Support software single step on ARM in GDBServer
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "floatformat.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "doublest.h"
29 #include "solib-svr4.h"
30 #include "osabi.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34 #include "breakpoint.h"
35 #include "auxv.h"
36 #include "xml-syscall.h"
37
38 #include "arch/arm.h"
39 #include "arch/arm-get-next-pcs.h"
40 #include "arch/arm-linux.h"
41 #include "arm-tdep.h"
42 #include "arm-linux-tdep.h"
43 #include "linux-tdep.h"
44 #include "glibc-tdep.h"
45 #include "arch-utils.h"
46 #include "inferior.h"
47 #include "infrun.h"
48 #include "gdbthread.h"
49 #include "symfile.h"
50
51 #include "record-full.h"
52 #include "linux-record.h"
53
54 #include "cli/cli-utils.h"
55 #include "stap-probe.h"
56 #include "parser-defs.h"
57 #include "user-regs.h"
58 #include <ctype.h>
59 #include "elf/common.h"
60 extern int arm_apcs_32;
61
62 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
63 is to execute a particular software interrupt, rather than use a
64 particular undefined instruction to provoke a trap. Upon exection
65 of the software interrupt the kernel stops the inferior with a
66 SIGTRAP, and wakes the debugger. */
67
68 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
69
70 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
71
72 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
73 the operand of the swi if old-ABI compatibility is disabled. Therefore,
74 use an undefined instruction instead. This is supported as of kernel
75 version 2.5.70 (May 2003), so should be a safe assumption for EABI
76 binaries. */
77
78 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
79
80 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
81
82 /* All the kernels which support Thumb support using a specific undefined
83 instruction for the Thumb breakpoint. */
84
85 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
86
87 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
88
89 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
90 we must use a length-appropriate breakpoint for 32-bit Thumb
91 instructions. See also thumb_get_next_pc. */
92
93 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
94
95 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
96
97 /* Description of the longjmp buffer. The buffer is treated as an array of
98 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
99
100 The location of saved registers in this buffer (in particular the PC
101 to use after longjmp is called) varies depending on the ABI (in
102 particular the FP model) and also (possibly) the C Library.
103
104 For glibc, eglibc, and uclibc the following holds: If the FP model is
105 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
106 buffer. This is also true for the SoftFPA model. However, for the FPA
107 model the PC is at offset 21 in the buffer. */
108 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
109 #define ARM_LINUX_JB_PC_FPA 21
110 #define ARM_LINUX_JB_PC_EABI 9
111
112 /*
113 Dynamic Linking on ARM GNU/Linux
114 --------------------------------
115
116 Note: PLT = procedure linkage table
117 GOT = global offset table
118
119 As much as possible, ELF dynamic linking defers the resolution of
120 jump/call addresses until the last minute. The technique used is
121 inspired by the i386 ELF design, and is based on the following
122 constraints.
123
124 1) The calling technique should not force a change in the assembly
125 code produced for apps; it MAY cause changes in the way assembly
126 code is produced for position independent code (i.e. shared
127 libraries).
128
129 2) The technique must be such that all executable areas must not be
130 modified; and any modified areas must not be executed.
131
132 To do this, there are three steps involved in a typical jump:
133
134 1) in the code
135 2) through the PLT
136 3) using a pointer from the GOT
137
138 When the executable or library is first loaded, each GOT entry is
139 initialized to point to the code which implements dynamic name
140 resolution and code finding. This is normally a function in the
141 program interpreter (on ARM GNU/Linux this is usually
142 ld-linux.so.2, but it does not have to be). On the first
143 invocation, the function is located and the GOT entry is replaced
144 with the real function address. Subsequent calls go through steps
145 1, 2 and 3 and end up calling the real code.
146
147 1) In the code:
148
149 b function_call
150 bl function_call
151
152 This is typical ARM code using the 26 bit relative branch or branch
153 and link instructions. The target of the instruction
154 (function_call is usually the address of the function to be called.
155 In position independent code, the target of the instruction is
156 actually an entry in the PLT when calling functions in a shared
157 library. Note that this call is identical to a normal function
158 call, only the target differs.
159
160 2) In the PLT:
161
162 The PLT is a synthetic area, created by the linker. It exists in
163 both executables and libraries. It is an array of stubs, one per
164 imported function call. It looks like this:
165
166 PLT[0]:
167 str lr, [sp, #-4]! @push the return address (lr)
168 ldr lr, [pc, #16] @load from 6 words ahead
169 add lr, pc, lr @form an address for GOT[0]
170 ldr pc, [lr, #8]! @jump to the contents of that addr
171
172 The return address (lr) is pushed on the stack and used for
173 calculations. The load on the second line loads the lr with
174 &GOT[3] - . - 20. The addition on the third leaves:
175
176 lr = (&GOT[3] - . - 20) + (. + 8)
177 lr = (&GOT[3] - 12)
178 lr = &GOT[0]
179
180 On the fourth line, the pc and lr are both updated, so that:
181
182 pc = GOT[2]
183 lr = &GOT[0] + 8
184 = &GOT[2]
185
186 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
187 "tight", but allows us to keep all the PLT entries the same size.
188
189 PLT[n+1]:
190 ldr ip, [pc, #4] @load offset from gotoff
191 add ip, pc, ip @add the offset to the pc
192 ldr pc, [ip] @jump to that address
193 gotoff: .word GOT[n+3] - .
194
195 The load on the first line, gets an offset from the fourth word of
196 the PLT entry. The add on the second line makes ip = &GOT[n+3],
197 which contains either a pointer to PLT[0] (the fixup trampoline) or
198 a pointer to the actual code.
199
200 3) In the GOT:
201
202 The GOT contains helper pointers for both code (PLT) fixups and
203 data fixups. The first 3 entries of the GOT are special. The next
204 M entries (where M is the number of entries in the PLT) belong to
205 the PLT fixups. The next D (all remaining) entries belong to
206 various data fixups. The actual size of the GOT is 3 + M + D.
207
208 The GOT is also a synthetic area, created by the linker. It exists
209 in both executables and libraries. When the GOT is first
210 initialized , all the GOT entries relating to PLT fixups are
211 pointing to code back at PLT[0].
212
213 The special entries in the GOT are:
214
215 GOT[0] = linked list pointer used by the dynamic loader
216 GOT[1] = pointer to the reloc table for this module
217 GOT[2] = pointer to the fixup/resolver code
218
219 The first invocation of function call comes through and uses the
220 fixup/resolver code. On the entry to the fixup/resolver code:
221
222 ip = &GOT[n+3]
223 lr = &GOT[2]
224 stack[0] = return address (lr) of the function call
225 [r0, r1, r2, r3] are still the arguments to the function call
226
227 This is enough information for the fixup/resolver code to work
228 with. Before the fixup/resolver code returns, it actually calls
229 the requested function and repairs &GOT[n+3]. */
230
231 /* The constants below were determined by examining the following files
232 in the linux kernel sources:
233
234 arch/arm/kernel/signal.c
235 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
236 include/asm-arm/unistd.h
237 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
238
239 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
240 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
241
242 /* For ARM EABI, the syscall number is not in the SWI instruction
243 (instead it is loaded into r7). We recognize the pattern that
244 glibc uses... alternatively, we could arrange to do this by
245 function name, but they are not always exported. */
246 #define ARM_SET_R7_SIGRETURN 0xe3a07077
247 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
248 #define ARM_EABI_SYSCALL 0xef000000
249
250 /* Equivalent patterns for Thumb2. */
251 #define THUMB2_SET_R7_SIGRETURN1 0xf04f
252 #define THUMB2_SET_R7_SIGRETURN2 0x0777
253 #define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
254 #define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
255 #define THUMB2_EABI_SYSCALL 0xdf00
256
257 /* OABI syscall restart trampoline, used for EABI executables too
258 whenever OABI support has been enabled in the kernel. */
259 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
260 #define ARM_LDR_PC_SP_12 0xe49df00c
261 #define ARM_LDR_PC_SP_4 0xe49df004
262
263 /* Syscall number for sigreturn. */
264 #define ARM_SIGRETURN 119
265 /* Syscall number for rt_sigreturn. */
266 #define ARM_RT_SIGRETURN 173
267
268 /* Operation function pointers for get_next_pcs. */
269 static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops = {
270 arm_get_next_pcs_read_memory_unsigned_integer,
271 arm_get_next_pcs_syscall_next_pc,
272 arm_get_next_pcs_addr_bits_remove,
273 arm_get_next_pcs_is_thumb
274 };
275
276 static void
277 arm_linux_sigtramp_cache (struct frame_info *this_frame,
278 struct trad_frame_cache *this_cache,
279 CORE_ADDR func, int regs_offset)
280 {
281 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
282 CORE_ADDR base = sp + regs_offset;
283 int i;
284
285 for (i = 0; i < 16; i++)
286 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
287
288 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
289
290 /* The VFP or iWMMXt registers may be saved on the stack, but there's
291 no reliable way to restore them (yet). */
292
293 /* Save a frame ID. */
294 trad_frame_set_id (this_cache, frame_id_build (sp, func));
295 }
296
297 /* See arm-linux.h for stack layout details. */
298 static void
299 arm_linux_sigreturn_init (const struct tramp_frame *self,
300 struct frame_info *this_frame,
301 struct trad_frame_cache *this_cache,
302 CORE_ADDR func)
303 {
304 struct gdbarch *gdbarch = get_frame_arch (this_frame);
305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
306 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
307 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
308
309 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
310 arm_linux_sigtramp_cache (this_frame, this_cache, func,
311 ARM_UCONTEXT_SIGCONTEXT
312 + ARM_SIGCONTEXT_R0);
313 else
314 arm_linux_sigtramp_cache (this_frame, this_cache, func,
315 ARM_SIGCONTEXT_R0);
316 }
317
318 static void
319 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
320 struct frame_info *this_frame,
321 struct trad_frame_cache *this_cache,
322 CORE_ADDR func)
323 {
324 struct gdbarch *gdbarch = get_frame_arch (this_frame);
325 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
326 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
327 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
328
329 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
330 arm_linux_sigtramp_cache (this_frame, this_cache, func,
331 ARM_OLD_RT_SIGFRAME_UCONTEXT
332 + ARM_UCONTEXT_SIGCONTEXT
333 + ARM_SIGCONTEXT_R0);
334 else
335 arm_linux_sigtramp_cache (this_frame, this_cache, func,
336 ARM_NEW_RT_SIGFRAME_UCONTEXT
337 + ARM_UCONTEXT_SIGCONTEXT
338 + ARM_SIGCONTEXT_R0);
339 }
340
341 static void
342 arm_linux_restart_syscall_init (const struct tramp_frame *self,
343 struct frame_info *this_frame,
344 struct trad_frame_cache *this_cache,
345 CORE_ADDR func)
346 {
347 struct gdbarch *gdbarch = get_frame_arch (this_frame);
348 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
349 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
350 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
351 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
352 int sp_offset;
353
354 /* There are two variants of this trampoline; with older kernels, the
355 stub is placed on the stack, while newer kernels use the stub from
356 the vector page. They are identical except that the older version
357 increments SP by 12 (to skip stored PC and the stub itself), while
358 the newer version increments SP only by 4 (just the stored PC). */
359 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
360 sp_offset = 4;
361 else
362 sp_offset = 12;
363
364 /* Update Thumb bit in CPSR. */
365 if (pc & 1)
366 cpsr |= t_bit;
367 else
368 cpsr &= ~t_bit;
369
370 /* Remove Thumb bit from PC. */
371 pc = gdbarch_addr_bits_remove (gdbarch, pc);
372
373 /* Save previous register values. */
374 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
375 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
376 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
377
378 /* Save a frame ID. */
379 trad_frame_set_id (this_cache, frame_id_build (sp, func));
380 }
381
382 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
383 SIGTRAMP_FRAME,
384 4,
385 {
386 { ARM_LINUX_SIGRETURN_INSTR, -1 },
387 { TRAMP_SENTINEL_INSN }
388 },
389 arm_linux_sigreturn_init
390 };
391
392 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
393 SIGTRAMP_FRAME,
394 4,
395 {
396 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
397 { TRAMP_SENTINEL_INSN }
398 },
399 arm_linux_rt_sigreturn_init
400 };
401
402 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
403 SIGTRAMP_FRAME,
404 4,
405 {
406 { ARM_SET_R7_SIGRETURN, -1 },
407 { ARM_EABI_SYSCALL, -1 },
408 { TRAMP_SENTINEL_INSN }
409 },
410 arm_linux_sigreturn_init
411 };
412
413 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
414 SIGTRAMP_FRAME,
415 4,
416 {
417 { ARM_SET_R7_RT_SIGRETURN, -1 },
418 { ARM_EABI_SYSCALL, -1 },
419 { TRAMP_SENTINEL_INSN }
420 },
421 arm_linux_rt_sigreturn_init
422 };
423
424 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
425 SIGTRAMP_FRAME,
426 2,
427 {
428 { THUMB2_SET_R7_SIGRETURN1, -1 },
429 { THUMB2_SET_R7_SIGRETURN2, -1 },
430 { THUMB2_EABI_SYSCALL, -1 },
431 { TRAMP_SENTINEL_INSN }
432 },
433 arm_linux_sigreturn_init
434 };
435
436 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
437 SIGTRAMP_FRAME,
438 2,
439 {
440 { THUMB2_SET_R7_RT_SIGRETURN1, -1 },
441 { THUMB2_SET_R7_RT_SIGRETURN2, -1 },
442 { THUMB2_EABI_SYSCALL, -1 },
443 { TRAMP_SENTINEL_INSN }
444 },
445 arm_linux_rt_sigreturn_init
446 };
447
448 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
449 NORMAL_FRAME,
450 4,
451 {
452 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
453 { ARM_LDR_PC_SP_12, -1 },
454 { TRAMP_SENTINEL_INSN }
455 },
456 arm_linux_restart_syscall_init
457 };
458
459 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
460 NORMAL_FRAME,
461 4,
462 {
463 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
464 { ARM_LDR_PC_SP_4, -1 },
465 { TRAMP_SENTINEL_INSN }
466 },
467 arm_linux_restart_syscall_init
468 };
469
470 /* Core file and register set support. */
471
472 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
473
474 void
475 arm_linux_supply_gregset (const struct regset *regset,
476 struct regcache *regcache,
477 int regnum, const void *gregs_buf, size_t len)
478 {
479 struct gdbarch *gdbarch = get_regcache_arch (regcache);
480 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
481 const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
482 int regno;
483 CORE_ADDR reg_pc;
484 gdb_byte pc_buf[INT_REGISTER_SIZE];
485
486 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
487 if (regnum == -1 || regnum == regno)
488 regcache_raw_supply (regcache, regno,
489 gregs + INT_REGISTER_SIZE * regno);
490
491 if (regnum == ARM_PS_REGNUM || regnum == -1)
492 {
493 if (arm_apcs_32)
494 regcache_raw_supply (regcache, ARM_PS_REGNUM,
495 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
496 else
497 regcache_raw_supply (regcache, ARM_PS_REGNUM,
498 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
499 }
500
501 if (regnum == ARM_PC_REGNUM || regnum == -1)
502 {
503 reg_pc = extract_unsigned_integer (gregs
504 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
505 INT_REGISTER_SIZE, byte_order);
506 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
507 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
508 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
509 }
510 }
511
512 void
513 arm_linux_collect_gregset (const struct regset *regset,
514 const struct regcache *regcache,
515 int regnum, void *gregs_buf, size_t len)
516 {
517 gdb_byte *gregs = (gdb_byte *) gregs_buf;
518 int regno;
519
520 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
521 if (regnum == -1 || regnum == regno)
522 regcache_raw_collect (regcache, regno,
523 gregs + INT_REGISTER_SIZE * regno);
524
525 if (regnum == ARM_PS_REGNUM || regnum == -1)
526 {
527 if (arm_apcs_32)
528 regcache_raw_collect (regcache, ARM_PS_REGNUM,
529 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
530 else
531 regcache_raw_collect (regcache, ARM_PS_REGNUM,
532 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
533 }
534
535 if (regnum == ARM_PC_REGNUM || regnum == -1)
536 regcache_raw_collect (regcache, ARM_PC_REGNUM,
537 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
538 }
539
540 /* Support for register format used by the NWFPE FPA emulator. */
541
542 #define typeNone 0x00
543 #define typeSingle 0x01
544 #define typeDouble 0x02
545 #define typeExtended 0x03
546
547 void
548 supply_nwfpe_register (struct regcache *regcache, int regno,
549 const gdb_byte *regs)
550 {
551 const gdb_byte *reg_data;
552 gdb_byte reg_tag;
553 gdb_byte buf[FP_REGISTER_SIZE];
554
555 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
556 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
557 memset (buf, 0, FP_REGISTER_SIZE);
558
559 switch (reg_tag)
560 {
561 case typeSingle:
562 memcpy (buf, reg_data, 4);
563 break;
564 case typeDouble:
565 memcpy (buf, reg_data + 4, 4);
566 memcpy (buf + 4, reg_data, 4);
567 break;
568 case typeExtended:
569 /* We want sign and exponent, then least significant bits,
570 then most significant. NWFPE does sign, most, least. */
571 memcpy (buf, reg_data, 4);
572 memcpy (buf + 4, reg_data + 8, 4);
573 memcpy (buf + 8, reg_data + 4, 4);
574 break;
575 default:
576 break;
577 }
578
579 regcache_raw_supply (regcache, regno, buf);
580 }
581
582 void
583 collect_nwfpe_register (const struct regcache *regcache, int regno,
584 gdb_byte *regs)
585 {
586 gdb_byte *reg_data;
587 gdb_byte reg_tag;
588 gdb_byte buf[FP_REGISTER_SIZE];
589
590 regcache_raw_collect (regcache, regno, buf);
591
592 /* NOTE drow/2006-06-07: This code uses the tag already in the
593 register buffer. I've preserved that when moving the code
594 from the native file to the target file. But this doesn't
595 always make sense. */
596
597 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
598 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
599
600 switch (reg_tag)
601 {
602 case typeSingle:
603 memcpy (reg_data, buf, 4);
604 break;
605 case typeDouble:
606 memcpy (reg_data, buf + 4, 4);
607 memcpy (reg_data + 4, buf, 4);
608 break;
609 case typeExtended:
610 memcpy (reg_data, buf, 4);
611 memcpy (reg_data + 4, buf + 8, 4);
612 memcpy (reg_data + 8, buf + 4, 4);
613 break;
614 default:
615 break;
616 }
617 }
618
619 void
620 arm_linux_supply_nwfpe (const struct regset *regset,
621 struct regcache *regcache,
622 int regnum, const void *regs_buf, size_t len)
623 {
624 const gdb_byte *regs = (const gdb_byte *) regs_buf;
625 int regno;
626
627 if (regnum == ARM_FPS_REGNUM || regnum == -1)
628 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
629 regs + NWFPE_FPSR_OFFSET);
630
631 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
632 if (regnum == -1 || regnum == regno)
633 supply_nwfpe_register (regcache, regno, regs);
634 }
635
636 void
637 arm_linux_collect_nwfpe (const struct regset *regset,
638 const struct regcache *regcache,
639 int regnum, void *regs_buf, size_t len)
640 {
641 gdb_byte *regs = (gdb_byte *) regs_buf;
642 int regno;
643
644 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
645 if (regnum == -1 || regnum == regno)
646 collect_nwfpe_register (regcache, regno, regs);
647
648 if (regnum == ARM_FPS_REGNUM || regnum == -1)
649 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
650 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
651 }
652
653 /* Support VFP register format. */
654
655 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
656
657 static void
658 arm_linux_supply_vfp (const struct regset *regset,
659 struct regcache *regcache,
660 int regnum, const void *regs_buf, size_t len)
661 {
662 const gdb_byte *regs = (const gdb_byte *) regs_buf;
663 int regno;
664
665 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
666 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
667
668 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
669 if (regnum == -1 || regnum == regno)
670 regcache_raw_supply (regcache, regno,
671 regs + (regno - ARM_D0_REGNUM) * 8);
672 }
673
674 static void
675 arm_linux_collect_vfp (const struct regset *regset,
676 const struct regcache *regcache,
677 int regnum, void *regs_buf, size_t len)
678 {
679 gdb_byte *regs = (gdb_byte *) regs_buf;
680 int regno;
681
682 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
683 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
684
685 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
686 if (regnum == -1 || regnum == regno)
687 regcache_raw_collect (regcache, regno,
688 regs + (regno - ARM_D0_REGNUM) * 8);
689 }
690
691 static const struct regset arm_linux_gregset =
692 {
693 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
694 };
695
696 static const struct regset arm_linux_fpregset =
697 {
698 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
699 };
700
701 static const struct regset arm_linux_vfpregset =
702 {
703 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
704 };
705
706 /* Iterate over core file register note sections. */
707
708 static void
709 arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
710 iterate_over_regset_sections_cb *cb,
711 void *cb_data,
712 const struct regcache *regcache)
713 {
714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
715
716 cb (".reg", ARM_LINUX_SIZEOF_GREGSET, &arm_linux_gregset, NULL, cb_data);
717
718 if (tdep->vfp_register_count > 0)
719 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, &arm_linux_vfpregset,
720 "VFP floating-point", cb_data);
721 else if (tdep->have_fpa_registers)
722 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, &arm_linux_fpregset,
723 "FPA floating-point", cb_data);
724 }
725
726 /* Determine target description from core file. */
727
728 static const struct target_desc *
729 arm_linux_core_read_description (struct gdbarch *gdbarch,
730 struct target_ops *target,
731 bfd *abfd)
732 {
733 CORE_ADDR arm_hwcap = 0;
734
735 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
736 return NULL;
737
738 if (arm_hwcap & HWCAP_VFP)
739 {
740 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
741 Neon with VFPv3-D32. */
742 if (arm_hwcap & HWCAP_NEON)
743 return tdesc_arm_with_neon;
744 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
745 return tdesc_arm_with_vfpv3;
746 else
747 return tdesc_arm_with_vfpv2;
748 }
749
750 return NULL;
751 }
752
753
754 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
755 return 1. In addition, set IS_THUMB depending on whether we
756 will return to ARM or Thumb code. Return 0 if it is not a
757 rt_sigreturn/sigreturn syscall. */
758 static int
759 arm_linux_sigreturn_return_addr (struct frame_info *frame,
760 unsigned long svc_number,
761 CORE_ADDR *pc, int *is_thumb)
762 {
763 /* Is this a sigreturn or rt_sigreturn syscall? */
764 if (svc_number == 119 || svc_number == 173)
765 {
766 if (get_frame_type (frame) == SIGTRAMP_FRAME)
767 {
768 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
769 CORE_ADDR cpsr
770 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
771
772 *is_thumb = (cpsr & t_bit) != 0;
773 *pc = frame_unwind_caller_pc (frame);
774 return 1;
775 }
776 }
777 return 0;
778 }
779
780 /* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
781 based on current processor state. */
782 static CORE_ADDR
783 arm_linux_sigreturn_next_pc (struct regcache *regcache,
784 unsigned long svc_number)
785 {
786 ULONGEST sp;
787 unsigned long sp_data;
788 CORE_ADDR next_pc = 0;
789 struct gdbarch *gdbarch = get_regcache_arch (regcache);
790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
791 int pc_offset = 0;
792 int is_sigreturn = 0;
793
794 gdb_assert (svc_number == ARM_SIGRETURN
795 || svc_number == ARM_RT_SIGRETURN);
796
797 is_sigreturn = (svc_number == ARM_SIGRETURN);
798 regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
799 sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
800
801 pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
802 is_sigreturn);
803
804 next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
805
806 return next_pc;
807 }
808
809 /* At a ptrace syscall-stop, return the syscall number. This either
810 comes from the SWI instruction (OABI) or from r7 (EABI).
811
812 When the function fails, it should return -1. */
813
814 static LONGEST
815 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
816 ptid_t ptid)
817 {
818 struct regcache *regs = get_thread_regcache (ptid);
819 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
820
821 ULONGEST pc;
822 ULONGEST cpsr;
823 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
824 int is_thumb;
825 ULONGEST svc_number = -1;
826
827 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
828 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
829 is_thumb = (cpsr & t_bit) != 0;
830
831 if (is_thumb)
832 {
833 regcache_cooked_read_unsigned (regs, 7, &svc_number);
834 }
835 else
836 {
837 enum bfd_endian byte_order_for_code =
838 gdbarch_byte_order_for_code (gdbarch);
839
840 /* PC gets incremented before the syscall-stop, so read the
841 previous instruction. */
842 unsigned long this_instr =
843 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
844
845 unsigned long svc_operand = (0x00ffffff & this_instr);
846
847 if (svc_operand)
848 {
849 /* OABI */
850 svc_number = svc_operand - 0x900000;
851 }
852 else
853 {
854 /* EABI */
855 regcache_cooked_read_unsigned (regs, 7, &svc_number);
856 }
857 }
858
859 return svc_number;
860 }
861
862 /* When the processor is at a syscall instruction, return the PC of the
863 next instruction to be executed. */
864
865 static CORE_ADDR
866 arm_linux_syscall_next_pc (struct regcache *regcache)
867 {
868 CORE_ADDR pc = regcache_read_pc (regcache);
869 CORE_ADDR next_pc = 0;
870 int is_thumb = arm_is_thumb (regcache);
871 ULONGEST svc_number = 0;
872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
873
874 if (is_thumb)
875 {
876 svc_number = regcache_raw_get_unsigned (regcache, 7);
877 next_pc = pc + 2;
878 }
879 else
880 {
881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
882 enum bfd_endian byte_order_for_code =
883 gdbarch_byte_order_for_code (gdbarch);
884 unsigned long this_instr =
885 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
886
887 unsigned long svc_operand = (0x00ffffff & this_instr);
888 if (svc_operand) /* OABI. */
889 {
890 svc_number = svc_operand - 0x900000;
891 }
892 else /* EABI. */
893 {
894 svc_number = regcache_raw_get_unsigned (regcache, 7);
895 }
896
897 next_pc = pc + 4;
898 }
899
900 if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
901 next_pc = arm_linux_sigreturn_next_pc (regcache, svc_number);
902
903 /* Addresses for calling Thumb functions have the bit 0 set. */
904 if (is_thumb)
905 next_pc = MAKE_THUMB_ADDR (next_pc);
906
907 return next_pc;
908 }
909
910
911 /* Insert a single step breakpoint at the next executed instruction. */
912
913 static int
914 arm_linux_software_single_step (struct frame_info *frame)
915 {
916 struct regcache *regcache = get_current_regcache ();
917 struct gdbarch *gdbarch = get_regcache_arch (regcache);
918 struct address_space *aspace = get_regcache_aspace (regcache);
919 struct arm_get_next_pcs next_pcs_ctx;
920 CORE_ADDR pc;
921 int i;
922 VEC (CORE_ADDR) *next_pcs = NULL;
923 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
924
925 /* If the target does have hardware single step, GDB doesn't have
926 to bother software single step. */
927 if (target_can_do_single_step () == 1)
928 return 0;
929
930 arm_get_next_pcs_ctor (&next_pcs_ctx,
931 &arm_linux_get_next_pcs_ops,
932 gdbarch_byte_order (gdbarch),
933 gdbarch_byte_order_for_code (gdbarch),
934 gdbarch_tdep (gdbarch)->thumb2_breakpoint,
935 regcache);
936
937 next_pcs = arm_get_next_pcs (&next_pcs_ctx, regcache_read_pc (regcache));
938
939 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
940 {
941 /* The Linux kernel offers some user-mode helpers in a high page. We can
942 not read this page (as of 2.6.23), and even if we could then we
943 couldn't set breakpoints in it, and even if we could then the atomic
944 operations would fail when interrupted. They are all called as
945 functions and return to the address in LR, so step to there
946 instead. */
947 if (pc > 0xffff0000)
948 pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
949
950 arm_insert_single_step_breakpoint (gdbarch, aspace, pc);
951 }
952
953 do_cleanups (old_chain);
954
955 return 1;
956 }
957
958 /* Support for displaced stepping of Linux SVC instructions. */
959
960 static void
961 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
962 struct regcache *regs,
963 struct displaced_step_closure *dsc)
964 {
965 ULONGEST apparent_pc;
966 int within_scratch;
967
968 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
969
970 within_scratch = (apparent_pc >= dsc->scratch_base
971 && apparent_pc < (dsc->scratch_base
972 + DISPLACED_MODIFIED_INSNS * 4 + 4));
973
974 if (debug_displaced)
975 {
976 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
977 "SVC step ", (unsigned long) apparent_pc);
978 if (within_scratch)
979 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
980 else
981 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
982 }
983
984 if (within_scratch)
985 displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
986 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
987 }
988
989 static int
990 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
991 struct displaced_step_closure *dsc)
992 {
993 CORE_ADDR return_to = 0;
994
995 struct frame_info *frame;
996 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
997 int is_sigreturn = 0;
998 int is_thumb;
999
1000 frame = get_current_frame ();
1001
1002 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
1003 &return_to, &is_thumb);
1004 if (is_sigreturn)
1005 {
1006 struct symtab_and_line sal;
1007
1008 if (debug_displaced)
1009 fprintf_unfiltered (gdb_stdlog, "displaced: found "
1010 "sigreturn/rt_sigreturn SVC call. PC in "
1011 "frame = %lx\n",
1012 (unsigned long) get_frame_pc (frame));
1013
1014 if (debug_displaced)
1015 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
1016 "Setting momentary breakpoint.\n",
1017 (unsigned long) return_to);
1018
1019 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1020 == NULL);
1021
1022 sal = find_pc_line (return_to, 0);
1023 sal.pc = return_to;
1024 sal.section = find_pc_overlay (return_to);
1025 sal.explicit_pc = 1;
1026
1027 frame = get_prev_frame (frame);
1028
1029 if (frame)
1030 {
1031 inferior_thread ()->control.step_resume_breakpoint
1032 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1033 bp_step_resume);
1034
1035 /* set_momentary_breakpoint invalidates FRAME. */
1036 frame = NULL;
1037
1038 /* We need to make sure we actually insert the momentary
1039 breakpoint set above. */
1040 insert_breakpoints ();
1041 }
1042 else if (debug_displaced)
1043 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1044 "frame to set momentary breakpoint for "
1045 "sigreturn/rt_sigreturn\n");
1046 }
1047 else if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog, "displaced: found SVC call\n");
1049
1050 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1051 location, else nothing.
1052 Insn: unmodified svc.
1053 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
1054 else leave pc alone. */
1055
1056
1057 dsc->cleanup = &arm_linux_cleanup_svc;
1058 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1059 instruction. */
1060 dsc->wrote_to_pc = 1;
1061
1062 return 0;
1063 }
1064
1065
1066 /* The following two functions implement single-stepping over calls to Linux
1067 kernel helper routines, which perform e.g. atomic operations on architecture
1068 variants which don't support them natively.
1069
1070 When this function is called, the PC will be pointing at the kernel helper
1071 (at an address inaccessible to GDB), and r14 will point to the return
1072 address. Displaced stepping always executes code in the copy area:
1073 so, make the copy-area instruction branch back to the kernel helper (the
1074 "from" address), and make r14 point to the breakpoint in the copy area. In
1075 that way, we regain control once the kernel helper returns, and can clean
1076 up appropriately (as if we had just returned from the kernel helper as it
1077 would have been called from the non-displaced location). */
1078
1079 static void
1080 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1081 struct regcache *regs,
1082 struct displaced_step_closure *dsc)
1083 {
1084 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1085 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1086 }
1087
1088 static void
1089 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1090 CORE_ADDR to, struct regcache *regs,
1091 struct displaced_step_closure *dsc)
1092 {
1093 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1094
1095 dsc->numinsns = 1;
1096 dsc->insn_addr = from;
1097 dsc->cleanup = &cleanup_kernel_helper_return;
1098 /* Say we wrote to the PC, else cleanup will set PC to the next
1099 instruction in the helper, which isn't helpful. */
1100 dsc->wrote_to_pc = 1;
1101
1102 /* Preparation: tmp[0] <- r14
1103 r14 <- <scratch space>+4
1104 *(<scratch space>+8) <- from
1105 Insn: ldr pc, [r14, #4]
1106 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1107
1108 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1109 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1110 CANNOT_WRITE_PC);
1111 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1112
1113 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1114 }
1115
1116 /* Linux-specific displaced step instruction copying function. Detects when
1117 the program has stepped into a Linux kernel helper routine (which must be
1118 handled as a special case), falling back to arm_displaced_step_copy_insn()
1119 if it hasn't. */
1120
1121 static struct displaced_step_closure *
1122 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1123 CORE_ADDR from, CORE_ADDR to,
1124 struct regcache *regs)
1125 {
1126 struct displaced_step_closure *dsc = XNEW (struct displaced_step_closure);
1127
1128 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1129 stop at the return location. */
1130 if (from > 0xffff0000)
1131 {
1132 if (debug_displaced)
1133 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1134 "at %.8lx\n", (unsigned long) from);
1135
1136 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1137 }
1138 else
1139 {
1140 /* Override the default handling of SVC instructions. */
1141 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1142
1143 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1144 }
1145
1146 arm_displaced_init_closure (gdbarch, from, to, dsc);
1147
1148 return dsc;
1149 }
1150
1151 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1152 gdbarch.h. */
1153
1154 static int
1155 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1156 {
1157 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
1158 || *s == '[' /* Register indirection or
1159 displacement. */
1160 || isalpha (*s)); /* Register value. */
1161 }
1162
1163 /* This routine is used to parse a special token in ARM's assembly.
1164
1165 The special tokens parsed by it are:
1166
1167 - Register displacement (e.g, [fp, #-8])
1168
1169 It returns one if the special token has been parsed successfully,
1170 or zero if the current token is not considered special. */
1171
1172 static int
1173 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1174 struct stap_parse_info *p)
1175 {
1176 if (*p->arg == '[')
1177 {
1178 /* Temporary holder for lookahead. */
1179 const char *tmp = p->arg;
1180 char *endp;
1181 /* Used to save the register name. */
1182 const char *start;
1183 char *regname;
1184 int len, offset;
1185 int got_minus = 0;
1186 long displacement;
1187 struct stoken str;
1188
1189 ++tmp;
1190 start = tmp;
1191
1192 /* Register name. */
1193 while (isalnum (*tmp))
1194 ++tmp;
1195
1196 if (*tmp != ',')
1197 return 0;
1198
1199 len = tmp - start;
1200 regname = (char *) alloca (len + 2);
1201
1202 offset = 0;
1203 if (isdigit (*start))
1204 {
1205 /* If we are dealing with a register whose name begins with a
1206 digit, it means we should prefix the name with the letter
1207 `r', because GDB expects this name pattern. Otherwise (e.g.,
1208 we are dealing with the register `fp'), we don't need to
1209 add such a prefix. */
1210 regname[0] = 'r';
1211 offset = 1;
1212 }
1213
1214 strncpy (regname + offset, start, len);
1215 len += offset;
1216 regname[len] = '\0';
1217
1218 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1219 error (_("Invalid register name `%s' on expression `%s'."),
1220 regname, p->saved_arg);
1221
1222 ++tmp;
1223 tmp = skip_spaces_const (tmp);
1224 if (*tmp == '#' || *tmp == '$')
1225 ++tmp;
1226
1227 if (*tmp == '-')
1228 {
1229 ++tmp;
1230 got_minus = 1;
1231 }
1232
1233 displacement = strtol (tmp, &endp, 10);
1234 tmp = endp;
1235
1236 /* Skipping last `]'. */
1237 if (*tmp++ != ']')
1238 return 0;
1239
1240 /* The displacement. */
1241 write_exp_elt_opcode (&p->pstate, OP_LONG);
1242 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1243 write_exp_elt_longcst (&p->pstate, displacement);
1244 write_exp_elt_opcode (&p->pstate, OP_LONG);
1245 if (got_minus)
1246 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
1247
1248 /* The register name. */
1249 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1250 str.ptr = regname;
1251 str.length = len;
1252 write_exp_string (&p->pstate, str);
1253 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1254
1255 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
1256
1257 /* Casting to the expected type. */
1258 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1259 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1260 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1261
1262 write_exp_elt_opcode (&p->pstate, UNOP_IND);
1263
1264 p->arg = tmp;
1265 }
1266 else
1267 return 0;
1268
1269 return 1;
1270 }
1271
1272 /* ARM process record-replay constructs: syscall, signal etc. */
1273
1274 struct linux_record_tdep arm_linux_record_tdep;
1275
1276 /* arm_canonicalize_syscall maps from the native arm Linux set
1277 of syscall ids into a canonical set of syscall ids used by
1278 process record. */
1279
1280 static enum gdb_syscall
1281 arm_canonicalize_syscall (int syscall)
1282 {
1283 enum { sys_process_vm_writev = 377 };
1284
1285 if (syscall <= gdb_sys_sched_getaffinity)
1286 return (enum gdb_syscall) syscall;
1287 else if (syscall >= 243 && syscall <= 247)
1288 return (enum gdb_syscall) (syscall + 2);
1289 else if (syscall >= 248 && syscall <= 253)
1290 return (enum gdb_syscall) (syscall + 4);
1291
1292 return gdb_sys_no_syscall;
1293 }
1294
1295 /* Record all registers but PC register for process-record. */
1296
1297 static int
1298 arm_all_but_pc_registers_record (struct regcache *regcache)
1299 {
1300 int i;
1301
1302 for (i = 0; i < ARM_PC_REGNUM; i++)
1303 {
1304 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1305 return -1;
1306 }
1307
1308 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1309 return -1;
1310
1311 return 0;
1312 }
1313
1314 /* Handler for arm system call instruction recording. */
1315
1316 static int
1317 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1318 {
1319 int ret = 0;
1320 enum gdb_syscall syscall_gdb;
1321
1322 syscall_gdb = arm_canonicalize_syscall (svc_number);
1323
1324 if (syscall_gdb == gdb_sys_no_syscall)
1325 {
1326 printf_unfiltered (_("Process record and replay target doesn't "
1327 "support syscall number %s\n"),
1328 plongest (svc_number));
1329 return -1;
1330 }
1331
1332 if (syscall_gdb == gdb_sys_sigreturn
1333 || syscall_gdb == gdb_sys_rt_sigreturn)
1334 {
1335 if (arm_all_but_pc_registers_record (regcache))
1336 return -1;
1337 return 0;
1338 }
1339
1340 ret = record_linux_system_call (syscall_gdb, regcache,
1341 &arm_linux_record_tdep);
1342 if (ret != 0)
1343 return ret;
1344
1345 /* Record the return value of the system call. */
1346 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1347 return -1;
1348 /* Record LR. */
1349 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1350 return -1;
1351 /* Record CPSR. */
1352 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1353 return -1;
1354
1355 return 0;
1356 }
1357
1358 /* Implement the skip_trampoline_code gdbarch method. */
1359
1360 static CORE_ADDR
1361 arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1362 {
1363 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1364
1365 if (target_pc != 0)
1366 return target_pc;
1367
1368 return find_solib_trampoline_target (frame, pc);
1369 }
1370
1371 static void
1372 arm_linux_init_abi (struct gdbarch_info info,
1373 struct gdbarch *gdbarch)
1374 {
1375 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1376 static const char *const stap_register_prefixes[] = { "r", NULL };
1377 static const char *const stap_register_indirection_prefixes[] = { "[",
1378 NULL };
1379 static const char *const stap_register_indirection_suffixes[] = { "]",
1380 NULL };
1381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1382
1383 linux_init_abi (info, gdbarch);
1384
1385 tdep->lowest_pc = 0x8000;
1386 if (info.byte_order_for_code == BFD_ENDIAN_BIG)
1387 {
1388 if (tdep->arm_abi == ARM_ABI_AAPCS)
1389 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1390 else
1391 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1392 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1393 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1394 }
1395 else
1396 {
1397 if (tdep->arm_abi == ARM_ABI_AAPCS)
1398 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1399 else
1400 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1401 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1402 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1403 }
1404 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1405 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1406 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1407
1408 if (tdep->fp_model == ARM_FLOAT_AUTO)
1409 tdep->fp_model = ARM_FLOAT_FPA;
1410
1411 switch (tdep->fp_model)
1412 {
1413 case ARM_FLOAT_FPA:
1414 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1415 break;
1416 case ARM_FLOAT_SOFT_FPA:
1417 case ARM_FLOAT_SOFT_VFP:
1418 case ARM_FLOAT_VFP:
1419 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1420 break;
1421 default:
1422 internal_error
1423 (__FILE__, __LINE__,
1424 _("arm_linux_init_abi: Floating point model not supported"));
1425 break;
1426 }
1427 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1428
1429 set_solib_svr4_fetch_link_map_offsets
1430 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1431
1432 /* Single stepping. */
1433 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1434
1435 /* Shared library handling. */
1436 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1437 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1438
1439 /* Enable TLS support. */
1440 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1441 svr4_fetch_objfile_link_map);
1442
1443 tramp_frame_prepend_unwinder (gdbarch,
1444 &arm_linux_sigreturn_tramp_frame);
1445 tramp_frame_prepend_unwinder (gdbarch,
1446 &arm_linux_rt_sigreturn_tramp_frame);
1447 tramp_frame_prepend_unwinder (gdbarch,
1448 &arm_eabi_linux_sigreturn_tramp_frame);
1449 tramp_frame_prepend_unwinder (gdbarch,
1450 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1451 tramp_frame_prepend_unwinder (gdbarch,
1452 &thumb2_eabi_linux_sigreturn_tramp_frame);
1453 tramp_frame_prepend_unwinder (gdbarch,
1454 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1455 tramp_frame_prepend_unwinder (gdbarch,
1456 &arm_linux_restart_syscall_tramp_frame);
1457 tramp_frame_prepend_unwinder (gdbarch,
1458 &arm_kernel_linux_restart_syscall_tramp_frame);
1459
1460 /* Core file support. */
1461 set_gdbarch_iterate_over_regset_sections
1462 (gdbarch, arm_linux_iterate_over_regset_sections);
1463 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1464
1465 /* Displaced stepping. */
1466 set_gdbarch_displaced_step_copy_insn (gdbarch,
1467 arm_linux_displaced_step_copy_insn);
1468 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1469 set_gdbarch_displaced_step_free_closure (gdbarch,
1470 simple_displaced_step_free_closure);
1471 set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
1472
1473 /* Reversible debugging, process record. */
1474 set_gdbarch_process_record (gdbarch, arm_process_record);
1475
1476 /* SystemTap functions. */
1477 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1478 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1479 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1480 stap_register_indirection_prefixes);
1481 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1482 stap_register_indirection_suffixes);
1483 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1484 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1485 set_gdbarch_stap_parse_special_token (gdbarch,
1486 arm_stap_parse_special_token);
1487
1488 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1489
1490 /* `catch syscall' */
1491 set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
1492 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1493
1494 /* Syscall record. */
1495 tdep->arm_syscall_record = arm_linux_syscall_record;
1496
1497 /* Initialize the arm_linux_record_tdep. */
1498 /* These values are the size of the type that will be used in a system
1499 call. They are obtained from Linux Kernel source. */
1500 arm_linux_record_tdep.size_pointer
1501 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1502 arm_linux_record_tdep.size__old_kernel_stat = 32;
1503 arm_linux_record_tdep.size_tms = 16;
1504 arm_linux_record_tdep.size_loff_t = 8;
1505 arm_linux_record_tdep.size_flock = 16;
1506 arm_linux_record_tdep.size_oldold_utsname = 45;
1507 arm_linux_record_tdep.size_ustat = 20;
1508 arm_linux_record_tdep.size_old_sigaction = 16;
1509 arm_linux_record_tdep.size_old_sigset_t = 4;
1510 arm_linux_record_tdep.size_rlimit = 8;
1511 arm_linux_record_tdep.size_rusage = 72;
1512 arm_linux_record_tdep.size_timeval = 8;
1513 arm_linux_record_tdep.size_timezone = 8;
1514 arm_linux_record_tdep.size_old_gid_t = 2;
1515 arm_linux_record_tdep.size_old_uid_t = 2;
1516 arm_linux_record_tdep.size_fd_set = 128;
1517 arm_linux_record_tdep.size_old_dirent = 268;
1518 arm_linux_record_tdep.size_statfs = 64;
1519 arm_linux_record_tdep.size_statfs64 = 84;
1520 arm_linux_record_tdep.size_sockaddr = 16;
1521 arm_linux_record_tdep.size_int
1522 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1523 arm_linux_record_tdep.size_long
1524 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1525 arm_linux_record_tdep.size_ulong
1526 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1527 arm_linux_record_tdep.size_msghdr = 28;
1528 arm_linux_record_tdep.size_itimerval = 16;
1529 arm_linux_record_tdep.size_stat = 88;
1530 arm_linux_record_tdep.size_old_utsname = 325;
1531 arm_linux_record_tdep.size_sysinfo = 64;
1532 arm_linux_record_tdep.size_msqid_ds = 88;
1533 arm_linux_record_tdep.size_shmid_ds = 84;
1534 arm_linux_record_tdep.size_new_utsname = 390;
1535 arm_linux_record_tdep.size_timex = 128;
1536 arm_linux_record_tdep.size_mem_dqinfo = 24;
1537 arm_linux_record_tdep.size_if_dqblk = 68;
1538 arm_linux_record_tdep.size_fs_quota_stat = 68;
1539 arm_linux_record_tdep.size_timespec = 8;
1540 arm_linux_record_tdep.size_pollfd = 8;
1541 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1542 arm_linux_record_tdep.size_knfsd_fh = 132;
1543 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1544 arm_linux_record_tdep.size_sigaction = 20;
1545 arm_linux_record_tdep.size_sigset_t = 8;
1546 arm_linux_record_tdep.size_siginfo_t = 128;
1547 arm_linux_record_tdep.size_cap_user_data_t = 12;
1548 arm_linux_record_tdep.size_stack_t = 12;
1549 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1550 arm_linux_record_tdep.size_stat64 = 96;
1551 arm_linux_record_tdep.size_gid_t = 4;
1552 arm_linux_record_tdep.size_uid_t = 4;
1553 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1554 arm_linux_record_tdep.size_flock64 = 24;
1555 arm_linux_record_tdep.size_user_desc = 16;
1556 arm_linux_record_tdep.size_io_event = 32;
1557 arm_linux_record_tdep.size_iocb = 64;
1558 arm_linux_record_tdep.size_epoll_event = 12;
1559 arm_linux_record_tdep.size_itimerspec
1560 = arm_linux_record_tdep.size_timespec * 2;
1561 arm_linux_record_tdep.size_mq_attr = 32;
1562 arm_linux_record_tdep.size_termios = 36;
1563 arm_linux_record_tdep.size_termios2 = 44;
1564 arm_linux_record_tdep.size_pid_t = 4;
1565 arm_linux_record_tdep.size_winsize = 8;
1566 arm_linux_record_tdep.size_serial_struct = 60;
1567 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1568 arm_linux_record_tdep.size_hayes_esp_config = 12;
1569 arm_linux_record_tdep.size_size_t = 4;
1570 arm_linux_record_tdep.size_iovec = 8;
1571 arm_linux_record_tdep.size_time_t = 4;
1572
1573 /* These values are the second argument of system call "sys_ioctl".
1574 They are obtained from Linux Kernel source. */
1575 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1576 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1577 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1578 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1579 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1580 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1581 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1582 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1583 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1584 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1585 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1586 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1587 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1588 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1589 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1590 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1591 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1592 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1593 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1594 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1595 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1596 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1597 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1598 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1599 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1600 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1601 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1602 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1603 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1604 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1605 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1606 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1607 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1608 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1609 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1610 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1611 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1612 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1613 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1614 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1615 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1616 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1617 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1618 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1619 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1620 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1621 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1622 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1623 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1624 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1625 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1626 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1627 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1628 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1629 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1630 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1631 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1632 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1633 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1634 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1635 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1636 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1637 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1638 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1639 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1640
1641 /* These values are the second argument of system call "sys_fcntl"
1642 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1643 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1644 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1645 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1646 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1647
1648 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM + 1;
1649 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 2;
1650 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 3;
1651 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
1652 }
1653
1654 /* Provide a prototype to silence -Wmissing-prototypes. */
1655 extern initialize_file_ftype _initialize_arm_linux_tdep;
1656
1657 void
1658 _initialize_arm_linux_tdep (void)
1659 {
1660 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1661 arm_linux_init_abi);
1662 }
This page took 0.061407 seconds and 5 git commands to generate.