM_UCONTEXT_SIGCONTEXT
334 + ARM_SIGCONTEXT_R0);
335 else
336 arm_linux_sigtramp_cache (this_frame, this_cache, func,
337 ARM_SIGCONTEXT_R0);
338 }
339
340 static void
341 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
342 struct frame_info *this_frame,
343 struct trad_frame_cache *this_cache,
344 CORE_ADDR func)
345 {
346 struct gdbarch *gdbarch = get_frame_arch (this_frame);
347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
348 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
349 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
350
351 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
352 arm_linux_sigtramp_cache (this_frame, this_cache, func,
353 ARM_OLD_RT_SIGFRAME_UCONTEXT
354 + ARM_UCONTEXT_SIGCONTEXT
355 + ARM_SIGCONTEXT_R0);
356 else
357 arm_linux_sigtramp_cache (this_frame, this_cache, func,
358 ARM_NEW_RT_SIGFRAME_UCONTEXT
359 + ARM_UCONTEXT_SIGCONTEXT
360 + ARM_SIGCONTEXT_R0);
361 }
362
363 static void
364 arm_linux_restart_syscall_init (const struct tramp_frame *self,
365 struct frame_info *this_frame,
366 struct trad_frame_cache *this_cache,
367 CORE_ADDR func)
368 {
369 struct gdbarch *gdbarch = get_frame_arch (this_frame);
370 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
371 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
372 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
373 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
374 int sp_offset;
375
376 /* There are two variants of this trampoline; with older kernels, the
377 stub is placed on the stack, while newer kernels use the stub from
378 the vector page. They are identical except that the older version
379 increments SP by 12 (to skip stored PC and the stub itself), while
380 the newer version increments SP only by 4 (just the stored PC). */
381 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
382 sp_offset = 4;
383 else
384 sp_offset = 12;
385
386 /* Update Thumb bit in CPSR. */
387 if (pc & 1)
388 cpsr |= t_bit;
389 else
390 cpsr &= ~t_bit;
391
392 /* Remove Thumb bit from PC. */
393 pc = gdbarch_addr_bits_remove (gdbarch, pc);
394
395 /* Save previous register values. */
396 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
397 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
398 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
399
400 /* Save a frame ID. */
401 trad_frame_set_id (this_cache, frame_id_build (sp, func));
402 }
403
404 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
405 SIGTRAMP_FRAME,
406 4,
407 {
408 { ARM_LINUX_SIGRETURN_INSTR, -1 },
409 { TRAMP_SENTINEL_INSN }
410 },
411 arm_linux_sigreturn_init
412 };
413
414 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
415 SIGTRAMP_FRAME,
416 4,
417 {
418 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
419 { TRAMP_SENTINEL_INSN }
420 },
421 arm_linux_rt_sigreturn_init
422 };
423
424 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
425 SIGTRAMP_FRAME,
426 4,
427 {
428 { ARM_SET_R7_SIGRETURN, -1 },
429 { ARM_EABI_SYSCALL, -1 },
430 { TRAMP_SENTINEL_INSN }
431 },
432 arm_linux_sigreturn_init
433 };
434
435 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
436 SIGTRAMP_FRAME,
437 4,
438 {
439 { ARM_SET_R7_RT_SIGRETURN, -1 },
440 { ARM_EABI_SYSCALL, -1 },
441 { TRAMP_SENTINEL_INSN }
442 },
443 arm_linux_rt_sigreturn_init
444 };
445
446 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
447 NORMAL_FRAME,
448 4,
449 {
450 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
451 { ARM_LDR_PC_SP_12, -1 },
452 { TRAMP_SENTINEL_INSN }
453 },
454 arm_linux_restart_syscall_init
455 };
456
457 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
458 NORMAL_FRAME,
459 4,
460 {
461 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
462 { ARM_LDR_PC_SP_4, -1 },
463 { TRAMP_SENTINEL_INSN }
464 },
465 arm_linux_restart_syscall_init
466 };
467
468 /* Core file and register set support. */
469
470 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
471
472 void
473 arm_linux_supply_gregset (const struct regset *regset,
474 struct regcache *regcache,
475 int regnum, const void *gregs_buf, size_t len)
476 {
477 struct gdbarch *gdbarch = get_regcache_arch (regcache);
478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
479 const gdb_byte *gregs = gregs_buf;
480 int regno;
481 CORE_ADDR reg_pc;
482 gdb_byte pc_buf[INT_REGISTER_SIZE];
483
484 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
485 if (regnum == -1 || regnum == regno)
486 regcache_raw_supply (regcache, regno,
487 gregs + INT_REGISTER_SIZE * regno);
488
489 if (regnum == ARM_PS_REGNUM || regnum == -1)
490 {
491 if (arm_apcs_32)
492 regcache_raw_supply (regcache, ARM_PS_REGNUM,
493 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
494 else
495 regcache_raw_supply (regcache, ARM_PS_REGNUM,
496 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
497 }
498
499 if (regnum == ARM_PC_REGNUM || regnum == -1)
500 {
501 reg_pc = extract_unsigned_integer (gregs
502 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
503 INT_REGISTER_SIZE, byte_order);
504 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
505 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
506 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
507 }
508 }
509
510 void
511 arm_linux_collect_gregset (const struct regset *regset,
512 const struct regcache *regcache,
513 int regnum, void *gregs_buf, size_t len)
514 {
515 gdb_byte *gregs = gregs_buf;
516 int regno;
517
518 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
519 if (regnum == -1 || regnum == regno)
520 regcache_raw_collect (regcache, regno,
521 gregs + INT_REGISTER_SIZE * regno);
522
523 if (regnum == ARM_PS_REGNUM || regnum == -1)
524 {
525 if (arm_apcs_32)
526 regcache_raw_collect (regcache, ARM_PS_REGNUM,
527 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
528 else
529 regcache_raw_collect (regcache, ARM_PS_REGNUM,
530 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
531 }
532
533 if (regnum == ARM_PC_REGNUM || regnum == -1)
534 regcache_raw_collect (regcache, ARM_PC_REGNUM,
535 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
536 }
537
538 /* Support for register format used by the NWFPE FPA emulator. */
539
540 #define typeNone 0x00
541 #define typeSingle 0x01
542 #define typeDouble 0x02
543 #define typeExtended 0x03
544
545 void
546 supply_nwfpe_register (struct regcache *regcache, int regno,
547 const gdb_byte *regs)
548 {
549 const gdb_byte *reg_data;
550 gdb_byte reg_tag;
551 gdb_byte buf[FP_REGISTER_SIZE];
552
553 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
554 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
555 memset (buf, 0, FP_REGISTER_SIZE);
556
557 switch (reg_tag)
558 {
559 case typeSingle:
560 memcpy (buf, reg_data, 4);
561 break;
562 case typeDouble:
563 memcpy (buf, reg_data + 4, 4);
564 memcpy (buf + 4, reg_data, 4);
565 break;
566 case typeExtended:
567 /* We want sign and exponent, then least significant bits,
568 then most significant. NWFPE does sign, most, least. */
569 memcpy (buf, reg_data, 4);
570 memcpy (buf + 4, reg_data + 8, 4);
571 memcpy (buf + 8, reg_data + 4, 4);
572 break;
573 default:
574 break;
575 }
576
577 regcache_raw_supply (regcache, regno, buf);
578 }
579
580 void
581 collect_nwfpe_register (const struct regcache *regcache, int regno,
582 gdb_byte *regs)
583 {
584 gdb_byte *reg_data;
585 gdb_byte reg_tag;
586 gdb_byte buf[FP_REGISTER_SIZE];
587
588 regcache_raw_collect (regcache, regno, buf);
589
590 /* NOTE drow/2006-06-07: This code uses the tag already in the
591 register buffer. I've preserved that when moving the code
592 from the native file to the target file. But this doesn't
593 always make sense. */
594
595 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
596 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
597
598 switch (reg_tag)
599 {
600 case typeSingle:
601 memcpy (reg_data, buf, 4);
602 break;
603 case typeDouble:
604 memcpy (reg_data, buf + 4, 4);
605 memcpy (reg_data + 4, buf, 4);
606 break;
607 case typeExtended:
608 memcpy (reg_data, buf, 4);
609 memcpy (reg_data + 4, buf + 8, 4);
610 memcpy (reg_data + 8, buf + 4, 4);
611 break;
612 default:
613 break;
614 }
615 }
616
617 void
618 arm_linux_supply_nwfpe (const struct regset *regset,
619 struct regcache *regcache,
620 int regnum, const void *regs_buf, size_t len)
621 {
622 const gdb_byte *regs = regs_buf;
623 int regno;
624
625 if (regnum == ARM_FPS_REGNUM || regnum == -1)
626 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
627 regs + NWFPE_FPSR_OFFSET);
628
629 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
630 if (regnum == -1 || regnum == regno)
631 supply_nwfpe_register (regcache, regno, regs);
632 }
633
634 void
635 arm_linux_collect_nwfpe (const struct regset *regset,
636 const struct regcache *regcache,
637 int regnum, void *regs_buf, size_t len)
638 {
639 gdb_byte *regs = regs_buf;
640 int regno;
641
642 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
643 if (regnum == -1 || regnum == regno)
644 collect_nwfpe_register (regcache, regno, regs);
645
646 if (regnum == ARM_FPS_REGNUM || regnum == -1)
647 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
648 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
649 }
650
651 /* Support VFP register format. */
652
653 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
654
655 static void
656 arm_linux_supply_vfp (const struct regset *regset,
657 struct regcache *regcache,
658 int regnum, const void *regs_buf, size_t len)
659 {
660 const gdb_byte *regs = regs_buf;
661 int regno;
662
663 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
664 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
665
666 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
667 if (regnum == -1 || regnum == regno)
668 regcache_raw_supply (regcache, regno,
669 regs + (regno - ARM_D0_REGNUM) * 8);
670 }
671
672 static void
673 arm_linux_collect_vfp (const struct regset *regset,
674 const struct regcache *regcache,
675 int regnum, void *regs_buf, size_t len)
676 {
677 gdb_byte *regs = regs_buf;
678 int regno;
679
680 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
681 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
682
683 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
684 if (regnum == -1 || regnum == regno)
685 regcache_raw_collect (regcache, regno,
686 regs + (regno - ARM_D0_REGNUM) * 8);
687 }
688
689 /* Return the appropriate register set for the core section identified
690 by SECT_NAME and SECT_SIZE. */
691
692 static const struct regset *
693 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
694 const char *sect_name, size_t sect_size)
695 {
696 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
697
698 if (strcmp (sect_name, ".reg") == 0
699 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
700 {
701 if (tdep->gregset == NULL)
702 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
703 arm_linux_collect_gregset);
704 return tdep->gregset;
705 }
706
707 if (strcmp (sect_name, ".reg2") == 0
708 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
709 {
710 if (tdep->fpregset == NULL)
711 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
712 arm_linux_collect_nwfpe);
713 return tdep->fpregset;
714 }
715
716 if (strcmp (sect_name, ".reg-arm-vfp") == 0
717 && sect_size == ARM_LINUX_SIZEOF_VFP)
718 {
719 if (tdep->vfpregset == NULL)
720 tdep->vfpregset = regset_alloc (gdbarch, arm_linux_supply_vfp,
721 arm_linux_collect_vfp);
722 return tdep->vfpregset;
723 }
724
725 return NULL;
726 }
727
728 /* Core file register set sections. */
729
730 static struct core_regset_section arm_linux_fpa_regset_sections[] =
731 {
732 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
733 { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
734 { NULL, 0}
735 };
736
737 static struct core_regset_section arm_linux_vfp_regset_sections[] =
738 {
739 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
740 { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
741 { NULL, 0}
742 };
743
744 /* Determine target description from core file. */
745
746 static const struct target_desc *
747 arm_linux_core_read_description (struct gdbarch *gdbarch,
748 struct target_ops *target,
749 bfd *abfd)
750 {
751 CORE_ADDR arm_hwcap = 0;
752
753 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
754 return NULL;
755
756 if (arm_hwcap & HWCAP_VFP)
757 {
758 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
759 Neon with VFPv3-D32. */
760 if (arm_hwcap & HWCAP_NEON)
761 return tdesc_arm_with_neon;
762 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
763 return tdesc_arm_with_vfpv3;
764 else
765 return tdesc_arm_with_vfpv2;
766 }
767
768 return NULL;
769 }
770
771
772 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
773 return 1. In addition, set IS_THUMB depending on whether we
774 will return to ARM or Thumb code. Return 0 if it is not a
775 rt_sigreturn/sigreturn syscall. */
776 static int
777 arm_linux_sigreturn_return_addr (struct frame_info *frame,
778 unsigned long svc_number,
779 CORE_ADDR *pc, int *is_thumb)
780 {
781 /* Is this a sigreturn or rt_sigreturn syscall? */
782 if (svc_number == 119 || svc_number == 173)
783 {
784 if (get_frame_type (frame) == SIGTRAMP_FRAME)
785 {
786 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
787 CORE_ADDR cpsr
788 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
789
790 *is_thumb = (cpsr & t_bit) != 0;
791 *pc = frame_unwind_caller_pc (frame);
792 return 1;
793 }
794 }
795 return 0;
796 }
797
798 /* At a ptrace syscall-stop, return the syscall number. This either
799 comes from the SWI instruction (OABI) or from r7 (EABI).
800
801 When the function fails, it should return -1. */
802
803 static LONGEST
804 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
805 ptid_t ptid)
806 {
807 struct regcache *regs = get_thread_regcache (ptid);
808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
809
810 ULONGEST pc;
811 ULONGEST cpsr;
812 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
813 int is_thumb;
814 ULONGEST svc_number = -1;
815
816 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
817 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
818 is_thumb = (cpsr & t_bit) != 0;
819
820 if (is_thumb)
821 {
822 regcache_cooked_read_unsigned (regs, 7, &svc_number);
823 }
824 else
825 {
826 enum bfd_endian byte_order_for_code =
827 gdbarch_byte_order_for_code (gdbarch);
828
829 /* PC gets incremented before the syscall-stop, so read the
830 previous instruction. */
831 unsigned long this_instr =
832 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
833
834 unsigned long svc_operand = (0x00ffffff & this_instr);
835
836 if (svc_operand)
837 {
838 /* OABI */
839 svc_number = svc_operand - 0x900000;
840 }
841 else
842 {
843 /* EABI */
844 regcache_cooked_read_unsigned (regs, 7, &svc_number);
845 }
846 }
847
848 return svc_number;
849 }
850
851 /* When FRAME is at a syscall instruction, return the PC of the next
852 instruction to be executed. */
853
854 static CORE_ADDR
855 arm_linux_syscall_next_pc (struct frame_info *frame)
856 {
857 CORE_ADDR pc = get_frame_pc (frame);
858 CORE_ADDR return_addr = 0;
859 int is_thumb = arm_frame_is_thumb (frame);
860 ULONGEST svc_number = 0;
861
862 if (is_thumb)
863 {
864 svc_number = get_frame_register_unsigned (frame, 7);
865 return_addr = pc + 2;
866 }
867 else
868 {
869 struct gdbarch *gdbarch = get_frame_arch (frame);
870 enum bfd_endian byte_order_for_code =
871 gdbarch_byte_order_for_code (gdbarch);
872 unsigned long this_instr =
873 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
874
875 unsigned long svc_operand = (0x00ffffff & this_instr);
876 if (svc_operand) /* OABI. */
877 {
878 svc_number = svc_operand - 0x900000;
879 }
880 else /* EABI. */
881 {
882 svc_number = get_frame_register_unsigned (frame, 7);
883 }
884
885 return_addr = pc + 4;
886 }
887
888 arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
889
890 /* Addresses for calling Thumb functions have the bit 0 set. */
891 if (is_thumb)
892 return_addr |= 1;
893
894 return return_addr;
895 }
896
897
898 /* Insert a single step breakpoint at the next executed instruction. */
899
900 static int
901 arm_linux_software_single_step (struct frame_info *frame)
902 {
903 struct gdbarch *gdbarch = get_frame_arch (frame);
904 struct address_space *aspace = get_frame_address_space (frame);
905 CORE_ADDR next_pc;
906
907 if (arm_deal_with_atomic_sequence (frame))
908 return 1;
909
910 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
911
912 /* The Linux kernel offers some user-mode helpers in a high page. We can
913 not read this page (as of 2.6.23), and even if we could then we couldn't
914 set breakpoints in it, and even if we could then the atomic operations
915 would fail when interrupted. They are all called as functions and return
916 to the address in LR, so step to there instead. */
917 if (next_pc > 0xffff0000)
918 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
919
920 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
921
922 return 1;
923 }
924
925 /* Support for displaced stepping of Linux SVC instructions. */
926
927 static void
928 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
929 struct regcache *regs,
930 struct displaced_step_closure *dsc)
931 {
932 CORE_ADDR from = dsc->insn_addr;
933 ULONGEST apparent_pc;
934 int within_scratch;
935
936 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
937
938 within_scratch = (apparent_pc >= dsc->scratch_base
939 && apparent_pc < (dsc->scratch_base
940 + DISPLACED_MODIFIED_INSNS * 4 + 4));
941
942 if (debug_displaced)
943 {
944 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
945 "SVC step ", (unsigned long) apparent_pc);
946 if (within_scratch)
947 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
948 else
949 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
950 }
951
952 if (within_scratch)
953 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
954 }
955
956 static int
957 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
958 struct displaced_step_closure *dsc)
959 {
960 CORE_ADDR return_to = 0;
961
962 struct frame_info *frame;
963 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
964 int is_sigreturn = 0;
965 int is_thumb;
966
967 frame = get_current_frame ();
968
969 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
970 &return_to, &is_thumb);
971 if (is_sigreturn)
972 {
973 struct symtab_and_line sal;
974
975 if (debug_displaced)
976 fprintf_unfiltered (gdb_stdlog, "displaced: found "
977 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
978 (unsigned long) get_frame_pc (frame));
979
980 if (debug_displaced)
981 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
982 "Setting momentary breakpoint.\n", (unsigned long) return_to);
983
984 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
985 == NULL);
986
987 sal = find_pc_line (return_to, 0);
988 sal.pc = return_to;
989 sal.section = find_pc_overlay (return_to);
990 sal.explicit_pc = 1;
991
992 frame = get_prev_frame (frame);
993
994 if (frame)
995 {
996 inferior_thread ()->control.step_resume_breakpoint
997 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
998 bp_step_resume);
999
1000 /* set_momentary_breakpoint invalidates FRAME. */
1001 frame = NULL;
1002
1003 /* We need to make sure we actually insert the momentary
1004 breakpoint set above. */
1005 insert_breakpoints ();
1006 }
1007 else if (debug_displaced)
1008 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1009 "frame to set momentary breakpoint for "
1010 "sigreturn/rt_sigreturn\n");
1011 }
1012 else if (debug_displaced)
1013 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
1014 "SVC call not in signal trampoline frame\n");
1015
1016
1017 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1018 location, else nothing.
1019 Insn: unmodified svc.
1020 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
1021 else leave pc alone. */
1022
1023
1024 dsc->cleanup = &arm_linux_cleanup_svc;
1025 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1026 instruction. */
1027 dsc->wrote_to_pc = 1;
1028
1029 return 0;
1030 }
1031
1032
1033 /* The following two functions implement single-stepping over calls to Linux
1034 kernel helper routines, which perform e.g. atomic operations on architecture
1035 variants which don't support them natively.
1036
1037 When this function is called, the PC will be pointing at the kernel helper
1038 (at an address inaccessible to GDB), and r14 will point to the return
1039 address. Displaced stepping always executes code in the copy area:
1040 so, make the copy-area instruction branch back to the kernel helper (the
1041 "from" address), and make r14 point to the breakpoint in the copy area. In
1042 that way, we regain control once the kernel helper returns, and can clean
1043 up appropriately (as if we had just returned from the kernel helper as it
1044 would have been called from the non-displaced location). */
1045
1046 static void
1047 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1048 struct regcache *regs,
1049 struct displaced_step_closure *dsc)
1050 {
1051 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1052 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1053 }
1054
1055 static void
1056 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1057 CORE_ADDR to, struct regcache *regs,
1058 struct displaced_step_closure *dsc)
1059 {
1060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1061
1062 dsc->numinsns = 1;
1063 dsc->insn_addr = from;
1064 dsc->cleanup = &cleanup_kernel_helper_return;
1065 /* Say we wrote to the PC, else cleanup will set PC to the next
1066 instruction in the helper, which isn't helpful. */
1067 dsc->wrote_to_pc = 1;
1068
1069 /* Preparation: tmp[0] <- r14
1070 r14 <- <scratch space>+4
1071 *(<scratch space>+8) <- from
1072 Insn: ldr pc, [r14, #4]
1073 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1074
1075 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1076 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1077 CANNOT_WRITE_PC);
1078 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1079
1080 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1081 }
1082
1083 /* Linux-specific displaced step instruction copying function. Detects when
1084 the program has stepped into a Linux kernel helper routine (which must be
1085 handled as a special case), falling back to arm_displaced_step_copy_insn()
1086 if it hasn't. */
1087
1088 static struct displaced_step_closure *
1089 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1090 CORE_ADDR from, CORE_ADDR to,
1091 struct regcache *regs)
1092 {
1093 struct displaced_step_closure *dsc
1094 = xmalloc (sizeof (struct displaced_step_closure));
1095
1096 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1097 stop at the return location. */
1098 if (from > 0xffff0000)
1099 {
1100 if (debug_displaced)
1101 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1102 "at %.8lx\n", (unsigned long) from);
1103
1104 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1105 }
1106 else
1107 {
1108 /* Override the default handling of SVC instructions. */
1109 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1110
1111 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1112 }
1113
1114 arm_displaced_init_closure (gdbarch, from, to, dsc);
1115
1116 return dsc;
1117 }
1118
1119 static int
1120 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1121 {
1122 return (*s == '#' /* Literal number. */
1123 || *s == '[' /* Register indirection or
1124 displacement. */
1125 || isalpha (*s)); /* Register value. */
1126 }
1127
1128 /* This routine is used to parse a special token in ARM's assembly.
1129
1130 The special tokens parsed by it are:
1131
1132 - Register displacement (e.g, [fp, #-8])
1133
1134 It returns one if the special token has been parsed successfully,
1135 or zero if the current token is not considered special. */
1136
1137 static int
1138 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1139 struct stap_parse_info *p)
1140 {
1141 if (*p->arg == '[')
1142 {
1143 /* Temporary holder for lookahead. */
1144 const char *tmp = p->arg;
1145 char *endp;
1146 /* Used to save the register name. */
1147 const char *start;
1148 char *regname;
1149 int len, offset;
1150 int got_minus = 0;
1151 long displacement;
1152 struct stoken str;
1153
1154 ++tmp;
1155 start = tmp;
1156
1157 /* Register name. */
1158 while (isalnum (*tmp))
1159 ++tmp;
1160
1161 if (*tmp != ',')
1162 return 0;
1163
1164 len = tmp - start;
1165 regname = alloca (len + 2);
1166
1167 offset = 0;
1168 if (isdigit (*start))
1169 {
1170 /* If we are dealing with a register whose name begins with a
1171 digit, it means we should prefix the name with the letter
1172 `r', because GDB expects this name pattern. Otherwise (e.g.,
1173 we are dealing with the register `fp'), we don't need to
1174 add such a prefix. */
1175 regname[0] = 'r';
1176 offset = 1;
1177 }
1178
1179 strncpy (regname + offset, start, len);
1180 len += offset;
1181 regname[len] = '\0';
1182
1183 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1184 error (_("Invalid register name `%s' on expression `%s'."),
1185 regname, p->saved_arg);
1186
1187 ++tmp;
1188 tmp = skip_spaces_const (tmp);
1189 if (*tmp++ != '#')
1190 return 0;
1191
1192 if (*tmp == '-')
1193 {
1194 ++tmp;
1195 got_minus = 1;
1196 }
1197
1198 displacement = strtol (tmp, &endp, 10);
1199 tmp = endp;
1200
1201 /* Skipping last `]'. */
1202 if (*tmp++ != ']')
1203 return 0;
1204
1205 /* The displacement. */
1206 write_exp_elt_opcode (OP_LONG);
1207 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
1208 write_exp_elt_longcst (displacement);
1209 write_exp_elt_opcode (OP_LONG);
1210 if (got_minus)
1211 write_exp_elt_opcode (UNOP_NEG);
1212
1213 /* The register name. */
1214 write_exp_elt_opcode (OP_REGISTER);
1215 str.ptr = regname;
1216 str.length = len;
1217 write_exp_string (str);
1218 write_exp_elt_opcode (OP_REGISTER);
1219
1220 write_exp_elt_opcode (BINOP_ADD);
1221
1222 /* Casting to the expected type. */
1223 write_exp_elt_opcode (UNOP_CAST);
1224 write_exp_elt_type (lookup_pointer_type (p->arg_type));
1225 write_exp_elt_opcode (UNOP_CAST);
1226
1227 write_exp_elt_opcode (UNOP_IND);
1228
1229 p->arg = tmp;
1230 }
1231 else
1232 return 0;
1233
1234 return 1;
1235 }
1236
1237 static void
1238 arm_linux_init_abi (struct gdbarch_info info,
1239 struct gdbarch *gdbarch)
1240 {
1241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1242
1243 linux_init_abi (info, gdbarch);
1244
1245 tdep->lowest_pc = 0x8000;
1246 if (info.byte_order == BFD_ENDIAN_BIG)
1247 {
1248 if (tdep->arm_abi == ARM_ABI_AAPCS)
1249 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1250 else
1251 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1252 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1253 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1254 }
1255 else
1256 {
1257 if (tdep->arm_abi == ARM_ABI_AAPCS)
1258 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1259 else
1260 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1261 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1262 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1263 }
1264 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1265 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1266 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1267
1268 if (tdep->fp_model == ARM_FLOAT_AUTO)
1269 tdep->fp_model = ARM_FLOAT_FPA;
1270
1271 switch (tdep->fp_model)
1272 {
1273 case ARM_FLOAT_FPA:
1274 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1275 break;
1276 case ARM_FLOAT_SOFT_FPA:
1277 case ARM_FLOAT_SOFT_VFP:
1278 case ARM_FLOAT_VFP:
1279 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1280 break;
1281 default:
1282 internal_error
1283 (__FILE__, __LINE__,
1284 _("arm_linux_init_abi: Floating point model not supported"));
1285 break;
1286 }
1287 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1288
1289 set_solib_svr4_fetch_link_map_offsets
1290 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1291
1292 /* Single stepping. */
1293 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1294
1295 /* Shared library handling. */
1296 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1297 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1298
1299 /* Enable TLS support. */
1300 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1301 svr4_fetch_objfile_link_map);
1302
1303 tramp_frame_prepend_unwinder (gdbarch,
1304 &arm_linux_sigreturn_tramp_frame);
1305 tramp_frame_prepend_unwinder (gdbarch,
1306 &arm_linux_rt_sigreturn_tramp_frame);
1307 tramp_frame_prepend_unwinder (gdbarch,
1308 &arm_eabi_linux_sigreturn_tramp_frame);
1309 tramp_frame_prepend_unwinder (gdbarch,
1310 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1311 tramp_frame_prepend_unwinder (gdbarch,
1312 &arm_linux_restart_syscall_tramp_frame);
1313 tramp_frame_prepend_unwinder (gdbarch,
1314 &arm_kernel_linux_restart_syscall_tramp_frame);
1315
1316 /* Core file support. */
1317 set_gdbarch_regset_from_core_section (gdbarch,
1318 arm_linux_regset_from_core_section);
1319 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1320
1321 if (tdep->have_vfp_registers)
1322 set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1323 else if (tdep->have_fpa_registers)
1324 set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
1325
1326 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1327
1328 /* Displaced stepping. */
1329 set_gdbarch_displaced_step_copy_insn (gdbarch,
1330 arm_linux_displaced_step_copy_insn);
1331 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1332 set_gdbarch_displaced_step_free_closure (gdbarch,
1333 simple_displaced_step_free_closure);
1334 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1335
1336 /* Reversible debugging, process record. */
1337 set_gdbarch_process_record (gdbarch, arm_process_record);
1338
1339 /* SystemTap functions. */
1340 set_gdbarch_stap_integer_prefix (gdbarch, "#");
1341 set_gdbarch_stap_register_prefix (gdbarch, "r");
1342 set_gdbarch_stap_register_indirection_prefix (gdbarch, "[");
1343 set_gdbarch_stap_register_indirection_suffix (gdbarch, "]");
1344 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1345 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1346 set_gdbarch_stap_parse_special_token (gdbarch,
1347 arm_stap_parse_special_token);
1348
1349 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1350
1351 /* `catch syscall' */
1352 set_xml_syscall_file_name ("syscalls/arm-linux.xml");
1353 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1354
1355 /* Syscall record. */
1356 tdep->arm_swi_record = NULL;
1357 }
1358
1359 /* Provide a prototype to silence -Wmissing-prototypes. */
1360 extern initialize_file_ftype _initialize_arm_linux_tdep;
1361
1362 void
1363 _initialize_arm_linux_tdep (void)
1364 {
1365 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1366 arm_linux_init_abi);
1367 }
This page took 0.057484 seconds and 5 git commands to generate.