Arm/AArch64: Split DISPLACED_MODIFIED_INSNS name clash
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "gdbcore.h"
25 #include "frame.h"
26 #include "regcache.h"
27 #include "solib-svr4.h"
28 #include "osabi.h"
29 #include "regset.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "breakpoint.h"
33 #include "auxv.h"
34 #include "xml-syscall.h"
35
36 #include "arch/arm.h"
37 #include "arch/arm-get-next-pcs.h"
38 #include "arch/arm-linux.h"
39 #include "arm-tdep.h"
40 #include "arm-linux-tdep.h"
41 #include "linux-tdep.h"
42 #include "glibc-tdep.h"
43 #include "arch-utils.h"
44 #include "inferior.h"
45 #include "infrun.h"
46 #include "gdbthread.h"
47 #include "symfile.h"
48
49 #include "record-full.h"
50 #include "linux-record.h"
51
52 #include "cli/cli-utils.h"
53 #include "stap-probe.h"
54 #include "parser-defs.h"
55 #include "user-regs.h"
56 #include <ctype.h>
57 #include "elf/common.h"
58 extern int arm_apcs_32;
59
60 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
61 is to execute a particular software interrupt, rather than use a
62 particular undefined instruction to provoke a trap. Upon exection
63 of the software interrupt the kernel stops the inferior with a
64 SIGTRAP, and wakes the debugger. */
65
66 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
67
68 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
69
70 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
71 the operand of the swi if old-ABI compatibility is disabled. Therefore,
72 use an undefined instruction instead. This is supported as of kernel
73 version 2.5.70 (May 2003), so should be a safe assumption for EABI
74 binaries. */
75
76 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
77
78 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
79
80 /* All the kernels which support Thumb support using a specific undefined
81 instruction for the Thumb breakpoint. */
82
83 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
84
85 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
86
87 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
88 we must use a length-appropriate breakpoint for 32-bit Thumb
89 instructions. See also thumb_get_next_pc. */
90
91 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
92
93 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
94
95 /* Description of the longjmp buffer. The buffer is treated as an array of
96 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
97
98 The location of saved registers in this buffer (in particular the PC
99 to use after longjmp is called) varies depending on the ABI (in
100 particular the FP model) and also (possibly) the C Library.
101
102 For glibc, eglibc, and uclibc the following holds: If the FP model is
103 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
104 buffer. This is also true for the SoftFPA model. However, for the FPA
105 model the PC is at offset 21 in the buffer. */
106 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
107 #define ARM_LINUX_JB_PC_FPA 21
108 #define ARM_LINUX_JB_PC_EABI 9
109
110 /*
111 Dynamic Linking on ARM GNU/Linux
112 --------------------------------
113
114 Note: PLT = procedure linkage table
115 GOT = global offset table
116
117 As much as possible, ELF dynamic linking defers the resolution of
118 jump/call addresses until the last minute. The technique used is
119 inspired by the i386 ELF design, and is based on the following
120 constraints.
121
122 1) The calling technique should not force a change in the assembly
123 code produced for apps; it MAY cause changes in the way assembly
124 code is produced for position independent code (i.e. shared
125 libraries).
126
127 2) The technique must be such that all executable areas must not be
128 modified; and any modified areas must not be executed.
129
130 To do this, there are three steps involved in a typical jump:
131
132 1) in the code
133 2) through the PLT
134 3) using a pointer from the GOT
135
136 When the executable or library is first loaded, each GOT entry is
137 initialized to point to the code which implements dynamic name
138 resolution and code finding. This is normally a function in the
139 program interpreter (on ARM GNU/Linux this is usually
140 ld-linux.so.2, but it does not have to be). On the first
141 invocation, the function is located and the GOT entry is replaced
142 with the real function address. Subsequent calls go through steps
143 1, 2 and 3 and end up calling the real code.
144
145 1) In the code:
146
147 b function_call
148 bl function_call
149
150 This is typical ARM code using the 26 bit relative branch or branch
151 and link instructions. The target of the instruction
152 (function_call is usually the address of the function to be called.
153 In position independent code, the target of the instruction is
154 actually an entry in the PLT when calling functions in a shared
155 library. Note that this call is identical to a normal function
156 call, only the target differs.
157
158 2) In the PLT:
159
160 The PLT is a synthetic area, created by the linker. It exists in
161 both executables and libraries. It is an array of stubs, one per
162 imported function call. It looks like this:
163
164 PLT[0]:
165 str lr, [sp, #-4]! @push the return address (lr)
166 ldr lr, [pc, #16] @load from 6 words ahead
167 add lr, pc, lr @form an address for GOT[0]
168 ldr pc, [lr, #8]! @jump to the contents of that addr
169
170 The return address (lr) is pushed on the stack and used for
171 calculations. The load on the second line loads the lr with
172 &GOT[3] - . - 20. The addition on the third leaves:
173
174 lr = (&GOT[3] - . - 20) + (. + 8)
175 lr = (&GOT[3] - 12)
176 lr = &GOT[0]
177
178 On the fourth line, the pc and lr are both updated, so that:
179
180 pc = GOT[2]
181 lr = &GOT[0] + 8
182 = &GOT[2]
183
184 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
185 "tight", but allows us to keep all the PLT entries the same size.
186
187 PLT[n+1]:
188 ldr ip, [pc, #4] @load offset from gotoff
189 add ip, pc, ip @add the offset to the pc
190 ldr pc, [ip] @jump to that address
191 gotoff: .word GOT[n+3] - .
192
193 The load on the first line, gets an offset from the fourth word of
194 the PLT entry. The add on the second line makes ip = &GOT[n+3],
195 which contains either a pointer to PLT[0] (the fixup trampoline) or
196 a pointer to the actual code.
197
198 3) In the GOT:
199
200 The GOT contains helper pointers for both code (PLT) fixups and
201 data fixups. The first 3 entries of the GOT are special. The next
202 M entries (where M is the number of entries in the PLT) belong to
203 the PLT fixups. The next D (all remaining) entries belong to
204 various data fixups. The actual size of the GOT is 3 + M + D.
205
206 The GOT is also a synthetic area, created by the linker. It exists
207 in both executables and libraries. When the GOT is first
208 initialized , all the GOT entries relating to PLT fixups are
209 pointing to code back at PLT[0].
210
211 The special entries in the GOT are:
212
213 GOT[0] = linked list pointer used by the dynamic loader
214 GOT[1] = pointer to the reloc table for this module
215 GOT[2] = pointer to the fixup/resolver code
216
217 The first invocation of function call comes through and uses the
218 fixup/resolver code. On the entry to the fixup/resolver code:
219
220 ip = &GOT[n+3]
221 lr = &GOT[2]
222 stack[0] = return address (lr) of the function call
223 [r0, r1, r2, r3] are still the arguments to the function call
224
225 This is enough information for the fixup/resolver code to work
226 with. Before the fixup/resolver code returns, it actually calls
227 the requested function and repairs &GOT[n+3]. */
228
229 /* The constants below were determined by examining the following files
230 in the linux kernel sources:
231
232 arch/arm/kernel/signal.c
233 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
234 include/asm-arm/unistd.h
235 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
236
237 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
238 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
239
240 /* For ARM EABI, the syscall number is not in the SWI instruction
241 (instead it is loaded into r7). We recognize the pattern that
242 glibc uses... alternatively, we could arrange to do this by
243 function name, but they are not always exported. */
244 #define ARM_SET_R7_SIGRETURN 0xe3a07077
245 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
246 #define ARM_EABI_SYSCALL 0xef000000
247
248 /* Equivalent patterns for Thumb2. */
249 #define THUMB2_SET_R7_SIGRETURN1 0xf04f
250 #define THUMB2_SET_R7_SIGRETURN2 0x0777
251 #define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
252 #define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
253 #define THUMB2_EABI_SYSCALL 0xdf00
254
255 /* OABI syscall restart trampoline, used for EABI executables too
256 whenever OABI support has been enabled in the kernel. */
257 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
258 #define ARM_LDR_PC_SP_12 0xe49df00c
259 #define ARM_LDR_PC_SP_4 0xe49df004
260
261 /* Syscall number for sigreturn. */
262 #define ARM_SIGRETURN 119
263 /* Syscall number for rt_sigreturn. */
264 #define ARM_RT_SIGRETURN 173
265
266 static CORE_ADDR
267 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
268
269 /* Operation function pointers for get_next_pcs. */
270 static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops = {
271 arm_get_next_pcs_read_memory_unsigned_integer,
272 arm_linux_get_next_pcs_syscall_next_pc,
273 arm_get_next_pcs_addr_bits_remove,
274 arm_get_next_pcs_is_thumb,
275 arm_linux_get_next_pcs_fixup,
276 };
277
278 static void
279 arm_linux_sigtramp_cache (struct frame_info *this_frame,
280 struct trad_frame_cache *this_cache,
281 CORE_ADDR func, int regs_offset)
282 {
283 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
284 CORE_ADDR base = sp + regs_offset;
285 int i;
286
287 for (i = 0; i < 16; i++)
288 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
289
290 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
291
292 /* The VFP or iWMMXt registers may be saved on the stack, but there's
293 no reliable way to restore them (yet). */
294
295 /* Save a frame ID. */
296 trad_frame_set_id (this_cache, frame_id_build (sp, func));
297 }
298
299 /* See arm-linux.h for stack layout details. */
300 static void
301 arm_linux_sigreturn_init (const struct tramp_frame *self,
302 struct frame_info *this_frame,
303 struct trad_frame_cache *this_cache,
304 CORE_ADDR func)
305 {
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
309 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
310
311 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
312 arm_linux_sigtramp_cache (this_frame, this_cache, func,
313 ARM_UCONTEXT_SIGCONTEXT
314 + ARM_SIGCONTEXT_R0);
315 else
316 arm_linux_sigtramp_cache (this_frame, this_cache, func,
317 ARM_SIGCONTEXT_R0);
318 }
319
320 static void
321 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
322 struct frame_info *this_frame,
323 struct trad_frame_cache *this_cache,
324 CORE_ADDR func)
325 {
326 struct gdbarch *gdbarch = get_frame_arch (this_frame);
327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
328 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
329 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
330
331 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
332 arm_linux_sigtramp_cache (this_frame, this_cache, func,
333 ARM_OLD_RT_SIGFRAME_UCONTEXT
334 + ARM_UCONTEXT_SIGCONTEXT
335 + ARM_SIGCONTEXT_R0);
336 else
337 arm_linux_sigtramp_cache (this_frame, this_cache, func,
338 ARM_NEW_RT_SIGFRAME_UCONTEXT
339 + ARM_UCONTEXT_SIGCONTEXT
340 + ARM_SIGCONTEXT_R0);
341 }
342
343 static void
344 arm_linux_restart_syscall_init (const struct tramp_frame *self,
345 struct frame_info *this_frame,
346 struct trad_frame_cache *this_cache,
347 CORE_ADDR func)
348 {
349 struct gdbarch *gdbarch = get_frame_arch (this_frame);
350 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
351 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
352 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
353 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
354 int sp_offset;
355
356 /* There are two variants of this trampoline; with older kernels, the
357 stub is placed on the stack, while newer kernels use the stub from
358 the vector page. They are identical except that the older version
359 increments SP by 12 (to skip stored PC and the stub itself), while
360 the newer version increments SP only by 4 (just the stored PC). */
361 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
362 sp_offset = 4;
363 else
364 sp_offset = 12;
365
366 /* Update Thumb bit in CPSR. */
367 if (pc & 1)
368 cpsr |= t_bit;
369 else
370 cpsr &= ~t_bit;
371
372 /* Remove Thumb bit from PC. */
373 pc = gdbarch_addr_bits_remove (gdbarch, pc);
374
375 /* Save previous register values. */
376 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
377 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
378 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
379
380 /* Save a frame ID. */
381 trad_frame_set_id (this_cache, frame_id_build (sp, func));
382 }
383
384 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
385 SIGTRAMP_FRAME,
386 4,
387 {
388 { ARM_LINUX_SIGRETURN_INSTR, ULONGEST_MAX },
389 { TRAMP_SENTINEL_INSN }
390 },
391 arm_linux_sigreturn_init
392 };
393
394 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
395 SIGTRAMP_FRAME,
396 4,
397 {
398 { ARM_LINUX_RT_SIGRETURN_INSTR, ULONGEST_MAX },
399 { TRAMP_SENTINEL_INSN }
400 },
401 arm_linux_rt_sigreturn_init
402 };
403
404 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
405 SIGTRAMP_FRAME,
406 4,
407 {
408 { ARM_SET_R7_SIGRETURN, ULONGEST_MAX },
409 { ARM_EABI_SYSCALL, ULONGEST_MAX },
410 { TRAMP_SENTINEL_INSN }
411 },
412 arm_linux_sigreturn_init
413 };
414
415 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
416 SIGTRAMP_FRAME,
417 4,
418 {
419 { ARM_SET_R7_RT_SIGRETURN, ULONGEST_MAX },
420 { ARM_EABI_SYSCALL, ULONGEST_MAX },
421 { TRAMP_SENTINEL_INSN }
422 },
423 arm_linux_rt_sigreturn_init
424 };
425
426 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
427 SIGTRAMP_FRAME,
428 2,
429 {
430 { THUMB2_SET_R7_SIGRETURN1, ULONGEST_MAX },
431 { THUMB2_SET_R7_SIGRETURN2, ULONGEST_MAX },
432 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
433 { TRAMP_SENTINEL_INSN }
434 },
435 arm_linux_sigreturn_init
436 };
437
438 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
439 SIGTRAMP_FRAME,
440 2,
441 {
442 { THUMB2_SET_R7_RT_SIGRETURN1, ULONGEST_MAX },
443 { THUMB2_SET_R7_RT_SIGRETURN2, ULONGEST_MAX },
444 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
445 { TRAMP_SENTINEL_INSN }
446 },
447 arm_linux_rt_sigreturn_init
448 };
449
450 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
451 NORMAL_FRAME,
452 4,
453 {
454 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
455 { ARM_LDR_PC_SP_12, ULONGEST_MAX },
456 { TRAMP_SENTINEL_INSN }
457 },
458 arm_linux_restart_syscall_init
459 };
460
461 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
462 NORMAL_FRAME,
463 4,
464 {
465 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
466 { ARM_LDR_PC_SP_4, ULONGEST_MAX },
467 { TRAMP_SENTINEL_INSN }
468 },
469 arm_linux_restart_syscall_init
470 };
471
472 /* Core file and register set support. */
473
474 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
475
476 void
477 arm_linux_supply_gregset (const struct regset *regset,
478 struct regcache *regcache,
479 int regnum, const void *gregs_buf, size_t len)
480 {
481 struct gdbarch *gdbarch = regcache->arch ();
482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
483 const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
484 int regno;
485 CORE_ADDR reg_pc;
486 gdb_byte pc_buf[INT_REGISTER_SIZE];
487
488 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
489 if (regnum == -1 || regnum == regno)
490 regcache->raw_supply (regno, gregs + INT_REGISTER_SIZE * regno);
491
492 if (regnum == ARM_PS_REGNUM || regnum == -1)
493 {
494 if (arm_apcs_32)
495 regcache->raw_supply (ARM_PS_REGNUM,
496 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
497 else
498 regcache->raw_supply (ARM_PS_REGNUM,
499 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
500 }
501
502 if (regnum == ARM_PC_REGNUM || regnum == -1)
503 {
504 reg_pc = extract_unsigned_integer (gregs
505 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
506 INT_REGISTER_SIZE, byte_order);
507 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
508 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
509 regcache->raw_supply (ARM_PC_REGNUM, pc_buf);
510 }
511 }
512
513 void
514 arm_linux_collect_gregset (const struct regset *regset,
515 const struct regcache *regcache,
516 int regnum, void *gregs_buf, size_t len)
517 {
518 gdb_byte *gregs = (gdb_byte *) gregs_buf;
519 int regno;
520
521 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
522 if (regnum == -1 || regnum == regno)
523 regcache->raw_collect (regno,
524 gregs + INT_REGISTER_SIZE * regno);
525
526 if (regnum == ARM_PS_REGNUM || regnum == -1)
527 {
528 if (arm_apcs_32)
529 regcache->raw_collect (ARM_PS_REGNUM,
530 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
531 else
532 regcache->raw_collect (ARM_PS_REGNUM,
533 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
534 }
535
536 if (regnum == ARM_PC_REGNUM || regnum == -1)
537 regcache->raw_collect (ARM_PC_REGNUM,
538 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
539 }
540
541 /* Support for register format used by the NWFPE FPA emulator. */
542
543 #define typeNone 0x00
544 #define typeSingle 0x01
545 #define typeDouble 0x02
546 #define typeExtended 0x03
547
548 void
549 supply_nwfpe_register (struct regcache *regcache, int regno,
550 const gdb_byte *regs)
551 {
552 const gdb_byte *reg_data;
553 gdb_byte reg_tag;
554 gdb_byte buf[FP_REGISTER_SIZE];
555
556 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
557 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
558 memset (buf, 0, FP_REGISTER_SIZE);
559
560 switch (reg_tag)
561 {
562 case typeSingle:
563 memcpy (buf, reg_data, 4);
564 break;
565 case typeDouble:
566 memcpy (buf, reg_data + 4, 4);
567 memcpy (buf + 4, reg_data, 4);
568 break;
569 case typeExtended:
570 /* We want sign and exponent, then least significant bits,
571 then most significant. NWFPE does sign, most, least. */
572 memcpy (buf, reg_data, 4);
573 memcpy (buf + 4, reg_data + 8, 4);
574 memcpy (buf + 8, reg_data + 4, 4);
575 break;
576 default:
577 break;
578 }
579
580 regcache->raw_supply (regno, buf);
581 }
582
583 void
584 collect_nwfpe_register (const struct regcache *regcache, int regno,
585 gdb_byte *regs)
586 {
587 gdb_byte *reg_data;
588 gdb_byte reg_tag;
589 gdb_byte buf[FP_REGISTER_SIZE];
590
591 regcache->raw_collect (regno, buf);
592
593 /* NOTE drow/2006-06-07: This code uses the tag already in the
594 register buffer. I've preserved that when moving the code
595 from the native file to the target file. But this doesn't
596 always make sense. */
597
598 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
599 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
600
601 switch (reg_tag)
602 {
603 case typeSingle:
604 memcpy (reg_data, buf, 4);
605 break;
606 case typeDouble:
607 memcpy (reg_data, buf + 4, 4);
608 memcpy (reg_data + 4, buf, 4);
609 break;
610 case typeExtended:
611 memcpy (reg_data, buf, 4);
612 memcpy (reg_data + 4, buf + 8, 4);
613 memcpy (reg_data + 8, buf + 4, 4);
614 break;
615 default:
616 break;
617 }
618 }
619
620 void
621 arm_linux_supply_nwfpe (const struct regset *regset,
622 struct regcache *regcache,
623 int regnum, const void *regs_buf, size_t len)
624 {
625 const gdb_byte *regs = (const gdb_byte *) regs_buf;
626 int regno;
627
628 if (regnum == ARM_FPS_REGNUM || regnum == -1)
629 regcache->raw_supply (ARM_FPS_REGNUM,
630 regs + NWFPE_FPSR_OFFSET);
631
632 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
633 if (regnum == -1 || regnum == regno)
634 supply_nwfpe_register (regcache, regno, regs);
635 }
636
637 void
638 arm_linux_collect_nwfpe (const struct regset *regset,
639 const struct regcache *regcache,
640 int regnum, void *regs_buf, size_t len)
641 {
642 gdb_byte *regs = (gdb_byte *) regs_buf;
643 int regno;
644
645 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
646 if (regnum == -1 || regnum == regno)
647 collect_nwfpe_register (regcache, regno, regs);
648
649 if (regnum == ARM_FPS_REGNUM || regnum == -1)
650 regcache->raw_collect (ARM_FPS_REGNUM,
651 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
652 }
653
654 /* Support VFP register format. */
655
656 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
657
658 static void
659 arm_linux_supply_vfp (const struct regset *regset,
660 struct regcache *regcache,
661 int regnum, const void *regs_buf, size_t len)
662 {
663 const gdb_byte *regs = (const gdb_byte *) regs_buf;
664 int regno;
665
666 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
667 regcache->raw_supply (ARM_FPSCR_REGNUM, regs + 32 * 8);
668
669 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
670 if (regnum == -1 || regnum == regno)
671 regcache->raw_supply (regno, regs + (regno - ARM_D0_REGNUM) * 8);
672 }
673
674 static void
675 arm_linux_collect_vfp (const struct regset *regset,
676 const struct regcache *regcache,
677 int regnum, void *regs_buf, size_t len)
678 {
679 gdb_byte *regs = (gdb_byte *) regs_buf;
680 int regno;
681
682 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
683 regcache->raw_collect (ARM_FPSCR_REGNUM, regs + 32 * 8);
684
685 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
686 if (regnum == -1 || regnum == regno)
687 regcache->raw_collect (regno, regs + (regno - ARM_D0_REGNUM) * 8);
688 }
689
690 static const struct regset arm_linux_gregset =
691 {
692 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
693 };
694
695 static const struct regset arm_linux_fpregset =
696 {
697 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
698 };
699
700 static const struct regset arm_linux_vfpregset =
701 {
702 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
703 };
704
705 /* Iterate over core file register note sections. */
706
707 static void
708 arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
709 iterate_over_regset_sections_cb *cb,
710 void *cb_data,
711 const struct regcache *regcache)
712 {
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714
715 cb (".reg", ARM_LINUX_SIZEOF_GREGSET, ARM_LINUX_SIZEOF_GREGSET,
716 &arm_linux_gregset, NULL, cb_data);
717
718 if (tdep->vfp_register_count > 0)
719 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, ARM_LINUX_SIZEOF_VFP,
720 &arm_linux_vfpregset, "VFP floating-point", cb_data);
721 else if (tdep->have_fpa_registers)
722 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, ARM_LINUX_SIZEOF_NWFPE,
723 &arm_linux_fpregset, "FPA floating-point", cb_data);
724 }
725
726 /* Determine target description from core file. */
727
728 static const struct target_desc *
729 arm_linux_core_read_description (struct gdbarch *gdbarch,
730 struct target_ops *target,
731 bfd *abfd)
732 {
733 CORE_ADDR arm_hwcap = linux_get_hwcap (target);
734
735 if (arm_hwcap & HWCAP_VFP)
736 {
737 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
738 Neon with VFPv3-D32. */
739 if (arm_hwcap & HWCAP_NEON)
740 return tdesc_arm_with_neon;
741 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
742 return tdesc_arm_with_vfpv3;
743 else
744 return tdesc_arm_with_vfpv2;
745 }
746
747 return NULL;
748 }
749
750
751 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
752 return 1. In addition, set IS_THUMB depending on whether we
753 will return to ARM or Thumb code. Return 0 if it is not a
754 rt_sigreturn/sigreturn syscall. */
755 static int
756 arm_linux_sigreturn_return_addr (struct frame_info *frame,
757 unsigned long svc_number,
758 CORE_ADDR *pc, int *is_thumb)
759 {
760 /* Is this a sigreturn or rt_sigreturn syscall? */
761 if (svc_number == 119 || svc_number == 173)
762 {
763 if (get_frame_type (frame) == SIGTRAMP_FRAME)
764 {
765 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
766 CORE_ADDR cpsr
767 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
768
769 *is_thumb = (cpsr & t_bit) != 0;
770 *pc = frame_unwind_caller_pc (frame);
771 return 1;
772 }
773 }
774 return 0;
775 }
776
777 /* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
778 based on current processor state. In addition, set IS_THUMB depending
779 on whether we will return to ARM or Thumb code. */
780
781 static CORE_ADDR
782 arm_linux_sigreturn_next_pc (struct regcache *regcache,
783 unsigned long svc_number, int *is_thumb)
784 {
785 ULONGEST sp;
786 unsigned long sp_data;
787 CORE_ADDR next_pc = 0;
788 struct gdbarch *gdbarch = regcache->arch ();
789 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
790 int pc_offset = 0;
791 int is_sigreturn = 0;
792 CORE_ADDR cpsr;
793
794 gdb_assert (svc_number == ARM_SIGRETURN
795 || svc_number == ARM_RT_SIGRETURN);
796
797 is_sigreturn = (svc_number == ARM_SIGRETURN);
798 regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
799 sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
800
801 pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
802 is_sigreturn);
803
804 next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
805
806 /* Set IS_THUMB according the CPSR saved on the stack. */
807 cpsr = read_memory_unsigned_integer (sp + pc_offset + 4, 4, byte_order);
808 *is_thumb = ((cpsr & arm_psr_thumb_bit (gdbarch)) != 0);
809
810 return next_pc;
811 }
812
813 /* At a ptrace syscall-stop, return the syscall number. This either
814 comes from the SWI instruction (OABI) or from r7 (EABI).
815
816 When the function fails, it should return -1. */
817
818 static LONGEST
819 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
820 thread_info *thread)
821 {
822 struct regcache *regs = get_thread_regcache (thread);
823
824 ULONGEST pc;
825 ULONGEST cpsr;
826 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
827 int is_thumb;
828 ULONGEST svc_number = -1;
829
830 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
831 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
832 is_thumb = (cpsr & t_bit) != 0;
833
834 if (is_thumb)
835 {
836 regcache_cooked_read_unsigned (regs, 7, &svc_number);
837 }
838 else
839 {
840 enum bfd_endian byte_order_for_code =
841 gdbarch_byte_order_for_code (gdbarch);
842
843 /* PC gets incremented before the syscall-stop, so read the
844 previous instruction. */
845 unsigned long this_instr =
846 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
847
848 unsigned long svc_operand = (0x00ffffff & this_instr);
849
850 if (svc_operand)
851 {
852 /* OABI */
853 svc_number = svc_operand - 0x900000;
854 }
855 else
856 {
857 /* EABI */
858 regcache_cooked_read_unsigned (regs, 7, &svc_number);
859 }
860 }
861
862 return svc_number;
863 }
864
865 static CORE_ADDR
866 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
867 {
868 CORE_ADDR next_pc = 0;
869 CORE_ADDR pc = regcache_read_pc (self->regcache);
870 int is_thumb = arm_is_thumb (self->regcache);
871 ULONGEST svc_number = 0;
872
873 if (is_thumb)
874 {
875 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
876 next_pc = pc + 2;
877 }
878 else
879 {
880 struct gdbarch *gdbarch = self->regcache->arch ();
881 enum bfd_endian byte_order_for_code =
882 gdbarch_byte_order_for_code (gdbarch);
883 unsigned long this_instr =
884 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
885
886 unsigned long svc_operand = (0x00ffffff & this_instr);
887 if (svc_operand) /* OABI. */
888 {
889 svc_number = svc_operand - 0x900000;
890 }
891 else /* EABI. */
892 {
893 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
894 }
895
896 next_pc = pc + 4;
897 }
898
899 if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
900 {
901 /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
902 update IS_THUMB. */
903 next_pc = arm_linux_sigreturn_next_pc (self->regcache, svc_number,
904 &is_thumb);
905 }
906
907 /* Addresses for calling Thumb functions have the bit 0 set. */
908 if (is_thumb)
909 next_pc = MAKE_THUMB_ADDR (next_pc);
910
911 return next_pc;
912 }
913
914
915 /* Insert a single step breakpoint at the next executed instruction. */
916
917 static std::vector<CORE_ADDR>
918 arm_linux_software_single_step (struct regcache *regcache)
919 {
920 struct gdbarch *gdbarch = regcache->arch ();
921 struct arm_get_next_pcs next_pcs_ctx;
922
923 /* If the target does have hardware single step, GDB doesn't have
924 to bother software single step. */
925 if (target_can_do_single_step () == 1)
926 return {};
927
928 arm_get_next_pcs_ctor (&next_pcs_ctx,
929 &arm_linux_get_next_pcs_ops,
930 gdbarch_byte_order (gdbarch),
931 gdbarch_byte_order_for_code (gdbarch),
932 1,
933 regcache);
934
935 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
936
937 for (CORE_ADDR &pc_ref : next_pcs)
938 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
939
940 return next_pcs;
941 }
942
943 /* Support for displaced stepping of Linux SVC instructions. */
944
945 static void
946 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
947 struct regcache *regs,
948 arm_displaced_step_closure *dsc)
949 {
950 ULONGEST apparent_pc;
951 int within_scratch;
952
953 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
954
955 within_scratch = (apparent_pc >= dsc->scratch_base
956 && apparent_pc < (dsc->scratch_base
957 + ARM_DISPLACED_MODIFIED_INSNS * 4 + 4));
958
959 if (debug_displaced)
960 {
961 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
962 "SVC step ", (unsigned long) apparent_pc);
963 if (within_scratch)
964 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
965 else
966 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
967 }
968
969 if (within_scratch)
970 displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
971 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
972 }
973
974 static int
975 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
976 arm_displaced_step_closure *dsc)
977 {
978 CORE_ADDR return_to = 0;
979
980 struct frame_info *frame;
981 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
982 int is_sigreturn = 0;
983 int is_thumb;
984
985 frame = get_current_frame ();
986
987 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
988 &return_to, &is_thumb);
989 if (is_sigreturn)
990 {
991 struct symtab_and_line sal;
992
993 if (debug_displaced)
994 fprintf_unfiltered (gdb_stdlog, "displaced: found "
995 "sigreturn/rt_sigreturn SVC call. PC in "
996 "frame = %lx\n",
997 (unsigned long) get_frame_pc (frame));
998
999 if (debug_displaced)
1000 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
1001 "Setting momentary breakpoint.\n",
1002 (unsigned long) return_to);
1003
1004 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1005 == NULL);
1006
1007 sal = find_pc_line (return_to, 0);
1008 sal.pc = return_to;
1009 sal.section = find_pc_overlay (return_to);
1010 sal.explicit_pc = 1;
1011
1012 frame = get_prev_frame (frame);
1013
1014 if (frame)
1015 {
1016 inferior_thread ()->control.step_resume_breakpoint
1017 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1018 bp_step_resume).release ();
1019
1020 /* set_momentary_breakpoint invalidates FRAME. */
1021 frame = NULL;
1022
1023 /* We need to make sure we actually insert the momentary
1024 breakpoint set above. */
1025 insert_breakpoints ();
1026 }
1027 else if (debug_displaced)
1028 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1029 "frame to set momentary breakpoint for "
1030 "sigreturn/rt_sigreturn\n");
1031 }
1032 else if (debug_displaced)
1033 fprintf_unfiltered (gdb_stdlog, "displaced: found SVC call\n");
1034
1035 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1036 location, else nothing.
1037 Insn: unmodified svc.
1038 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
1039 else leave pc alone. */
1040
1041
1042 dsc->cleanup = &arm_linux_cleanup_svc;
1043 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1044 instruction. */
1045 dsc->wrote_to_pc = 1;
1046
1047 return 0;
1048 }
1049
1050
1051 /* The following two functions implement single-stepping over calls to Linux
1052 kernel helper routines, which perform e.g. atomic operations on architecture
1053 variants which don't support them natively.
1054
1055 When this function is called, the PC will be pointing at the kernel helper
1056 (at an address inaccessible to GDB), and r14 will point to the return
1057 address. Displaced stepping always executes code in the copy area:
1058 so, make the copy-area instruction branch back to the kernel helper (the
1059 "from" address), and make r14 point to the breakpoint in the copy area. In
1060 that way, we regain control once the kernel helper returns, and can clean
1061 up appropriately (as if we had just returned from the kernel helper as it
1062 would have been called from the non-displaced location). */
1063
1064 static void
1065 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1066 struct regcache *regs,
1067 arm_displaced_step_closure *dsc)
1068 {
1069 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1070 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1071 }
1072
1073 static void
1074 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1075 CORE_ADDR to, struct regcache *regs,
1076 arm_displaced_step_closure *dsc)
1077 {
1078 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1079
1080 dsc->numinsns = 1;
1081 dsc->insn_addr = from;
1082 dsc->cleanup = &cleanup_kernel_helper_return;
1083 /* Say we wrote to the PC, else cleanup will set PC to the next
1084 instruction in the helper, which isn't helpful. */
1085 dsc->wrote_to_pc = 1;
1086
1087 /* Preparation: tmp[0] <- r14
1088 r14 <- <scratch space>+4
1089 *(<scratch space>+8) <- from
1090 Insn: ldr pc, [r14, #4]
1091 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1092
1093 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1094 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1095 CANNOT_WRITE_PC);
1096 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1097
1098 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1099 }
1100
1101 /* Linux-specific displaced step instruction copying function. Detects when
1102 the program has stepped into a Linux kernel helper routine (which must be
1103 handled as a special case). */
1104
1105 static struct displaced_step_closure *
1106 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1107 CORE_ADDR from, CORE_ADDR to,
1108 struct regcache *regs)
1109 {
1110 arm_displaced_step_closure *dsc = new arm_displaced_step_closure;
1111
1112 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1113 stop at the return location. */
1114 if (from > 0xffff0000)
1115 {
1116 if (debug_displaced)
1117 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1118 "at %.8lx\n", (unsigned long) from);
1119
1120 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1121 }
1122 else
1123 {
1124 /* Override the default handling of SVC instructions. */
1125 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1126
1127 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1128 }
1129
1130 arm_displaced_init_closure (gdbarch, from, to, dsc);
1131
1132 return dsc;
1133 }
1134
1135 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1136 gdbarch.h. */
1137
1138 static int
1139 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1140 {
1141 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
1142 || *s == '[' /* Register indirection or
1143 displacement. */
1144 || isalpha (*s)); /* Register value. */
1145 }
1146
1147 /* This routine is used to parse a special token in ARM's assembly.
1148
1149 The special tokens parsed by it are:
1150
1151 - Register displacement (e.g, [fp, #-8])
1152
1153 It returns one if the special token has been parsed successfully,
1154 or zero if the current token is not considered special. */
1155
1156 static int
1157 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1158 struct stap_parse_info *p)
1159 {
1160 if (*p->arg == '[')
1161 {
1162 /* Temporary holder for lookahead. */
1163 const char *tmp = p->arg;
1164 char *endp;
1165 /* Used to save the register name. */
1166 const char *start;
1167 char *regname;
1168 int len, offset;
1169 int got_minus = 0;
1170 long displacement;
1171 struct stoken str;
1172
1173 ++tmp;
1174 start = tmp;
1175
1176 /* Register name. */
1177 while (isalnum (*tmp))
1178 ++tmp;
1179
1180 if (*tmp != ',')
1181 return 0;
1182
1183 len = tmp - start;
1184 regname = (char *) alloca (len + 2);
1185
1186 offset = 0;
1187 if (isdigit (*start))
1188 {
1189 /* If we are dealing with a register whose name begins with a
1190 digit, it means we should prefix the name with the letter
1191 `r', because GDB expects this name pattern. Otherwise (e.g.,
1192 we are dealing with the register `fp'), we don't need to
1193 add such a prefix. */
1194 regname[0] = 'r';
1195 offset = 1;
1196 }
1197
1198 strncpy (regname + offset, start, len);
1199 len += offset;
1200 regname[len] = '\0';
1201
1202 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1203 error (_("Invalid register name `%s' on expression `%s'."),
1204 regname, p->saved_arg);
1205
1206 ++tmp;
1207 tmp = skip_spaces (tmp);
1208 if (*tmp == '#' || *tmp == '$')
1209 ++tmp;
1210
1211 if (*tmp == '-')
1212 {
1213 ++tmp;
1214 got_minus = 1;
1215 }
1216
1217 displacement = strtol (tmp, &endp, 10);
1218 tmp = endp;
1219
1220 /* Skipping last `]'. */
1221 if (*tmp++ != ']')
1222 return 0;
1223
1224 /* The displacement. */
1225 write_exp_elt_opcode (&p->pstate, OP_LONG);
1226 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1227 write_exp_elt_longcst (&p->pstate, displacement);
1228 write_exp_elt_opcode (&p->pstate, OP_LONG);
1229 if (got_minus)
1230 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
1231
1232 /* The register name. */
1233 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1234 str.ptr = regname;
1235 str.length = len;
1236 write_exp_string (&p->pstate, str);
1237 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1238
1239 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
1240
1241 /* Casting to the expected type. */
1242 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1243 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1244 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1245
1246 write_exp_elt_opcode (&p->pstate, UNOP_IND);
1247
1248 p->arg = tmp;
1249 }
1250 else
1251 return 0;
1252
1253 return 1;
1254 }
1255
1256 /* ARM process record-replay constructs: syscall, signal etc. */
1257
1258 struct linux_record_tdep arm_linux_record_tdep;
1259
1260 /* arm_canonicalize_syscall maps from the native arm Linux set
1261 of syscall ids into a canonical set of syscall ids used by
1262 process record. */
1263
1264 static enum gdb_syscall
1265 arm_canonicalize_syscall (int syscall)
1266 {
1267 switch (syscall)
1268 {
1269 case 0: return gdb_sys_restart_syscall;
1270 case 1: return gdb_sys_exit;
1271 case 2: return gdb_sys_fork;
1272 case 3: return gdb_sys_read;
1273 case 4: return gdb_sys_write;
1274 case 5: return gdb_sys_open;
1275 case 6: return gdb_sys_close;
1276 case 8: return gdb_sys_creat;
1277 case 9: return gdb_sys_link;
1278 case 10: return gdb_sys_unlink;
1279 case 11: return gdb_sys_execve;
1280 case 12: return gdb_sys_chdir;
1281 case 13: return gdb_sys_time;
1282 case 14: return gdb_sys_mknod;
1283 case 15: return gdb_sys_chmod;
1284 case 16: return gdb_sys_lchown16;
1285 case 19: return gdb_sys_lseek;
1286 case 20: return gdb_sys_getpid;
1287 case 21: return gdb_sys_mount;
1288 case 22: return gdb_sys_oldumount;
1289 case 23: return gdb_sys_setuid16;
1290 case 24: return gdb_sys_getuid16;
1291 case 25: return gdb_sys_stime;
1292 case 26: return gdb_sys_ptrace;
1293 case 27: return gdb_sys_alarm;
1294 case 29: return gdb_sys_pause;
1295 case 30: return gdb_sys_utime;
1296 case 33: return gdb_sys_access;
1297 case 34: return gdb_sys_nice;
1298 case 36: return gdb_sys_sync;
1299 case 37: return gdb_sys_kill;
1300 case 38: return gdb_sys_rename;
1301 case 39: return gdb_sys_mkdir;
1302 case 40: return gdb_sys_rmdir;
1303 case 41: return gdb_sys_dup;
1304 case 42: return gdb_sys_pipe;
1305 case 43: return gdb_sys_times;
1306 case 45: return gdb_sys_brk;
1307 case 46: return gdb_sys_setgid16;
1308 case 47: return gdb_sys_getgid16;
1309 case 49: return gdb_sys_geteuid16;
1310 case 50: return gdb_sys_getegid16;
1311 case 51: return gdb_sys_acct;
1312 case 52: return gdb_sys_umount;
1313 case 54: return gdb_sys_ioctl;
1314 case 55: return gdb_sys_fcntl;
1315 case 57: return gdb_sys_setpgid;
1316 case 60: return gdb_sys_umask;
1317 case 61: return gdb_sys_chroot;
1318 case 62: return gdb_sys_ustat;
1319 case 63: return gdb_sys_dup2;
1320 case 64: return gdb_sys_getppid;
1321 case 65: return gdb_sys_getpgrp;
1322 case 66: return gdb_sys_setsid;
1323 case 67: return gdb_sys_sigaction;
1324 case 70: return gdb_sys_setreuid16;
1325 case 71: return gdb_sys_setregid16;
1326 case 72: return gdb_sys_sigsuspend;
1327 case 73: return gdb_sys_sigpending;
1328 case 74: return gdb_sys_sethostname;
1329 case 75: return gdb_sys_setrlimit;
1330 case 76: return gdb_sys_getrlimit;
1331 case 77: return gdb_sys_getrusage;
1332 case 78: return gdb_sys_gettimeofday;
1333 case 79: return gdb_sys_settimeofday;
1334 case 80: return gdb_sys_getgroups16;
1335 case 81: return gdb_sys_setgroups16;
1336 case 82: return gdb_sys_select;
1337 case 83: return gdb_sys_symlink;
1338 case 85: return gdb_sys_readlink;
1339 case 86: return gdb_sys_uselib;
1340 case 87: return gdb_sys_swapon;
1341 case 88: return gdb_sys_reboot;
1342 case 89: return gdb_old_readdir;
1343 case 90: return gdb_old_mmap;
1344 case 91: return gdb_sys_munmap;
1345 case 92: return gdb_sys_truncate;
1346 case 93: return gdb_sys_ftruncate;
1347 case 94: return gdb_sys_fchmod;
1348 case 95: return gdb_sys_fchown16;
1349 case 96: return gdb_sys_getpriority;
1350 case 97: return gdb_sys_setpriority;
1351 case 99: return gdb_sys_statfs;
1352 case 100: return gdb_sys_fstatfs;
1353 case 102: return gdb_sys_socketcall;
1354 case 103: return gdb_sys_syslog;
1355 case 104: return gdb_sys_setitimer;
1356 case 105: return gdb_sys_getitimer;
1357 case 106: return gdb_sys_stat;
1358 case 107: return gdb_sys_lstat;
1359 case 108: return gdb_sys_fstat;
1360 case 111: return gdb_sys_vhangup;
1361 case 113: /* sys_syscall */
1362 return gdb_sys_no_syscall;
1363 case 114: return gdb_sys_wait4;
1364 case 115: return gdb_sys_swapoff;
1365 case 116: return gdb_sys_sysinfo;
1366 case 117: return gdb_sys_ipc;
1367 case 118: return gdb_sys_fsync;
1368 case 119: return gdb_sys_sigreturn;
1369 case 120: return gdb_sys_clone;
1370 case 121: return gdb_sys_setdomainname;
1371 case 122: return gdb_sys_uname;
1372 case 124: return gdb_sys_adjtimex;
1373 case 125: return gdb_sys_mprotect;
1374 case 126: return gdb_sys_sigprocmask;
1375 case 128: return gdb_sys_init_module;
1376 case 129: return gdb_sys_delete_module;
1377 case 131: return gdb_sys_quotactl;
1378 case 132: return gdb_sys_getpgid;
1379 case 133: return gdb_sys_fchdir;
1380 case 134: return gdb_sys_bdflush;
1381 case 135: return gdb_sys_sysfs;
1382 case 136: return gdb_sys_personality;
1383 case 138: return gdb_sys_setfsuid16;
1384 case 139: return gdb_sys_setfsgid16;
1385 case 140: return gdb_sys_llseek;
1386 case 141: return gdb_sys_getdents;
1387 case 142: return gdb_sys_select;
1388 case 143: return gdb_sys_flock;
1389 case 144: return gdb_sys_msync;
1390 case 145: return gdb_sys_readv;
1391 case 146: return gdb_sys_writev;
1392 case 147: return gdb_sys_getsid;
1393 case 148: return gdb_sys_fdatasync;
1394 case 149: return gdb_sys_sysctl;
1395 case 150: return gdb_sys_mlock;
1396 case 151: return gdb_sys_munlock;
1397 case 152: return gdb_sys_mlockall;
1398 case 153: return gdb_sys_munlockall;
1399 case 154: return gdb_sys_sched_setparam;
1400 case 155: return gdb_sys_sched_getparam;
1401 case 156: return gdb_sys_sched_setscheduler;
1402 case 157: return gdb_sys_sched_getscheduler;
1403 case 158: return gdb_sys_sched_yield;
1404 case 159: return gdb_sys_sched_get_priority_max;
1405 case 160: return gdb_sys_sched_get_priority_min;
1406 case 161: return gdb_sys_sched_rr_get_interval;
1407 case 162: return gdb_sys_nanosleep;
1408 case 163: return gdb_sys_mremap;
1409 case 164: return gdb_sys_setresuid16;
1410 case 165: return gdb_sys_getresuid16;
1411 case 168: return gdb_sys_poll;
1412 case 169: return gdb_sys_nfsservctl;
1413 case 170: return gdb_sys_setresgid;
1414 case 171: return gdb_sys_getresgid;
1415 case 172: return gdb_sys_prctl;
1416 case 173: return gdb_sys_rt_sigreturn;
1417 case 174: return gdb_sys_rt_sigaction;
1418 case 175: return gdb_sys_rt_sigprocmask;
1419 case 176: return gdb_sys_rt_sigpending;
1420 case 177: return gdb_sys_rt_sigtimedwait;
1421 case 178: return gdb_sys_rt_sigqueueinfo;
1422 case 179: return gdb_sys_rt_sigsuspend;
1423 case 180: return gdb_sys_pread64;
1424 case 181: return gdb_sys_pwrite64;
1425 case 182: return gdb_sys_chown;
1426 case 183: return gdb_sys_getcwd;
1427 case 184: return gdb_sys_capget;
1428 case 185: return gdb_sys_capset;
1429 case 186: return gdb_sys_sigaltstack;
1430 case 187: return gdb_sys_sendfile;
1431 case 190: return gdb_sys_vfork;
1432 case 191: return gdb_sys_getrlimit;
1433 case 192: return gdb_sys_mmap2;
1434 case 193: return gdb_sys_truncate64;
1435 case 194: return gdb_sys_ftruncate64;
1436 case 195: return gdb_sys_stat64;
1437 case 196: return gdb_sys_lstat64;
1438 case 197: return gdb_sys_fstat64;
1439 case 198: return gdb_sys_lchown;
1440 case 199: return gdb_sys_getuid;
1441 case 200: return gdb_sys_getgid;
1442 case 201: return gdb_sys_geteuid;
1443 case 202: return gdb_sys_getegid;
1444 case 203: return gdb_sys_setreuid;
1445 case 204: return gdb_sys_setregid;
1446 case 205: return gdb_sys_getgroups;
1447 case 206: return gdb_sys_setgroups;
1448 case 207: return gdb_sys_fchown;
1449 case 208: return gdb_sys_setresuid;
1450 case 209: return gdb_sys_getresuid;
1451 case 210: return gdb_sys_setresgid;
1452 case 211: return gdb_sys_getresgid;
1453 case 212: return gdb_sys_chown;
1454 case 213: return gdb_sys_setuid;
1455 case 214: return gdb_sys_setgid;
1456 case 215: return gdb_sys_setfsuid;
1457 case 216: return gdb_sys_setfsgid;
1458 case 217: return gdb_sys_getdents64;
1459 case 218: return gdb_sys_pivot_root;
1460 case 219: return gdb_sys_mincore;
1461 case 220: return gdb_sys_madvise;
1462 case 221: return gdb_sys_fcntl64;
1463 case 224: return gdb_sys_gettid;
1464 case 225: return gdb_sys_readahead;
1465 case 226: return gdb_sys_setxattr;
1466 case 227: return gdb_sys_lsetxattr;
1467 case 228: return gdb_sys_fsetxattr;
1468 case 229: return gdb_sys_getxattr;
1469 case 230: return gdb_sys_lgetxattr;
1470 case 231: return gdb_sys_fgetxattr;
1471 case 232: return gdb_sys_listxattr;
1472 case 233: return gdb_sys_llistxattr;
1473 case 234: return gdb_sys_flistxattr;
1474 case 235: return gdb_sys_removexattr;
1475 case 236: return gdb_sys_lremovexattr;
1476 case 237: return gdb_sys_fremovexattr;
1477 case 238: return gdb_sys_tkill;
1478 case 239: return gdb_sys_sendfile64;
1479 case 240: return gdb_sys_futex;
1480 case 241: return gdb_sys_sched_setaffinity;
1481 case 242: return gdb_sys_sched_getaffinity;
1482 case 243: return gdb_sys_io_setup;
1483 case 244: return gdb_sys_io_destroy;
1484 case 245: return gdb_sys_io_getevents;
1485 case 246: return gdb_sys_io_submit;
1486 case 247: return gdb_sys_io_cancel;
1487 case 248: return gdb_sys_exit_group;
1488 case 249: return gdb_sys_lookup_dcookie;
1489 case 250: return gdb_sys_epoll_create;
1490 case 251: return gdb_sys_epoll_ctl;
1491 case 252: return gdb_sys_epoll_wait;
1492 case 253: return gdb_sys_remap_file_pages;
1493 case 256: return gdb_sys_set_tid_address;
1494 case 257: return gdb_sys_timer_create;
1495 case 258: return gdb_sys_timer_settime;
1496 case 259: return gdb_sys_timer_gettime;
1497 case 260: return gdb_sys_timer_getoverrun;
1498 case 261: return gdb_sys_timer_delete;
1499 case 262: return gdb_sys_clock_settime;
1500 case 263: return gdb_sys_clock_gettime;
1501 case 264: return gdb_sys_clock_getres;
1502 case 265: return gdb_sys_clock_nanosleep;
1503 case 266: return gdb_sys_statfs64;
1504 case 267: return gdb_sys_fstatfs64;
1505 case 268: return gdb_sys_tgkill;
1506 case 269: return gdb_sys_utimes;
1507 /*
1508 case 270: return gdb_sys_arm_fadvise64_64;
1509 case 271: return gdb_sys_pciconfig_iobase;
1510 case 272: return gdb_sys_pciconfig_read;
1511 case 273: return gdb_sys_pciconfig_write;
1512 */
1513 case 274: return gdb_sys_mq_open;
1514 case 275: return gdb_sys_mq_unlink;
1515 case 276: return gdb_sys_mq_timedsend;
1516 case 277: return gdb_sys_mq_timedreceive;
1517 case 278: return gdb_sys_mq_notify;
1518 case 279: return gdb_sys_mq_getsetattr;
1519 case 280: return gdb_sys_waitid;
1520 case 281: return gdb_sys_socket;
1521 case 282: return gdb_sys_bind;
1522 case 283: return gdb_sys_connect;
1523 case 284: return gdb_sys_listen;
1524 case 285: return gdb_sys_accept;
1525 case 286: return gdb_sys_getsockname;
1526 case 287: return gdb_sys_getpeername;
1527 case 288: return gdb_sys_socketpair;
1528 case 289: /* send */ return gdb_sys_no_syscall;
1529 case 290: return gdb_sys_sendto;
1530 case 291: return gdb_sys_recv;
1531 case 292: return gdb_sys_recvfrom;
1532 case 293: return gdb_sys_shutdown;
1533 case 294: return gdb_sys_setsockopt;
1534 case 295: return gdb_sys_getsockopt;
1535 case 296: return gdb_sys_sendmsg;
1536 case 297: return gdb_sys_recvmsg;
1537 case 298: return gdb_sys_semop;
1538 case 299: return gdb_sys_semget;
1539 case 300: return gdb_sys_semctl;
1540 case 301: return gdb_sys_msgsnd;
1541 case 302: return gdb_sys_msgrcv;
1542 case 303: return gdb_sys_msgget;
1543 case 304: return gdb_sys_msgctl;
1544 case 305: return gdb_sys_shmat;
1545 case 306: return gdb_sys_shmdt;
1546 case 307: return gdb_sys_shmget;
1547 case 308: return gdb_sys_shmctl;
1548 case 309: return gdb_sys_add_key;
1549 case 310: return gdb_sys_request_key;
1550 case 311: return gdb_sys_keyctl;
1551 case 312: return gdb_sys_semtimedop;
1552 case 313: /* vserver */ return gdb_sys_no_syscall;
1553 case 314: return gdb_sys_ioprio_set;
1554 case 315: return gdb_sys_ioprio_get;
1555 case 316: return gdb_sys_inotify_init;
1556 case 317: return gdb_sys_inotify_add_watch;
1557 case 318: return gdb_sys_inotify_rm_watch;
1558 case 319: return gdb_sys_mbind;
1559 case 320: return gdb_sys_get_mempolicy;
1560 case 321: return gdb_sys_set_mempolicy;
1561 case 322: return gdb_sys_openat;
1562 case 323: return gdb_sys_mkdirat;
1563 case 324: return gdb_sys_mknodat;
1564 case 325: return gdb_sys_fchownat;
1565 case 326: return gdb_sys_futimesat;
1566 case 327: return gdb_sys_fstatat64;
1567 case 328: return gdb_sys_unlinkat;
1568 case 329: return gdb_sys_renameat;
1569 case 330: return gdb_sys_linkat;
1570 case 331: return gdb_sys_symlinkat;
1571 case 332: return gdb_sys_readlinkat;
1572 case 333: return gdb_sys_fchmodat;
1573 case 334: return gdb_sys_faccessat;
1574 case 335: return gdb_sys_pselect6;
1575 case 336: return gdb_sys_ppoll;
1576 case 337: return gdb_sys_unshare;
1577 case 338: return gdb_sys_set_robust_list;
1578 case 339: return gdb_sys_get_robust_list;
1579 case 340: return gdb_sys_splice;
1580 /*case 341: return gdb_sys_arm_sync_file_range;*/
1581 case 342: return gdb_sys_tee;
1582 case 343: return gdb_sys_vmsplice;
1583 case 344: return gdb_sys_move_pages;
1584 case 345: return gdb_sys_getcpu;
1585 case 346: return gdb_sys_epoll_pwait;
1586 case 347: return gdb_sys_kexec_load;
1587 /*
1588 case 348: return gdb_sys_utimensat;
1589 case 349: return gdb_sys_signalfd;
1590 case 350: return gdb_sys_timerfd_create;
1591 case 351: return gdb_sys_eventfd;
1592 */
1593 case 352: return gdb_sys_fallocate;
1594 /*
1595 case 353: return gdb_sys_timerfd_settime;
1596 case 354: return gdb_sys_timerfd_gettime;
1597 case 355: return gdb_sys_signalfd4;
1598 */
1599 case 356: return gdb_sys_eventfd2;
1600 case 357: return gdb_sys_epoll_create1;
1601 case 358: return gdb_sys_dup3;
1602 case 359: return gdb_sys_pipe2;
1603 case 360: return gdb_sys_inotify_init1;
1604 /*
1605 case 361: return gdb_sys_preadv;
1606 case 362: return gdb_sys_pwritev;
1607 case 363: return gdb_sys_rt_tgsigqueueinfo;
1608 case 364: return gdb_sys_perf_event_open;
1609 case 365: return gdb_sys_recvmmsg;
1610 case 366: return gdb_sys_accept4;
1611 case 367: return gdb_sys_fanotify_init;
1612 case 368: return gdb_sys_fanotify_mark;
1613 case 369: return gdb_sys_prlimit64;
1614 case 370: return gdb_sys_name_to_handle_at;
1615 case 371: return gdb_sys_open_by_handle_at;
1616 case 372: return gdb_sys_clock_adjtime;
1617 case 373: return gdb_sys_syncfs;
1618 case 374: return gdb_sys_sendmmsg;
1619 case 375: return gdb_sys_setns;
1620 case 376: return gdb_sys_process_vm_readv;
1621 case 377: return gdb_sys_process_vm_writev;
1622 case 378: return gdb_sys_kcmp;
1623 case 379: return gdb_sys_finit_module;
1624 */
1625 case 983041: /* ARM_breakpoint */ return gdb_sys_no_syscall;
1626 case 983042: /* ARM_cacheflush */ return gdb_sys_no_syscall;
1627 case 983043: /* ARM_usr26 */ return gdb_sys_no_syscall;
1628 case 983044: /* ARM_usr32 */ return gdb_sys_no_syscall;
1629 case 983045: /* ARM_set_tls */ return gdb_sys_no_syscall;
1630 default: return gdb_sys_no_syscall;
1631 }
1632 }
1633
1634 /* Record all registers but PC register for process-record. */
1635
1636 static int
1637 arm_all_but_pc_registers_record (struct regcache *regcache)
1638 {
1639 int i;
1640
1641 for (i = 0; i < ARM_PC_REGNUM; i++)
1642 {
1643 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1644 return -1;
1645 }
1646
1647 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1648 return -1;
1649
1650 return 0;
1651 }
1652
1653 /* Handler for arm system call instruction recording. */
1654
1655 static int
1656 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1657 {
1658 int ret = 0;
1659 enum gdb_syscall syscall_gdb;
1660
1661 syscall_gdb = arm_canonicalize_syscall (svc_number);
1662
1663 if (syscall_gdb == gdb_sys_no_syscall)
1664 {
1665 printf_unfiltered (_("Process record and replay target doesn't "
1666 "support syscall number %s\n"),
1667 plongest (svc_number));
1668 return -1;
1669 }
1670
1671 if (syscall_gdb == gdb_sys_sigreturn
1672 || syscall_gdb == gdb_sys_rt_sigreturn)
1673 {
1674 if (arm_all_but_pc_registers_record (regcache))
1675 return -1;
1676 return 0;
1677 }
1678
1679 ret = record_linux_system_call (syscall_gdb, regcache,
1680 &arm_linux_record_tdep);
1681 if (ret != 0)
1682 return ret;
1683
1684 /* Record the return value of the system call. */
1685 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1686 return -1;
1687 /* Record LR. */
1688 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1689 return -1;
1690 /* Record CPSR. */
1691 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1692 return -1;
1693
1694 return 0;
1695 }
1696
1697 /* Implement the skip_trampoline_code gdbarch method. */
1698
1699 static CORE_ADDR
1700 arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1701 {
1702 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1703
1704 if (target_pc != 0)
1705 return target_pc;
1706
1707 return find_solib_trampoline_target (frame, pc);
1708 }
1709
1710 /* Implement the gcc_target_options gdbarch method. */
1711
1712 static char *
1713 arm_linux_gcc_target_options (struct gdbarch *gdbarch)
1714 {
1715 /* GCC doesn't know "-m32". */
1716 return NULL;
1717 }
1718
1719 static void
1720 arm_linux_init_abi (struct gdbarch_info info,
1721 struct gdbarch *gdbarch)
1722 {
1723 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1724 static const char *const stap_register_prefixes[] = { "r", NULL };
1725 static const char *const stap_register_indirection_prefixes[] = { "[",
1726 NULL };
1727 static const char *const stap_register_indirection_suffixes[] = { "]",
1728 NULL };
1729 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1730
1731 linux_init_abi (info, gdbarch);
1732
1733 tdep->lowest_pc = 0x8000;
1734 if (info.byte_order_for_code == BFD_ENDIAN_BIG)
1735 {
1736 if (tdep->arm_abi == ARM_ABI_AAPCS)
1737 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1738 else
1739 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1740 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1741 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1742 }
1743 else
1744 {
1745 if (tdep->arm_abi == ARM_ABI_AAPCS)
1746 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1747 else
1748 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1749 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1750 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1751 }
1752 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1753 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1754 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1755
1756 if (tdep->fp_model == ARM_FLOAT_AUTO)
1757 tdep->fp_model = ARM_FLOAT_FPA;
1758
1759 switch (tdep->fp_model)
1760 {
1761 case ARM_FLOAT_FPA:
1762 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1763 break;
1764 case ARM_FLOAT_SOFT_FPA:
1765 case ARM_FLOAT_SOFT_VFP:
1766 case ARM_FLOAT_VFP:
1767 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1768 break;
1769 default:
1770 internal_error
1771 (__FILE__, __LINE__,
1772 _("arm_linux_init_abi: Floating point model not supported"));
1773 break;
1774 }
1775 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1776
1777 set_solib_svr4_fetch_link_map_offsets
1778 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1779
1780 /* Single stepping. */
1781 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1782
1783 /* Shared library handling. */
1784 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1785 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1786
1787 /* Enable TLS support. */
1788 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1789 svr4_fetch_objfile_link_map);
1790
1791 tramp_frame_prepend_unwinder (gdbarch,
1792 &arm_linux_sigreturn_tramp_frame);
1793 tramp_frame_prepend_unwinder (gdbarch,
1794 &arm_linux_rt_sigreturn_tramp_frame);
1795 tramp_frame_prepend_unwinder (gdbarch,
1796 &arm_eabi_linux_sigreturn_tramp_frame);
1797 tramp_frame_prepend_unwinder (gdbarch,
1798 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1799 tramp_frame_prepend_unwinder (gdbarch,
1800 &thumb2_eabi_linux_sigreturn_tramp_frame);
1801 tramp_frame_prepend_unwinder (gdbarch,
1802 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1803 tramp_frame_prepend_unwinder (gdbarch,
1804 &arm_linux_restart_syscall_tramp_frame);
1805 tramp_frame_prepend_unwinder (gdbarch,
1806 &arm_kernel_linux_restart_syscall_tramp_frame);
1807
1808 /* Core file support. */
1809 set_gdbarch_iterate_over_regset_sections
1810 (gdbarch, arm_linux_iterate_over_regset_sections);
1811 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1812
1813 /* Displaced stepping. */
1814 set_gdbarch_displaced_step_copy_insn (gdbarch,
1815 arm_linux_displaced_step_copy_insn);
1816 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1817 set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
1818
1819 /* Reversible debugging, process record. */
1820 set_gdbarch_process_record (gdbarch, arm_process_record);
1821
1822 /* SystemTap functions. */
1823 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1824 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1825 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1826 stap_register_indirection_prefixes);
1827 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1828 stap_register_indirection_suffixes);
1829 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1830 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1831 set_gdbarch_stap_parse_special_token (gdbarch,
1832 arm_stap_parse_special_token);
1833
1834 /* `catch syscall' */
1835 set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
1836 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1837
1838 /* Syscall record. */
1839 tdep->arm_syscall_record = arm_linux_syscall_record;
1840
1841 /* Initialize the arm_linux_record_tdep. */
1842 /* These values are the size of the type that will be used in a system
1843 call. They are obtained from Linux Kernel source. */
1844 arm_linux_record_tdep.size_pointer
1845 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1846 arm_linux_record_tdep.size__old_kernel_stat = 32;
1847 arm_linux_record_tdep.size_tms = 16;
1848 arm_linux_record_tdep.size_loff_t = 8;
1849 arm_linux_record_tdep.size_flock = 16;
1850 arm_linux_record_tdep.size_oldold_utsname = 45;
1851 arm_linux_record_tdep.size_ustat = 20;
1852 arm_linux_record_tdep.size_old_sigaction = 16;
1853 arm_linux_record_tdep.size_old_sigset_t = 4;
1854 arm_linux_record_tdep.size_rlimit = 8;
1855 arm_linux_record_tdep.size_rusage = 72;
1856 arm_linux_record_tdep.size_timeval = 8;
1857 arm_linux_record_tdep.size_timezone = 8;
1858 arm_linux_record_tdep.size_old_gid_t = 2;
1859 arm_linux_record_tdep.size_old_uid_t = 2;
1860 arm_linux_record_tdep.size_fd_set = 128;
1861 arm_linux_record_tdep.size_old_dirent = 268;
1862 arm_linux_record_tdep.size_statfs = 64;
1863 arm_linux_record_tdep.size_statfs64 = 84;
1864 arm_linux_record_tdep.size_sockaddr = 16;
1865 arm_linux_record_tdep.size_int
1866 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1867 arm_linux_record_tdep.size_long
1868 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1869 arm_linux_record_tdep.size_ulong
1870 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1871 arm_linux_record_tdep.size_msghdr = 28;
1872 arm_linux_record_tdep.size_itimerval = 16;
1873 arm_linux_record_tdep.size_stat = 88;
1874 arm_linux_record_tdep.size_old_utsname = 325;
1875 arm_linux_record_tdep.size_sysinfo = 64;
1876 arm_linux_record_tdep.size_msqid_ds = 88;
1877 arm_linux_record_tdep.size_shmid_ds = 84;
1878 arm_linux_record_tdep.size_new_utsname = 390;
1879 arm_linux_record_tdep.size_timex = 128;
1880 arm_linux_record_tdep.size_mem_dqinfo = 24;
1881 arm_linux_record_tdep.size_if_dqblk = 68;
1882 arm_linux_record_tdep.size_fs_quota_stat = 68;
1883 arm_linux_record_tdep.size_timespec = 8;
1884 arm_linux_record_tdep.size_pollfd = 8;
1885 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1886 arm_linux_record_tdep.size_knfsd_fh = 132;
1887 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1888 arm_linux_record_tdep.size_sigaction = 20;
1889 arm_linux_record_tdep.size_sigset_t = 8;
1890 arm_linux_record_tdep.size_siginfo_t = 128;
1891 arm_linux_record_tdep.size_cap_user_data_t = 12;
1892 arm_linux_record_tdep.size_stack_t = 12;
1893 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1894 arm_linux_record_tdep.size_stat64 = 96;
1895 arm_linux_record_tdep.size_gid_t = 4;
1896 arm_linux_record_tdep.size_uid_t = 4;
1897 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1898 arm_linux_record_tdep.size_flock64 = 24;
1899 arm_linux_record_tdep.size_user_desc = 16;
1900 arm_linux_record_tdep.size_io_event = 32;
1901 arm_linux_record_tdep.size_iocb = 64;
1902 arm_linux_record_tdep.size_epoll_event = 12;
1903 arm_linux_record_tdep.size_itimerspec
1904 = arm_linux_record_tdep.size_timespec * 2;
1905 arm_linux_record_tdep.size_mq_attr = 32;
1906 arm_linux_record_tdep.size_termios = 36;
1907 arm_linux_record_tdep.size_termios2 = 44;
1908 arm_linux_record_tdep.size_pid_t = 4;
1909 arm_linux_record_tdep.size_winsize = 8;
1910 arm_linux_record_tdep.size_serial_struct = 60;
1911 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1912 arm_linux_record_tdep.size_hayes_esp_config = 12;
1913 arm_linux_record_tdep.size_size_t = 4;
1914 arm_linux_record_tdep.size_iovec = 8;
1915 arm_linux_record_tdep.size_time_t = 4;
1916
1917 /* These values are the second argument of system call "sys_ioctl".
1918 They are obtained from Linux Kernel source. */
1919 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1920 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1921 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1922 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1923 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1924 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1925 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1926 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1927 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1928 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1929 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1930 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1931 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1932 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1933 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1934 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1935 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1936 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1937 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1938 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1939 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1940 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1941 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1942 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1943 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1944 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1945 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1946 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1947 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1948 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1949 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1950 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1951 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1952 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1953 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1954 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1955 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1956 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1957 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1958 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1959 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1960 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1961 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1962 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1963 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1964 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1965 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1966 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1967 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1968 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1969 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1970 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1971 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1972 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1973 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1974 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1975 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1976 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1977 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1978 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1979 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1980 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1981 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1982 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1983 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1984
1985 /* These values are the second argument of system call "sys_fcntl"
1986 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1987 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1988 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1989 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1990 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1991
1992 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM;
1993 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 1;
1994 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 2;
1995 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
1996 arm_linux_record_tdep.arg5 = ARM_A1_REGNUM + 4;
1997 arm_linux_record_tdep.arg6 = ARM_A1_REGNUM + 5;
1998 arm_linux_record_tdep.arg7 = ARM_A1_REGNUM + 6;
1999
2000 set_gdbarch_gcc_target_options (gdbarch, arm_linux_gcc_target_options);
2001 }
2002
2003 void
2004 _initialize_arm_linux_tdep (void)
2005 {
2006 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
2007 arm_linux_init_abi);
2008 }
This page took 0.07317 seconds and 5 git commands to generate.