2004-02-14 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
31 #include "regcache.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39
40 #include "arm-tdep.h"
41 #include "gdb/sim-arm.h"
42
43 #include "elf-bfd.h"
44 #include "coff/internal.h"
45 #include "elf/arm.h"
46
47 #include "gdb_assert.h"
48
49 static int arm_debug;
50
51 /* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
53
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
57
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
62
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
65 be 0.
66
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
71
72 #ifdef SIGCONTEXT_REGISTER_ADDRESS
73 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
75 #endif
76 #else
77 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
79 #endif
80
81 /* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
83 is used for this purpose.
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
87
88 #define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 | 0x80000000)
91
92 #define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
94
95 /* The list of available "set arm ..." and "show arm ..." commands. */
96 static struct cmd_list_element *setarmcmdlist = NULL;
97 static struct cmd_list_element *showarmcmdlist = NULL;
98
99 /* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101 static const char *fp_model_strings[] =
102 {
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
107 "vfp"
108 };
109
110 /* A variable that can be configured by the user. */
111 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112 static const char *current_fp_model = "auto";
113
114 /* Number of different reg name sets (options). */
115 static int num_disassembly_options;
116
117 /* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
121
122 /* Initial value: Register names used in ARM's ISA documentation. */
123 static char * arm_register_name_strings[] =
124 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
130 "fps", "cpsr" }; /* 24 25 */
131 static char **arm_register_names = arm_register_name_strings;
132
133 /* Valid register name styles. */
134 static const char **valid_disassembly_styles;
135
136 /* Disassembly style to use. Default to "std" register names. */
137 static const char *disassembly_style;
138 /* Index to that option in the opcodes table. */
139 static int current_option;
140
141 /* This is used to keep the bfd arch_info in sync with the disassembly
142 style. */
143 static void set_disassembly_style_sfunc(char *, int,
144 struct cmd_list_element *);
145 static void set_disassembly_style (void);
146
147 static void convert_from_extended (const struct floatformat *, const void *,
148 void *);
149 static void convert_to_extended (const struct floatformat *, void *,
150 const void *);
151
152 struct arm_prologue_cache
153 {
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
157 CORE_ADDR prev_sp;
158
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
163
164 int framesize;
165 int frameoffset;
166
167 /* The register used to hold the frame pointer for this frame. */
168 int framereg;
169
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
172 };
173
174 /* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176 #define IS_THUMB_ADDR(addr) ((addr) & 1)
177 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
179
180 /* Set to true if the 32-bit mode is in use. */
181
182 int arm_apcs_32 = 1;
183
184 /* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
188 parameter. */
189
190 static int target_is_thumb;
191
192 /* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
194 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
195
196 static int caller_is_thumb;
197
198 /* Determine if the program counter specified in MEMADDR is in a Thumb
199 function. */
200
201 int
202 arm_pc_is_thumb (CORE_ADDR memaddr)
203 {
204 struct minimal_symbol *sym;
205
206 /* If bit 0 of the address is set, assume this is a Thumb address. */
207 if (IS_THUMB_ADDR (memaddr))
208 return 1;
209
210 /* Thumb functions have a "special" bit set in minimal symbols. */
211 sym = lookup_minimal_symbol_by_pc (memaddr);
212 if (sym)
213 {
214 return (MSYMBOL_IS_SPECIAL (sym));
215 }
216 else
217 {
218 return 0;
219 }
220 }
221
222 /* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
224
225 int
226 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
227 {
228 CORE_ADDR sp = read_sp ();
229
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
236 code regions as part of the stack (true for most practical purposes). */
237 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
238 return caller_is_thumb;
239 else
240 return 0;
241 }
242
243 /* Remove useless bits from addresses in a running program. */
244 static CORE_ADDR
245 arm_addr_bits_remove (CORE_ADDR val)
246 {
247 if (arm_apcs_32)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
249 else
250 return (val & 0x03fffffc);
251 }
252
253 /* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
255 static CORE_ADDR
256 arm_smash_text_address (CORE_ADDR val)
257 {
258 return val & ~1;
259 }
260
261 /* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
264 instructions. */
265
266 static CORE_ADDR
267 arm_saved_pc_after_call (struct frame_info *frame)
268 {
269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
270 }
271
272 /* Determine whether the function invocation represented by FI has a
273 frame on the stack associated with it. If it does return zero,
274 otherwise return 1. */
275
276 static int
277 arm_frameless_function_invocation (struct frame_info *fi)
278 {
279 CORE_ADDR func_start, after_prologue;
280 int frameless;
281
282 /* Sometimes we have functions that do a little setup (like saving the
283 vN registers with the stmdb instruction, but DO NOT set up a frame.
284 The symbol table will report this as a prologue. However, it is
285 important not to try to parse these partial frames as frames, or we
286 will get really confused.
287
288 So I will demand 3 instructions between the start & end of the
289 prologue before I call it a real prologue, i.e. at least
290 mov ip, sp,
291 stmdb sp!, {}
292 sub sp, ip, #4. */
293
294 func_start = (get_frame_func (fi) + FUNCTION_START_OFFSET);
295 after_prologue = SKIP_PROLOGUE (func_start);
296
297 /* There are some frameless functions whose first two instructions
298 follow the standard APCS form, in which case after_prologue will
299 be func_start + 8. */
300
301 frameless = (after_prologue < func_start + 12);
302 return frameless;
303 }
304
305 /* A typical Thumb prologue looks like this:
306 push {r7, lr}
307 add sp, sp, #-28
308 add r7, sp, #12
309 Sometimes the latter instruction may be replaced by:
310 mov r7, sp
311
312 or like this:
313 push {r7, lr}
314 mov r7, sp
315 sub sp, #12
316
317 or, on tpcs, like this:
318 sub sp,#16
319 push {r7, lr}
320 (many instructions)
321 mov r7, sp
322 sub sp, #12
323
324 There is always one instruction of three classes:
325 1 - push
326 2 - setting of r7
327 3 - adjusting of sp
328
329 When we have found at least one of each class we are done with the prolog.
330 Note that the "sub sp, #NN" before the push does not count.
331 */
332
333 static CORE_ADDR
334 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
335 {
336 CORE_ADDR current_pc;
337 /* findmask:
338 bit 0 - push { rlist }
339 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
340 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
341 */
342 int findmask = 0;
343
344 for (current_pc = pc;
345 current_pc + 2 < func_end && current_pc < pc + 40;
346 current_pc += 2)
347 {
348 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
349
350 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
351 {
352 findmask |= 1; /* push found */
353 }
354 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
355 sub sp, #simm */
356 {
357 if ((findmask & 1) == 0) /* before push ? */
358 continue;
359 else
360 findmask |= 4; /* add/sub sp found */
361 }
362 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
363 {
364 findmask |= 2; /* setting of r7 found */
365 }
366 else if (insn == 0x466f) /* mov r7, sp */
367 {
368 findmask |= 2; /* setting of r7 found */
369 }
370 else if (findmask == (4+2+1))
371 {
372 /* We have found one of each type of prologue instruction */
373 break;
374 }
375 else
376 /* Something in the prolog that we don't care about or some
377 instruction from outside the prolog scheduled here for
378 optimization. */
379 continue;
380 }
381
382 return current_pc;
383 }
384
385 /* Advance the PC across any function entry prologue instructions to
386 reach some "real" code.
387
388 The APCS (ARM Procedure Call Standard) defines the following
389 prologue:
390
391 mov ip, sp
392 [stmfd sp!, {a1,a2,a3,a4}]
393 stmfd sp!, {...,fp,ip,lr,pc}
394 [stfe f7, [sp, #-12]!]
395 [stfe f6, [sp, #-12]!]
396 [stfe f5, [sp, #-12]!]
397 [stfe f4, [sp, #-12]!]
398 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
399
400 static CORE_ADDR
401 arm_skip_prologue (CORE_ADDR pc)
402 {
403 unsigned long inst;
404 CORE_ADDR skip_pc;
405 CORE_ADDR func_addr, func_end = 0;
406 char *func_name;
407 struct symtab_and_line sal;
408
409 /* If we're in a dummy frame, don't even try to skip the prologue. */
410 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
411 return pc;
412
413 /* See what the symbol table says. */
414
415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
416 {
417 struct symbol *sym;
418
419 /* Found a function. */
420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
422 {
423 /* Don't use this trick for assembly source files. */
424 sal = find_pc_line (func_addr, 0);
425 if ((sal.line != 0) && (sal.end < func_end))
426 return sal.end;
427 }
428 }
429
430 /* Check if this is Thumb code. */
431 if (arm_pc_is_thumb (pc))
432 return thumb_skip_prologue (pc, func_end);
433
434 /* Can't find the prologue end in the symbol table, try it the hard way
435 by disassembling the instructions. */
436
437 /* Like arm_scan_prologue, stop no later than pc + 64. */
438 if (func_end == 0 || func_end > pc + 64)
439 func_end = pc + 64;
440
441 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
442 {
443 inst = read_memory_integer (skip_pc, 4);
444
445 /* "mov ip, sp" is no longer a required part of the prologue. */
446 if (inst == 0xe1a0c00d) /* mov ip, sp */
447 continue;
448
449 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
450 continue;
451
452 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
453 continue;
454
455 /* Some prologues begin with "str lr, [sp, #-4]!". */
456 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
457 continue;
458
459 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
460 continue;
461
462 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
463 continue;
464
465 /* Any insns after this point may float into the code, if it makes
466 for better instruction scheduling, so we skip them only if we
467 find them, but still consider the function to be frame-ful. */
468
469 /* We may have either one sfmfd instruction here, or several stfe
470 insns, depending on the version of floating point code we
471 support. */
472 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
473 continue;
474
475 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
479 continue;
480
481 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
482 continue;
483
484 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
485 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
486 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
487 continue;
488
489 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
490 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
491 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
492 continue;
493
494 /* Un-recognized instruction; stop scanning. */
495 break;
496 }
497
498 return skip_pc; /* End of prologue */
499 }
500
501 /* *INDENT-OFF* */
502 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
503 This function decodes a Thumb function prologue to determine:
504 1) the size of the stack frame
505 2) which registers are saved on it
506 3) the offsets of saved regs
507 4) the offset from the stack pointer to the frame pointer
508
509 A typical Thumb function prologue would create this stack frame
510 (offsets relative to FP)
511 old SP -> 24 stack parameters
512 20 LR
513 16 R7
514 R7 -> 0 local variables (16 bytes)
515 SP -> -12 additional stack space (12 bytes)
516 The frame size would thus be 36 bytes, and the frame offset would be
517 12 bytes. The frame register is R7.
518
519 The comments for thumb_skip_prolog() describe the algorithm we use
520 to detect the end of the prolog. */
521 /* *INDENT-ON* */
522
523 static void
524 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
525 {
526 CORE_ADDR prologue_start;
527 CORE_ADDR prologue_end;
528 CORE_ADDR current_pc;
529 /* Which register has been copied to register n? */
530 int saved_reg[16];
531 /* findmask:
532 bit 0 - push { rlist }
533 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
534 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
535 */
536 int findmask = 0;
537 int i;
538
539 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
540 {
541 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
542
543 if (sal.line == 0) /* no line info, use current PC */
544 prologue_end = prev_pc;
545 else if (sal.end < prologue_end) /* next line begins after fn end */
546 prologue_end = sal.end; /* (probably means no prologue) */
547 }
548 else
549 /* We're in the boondocks: allow for
550 16 pushes, an add, and "mv fp,sp". */
551 prologue_end = prologue_start + 40;
552
553 prologue_end = min (prologue_end, prev_pc);
554
555 /* Initialize the saved register map. When register H is copied to
556 register L, we will put H in saved_reg[L]. */
557 for (i = 0; i < 16; i++)
558 saved_reg[i] = i;
559
560 /* Search the prologue looking for instructions that set up the
561 frame pointer, adjust the stack pointer, and save registers.
562 Do this until all basic prolog instructions are found. */
563
564 cache->framesize = 0;
565 for (current_pc = prologue_start;
566 (current_pc < prologue_end) && ((findmask & 7) != 7);
567 current_pc += 2)
568 {
569 unsigned short insn;
570 int regno;
571 int offset;
572
573 insn = read_memory_unsigned_integer (current_pc, 2);
574
575 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
576 {
577 int mask;
578 findmask |= 1; /* push found */
579 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
580 whether to save LR (R14). */
581 mask = (insn & 0xff) | ((insn & 0x100) << 6);
582
583 /* Calculate offsets of saved R0-R7 and LR. */
584 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
585 if (mask & (1 << regno))
586 {
587 cache->framesize += 4;
588 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
589 /* Reset saved register map. */
590 saved_reg[regno] = regno;
591 }
592 }
593 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
594 sub sp, #simm */
595 {
596 if ((findmask & 1) == 0) /* before push? */
597 continue;
598 else
599 findmask |= 4; /* add/sub sp found */
600
601 offset = (insn & 0x7f) << 2; /* get scaled offset */
602 if (insn & 0x80) /* is it signed? (==subtracting) */
603 {
604 cache->frameoffset += offset;
605 offset = -offset;
606 }
607 cache->framesize -= offset;
608 }
609 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
610 {
611 findmask |= 2; /* setting of r7 found */
612 cache->framereg = THUMB_FP_REGNUM;
613 /* get scaled offset */
614 cache->frameoffset = (insn & 0xff) << 2;
615 }
616 else if (insn == 0x466f) /* mov r7, sp */
617 {
618 findmask |= 2; /* setting of r7 found */
619 cache->framereg = THUMB_FP_REGNUM;
620 cache->frameoffset = 0;
621 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
622 }
623 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
624 {
625 int lo_reg = insn & 7; /* dest. register (r0-r7) */
626 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
627 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
628 }
629 else
630 /* Something in the prolog that we don't care about or some
631 instruction from outside the prolog scheduled here for
632 optimization. */
633 continue;
634 }
635 }
636
637 /* This function decodes an ARM function prologue to determine:
638 1) the size of the stack frame
639 2) which registers are saved on it
640 3) the offsets of saved regs
641 4) the offset from the stack pointer to the frame pointer
642 This information is stored in the "extra" fields of the frame_info.
643
644 There are two basic forms for the ARM prologue. The fixed argument
645 function call will look like:
646
647 mov ip, sp
648 stmfd sp!, {fp, ip, lr, pc}
649 sub fp, ip, #4
650 [sub sp, sp, #4]
651
652 Which would create this stack frame (offsets relative to FP):
653 IP -> 4 (caller's stack)
654 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
655 -4 LR (return address in caller)
656 -8 IP (copy of caller's SP)
657 -12 FP (caller's FP)
658 SP -> -28 Local variables
659
660 The frame size would thus be 32 bytes, and the frame offset would be
661 28 bytes. The stmfd call can also save any of the vN registers it
662 plans to use, which increases the frame size accordingly.
663
664 Note: The stored PC is 8 off of the STMFD instruction that stored it
665 because the ARM Store instructions always store PC + 8 when you read
666 the PC register.
667
668 A variable argument function call will look like:
669
670 mov ip, sp
671 stmfd sp!, {a1, a2, a3, a4}
672 stmfd sp!, {fp, ip, lr, pc}
673 sub fp, ip, #20
674
675 Which would create this stack frame (offsets relative to FP):
676 IP -> 20 (caller's stack)
677 16 A4
678 12 A3
679 8 A2
680 4 A1
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
686
687 The frame size would thus be 48 bytes, and the frame offset would be
688 28 bytes.
689
690 There is another potential complication, which is that the optimizer
691 will try to separate the store of fp in the "stmfd" instruction from
692 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
693 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
694
695 Also, note, the original version of the ARM toolchain claimed that there
696 should be an
697
698 instruction at the end of the prologue. I have never seen GCC produce
699 this, and the ARM docs don't mention it. We still test for it below in
700 case it happens...
701
702 */
703
704 static void
705 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
706 {
707 int regno, sp_offset, fp_offset, ip_offset;
708 CORE_ADDR prologue_start, prologue_end, current_pc;
709 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
710
711 /* Assume there is no frame until proven otherwise. */
712 cache->framereg = ARM_SP_REGNUM;
713 cache->framesize = 0;
714 cache->frameoffset = 0;
715
716 /* Check for Thumb prologue. */
717 if (arm_pc_is_thumb (prev_pc))
718 {
719 thumb_scan_prologue (prev_pc, cache);
720 return;
721 }
722
723 /* Find the function prologue. If we can't find the function in
724 the symbol table, peek in the stack frame to find the PC. */
725 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
726 {
727 /* One way to find the end of the prologue (which works well
728 for unoptimized code) is to do the following:
729
730 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
731
732 if (sal.line == 0)
733 prologue_end = prev_pc;
734 else if (sal.end < prologue_end)
735 prologue_end = sal.end;
736
737 This mechanism is very accurate so long as the optimizer
738 doesn't move any instructions from the function body into the
739 prologue. If this happens, sal.end will be the last
740 instruction in the first hunk of prologue code just before
741 the first instruction that the scheduler has moved from
742 the body to the prologue.
743
744 In order to make sure that we scan all of the prologue
745 instructions, we use a slightly less accurate mechanism which
746 may scan more than necessary. To help compensate for this
747 lack of accuracy, the prologue scanning loop below contains
748 several clauses which'll cause the loop to terminate early if
749 an implausible prologue instruction is encountered.
750
751 The expression
752
753 prologue_start + 64
754
755 is a suitable endpoint since it accounts for the largest
756 possible prologue plus up to five instructions inserted by
757 the scheduler. */
758
759 if (prologue_end > prologue_start + 64)
760 {
761 prologue_end = prologue_start + 64; /* See above. */
762 }
763 }
764 else
765 {
766 /* We have no symbol information. Our only option is to assume this
767 function has a standard stack frame and the normal frame register.
768 Then, we can find the value of our frame pointer on entrance to
769 the callee (or at the present moment if this is the innermost frame).
770 The value stored there should be the address of the stmfd + 8. */
771 CORE_ADDR frame_loc;
772 LONGEST return_value;
773
774 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
775 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
776 return;
777 else
778 {
779 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
780 prologue_end = prologue_start + 64; /* See above. */
781 }
782 }
783
784 if (prev_pc < prologue_end)
785 prologue_end = prev_pc;
786
787 /* Now search the prologue looking for instructions that set up the
788 frame pointer, adjust the stack pointer, and save registers.
789
790 Be careful, however, and if it doesn't look like a prologue,
791 don't try to scan it. If, for instance, a frameless function
792 begins with stmfd sp!, then we will tell ourselves there is
793 a frame, which will confuse stack traceback, as well as "finish"
794 and other operations that rely on a knowledge of the stack
795 traceback.
796
797 In the APCS, the prologue should start with "mov ip, sp" so
798 if we don't see this as the first insn, we will stop.
799
800 [Note: This doesn't seem to be true any longer, so it's now an
801 optional part of the prologue. - Kevin Buettner, 2001-11-20]
802
803 [Note further: The "mov ip,sp" only seems to be missing in
804 frameless functions at optimization level "-O2" or above,
805 in which case it is often (but not always) replaced by
806 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
807
808 sp_offset = fp_offset = ip_offset = 0;
809
810 for (current_pc = prologue_start;
811 current_pc < prologue_end;
812 current_pc += 4)
813 {
814 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
815
816 if (insn == 0xe1a0c00d) /* mov ip, sp */
817 {
818 ip_offset = 0;
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 ip_offset = imm;
827 continue;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 ip_offset = -imm;
835 continue;
836 }
837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
838 {
839 sp_offset -= 4;
840 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
841 continue;
842 }
843 else if ((insn & 0xffff0000) == 0xe92d0000)
844 /* stmfd sp!, {..., fp, ip, lr, pc}
845 or
846 stmfd sp!, {a1, a2, a3, a4} */
847 {
848 int mask = insn & 0xffff;
849
850 /* Calculate offsets of saved registers. */
851 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
852 if (mask & (1 << regno))
853 {
854 sp_offset -= 4;
855 cache->saved_regs[regno].addr = sp_offset;
856 }
857 }
858 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
859 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
860 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
861 {
862 /* No need to add this to saved_regs -- it's just an arg reg. */
863 continue;
864 }
865 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
866 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
867 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
868 {
869 /* No need to add this to saved_regs -- it's just an arg reg. */
870 continue;
871 }
872 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
873 {
874 unsigned imm = insn & 0xff; /* immediate value */
875 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
876 imm = (imm >> rot) | (imm << (32 - rot));
877 fp_offset = -imm + ip_offset;
878 cache->framereg = ARM_FP_REGNUM;
879 }
880 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
881 {
882 unsigned imm = insn & 0xff; /* immediate value */
883 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
884 imm = (imm >> rot) | (imm << (32 - rot));
885 sp_offset -= imm;
886 }
887 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
888 {
889 sp_offset -= 12;
890 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
891 cache->saved_regs[regno].addr = sp_offset;
892 }
893 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
894 {
895 int n_saved_fp_regs;
896 unsigned int fp_start_reg, fp_bound_reg;
897
898 if ((insn & 0x800) == 0x800) /* N0 is set */
899 {
900 if ((insn & 0x40000) == 0x40000) /* N1 is set */
901 n_saved_fp_regs = 3;
902 else
903 n_saved_fp_regs = 1;
904 }
905 else
906 {
907 if ((insn & 0x40000) == 0x40000) /* N1 is set */
908 n_saved_fp_regs = 2;
909 else
910 n_saved_fp_regs = 4;
911 }
912
913 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
914 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
915 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
916 {
917 sp_offset -= 12;
918 cache->saved_regs[fp_start_reg++].addr = sp_offset;
919 }
920 }
921 else if ((insn & 0xf0000000) != 0xe0000000)
922 break; /* Condition not true, exit early */
923 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
924 break; /* Don't scan past a block load */
925 else
926 /* The optimizer might shove anything into the prologue,
927 so we just skip what we don't recognize. */
928 continue;
929 }
930
931 /* The frame size is just the negative of the offset (from the
932 original SP) of the last thing thing we pushed on the stack.
933 The frame offset is [new FP] - [new SP]. */
934 cache->framesize = -sp_offset;
935 if (cache->framereg == ARM_FP_REGNUM)
936 cache->frameoffset = fp_offset - sp_offset;
937 else
938 cache->frameoffset = 0;
939 }
940
941 static struct arm_prologue_cache *
942 arm_make_prologue_cache (struct frame_info *next_frame)
943 {
944 int reg;
945 struct arm_prologue_cache *cache;
946 CORE_ADDR unwound_fp;
947
948 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
949 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
950
951 arm_scan_prologue (next_frame, cache);
952
953 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
954 if (unwound_fp == 0)
955 return cache;
956
957 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
958
959 /* Calculate actual addresses of saved registers using offsets
960 determined by arm_scan_prologue. */
961 for (reg = 0; reg < NUM_REGS; reg++)
962 if (trad_frame_addr_p (cache->saved_regs, reg))
963 cache->saved_regs[reg].addr += cache->prev_sp;
964
965 return cache;
966 }
967
968 /* Our frame ID for a normal frame is the current function's starting PC
969 and the caller's SP when we were called. */
970
971 static void
972 arm_prologue_this_id (struct frame_info *next_frame,
973 void **this_cache,
974 struct frame_id *this_id)
975 {
976 struct arm_prologue_cache *cache;
977 struct frame_id id;
978 CORE_ADDR func;
979
980 if (*this_cache == NULL)
981 *this_cache = arm_make_prologue_cache (next_frame);
982 cache = *this_cache;
983
984 func = frame_func_unwind (next_frame);
985
986 /* This is meant to halt the backtrace at "_start". Make sure we
987 don't halt it at a generic dummy frame. */
988 if (func <= LOWEST_PC)
989 return;
990
991 /* If we've hit a wall, stop. */
992 if (cache->prev_sp == 0)
993 return;
994
995 id = frame_id_build (cache->prev_sp, func);
996
997 /* Check that we're not going round in circles with the same frame
998 ID (but avoid applying the test to sentinel frames which do go
999 round in circles). */
1000 if (frame_relative_level (next_frame) >= 0
1001 && get_frame_type (next_frame) == NORMAL_FRAME
1002 && frame_id_eq (get_frame_id (next_frame), id))
1003 return;
1004
1005 *this_id = id;
1006 }
1007
1008 static void
1009 arm_prologue_prev_register (struct frame_info *next_frame,
1010 void **this_cache,
1011 int prev_regnum,
1012 int *optimized,
1013 enum lval_type *lvalp,
1014 CORE_ADDR *addrp,
1015 int *realnump,
1016 void *valuep)
1017 {
1018 struct arm_prologue_cache *cache;
1019
1020 if (*this_cache == NULL)
1021 *this_cache = arm_make_prologue_cache (next_frame);
1022 cache = *this_cache;
1023
1024 /* If we are asked to unwind the PC, then we need to return the LR
1025 instead. The saved value of PC points into this frame's
1026 prologue, not the next frame's resume location. */
1027 if (prev_regnum == ARM_PC_REGNUM)
1028 prev_regnum = ARM_LR_REGNUM;
1029
1030 /* SP is generally not saved to the stack, but this frame is
1031 identified by NEXT_FRAME's stack pointer at the time of the call.
1032 The value was already reconstructed into PREV_SP. */
1033 if (prev_regnum == ARM_SP_REGNUM)
1034 {
1035 *lvalp = not_lval;
1036 if (valuep)
1037 store_unsigned_integer (valuep, 4, cache->prev_sp);
1038 return;
1039 }
1040
1041 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1042 optimized, lvalp, addrp, realnump, valuep);
1043 }
1044
1045 struct frame_unwind arm_prologue_unwind = {
1046 NORMAL_FRAME,
1047 arm_prologue_this_id,
1048 arm_prologue_prev_register
1049 };
1050
1051 static const struct frame_unwind *
1052 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1053 {
1054 return &arm_prologue_unwind;
1055 }
1056
1057 static CORE_ADDR
1058 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1059 {
1060 struct arm_prologue_cache *cache;
1061
1062 if (*this_cache == NULL)
1063 *this_cache = arm_make_prologue_cache (next_frame);
1064 cache = *this_cache;
1065
1066 return cache->prev_sp + cache->frameoffset - cache->framesize;
1067 }
1068
1069 struct frame_base arm_normal_base = {
1070 &arm_prologue_unwind,
1071 arm_normal_frame_base,
1072 arm_normal_frame_base,
1073 arm_normal_frame_base
1074 };
1075
1076 static struct arm_prologue_cache *
1077 arm_make_sigtramp_cache (struct frame_info *next_frame)
1078 {
1079 struct arm_prologue_cache *cache;
1080 int reg;
1081
1082 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1083
1084 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1085
1086 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1087
1088 for (reg = 0; reg < NUM_REGS; reg++)
1089 cache->saved_regs[reg].addr
1090 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1091 frame_pc_unwind (next_frame), reg);
1092
1093 /* FIXME: What about thumb mode? */
1094 cache->framereg = ARM_SP_REGNUM;
1095 cache->prev_sp
1096 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
1097 DEPRECATED_REGISTER_RAW_SIZE (cache->framereg));
1098
1099 return cache;
1100 }
1101
1102 static void
1103 arm_sigtramp_this_id (struct frame_info *next_frame,
1104 void **this_cache,
1105 struct frame_id *this_id)
1106 {
1107 struct arm_prologue_cache *cache;
1108
1109 if (*this_cache == NULL)
1110 *this_cache = arm_make_sigtramp_cache (next_frame);
1111 cache = *this_cache;
1112
1113 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1114 the sigtramp frame; the PC should be the beginning of the trampoline. */
1115 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1116 }
1117
1118 static void
1119 arm_sigtramp_prev_register (struct frame_info *next_frame,
1120 void **this_cache,
1121 int prev_regnum,
1122 int *optimized,
1123 enum lval_type *lvalp,
1124 CORE_ADDR *addrp,
1125 int *realnump,
1126 void *valuep)
1127 {
1128 struct arm_prologue_cache *cache;
1129
1130 if (*this_cache == NULL)
1131 *this_cache = arm_make_sigtramp_cache (next_frame);
1132 cache = *this_cache;
1133
1134 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1135 optimized, lvalp, addrp, realnump, valuep);
1136 }
1137
1138 struct frame_unwind arm_sigtramp_unwind = {
1139 SIGTRAMP_FRAME,
1140 arm_sigtramp_this_id,
1141 arm_sigtramp_prev_register
1142 };
1143
1144 static const struct frame_unwind *
1145 arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
1146 {
1147 /* Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1148 against the name of the function, the code below will have to be
1149 changed to first fetch the name of the function and then pass
1150 this name to PC_IN_SIGTRAMP. */
1151
1152 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1153 && PC_IN_SIGTRAMP (frame_pc_unwind (next_frame), (char *) 0))
1154 return &arm_sigtramp_unwind;
1155
1156 return NULL;
1157 }
1158
1159 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1160 dummy frame. The frame ID's base needs to match the TOS value
1161 saved by save_dummy_frame_tos() and returned from
1162 arm_push_dummy_call, and the PC needs to match the dummy frame's
1163 breakpoint. */
1164
1165 static struct frame_id
1166 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1167 {
1168 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1169 frame_pc_unwind (next_frame));
1170 }
1171
1172 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1173 be used to construct the previous frame's ID, after looking up the
1174 containing function). */
1175
1176 static CORE_ADDR
1177 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1178 {
1179 CORE_ADDR pc;
1180 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1181 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1182 }
1183
1184 static CORE_ADDR
1185 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1186 {
1187 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1188 }
1189
1190 /* DEPRECATED_CALL_DUMMY_WORDS:
1191 This sequence of words is the instructions
1192
1193 mov lr,pc
1194 mov pc,r4
1195 illegal
1196
1197 Note this is 12 bytes. */
1198
1199 static LONGEST arm_call_dummy_words[] =
1200 {
1201 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1202 };
1203
1204 /* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1205 breakpoint to the proper address in the call dummy, so that
1206 `finish' after a stop in a call dummy works.
1207
1208 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1209 optimal solution, but the call to arm_fix_call_dummy is immediately
1210 followed by a call to call_function_by_hand, which is the only
1211 function where call_dummy_breakpoint_offset is actually used. */
1212
1213
1214 static void
1215 arm_set_call_dummy_breakpoint_offset (void)
1216 {
1217 if (caller_is_thumb)
1218 set_gdbarch_deprecated_call_dummy_breakpoint_offset (current_gdbarch, 4);
1219 else
1220 set_gdbarch_deprecated_call_dummy_breakpoint_offset (current_gdbarch, 8);
1221 }
1222
1223 /* When arguments must be pushed onto the stack, they go on in reverse
1224 order. The code below implements a FILO (stack) to do this. */
1225
1226 struct stack_item
1227 {
1228 int len;
1229 struct stack_item *prev;
1230 void *data;
1231 };
1232
1233 static struct stack_item *
1234 push_stack_item (struct stack_item *prev, void *contents, int len)
1235 {
1236 struct stack_item *si;
1237 si = xmalloc (sizeof (struct stack_item));
1238 si->data = xmalloc (len);
1239 si->len = len;
1240 si->prev = prev;
1241 memcpy (si->data, contents, len);
1242 return si;
1243 }
1244
1245 static struct stack_item *
1246 pop_stack_item (struct stack_item *si)
1247 {
1248 struct stack_item *dead = si;
1249 si = si->prev;
1250 xfree (dead->data);
1251 xfree (dead);
1252 return si;
1253 }
1254
1255 /* We currently only support passing parameters in integer registers. This
1256 conforms with GCC's default model. Several other variants exist and
1257 we should probably support some of them based on the selected ABI. */
1258
1259 static CORE_ADDR
1260 arm_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1261 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1262 struct value **args, CORE_ADDR sp, int struct_return,
1263 CORE_ADDR struct_addr)
1264 {
1265 int argnum;
1266 int argreg;
1267 int nstack;
1268 struct stack_item *si = NULL;
1269
1270 /* Set the return address. For the ARM, the return breakpoint is
1271 always at BP_ADDR. */
1272 /* XXX Fix for Thumb. */
1273 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1274
1275 /* Walk through the list of args and determine how large a temporary
1276 stack is required. Need to take care here as structs may be
1277 passed on the stack, and we have to to push them. */
1278 nstack = 0;
1279
1280 argreg = ARM_A1_REGNUM;
1281 nstack = 0;
1282
1283 /* Some platforms require a double-word aligned stack. Make sure sp
1284 is correctly aligned before we start. We always do this even if
1285 it isn't really needed -- it can never hurt things. */
1286 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1287
1288 /* The struct_return pointer occupies the first parameter
1289 passing register. */
1290 if (struct_return)
1291 {
1292 if (arm_debug)
1293 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1294 REGISTER_NAME (argreg), paddr (struct_addr));
1295 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1296 argreg++;
1297 }
1298
1299 for (argnum = 0; argnum < nargs; argnum++)
1300 {
1301 int len;
1302 struct type *arg_type;
1303 struct type *target_type;
1304 enum type_code typecode;
1305 char *val;
1306
1307 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1308 len = TYPE_LENGTH (arg_type);
1309 target_type = TYPE_TARGET_TYPE (arg_type);
1310 typecode = TYPE_CODE (arg_type);
1311 val = VALUE_CONTENTS (args[argnum]);
1312
1313 /* If the argument is a pointer to a function, and it is a
1314 Thumb function, create a LOCAL copy of the value and set
1315 the THUMB bit in it. */
1316 if (TYPE_CODE_PTR == typecode
1317 && target_type != NULL
1318 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1319 {
1320 CORE_ADDR regval = extract_unsigned_integer (val, len);
1321 if (arm_pc_is_thumb (regval))
1322 {
1323 val = alloca (len);
1324 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1325 }
1326 }
1327
1328 /* Copy the argument to general registers or the stack in
1329 register-sized pieces. Large arguments are split between
1330 registers and stack. */
1331 while (len > 0)
1332 {
1333 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1334
1335 if (argreg <= ARM_LAST_ARG_REGNUM)
1336 {
1337 /* The argument is being passed in a general purpose
1338 register. */
1339 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1340 if (arm_debug)
1341 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1342 argnum, REGISTER_NAME (argreg),
1343 phex (regval, DEPRECATED_REGISTER_SIZE));
1344 regcache_cooked_write_unsigned (regcache, argreg, regval);
1345 argreg++;
1346 }
1347 else
1348 {
1349 /* Push the arguments onto the stack. */
1350 if (arm_debug)
1351 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1352 argnum, nstack);
1353 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1354 nstack += DEPRECATED_REGISTER_SIZE;
1355 }
1356
1357 len -= partial_len;
1358 val += partial_len;
1359 }
1360 }
1361 /* If we have an odd number of words to push, then decrement the stack
1362 by one word now, so first stack argument will be dword aligned. */
1363 if (nstack & 4)
1364 sp -= 4;
1365
1366 while (si)
1367 {
1368 sp -= si->len;
1369 write_memory (sp, si->data, si->len);
1370 si = pop_stack_item (si);
1371 }
1372
1373 /* Finally, update teh SP register. */
1374 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1375
1376 return sp;
1377 }
1378
1379 static void
1380 print_fpu_flags (int flags)
1381 {
1382 if (flags & (1 << 0))
1383 fputs ("IVO ", stdout);
1384 if (flags & (1 << 1))
1385 fputs ("DVZ ", stdout);
1386 if (flags & (1 << 2))
1387 fputs ("OFL ", stdout);
1388 if (flags & (1 << 3))
1389 fputs ("UFL ", stdout);
1390 if (flags & (1 << 4))
1391 fputs ("INX ", stdout);
1392 putchar ('\n');
1393 }
1394
1395 /* Print interesting information about the floating point processor
1396 (if present) or emulator. */
1397 static void
1398 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1399 struct frame_info *frame, const char *args)
1400 {
1401 unsigned long status = read_register (ARM_FPS_REGNUM);
1402 int type;
1403
1404 type = (status >> 24) & 127;
1405 printf ("%s FPU type %d\n",
1406 (status & (1 << 31)) ? "Hardware" : "Software",
1407 type);
1408 fputs ("mask: ", stdout);
1409 print_fpu_flags (status >> 16);
1410 fputs ("flags: ", stdout);
1411 print_fpu_flags (status);
1412 }
1413
1414 /* Return the GDB type object for the "standard" data type of data in
1415 register N. */
1416
1417 static struct type *
1418 arm_register_type (int regnum)
1419 {
1420 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1421 {
1422 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1423 return builtin_type_arm_ext_big;
1424 else
1425 return builtin_type_arm_ext_littlebyte_bigword;
1426 }
1427 else
1428 return builtin_type_int32;
1429 }
1430
1431 /* Index within `registers' of the first byte of the space for
1432 register N. */
1433
1434 static int
1435 arm_register_byte (int regnum)
1436 {
1437 if (regnum < ARM_F0_REGNUM)
1438 return regnum * INT_REGISTER_RAW_SIZE;
1439 else if (regnum < ARM_PS_REGNUM)
1440 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1441 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1442 else
1443 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1444 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1445 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1446 }
1447
1448 /* Number of bytes of storage in the actual machine representation for
1449 register N. All registers are 4 bytes, except fp0 - fp7, which are
1450 12 bytes in length. */
1451
1452 static int
1453 arm_register_raw_size (int regnum)
1454 {
1455 if (regnum < ARM_F0_REGNUM)
1456 return INT_REGISTER_RAW_SIZE;
1457 else if (regnum < ARM_FPS_REGNUM)
1458 return FP_REGISTER_RAW_SIZE;
1459 else
1460 return STATUS_REGISTER_SIZE;
1461 }
1462
1463 /* Number of bytes of storage in a program's representation
1464 for register N. */
1465 static int
1466 arm_register_virtual_size (int regnum)
1467 {
1468 if (regnum < ARM_F0_REGNUM)
1469 return INT_REGISTER_VIRTUAL_SIZE;
1470 else if (regnum < ARM_FPS_REGNUM)
1471 return FP_REGISTER_VIRTUAL_SIZE;
1472 else
1473 return STATUS_REGISTER_SIZE;
1474 }
1475
1476 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1477 static int
1478 arm_register_sim_regno (int regnum)
1479 {
1480 int reg = regnum;
1481 gdb_assert (reg >= 0 && reg < NUM_REGS);
1482
1483 if (reg < NUM_GREGS)
1484 return SIM_ARM_R0_REGNUM + reg;
1485 reg -= NUM_GREGS;
1486
1487 if (reg < NUM_FREGS)
1488 return SIM_ARM_FP0_REGNUM + reg;
1489 reg -= NUM_FREGS;
1490
1491 if (reg < NUM_SREGS)
1492 return SIM_ARM_FPS_REGNUM + reg;
1493 reg -= NUM_SREGS;
1494
1495 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1496 }
1497
1498 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1499 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1500 It is thought that this is is the floating-point register format on
1501 little-endian systems. */
1502
1503 static void
1504 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1505 void *dbl)
1506 {
1507 DOUBLEST d;
1508 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1509 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1510 else
1511 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1512 ptr, &d);
1513 floatformat_from_doublest (fmt, &d, dbl);
1514 }
1515
1516 static void
1517 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1518 {
1519 DOUBLEST d;
1520 floatformat_to_doublest (fmt, ptr, &d);
1521 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1522 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1523 else
1524 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1525 &d, dbl);
1526 }
1527
1528 static int
1529 condition_true (unsigned long cond, unsigned long status_reg)
1530 {
1531 if (cond == INST_AL || cond == INST_NV)
1532 return 1;
1533
1534 switch (cond)
1535 {
1536 case INST_EQ:
1537 return ((status_reg & FLAG_Z) != 0);
1538 case INST_NE:
1539 return ((status_reg & FLAG_Z) == 0);
1540 case INST_CS:
1541 return ((status_reg & FLAG_C) != 0);
1542 case INST_CC:
1543 return ((status_reg & FLAG_C) == 0);
1544 case INST_MI:
1545 return ((status_reg & FLAG_N) != 0);
1546 case INST_PL:
1547 return ((status_reg & FLAG_N) == 0);
1548 case INST_VS:
1549 return ((status_reg & FLAG_V) != 0);
1550 case INST_VC:
1551 return ((status_reg & FLAG_V) == 0);
1552 case INST_HI:
1553 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1554 case INST_LS:
1555 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1556 case INST_GE:
1557 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1558 case INST_LT:
1559 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1560 case INST_GT:
1561 return (((status_reg & FLAG_Z) == 0) &&
1562 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1563 case INST_LE:
1564 return (((status_reg & FLAG_Z) != 0) ||
1565 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1566 }
1567 return 1;
1568 }
1569
1570 /* Support routines for single stepping. Calculate the next PC value. */
1571 #define submask(x) ((1L << ((x) + 1)) - 1)
1572 #define bit(obj,st) (((obj) >> (st)) & 1)
1573 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1574 #define sbits(obj,st,fn) \
1575 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1576 #define BranchDest(addr,instr) \
1577 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1578 #define ARM_PC_32 1
1579
1580 static unsigned long
1581 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1582 unsigned long status_reg)
1583 {
1584 unsigned long res, shift;
1585 int rm = bits (inst, 0, 3);
1586 unsigned long shifttype = bits (inst, 5, 6);
1587
1588 if (bit (inst, 4))
1589 {
1590 int rs = bits (inst, 8, 11);
1591 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1592 }
1593 else
1594 shift = bits (inst, 7, 11);
1595
1596 res = (rm == 15
1597 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1598 + (bit (inst, 4) ? 12 : 8))
1599 : read_register (rm));
1600
1601 switch (shifttype)
1602 {
1603 case 0: /* LSL */
1604 res = shift >= 32 ? 0 : res << shift;
1605 break;
1606
1607 case 1: /* LSR */
1608 res = shift >= 32 ? 0 : res >> shift;
1609 break;
1610
1611 case 2: /* ASR */
1612 if (shift >= 32)
1613 shift = 31;
1614 res = ((res & 0x80000000L)
1615 ? ~((~res) >> shift) : res >> shift);
1616 break;
1617
1618 case 3: /* ROR/RRX */
1619 shift &= 31;
1620 if (shift == 0)
1621 res = (res >> 1) | (carry ? 0x80000000L : 0);
1622 else
1623 res = (res >> shift) | (res << (32 - shift));
1624 break;
1625 }
1626
1627 return res & 0xffffffff;
1628 }
1629
1630 /* Return number of 1-bits in VAL. */
1631
1632 static int
1633 bitcount (unsigned long val)
1634 {
1635 int nbits;
1636 for (nbits = 0; val != 0; nbits++)
1637 val &= val - 1; /* delete rightmost 1-bit in val */
1638 return nbits;
1639 }
1640
1641 CORE_ADDR
1642 thumb_get_next_pc (CORE_ADDR pc)
1643 {
1644 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1645 unsigned short inst1 = read_memory_integer (pc, 2);
1646 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1647 unsigned long offset;
1648
1649 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1650 {
1651 CORE_ADDR sp;
1652
1653 /* Fetch the saved PC from the stack. It's stored above
1654 all of the other registers. */
1655 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1656 sp = read_register (ARM_SP_REGNUM);
1657 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1658 nextpc = ADDR_BITS_REMOVE (nextpc);
1659 if (nextpc == pc)
1660 error ("Infinite loop detected");
1661 }
1662 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1663 {
1664 unsigned long status = read_register (ARM_PS_REGNUM);
1665 unsigned long cond = bits (inst1, 8, 11);
1666 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1667 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1668 }
1669 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1670 {
1671 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1672 }
1673 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1674 {
1675 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1676 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1677 nextpc = pc_val + offset;
1678 }
1679
1680 return nextpc;
1681 }
1682
1683 CORE_ADDR
1684 arm_get_next_pc (CORE_ADDR pc)
1685 {
1686 unsigned long pc_val;
1687 unsigned long this_instr;
1688 unsigned long status;
1689 CORE_ADDR nextpc;
1690
1691 if (arm_pc_is_thumb (pc))
1692 return thumb_get_next_pc (pc);
1693
1694 pc_val = (unsigned long) pc;
1695 this_instr = read_memory_integer (pc, 4);
1696 status = read_register (ARM_PS_REGNUM);
1697 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1698
1699 if (condition_true (bits (this_instr, 28, 31), status))
1700 {
1701 switch (bits (this_instr, 24, 27))
1702 {
1703 case 0x0:
1704 case 0x1: /* data processing */
1705 case 0x2:
1706 case 0x3:
1707 {
1708 unsigned long operand1, operand2, result = 0;
1709 unsigned long rn;
1710 int c;
1711
1712 if (bits (this_instr, 12, 15) != 15)
1713 break;
1714
1715 if (bits (this_instr, 22, 25) == 0
1716 && bits (this_instr, 4, 7) == 9) /* multiply */
1717 error ("Illegal update to pc in instruction");
1718
1719 /* Multiply into PC */
1720 c = (status & FLAG_C) ? 1 : 0;
1721 rn = bits (this_instr, 16, 19);
1722 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1723
1724 if (bit (this_instr, 25))
1725 {
1726 unsigned long immval = bits (this_instr, 0, 7);
1727 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1728 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1729 & 0xffffffff;
1730 }
1731 else /* operand 2 is a shifted register */
1732 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1733
1734 switch (bits (this_instr, 21, 24))
1735 {
1736 case 0x0: /*and */
1737 result = operand1 & operand2;
1738 break;
1739
1740 case 0x1: /*eor */
1741 result = operand1 ^ operand2;
1742 break;
1743
1744 case 0x2: /*sub */
1745 result = operand1 - operand2;
1746 break;
1747
1748 case 0x3: /*rsb */
1749 result = operand2 - operand1;
1750 break;
1751
1752 case 0x4: /*add */
1753 result = operand1 + operand2;
1754 break;
1755
1756 case 0x5: /*adc */
1757 result = operand1 + operand2 + c;
1758 break;
1759
1760 case 0x6: /*sbc */
1761 result = operand1 - operand2 + c;
1762 break;
1763
1764 case 0x7: /*rsc */
1765 result = operand2 - operand1 + c;
1766 break;
1767
1768 case 0x8:
1769 case 0x9:
1770 case 0xa:
1771 case 0xb: /* tst, teq, cmp, cmn */
1772 result = (unsigned long) nextpc;
1773 break;
1774
1775 case 0xc: /*orr */
1776 result = operand1 | operand2;
1777 break;
1778
1779 case 0xd: /*mov */
1780 /* Always step into a function. */
1781 result = operand2;
1782 break;
1783
1784 case 0xe: /*bic */
1785 result = operand1 & ~operand2;
1786 break;
1787
1788 case 0xf: /*mvn */
1789 result = ~operand2;
1790 break;
1791 }
1792 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1793
1794 if (nextpc == pc)
1795 error ("Infinite loop detected");
1796 break;
1797 }
1798
1799 case 0x4:
1800 case 0x5: /* data transfer */
1801 case 0x6:
1802 case 0x7:
1803 if (bit (this_instr, 20))
1804 {
1805 /* load */
1806 if (bits (this_instr, 12, 15) == 15)
1807 {
1808 /* rd == pc */
1809 unsigned long rn;
1810 unsigned long base;
1811
1812 if (bit (this_instr, 22))
1813 error ("Illegal update to pc in instruction");
1814
1815 /* byte write to PC */
1816 rn = bits (this_instr, 16, 19);
1817 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1818 if (bit (this_instr, 24))
1819 {
1820 /* pre-indexed */
1821 int c = (status & FLAG_C) ? 1 : 0;
1822 unsigned long offset =
1823 (bit (this_instr, 25)
1824 ? shifted_reg_val (this_instr, c, pc_val, status)
1825 : bits (this_instr, 0, 11));
1826
1827 if (bit (this_instr, 23))
1828 base += offset;
1829 else
1830 base -= offset;
1831 }
1832 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1833 4);
1834
1835 nextpc = ADDR_BITS_REMOVE (nextpc);
1836
1837 if (nextpc == pc)
1838 error ("Infinite loop detected");
1839 }
1840 }
1841 break;
1842
1843 case 0x8:
1844 case 0x9: /* block transfer */
1845 if (bit (this_instr, 20))
1846 {
1847 /* LDM */
1848 if (bit (this_instr, 15))
1849 {
1850 /* loading pc */
1851 int offset = 0;
1852
1853 if (bit (this_instr, 23))
1854 {
1855 /* up */
1856 unsigned long reglist = bits (this_instr, 0, 14);
1857 offset = bitcount (reglist) * 4;
1858 if (bit (this_instr, 24)) /* pre */
1859 offset += 4;
1860 }
1861 else if (bit (this_instr, 24))
1862 offset = -4;
1863
1864 {
1865 unsigned long rn_val =
1866 read_register (bits (this_instr, 16, 19));
1867 nextpc =
1868 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1869 + offset),
1870 4);
1871 }
1872 nextpc = ADDR_BITS_REMOVE (nextpc);
1873 if (nextpc == pc)
1874 error ("Infinite loop detected");
1875 }
1876 }
1877 break;
1878
1879 case 0xb: /* branch & link */
1880 case 0xa: /* branch */
1881 {
1882 nextpc = BranchDest (pc, this_instr);
1883
1884 nextpc = ADDR_BITS_REMOVE (nextpc);
1885 if (nextpc == pc)
1886 error ("Infinite loop detected");
1887 break;
1888 }
1889
1890 case 0xc:
1891 case 0xd:
1892 case 0xe: /* coproc ops */
1893 case 0xf: /* SWI */
1894 break;
1895
1896 default:
1897 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
1898 return (pc);
1899 }
1900 }
1901
1902 return nextpc;
1903 }
1904
1905 /* single_step() is called just before we want to resume the inferior,
1906 if we want to single-step it but there is no hardware or kernel
1907 single-step support. We find the target of the coming instruction
1908 and breakpoint it.
1909
1910 single_step() is also called just after the inferior stops. If we
1911 had set up a simulated single-step, we undo our damage. */
1912
1913 static void
1914 arm_software_single_step (enum target_signal sig, int insert_bpt)
1915 {
1916 static int next_pc; /* State between setting and unsetting. */
1917 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1918
1919 if (insert_bpt)
1920 {
1921 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1922 target_insert_breakpoint (next_pc, break_mem);
1923 }
1924 else
1925 target_remove_breakpoint (next_pc, break_mem);
1926 }
1927
1928 #include "bfd-in2.h"
1929 #include "libcoff.h"
1930
1931 static int
1932 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1933 {
1934 if (arm_pc_is_thumb (memaddr))
1935 {
1936 static asymbol *asym;
1937 static combined_entry_type ce;
1938 static struct coff_symbol_struct csym;
1939 static struct bfd fake_bfd;
1940 static bfd_target fake_target;
1941
1942 if (csym.native == NULL)
1943 {
1944 /* Create a fake symbol vector containing a Thumb symbol.
1945 This is solely so that the code in print_insn_little_arm()
1946 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1947 the presence of a Thumb symbol and switch to decoding
1948 Thumb instructions. */
1949
1950 fake_target.flavour = bfd_target_coff_flavour;
1951 fake_bfd.xvec = &fake_target;
1952 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1953 csym.native = &ce;
1954 csym.symbol.the_bfd = &fake_bfd;
1955 csym.symbol.name = "fake";
1956 asym = (asymbol *) & csym;
1957 }
1958
1959 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1960 info->symbols = &asym;
1961 }
1962 else
1963 info->symbols = NULL;
1964
1965 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1966 return print_insn_big_arm (memaddr, info);
1967 else
1968 return print_insn_little_arm (memaddr, info);
1969 }
1970
1971 /* The following define instruction sequences that will cause ARM
1972 cpu's to take an undefined instruction trap. These are used to
1973 signal a breakpoint to GDB.
1974
1975 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1976 modes. A different instruction is required for each mode. The ARM
1977 cpu's can also be big or little endian. Thus four different
1978 instructions are needed to support all cases.
1979
1980 Note: ARMv4 defines several new instructions that will take the
1981 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1982 not in fact add the new instructions. The new undefined
1983 instructions in ARMv4 are all instructions that had no defined
1984 behaviour in earlier chips. There is no guarantee that they will
1985 raise an exception, but may be treated as NOP's. In practice, it
1986 may only safe to rely on instructions matching:
1987
1988 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1989 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1990 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1991
1992 Even this may only true if the condition predicate is true. The
1993 following use a condition predicate of ALWAYS so it is always TRUE.
1994
1995 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1996 and NetBSD all use a software interrupt rather than an undefined
1997 instruction to force a trap. This can be handled by by the
1998 abi-specific code during establishment of the gdbarch vector. */
1999
2000
2001 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2002 override these definitions. */
2003 #ifndef ARM_LE_BREAKPOINT
2004 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2005 #endif
2006 #ifndef ARM_BE_BREAKPOINT
2007 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2008 #endif
2009 #ifndef THUMB_LE_BREAKPOINT
2010 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2011 #endif
2012 #ifndef THUMB_BE_BREAKPOINT
2013 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2014 #endif
2015
2016 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2017 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2018 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2019 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2020
2021 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2022 the program counter value to determine whether a 16-bit or 32-bit
2023 breakpoint should be used. It returns a pointer to a string of
2024 bytes that encode a breakpoint instruction, stores the length of
2025 the string to *lenptr, and adjusts the program counter (if
2026 necessary) to point to the actual memory location where the
2027 breakpoint should be inserted. */
2028
2029 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2030 breakpoints and storing their handles instread of what was in
2031 memory. It is nice that this is the same size as a handle -
2032 otherwise remote-rdp will have to change. */
2033
2034 static const unsigned char *
2035 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2036 {
2037 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2038
2039 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2040 {
2041 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2042 *lenptr = tdep->thumb_breakpoint_size;
2043 return tdep->thumb_breakpoint;
2044 }
2045 else
2046 {
2047 *lenptr = tdep->arm_breakpoint_size;
2048 return tdep->arm_breakpoint;
2049 }
2050 }
2051
2052 /* Extract from an array REGBUF containing the (raw) register state a
2053 function return value of type TYPE, and copy that, in virtual
2054 format, into VALBUF. */
2055
2056 static void
2057 arm_extract_return_value (struct type *type,
2058 struct regcache *regs,
2059 void *dst)
2060 {
2061 bfd_byte *valbuf = dst;
2062
2063 if (TYPE_CODE_FLT == TYPE_CODE (type))
2064 {
2065 switch (arm_get_fp_model (current_gdbarch))
2066 {
2067 case ARM_FLOAT_FPA:
2068 {
2069 /* The value is in register F0 in internal format. We need to
2070 extract the raw value and then convert it to the desired
2071 internal type. */
2072 bfd_byte tmpbuf[FP_REGISTER_RAW_SIZE];
2073
2074 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2075 convert_from_extended (floatformat_from_type (type), tmpbuf,
2076 valbuf);
2077 }
2078 break;
2079
2080 case ARM_FLOAT_SOFT_FPA:
2081 case ARM_FLOAT_SOFT_VFP:
2082 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2083 if (TYPE_LENGTH (type) > 4)
2084 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2085 valbuf + INT_REGISTER_RAW_SIZE);
2086 break;
2087
2088 default:
2089 internal_error
2090 (__FILE__, __LINE__,
2091 "arm_extract_return_value: Floating point model not supported");
2092 break;
2093 }
2094 }
2095 else if (TYPE_CODE (type) == TYPE_CODE_INT
2096 || TYPE_CODE (type) == TYPE_CODE_CHAR
2097 || TYPE_CODE (type) == TYPE_CODE_BOOL
2098 || TYPE_CODE (type) == TYPE_CODE_PTR
2099 || TYPE_CODE (type) == TYPE_CODE_REF
2100 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2101 {
2102 /* If the the type is a plain integer, then the access is
2103 straight-forward. Otherwise we have to play around a bit more. */
2104 int len = TYPE_LENGTH (type);
2105 int regno = ARM_A1_REGNUM;
2106 ULONGEST tmp;
2107
2108 while (len > 0)
2109 {
2110 /* By using store_unsigned_integer we avoid having to do
2111 anything special for small big-endian values. */
2112 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2113 store_unsigned_integer (valbuf,
2114 (len > INT_REGISTER_RAW_SIZE
2115 ? INT_REGISTER_RAW_SIZE : len),
2116 tmp);
2117 len -= INT_REGISTER_RAW_SIZE;
2118 valbuf += INT_REGISTER_RAW_SIZE;
2119 }
2120 }
2121 else
2122 {
2123 /* For a structure or union the behaviour is as if the value had
2124 been stored to word-aligned memory and then loaded into
2125 registers with 32-bit load instruction(s). */
2126 int len = TYPE_LENGTH (type);
2127 int regno = ARM_A1_REGNUM;
2128 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2129
2130 while (len > 0)
2131 {
2132 regcache_cooked_read (regs, regno++, tmpbuf);
2133 memcpy (valbuf, tmpbuf,
2134 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2135 len -= INT_REGISTER_RAW_SIZE;
2136 valbuf += INT_REGISTER_RAW_SIZE;
2137 }
2138 }
2139 }
2140
2141 /* Extract from an array REGBUF containing the (raw) register state
2142 the address in which a function should return its structure value. */
2143
2144 static CORE_ADDR
2145 arm_extract_struct_value_address (struct regcache *regcache)
2146 {
2147 ULONGEST ret;
2148
2149 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2150 return ret;
2151 }
2152
2153 /* Will a function return an aggregate type in memory or in a
2154 register? Return 0 if an aggregate type can be returned in a
2155 register, 1 if it must be returned in memory. */
2156
2157 static int
2158 arm_use_struct_convention (int gcc_p, struct type *type)
2159 {
2160 int nRc;
2161 enum type_code code;
2162
2163 /* In the ARM ABI, "integer" like aggregate types are returned in
2164 registers. For an aggregate type to be integer like, its size
2165 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2166 offset of each addressable subfield must be zero. Note that bit
2167 fields are not addressable, and all addressable subfields of
2168 unions always start at offset zero.
2169
2170 This function is based on the behaviour of GCC 2.95.1.
2171 See: gcc/arm.c: arm_return_in_memory() for details.
2172
2173 Note: All versions of GCC before GCC 2.95.2 do not set up the
2174 parameters correctly for a function returning the following
2175 structure: struct { float f;}; This should be returned in memory,
2176 not a register. Richard Earnshaw sent me a patch, but I do not
2177 know of any way to detect if a function like the above has been
2178 compiled with the correct calling convention. */
2179
2180 /* All aggregate types that won't fit in a register must be returned
2181 in memory. */
2182 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2183 {
2184 return 1;
2185 }
2186
2187 /* The only aggregate types that can be returned in a register are
2188 structs and unions. Arrays must be returned in memory. */
2189 code = TYPE_CODE (type);
2190 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2191 {
2192 return 1;
2193 }
2194
2195 /* Assume all other aggregate types can be returned in a register.
2196 Run a check for structures, unions and arrays. */
2197 nRc = 0;
2198
2199 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2200 {
2201 int i;
2202 /* Need to check if this struct/union is "integer" like. For
2203 this to be true, its size must be less than or equal to
2204 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2205 subfield must be zero. Note that bit fields are not
2206 addressable, and unions always start at offset zero. If any
2207 of the subfields is a floating point type, the struct/union
2208 cannot be an integer type. */
2209
2210 /* For each field in the object, check:
2211 1) Is it FP? --> yes, nRc = 1;
2212 2) Is it addressable (bitpos != 0) and
2213 not packed (bitsize == 0)?
2214 --> yes, nRc = 1
2215 */
2216
2217 for (i = 0; i < TYPE_NFIELDS (type); i++)
2218 {
2219 enum type_code field_type_code;
2220 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2221
2222 /* Is it a floating point type field? */
2223 if (field_type_code == TYPE_CODE_FLT)
2224 {
2225 nRc = 1;
2226 break;
2227 }
2228
2229 /* If bitpos != 0, then we have to care about it. */
2230 if (TYPE_FIELD_BITPOS (type, i) != 0)
2231 {
2232 /* Bitfields are not addressable. If the field bitsize is
2233 zero, then the field is not packed. Hence it cannot be
2234 a bitfield or any other packed type. */
2235 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2236 {
2237 nRc = 1;
2238 break;
2239 }
2240 }
2241 }
2242 }
2243
2244 return nRc;
2245 }
2246
2247 /* Write into appropriate registers a function return value of type
2248 TYPE, given in virtual format. */
2249
2250 static void
2251 arm_store_return_value (struct type *type, struct regcache *regs,
2252 const void *src)
2253 {
2254 const bfd_byte *valbuf = src;
2255
2256 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2257 {
2258 char buf[ARM_MAX_REGISTER_RAW_SIZE];
2259
2260 switch (arm_get_fp_model (current_gdbarch))
2261 {
2262 case ARM_FLOAT_FPA:
2263
2264 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2265 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2266 break;
2267
2268 case ARM_FLOAT_SOFT_FPA:
2269 case ARM_FLOAT_SOFT_VFP:
2270 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2271 if (TYPE_LENGTH (type) > 4)
2272 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2273 valbuf + INT_REGISTER_RAW_SIZE);
2274 break;
2275
2276 default:
2277 internal_error
2278 (__FILE__, __LINE__,
2279 "arm_store_return_value: Floating point model not supported");
2280 break;
2281 }
2282 }
2283 else if (TYPE_CODE (type) == TYPE_CODE_INT
2284 || TYPE_CODE (type) == TYPE_CODE_CHAR
2285 || TYPE_CODE (type) == TYPE_CODE_BOOL
2286 || TYPE_CODE (type) == TYPE_CODE_PTR
2287 || TYPE_CODE (type) == TYPE_CODE_REF
2288 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2289 {
2290 if (TYPE_LENGTH (type) <= 4)
2291 {
2292 /* Values of one word or less are zero/sign-extended and
2293 returned in r0. */
2294 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2295 LONGEST val = unpack_long (type, valbuf);
2296
2297 store_signed_integer (tmpbuf, INT_REGISTER_RAW_SIZE, val);
2298 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2299 }
2300 else
2301 {
2302 /* Integral values greater than one word are stored in consecutive
2303 registers starting with r0. This will always be a multiple of
2304 the regiser size. */
2305 int len = TYPE_LENGTH (type);
2306 int regno = ARM_A1_REGNUM;
2307
2308 while (len > 0)
2309 {
2310 regcache_cooked_write (regs, regno++, valbuf);
2311 len -= INT_REGISTER_RAW_SIZE;
2312 valbuf += INT_REGISTER_RAW_SIZE;
2313 }
2314 }
2315 }
2316 else
2317 {
2318 /* For a structure or union the behaviour is as if the value had
2319 been stored to word-aligned memory and then loaded into
2320 registers with 32-bit load instruction(s). */
2321 int len = TYPE_LENGTH (type);
2322 int regno = ARM_A1_REGNUM;
2323 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2324
2325 while (len > 0)
2326 {
2327 memcpy (tmpbuf, valbuf,
2328 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2329 regcache_cooked_write (regs, regno++, tmpbuf);
2330 len -= INT_REGISTER_RAW_SIZE;
2331 valbuf += INT_REGISTER_RAW_SIZE;
2332 }
2333 }
2334 }
2335
2336 static int
2337 arm_get_longjmp_target (CORE_ADDR *pc)
2338 {
2339 CORE_ADDR jb_addr;
2340 char buf[INT_REGISTER_RAW_SIZE];
2341 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2342
2343 jb_addr = read_register (ARM_A1_REGNUM);
2344
2345 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2346 INT_REGISTER_RAW_SIZE))
2347 return 0;
2348
2349 *pc = extract_unsigned_integer (buf, INT_REGISTER_RAW_SIZE);
2350 return 1;
2351 }
2352
2353 /* Return non-zero if the PC is inside a thumb call thunk. */
2354
2355 int
2356 arm_in_call_stub (CORE_ADDR pc, char *name)
2357 {
2358 CORE_ADDR start_addr;
2359
2360 /* Find the starting address of the function containing the PC. If
2361 the caller didn't give us a name, look it up at the same time. */
2362 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2363 &start_addr, NULL))
2364 return 0;
2365
2366 return strncmp (name, "_call_via_r", 11) == 0;
2367 }
2368
2369 /* If PC is in a Thumb call or return stub, return the address of the
2370 target PC, which is in a register. The thunk functions are called
2371 _called_via_xx, where x is the register name. The possible names
2372 are r0-r9, sl, fp, ip, sp, and lr. */
2373
2374 CORE_ADDR
2375 arm_skip_stub (CORE_ADDR pc)
2376 {
2377 char *name;
2378 CORE_ADDR start_addr;
2379
2380 /* Find the starting address and name of the function containing the PC. */
2381 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2382 return 0;
2383
2384 /* Call thunks always start with "_call_via_". */
2385 if (strncmp (name, "_call_via_", 10) == 0)
2386 {
2387 /* Use the name suffix to determine which register contains the
2388 target PC. */
2389 static char *table[15] =
2390 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2391 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2392 };
2393 int regno;
2394
2395 for (regno = 0; regno <= 14; regno++)
2396 if (strcmp (&name[10], table[regno]) == 0)
2397 return read_register (regno);
2398 }
2399
2400 return 0; /* not a stub */
2401 }
2402
2403 static void
2404 set_arm_command (char *args, int from_tty)
2405 {
2406 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2407 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2408 }
2409
2410 static void
2411 show_arm_command (char *args, int from_tty)
2412 {
2413 cmd_show_list (showarmcmdlist, from_tty, "");
2414 }
2415
2416 enum arm_float_model
2417 arm_get_fp_model (struct gdbarch *gdbarch)
2418 {
2419 if (arm_fp_model == ARM_FLOAT_AUTO)
2420 return gdbarch_tdep (gdbarch)->fp_model;
2421
2422 return arm_fp_model;
2423 }
2424
2425 static void
2426 arm_set_fp (struct gdbarch *gdbarch)
2427 {
2428 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2429
2430 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2431 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2432 {
2433 set_gdbarch_double_format (gdbarch,
2434 &floatformat_ieee_double_littlebyte_bigword);
2435 set_gdbarch_long_double_format
2436 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2437 }
2438 else
2439 {
2440 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2441 set_gdbarch_long_double_format (gdbarch,
2442 &floatformat_ieee_double_little);
2443 }
2444 }
2445
2446 static void
2447 set_fp_model_sfunc (char *args, int from_tty,
2448 struct cmd_list_element *c)
2449 {
2450 enum arm_float_model fp_model;
2451
2452 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2453 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2454 {
2455 arm_fp_model = fp_model;
2456 break;
2457 }
2458
2459 if (fp_model == ARM_FLOAT_LAST)
2460 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2461 current_fp_model);
2462
2463 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2464 arm_set_fp (current_gdbarch);
2465 }
2466
2467 static void
2468 show_fp_model (char *args, int from_tty,
2469 struct cmd_list_element *c)
2470 {
2471 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2472
2473 if (arm_fp_model == ARM_FLOAT_AUTO
2474 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2475 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2476 fp_model_strings[tdep->fp_model]);
2477 }
2478
2479 /* If the user changes the register disassembly style used for info
2480 register and other commands, we have to also switch the style used
2481 in opcodes for disassembly output. This function is run in the "set
2482 arm disassembly" command, and does that. */
2483
2484 static void
2485 set_disassembly_style_sfunc (char *args, int from_tty,
2486 struct cmd_list_element *c)
2487 {
2488 set_disassembly_style ();
2489 }
2490 \f
2491 /* Return the ARM register name corresponding to register I. */
2492 static const char *
2493 arm_register_name (int i)
2494 {
2495 return arm_register_names[i];
2496 }
2497
2498 static void
2499 set_disassembly_style (void)
2500 {
2501 const char *setname, *setdesc, **regnames;
2502 int numregs, j;
2503
2504 /* Find the style that the user wants in the opcodes table. */
2505 int current = 0;
2506 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2507 while ((disassembly_style != setname)
2508 && (current < num_disassembly_options))
2509 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2510 current_option = current;
2511
2512 /* Fill our copy. */
2513 for (j = 0; j < numregs; j++)
2514 arm_register_names[j] = (char *) regnames[j];
2515
2516 /* Adjust case. */
2517 if (isupper (*regnames[ARM_PC_REGNUM]))
2518 {
2519 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2520 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2521 }
2522 else
2523 {
2524 arm_register_names[ARM_FPS_REGNUM] = "fps";
2525 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2526 }
2527
2528 /* Synchronize the disassembler. */
2529 set_arm_regname_option (current);
2530 }
2531
2532 /* arm_othernames implements the "othernames" command. This is deprecated
2533 by the "set arm disassembly" command. */
2534
2535 static void
2536 arm_othernames (char *names, int n)
2537 {
2538 /* Circle through the various flavors. */
2539 current_option = (current_option + 1) % num_disassembly_options;
2540
2541 disassembly_style = valid_disassembly_styles[current_option];
2542 set_disassembly_style ();
2543 }
2544
2545 /* Test whether the coff symbol specific value corresponds to a Thumb
2546 function. */
2547
2548 static int
2549 coff_sym_is_thumb (int val)
2550 {
2551 return (val == C_THUMBEXT ||
2552 val == C_THUMBSTAT ||
2553 val == C_THUMBEXTFUNC ||
2554 val == C_THUMBSTATFUNC ||
2555 val == C_THUMBLABEL);
2556 }
2557
2558 /* arm_coff_make_msymbol_special()
2559 arm_elf_make_msymbol_special()
2560
2561 These functions test whether the COFF or ELF symbol corresponds to
2562 an address in thumb code, and set a "special" bit in a minimal
2563 symbol to indicate that it does. */
2564
2565 static void
2566 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2567 {
2568 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2569 STT_ARM_TFUNC). */
2570 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2571 == STT_LOPROC)
2572 MSYMBOL_SET_SPECIAL (msym);
2573 }
2574
2575 static void
2576 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2577 {
2578 if (coff_sym_is_thumb (val))
2579 MSYMBOL_SET_SPECIAL (msym);
2580 }
2581
2582 static void
2583 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2584 {
2585 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2586
2587 /* If necessary, set the T bit. */
2588 if (arm_apcs_32)
2589 {
2590 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2591 if (arm_pc_is_thumb (pc))
2592 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2593 else
2594 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2595 }
2596 }
2597 \f
2598 static enum gdb_osabi
2599 arm_elf_osabi_sniffer (bfd *abfd)
2600 {
2601 unsigned int elfosabi, eflags;
2602 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2603
2604 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2605
2606 switch (elfosabi)
2607 {
2608 case ELFOSABI_NONE:
2609 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2610 file are conforming to the base specification for that machine
2611 (there are no OS-specific extensions). In order to determine the
2612 real OS in use we must look for OS notes that have been added. */
2613 bfd_map_over_sections (abfd,
2614 generic_elf_osabi_sniff_abi_tag_sections,
2615 &osabi);
2616 if (osabi == GDB_OSABI_UNKNOWN)
2617 {
2618 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2619 field for more information. */
2620 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2621 switch (eflags)
2622 {
2623 case EF_ARM_EABI_VER1:
2624 osabi = GDB_OSABI_ARM_EABI_V1;
2625 break;
2626
2627 case EF_ARM_EABI_VER2:
2628 osabi = GDB_OSABI_ARM_EABI_V2;
2629 break;
2630
2631 case EF_ARM_EABI_UNKNOWN:
2632 /* Assume GNU tools. */
2633 osabi = GDB_OSABI_ARM_APCS;
2634 break;
2635
2636 default:
2637 internal_error (__FILE__, __LINE__,
2638 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2639 "version 0x%x", eflags);
2640 }
2641 }
2642 break;
2643
2644 case ELFOSABI_ARM:
2645 /* GNU tools use this value. Check note sections in this case,
2646 as well. */
2647 bfd_map_over_sections (abfd,
2648 generic_elf_osabi_sniff_abi_tag_sections,
2649 &osabi);
2650 if (osabi == GDB_OSABI_UNKNOWN)
2651 {
2652 /* Assume APCS ABI. */
2653 osabi = GDB_OSABI_ARM_APCS;
2654 }
2655 break;
2656
2657 case ELFOSABI_FREEBSD:
2658 osabi = GDB_OSABI_FREEBSD_ELF;
2659 break;
2660
2661 case ELFOSABI_NETBSD:
2662 osabi = GDB_OSABI_NETBSD_ELF;
2663 break;
2664
2665 case ELFOSABI_LINUX:
2666 osabi = GDB_OSABI_LINUX;
2667 break;
2668 }
2669
2670 return osabi;
2671 }
2672
2673 \f
2674 /* Initialize the current architecture based on INFO. If possible,
2675 re-use an architecture from ARCHES, which is a list of
2676 architectures already created during this debugging session.
2677
2678 Called e.g. at program startup, when reading a core file, and when
2679 reading a binary file. */
2680
2681 static struct gdbarch *
2682 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2683 {
2684 struct gdbarch_tdep *tdep;
2685 struct gdbarch *gdbarch;
2686
2687 /* Try to deterimine the ABI of the object we are loading. */
2688
2689 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2690 {
2691 switch (bfd_get_flavour (info.abfd))
2692 {
2693 case bfd_target_aout_flavour:
2694 /* Assume it's an old APCS-style ABI. */
2695 info.osabi = GDB_OSABI_ARM_APCS;
2696 break;
2697
2698 case bfd_target_coff_flavour:
2699 /* Assume it's an old APCS-style ABI. */
2700 /* XXX WinCE? */
2701 info.osabi = GDB_OSABI_ARM_APCS;
2702 break;
2703
2704 default:
2705 /* Leave it as "unknown". */
2706 break;
2707 }
2708 }
2709
2710 /* If there is already a candidate, use it. */
2711 arches = gdbarch_list_lookup_by_info (arches, &info);
2712 if (arches != NULL)
2713 return arches->gdbarch;
2714
2715 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2716 gdbarch = gdbarch_alloc (&info, tdep);
2717
2718 /* We used to default to FPA for generic ARM, but almost nobody uses that
2719 now, and we now provide a way for the user to force the model. So
2720 default to the most useful variant. */
2721 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
2722
2723 /* Breakpoints. */
2724 switch (info.byte_order)
2725 {
2726 case BFD_ENDIAN_BIG:
2727 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2728 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2729 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2730 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2731
2732 break;
2733
2734 case BFD_ENDIAN_LITTLE:
2735 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2736 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2737 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2738 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2739
2740 break;
2741
2742 default:
2743 internal_error (__FILE__, __LINE__,
2744 "arm_gdbarch_init: bad byte order for float format");
2745 }
2746
2747 /* On ARM targets char defaults to unsigned. */
2748 set_gdbarch_char_signed (gdbarch, 0);
2749
2750 /* This should be low enough for everything. */
2751 tdep->lowest_pc = 0x20;
2752 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2753
2754 set_gdbarch_deprecated_call_dummy_words (gdbarch, arm_call_dummy_words);
2755 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
2756
2757 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2758
2759 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2760
2761 /* Frame handling. */
2762 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2763 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2764 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2765
2766 set_gdbarch_frameless_function_invocation
2767 (gdbarch, arm_frameless_function_invocation);
2768
2769 frame_base_set_default (gdbarch, &arm_normal_base);
2770
2771 /* Address manipulation. */
2772 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2773 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2774
2775 /* Advance PC across function entry code. */
2776 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2777
2778 /* Get the PC when a frame might not be available. */
2779 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2780
2781 /* The stack grows downward. */
2782 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2783
2784 /* Breakpoint manipulation. */
2785 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2786
2787 /* Information about registers, etc. */
2788 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2789 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2790 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2791 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2792 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2793 set_gdbarch_deprecated_register_bytes (gdbarch,
2794 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2795 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2796 + NUM_SREGS * STATUS_REGISTER_SIZE));
2797 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2798 set_gdbarch_deprecated_register_raw_size (gdbarch, arm_register_raw_size);
2799 set_gdbarch_deprecated_register_virtual_size (gdbarch, arm_register_virtual_size);
2800 set_gdbarch_deprecated_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2801 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2802 set_gdbarch_deprecated_register_virtual_type (gdbarch, arm_register_type);
2803
2804 /* Internal <-> external register number maps. */
2805 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2806
2807 /* Integer registers are 4 bytes. */
2808 set_gdbarch_deprecated_register_size (gdbarch, 4);
2809 set_gdbarch_register_name (gdbarch, arm_register_name);
2810
2811 /* Returning results. */
2812 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2813 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2814 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2815 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
2816
2817 /* Single stepping. */
2818 /* XXX For an RDI target we should ask the target if it can single-step. */
2819 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2820
2821 /* Disassembly. */
2822 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2823
2824 /* Minsymbol frobbing. */
2825 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2826 set_gdbarch_coff_make_msymbol_special (gdbarch,
2827 arm_coff_make_msymbol_special);
2828
2829 /* Hook in the ABI-specific overrides, if they have been registered. */
2830 gdbarch_init_osabi (info, gdbarch);
2831
2832 /* Add some default predicates. */
2833 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2834 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2835
2836 /* Now we have tuned the configuration, set a few final things,
2837 based on what the OS ABI has told us. */
2838
2839 if (tdep->jb_pc >= 0)
2840 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2841
2842 /* Floating point sizes and format. */
2843 switch (info.byte_order)
2844 {
2845 case BFD_ENDIAN_BIG:
2846 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2847 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2848 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2849
2850 break;
2851
2852 case BFD_ENDIAN_LITTLE:
2853 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2854 arm_set_fp (gdbarch);
2855 break;
2856
2857 default:
2858 internal_error (__FILE__, __LINE__,
2859 "arm_gdbarch_init: bad byte order for float format");
2860 }
2861
2862 return gdbarch;
2863 }
2864
2865 static void
2866 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2867 {
2868 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2869
2870 if (tdep == NULL)
2871 return;
2872
2873 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2874 (unsigned long) tdep->lowest_pc);
2875 }
2876
2877 static void
2878 arm_init_abi_eabi_v1 (struct gdbarch_info info,
2879 struct gdbarch *gdbarch)
2880 {
2881 /* Place-holder. */
2882 }
2883
2884 static void
2885 arm_init_abi_eabi_v2 (struct gdbarch_info info,
2886 struct gdbarch *gdbarch)
2887 {
2888 /* Place-holder. */
2889 }
2890
2891 static void
2892 arm_init_abi_apcs (struct gdbarch_info info,
2893 struct gdbarch *gdbarch)
2894 {
2895 /* Place-holder. */
2896 }
2897
2898 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2899
2900 void
2901 _initialize_arm_tdep (void)
2902 {
2903 struct ui_file *stb;
2904 long length;
2905 struct cmd_list_element *new_set, *new_show;
2906 const char *setname;
2907 const char *setdesc;
2908 const char **regnames;
2909 int numregs, i, j;
2910 static char *helptext;
2911
2912 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2913
2914 /* Register an ELF OS ABI sniffer for ARM binaries. */
2915 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2916 bfd_target_elf_flavour,
2917 arm_elf_osabi_sniffer);
2918
2919 /* Register some ABI variants for embedded systems. */
2920 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
2921 arm_init_abi_eabi_v1);
2922 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
2923 arm_init_abi_eabi_v2);
2924 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
2925 arm_init_abi_apcs);
2926
2927 /* Get the number of possible sets of register names defined in opcodes. */
2928 num_disassembly_options = get_arm_regname_num_options ();
2929
2930 /* Add root prefix command for all "set arm"/"show arm" commands. */
2931 add_prefix_cmd ("arm", no_class, set_arm_command,
2932 "Various ARM-specific commands.",
2933 &setarmcmdlist, "set arm ", 0, &setlist);
2934
2935 add_prefix_cmd ("arm", no_class, show_arm_command,
2936 "Various ARM-specific commands.",
2937 &showarmcmdlist, "show arm ", 0, &showlist);
2938
2939 /* Sync the opcode insn printer with our register viewer. */
2940 parse_arm_disassembler_option ("reg-names-std");
2941
2942 /* Begin creating the help text. */
2943 stb = mem_fileopen ();
2944 fprintf_unfiltered (stb, "Set the disassembly style.\n"
2945 "The valid values are:\n");
2946
2947 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2948 valid_disassembly_styles
2949 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2950 for (i = 0; i < num_disassembly_options; i++)
2951 {
2952 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2953 valid_disassembly_styles[i] = setname;
2954 fprintf_unfiltered (stb, "%s - %s\n", setname,
2955 setdesc);
2956 /* Copy the default names (if found) and synchronize disassembler. */
2957 if (!strcmp (setname, "std"))
2958 {
2959 disassembly_style = setname;
2960 current_option = i;
2961 for (j = 0; j < numregs; j++)
2962 arm_register_names[j] = (char *) regnames[j];
2963 set_arm_regname_option (i);
2964 }
2965 }
2966 /* Mark the end of valid options. */
2967 valid_disassembly_styles[num_disassembly_options] = NULL;
2968
2969 /* Finish the creation of the help text. */
2970 fprintf_unfiltered (stb, "The default is \"std\".");
2971 helptext = ui_file_xstrdup (stb, &length);
2972 ui_file_delete (stb);
2973
2974 /* Add the deprecated disassembly-flavor command. */
2975 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
2976 valid_disassembly_styles,
2977 &disassembly_style,
2978 helptext,
2979 &setlist);
2980 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2981 deprecate_cmd (new_set, "set arm disassembly");
2982 deprecate_cmd (add_show_from_set (new_set, &showlist),
2983 "show arm disassembly");
2984
2985 /* And now add the new interface. */
2986 new_set = add_set_enum_cmd ("disassembler", no_class,
2987 valid_disassembly_styles, &disassembly_style,
2988 helptext, &setarmcmdlist);
2989
2990 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2991 add_show_from_set (new_set, &showarmcmdlist);
2992
2993 add_setshow_cmd_full ("apcs32", no_class,
2994 var_boolean, (char *) &arm_apcs_32,
2995 "Set usage of ARM 32-bit mode.",
2996 "Show usage of ARM 32-bit mode.",
2997 NULL, NULL,
2998 &setlist, &showlist, &new_set, &new_show);
2999 deprecate_cmd (new_set, "set arm apcs32");
3000 deprecate_cmd (new_show, "show arm apcs32");
3001
3002 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3003 "Set usage of ARM 32-bit mode. "
3004 "When off, a 26-bit PC will be used.",
3005 "Show usage of ARM 32-bit mode. "
3006 "When off, a 26-bit PC will be used.",
3007 NULL, NULL,
3008 &setarmcmdlist, &showarmcmdlist);
3009
3010 /* Add a command to allow the user to force the FPU model. */
3011 new_set = add_set_enum_cmd
3012 ("fpu", no_class, fp_model_strings, &current_fp_model,
3013 "Set the floating point type.\n"
3014 "auto - Determine the FP typefrom the OS-ABI.\n"
3015 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
3016 "fpa - FPA co-processor (GCC compiled).\n"
3017 "softvfp - Software FP with pure-endian doubles.\n"
3018 "vfp - VFP co-processor.",
3019 &setarmcmdlist);
3020 set_cmd_sfunc (new_set, set_fp_model_sfunc);
3021 set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
3022
3023 /* Add the deprecated "othernames" command. */
3024 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
3025 "Switch to the next set of register names."),
3026 "set arm disassembly");
3027
3028 /* Debugging flag. */
3029 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3030 "Set ARM debugging. "
3031 "When on, arm-specific debugging is enabled.",
3032 "Show ARM debugging. "
3033 "When on, arm-specific debugging is enabled.",
3034 NULL, NULL,
3035 &setdebuglist, &showdebuglist);
3036 }
This page took 0.095139 seconds and 4 git commands to generate.