Change gdbarch software_single_step frame_info to regcache
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <ctype.h> /* XXX for isupper (). */
23
24 #include "frame.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h" /* For register styles. */
30 #include "regcache.h"
31 #include "reggroups.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39 #include "objfiles.h"
40 #include "dwarf2-frame.h"
41 #include "gdbtypes.h"
42 #include "prologue-value.h"
43 #include "remote.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
46 #include "observer.h"
47
48 #include "arch/arm.h"
49 #include "arch/arm-get-next-pcs.h"
50 #include "arm-tdep.h"
51 #include "gdb/sim-arm.h"
52
53 #include "elf-bfd.h"
54 #include "coff/internal.h"
55 #include "elf/arm.h"
56
57 #include "vec.h"
58
59 #include "record.h"
60 #include "record-full.h"
61 #include <algorithm>
62
63 #include "features/arm/arm-with-m.c"
64 #include "features/arm/arm-with-m-fpa-layout.c"
65 #include "features/arm/arm-with-m-vfp-d16.c"
66 #include "features/arm/arm-with-iwmmxt.c"
67 #include "features/arm/arm-with-vfpv2.c"
68 #include "features/arm/arm-with-vfpv3.c"
69 #include "features/arm/arm-with-neon.c"
70
71 static int arm_debug;
72
73 /* Macros for setting and testing a bit in a minimal symbol that marks
74 it as Thumb function. The MSB of the minimal symbol's "info" field
75 is used for this purpose.
76
77 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
78 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
79
80 #define MSYMBOL_SET_SPECIAL(msym) \
81 MSYMBOL_TARGET_FLAG_1 (msym) = 1
82
83 #define MSYMBOL_IS_SPECIAL(msym) \
84 MSYMBOL_TARGET_FLAG_1 (msym)
85
86 /* Per-objfile data used for mapping symbols. */
87 static const struct objfile_data *arm_objfile_data_key;
88
89 struct arm_mapping_symbol
90 {
91 bfd_vma value;
92 char type;
93 };
94 typedef struct arm_mapping_symbol arm_mapping_symbol_s;
95 DEF_VEC_O(arm_mapping_symbol_s);
96
97 struct arm_per_objfile
98 {
99 VEC(arm_mapping_symbol_s) **section_maps;
100 };
101
102 /* The list of available "set arm ..." and "show arm ..." commands. */
103 static struct cmd_list_element *setarmcmdlist = NULL;
104 static struct cmd_list_element *showarmcmdlist = NULL;
105
106 /* The type of floating-point to use. Keep this in sync with enum
107 arm_float_model, and the help string in _initialize_arm_tdep. */
108 static const char *const fp_model_strings[] =
109 {
110 "auto",
111 "softfpa",
112 "fpa",
113 "softvfp",
114 "vfp",
115 NULL
116 };
117
118 /* A variable that can be configured by the user. */
119 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
120 static const char *current_fp_model = "auto";
121
122 /* The ABI to use. Keep this in sync with arm_abi_kind. */
123 static const char *const arm_abi_strings[] =
124 {
125 "auto",
126 "APCS",
127 "AAPCS",
128 NULL
129 };
130
131 /* A variable that can be configured by the user. */
132 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
133 static const char *arm_abi_string = "auto";
134
135 /* The execution mode to assume. */
136 static const char *const arm_mode_strings[] =
137 {
138 "auto",
139 "arm",
140 "thumb",
141 NULL
142 };
143
144 static const char *arm_fallback_mode_string = "auto";
145 static const char *arm_force_mode_string = "auto";
146
147 /* Number of different reg name sets (options). */
148 static int num_disassembly_options;
149
150 /* The standard register names, and all the valid aliases for them. Note
151 that `fp', `sp' and `pc' are not added in this alias list, because they
152 have been added as builtin user registers in
153 std-regs.c:_initialize_frame_reg. */
154 static const struct
155 {
156 const char *name;
157 int regnum;
158 } arm_register_aliases[] = {
159 /* Basic register numbers. */
160 { "r0", 0 },
161 { "r1", 1 },
162 { "r2", 2 },
163 { "r3", 3 },
164 { "r4", 4 },
165 { "r5", 5 },
166 { "r6", 6 },
167 { "r7", 7 },
168 { "r8", 8 },
169 { "r9", 9 },
170 { "r10", 10 },
171 { "r11", 11 },
172 { "r12", 12 },
173 { "r13", 13 },
174 { "r14", 14 },
175 { "r15", 15 },
176 /* Synonyms (argument and variable registers). */
177 { "a1", 0 },
178 { "a2", 1 },
179 { "a3", 2 },
180 { "a4", 3 },
181 { "v1", 4 },
182 { "v2", 5 },
183 { "v3", 6 },
184 { "v4", 7 },
185 { "v5", 8 },
186 { "v6", 9 },
187 { "v7", 10 },
188 { "v8", 11 },
189 /* Other platform-specific names for r9. */
190 { "sb", 9 },
191 { "tr", 9 },
192 /* Special names. */
193 { "ip", 12 },
194 { "lr", 14 },
195 /* Names used by GCC (not listed in the ARM EABI). */
196 { "sl", 10 },
197 /* A special name from the older ATPCS. */
198 { "wr", 7 },
199 };
200
201 static const char *const arm_register_names[] =
202 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
203 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
204 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
205 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
206 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
207 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
208 "fps", "cpsr" }; /* 24 25 */
209
210 /* Valid register name styles. */
211 static const char **valid_disassembly_styles;
212
213 /* Disassembly style to use. Default to "std" register names. */
214 static const char *disassembly_style;
215
216 /* This is used to keep the bfd arch_info in sync with the disassembly
217 style. */
218 static void set_disassembly_style_sfunc(char *, int,
219 struct cmd_list_element *);
220 static void set_disassembly_style (void);
221
222 static void convert_from_extended (const struct floatformat *, const void *,
223 void *, int);
224 static void convert_to_extended (const struct floatformat *, void *,
225 const void *, int);
226
227 static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
228 struct regcache *regcache,
229 int regnum, gdb_byte *buf);
230 static void arm_neon_quad_write (struct gdbarch *gdbarch,
231 struct regcache *regcache,
232 int regnum, const gdb_byte *buf);
233
234 static CORE_ADDR
235 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
236
237
238 /* get_next_pcs operations. */
239 static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
240 arm_get_next_pcs_read_memory_unsigned_integer,
241 arm_get_next_pcs_syscall_next_pc,
242 arm_get_next_pcs_addr_bits_remove,
243 arm_get_next_pcs_is_thumb,
244 NULL,
245 };
246
247 struct arm_prologue_cache
248 {
249 /* The stack pointer at the time this frame was created; i.e. the
250 caller's stack pointer when this function was called. It is used
251 to identify this frame. */
252 CORE_ADDR prev_sp;
253
254 /* The frame base for this frame is just prev_sp - frame size.
255 FRAMESIZE is the distance from the frame pointer to the
256 initial stack pointer. */
257
258 int framesize;
259
260 /* The register used to hold the frame pointer for this frame. */
261 int framereg;
262
263 /* Saved register offsets. */
264 struct trad_frame_saved_reg *saved_regs;
265 };
266
267 static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
268 CORE_ADDR prologue_start,
269 CORE_ADDR prologue_end,
270 struct arm_prologue_cache *cache);
271
272 /* Architecture version for displaced stepping. This effects the behaviour of
273 certain instructions, and really should not be hard-wired. */
274
275 #define DISPLACED_STEPPING_ARCH_VERSION 5
276
277 /* Set to true if the 32-bit mode is in use. */
278
279 int arm_apcs_32 = 1;
280
281 /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
282
283 int
284 arm_psr_thumb_bit (struct gdbarch *gdbarch)
285 {
286 if (gdbarch_tdep (gdbarch)->is_m)
287 return XPSR_T;
288 else
289 return CPSR_T;
290 }
291
292 /* Determine if the processor is currently executing in Thumb mode. */
293
294 int
295 arm_is_thumb (struct regcache *regcache)
296 {
297 ULONGEST cpsr;
298 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
299
300 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
301
302 return (cpsr & t_bit) != 0;
303 }
304
305 /* Determine if FRAME is executing in Thumb mode. */
306
307 int
308 arm_frame_is_thumb (struct frame_info *frame)
309 {
310 CORE_ADDR cpsr;
311 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
312
313 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
314 directly (from a signal frame or dummy frame) or by interpreting
315 the saved LR (from a prologue or DWARF frame). So consult it and
316 trust the unwinders. */
317 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
318
319 return (cpsr & t_bit) != 0;
320 }
321
322 /* Callback for VEC_lower_bound. */
323
324 static inline int
325 arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
326 const struct arm_mapping_symbol *rhs)
327 {
328 return lhs->value < rhs->value;
329 }
330
331 /* Search for the mapping symbol covering MEMADDR. If one is found,
332 return its type. Otherwise, return 0. If START is non-NULL,
333 set *START to the location of the mapping symbol. */
334
335 static char
336 arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
337 {
338 struct obj_section *sec;
339
340 /* If there are mapping symbols, consult them. */
341 sec = find_pc_section (memaddr);
342 if (sec != NULL)
343 {
344 struct arm_per_objfile *data;
345 VEC(arm_mapping_symbol_s) *map;
346 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
347 0 };
348 unsigned int idx;
349
350 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
351 arm_objfile_data_key);
352 if (data != NULL)
353 {
354 map = data->section_maps[sec->the_bfd_section->index];
355 if (!VEC_empty (arm_mapping_symbol_s, map))
356 {
357 struct arm_mapping_symbol *map_sym;
358
359 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
360 arm_compare_mapping_symbols);
361
362 /* VEC_lower_bound finds the earliest ordered insertion
363 point. If the following symbol starts at this exact
364 address, we use that; otherwise, the preceding
365 mapping symbol covers this address. */
366 if (idx < VEC_length (arm_mapping_symbol_s, map))
367 {
368 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
369 if (map_sym->value == map_key.value)
370 {
371 if (start)
372 *start = map_sym->value + obj_section_addr (sec);
373 return map_sym->type;
374 }
375 }
376
377 if (idx > 0)
378 {
379 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
380 if (start)
381 *start = map_sym->value + obj_section_addr (sec);
382 return map_sym->type;
383 }
384 }
385 }
386 }
387
388 return 0;
389 }
390
391 /* Determine if the program counter specified in MEMADDR is in a Thumb
392 function. This function should be called for addresses unrelated to
393 any executing frame; otherwise, prefer arm_frame_is_thumb. */
394
395 int
396 arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
397 {
398 struct bound_minimal_symbol sym;
399 char type;
400 struct displaced_step_closure* dsc
401 = get_displaced_step_closure_by_addr(memaddr);
402
403 /* If checking the mode of displaced instruction in copy area, the mode
404 should be determined by instruction on the original address. */
405 if (dsc)
406 {
407 if (debug_displaced)
408 fprintf_unfiltered (gdb_stdlog,
409 "displaced: check mode of %.8lx instead of %.8lx\n",
410 (unsigned long) dsc->insn_addr,
411 (unsigned long) memaddr);
412 memaddr = dsc->insn_addr;
413 }
414
415 /* If bit 0 of the address is set, assume this is a Thumb address. */
416 if (IS_THUMB_ADDR (memaddr))
417 return 1;
418
419 /* If the user wants to override the symbol table, let him. */
420 if (strcmp (arm_force_mode_string, "arm") == 0)
421 return 0;
422 if (strcmp (arm_force_mode_string, "thumb") == 0)
423 return 1;
424
425 /* ARM v6-M and v7-M are always in Thumb mode. */
426 if (gdbarch_tdep (gdbarch)->is_m)
427 return 1;
428
429 /* If there are mapping symbols, consult them. */
430 type = arm_find_mapping_symbol (memaddr, NULL);
431 if (type)
432 return type == 't';
433
434 /* Thumb functions have a "special" bit set in minimal symbols. */
435 sym = lookup_minimal_symbol_by_pc (memaddr);
436 if (sym.minsym)
437 return (MSYMBOL_IS_SPECIAL (sym.minsym));
438
439 /* If the user wants to override the fallback mode, let them. */
440 if (strcmp (arm_fallback_mode_string, "arm") == 0)
441 return 0;
442 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
443 return 1;
444
445 /* If we couldn't find any symbol, but we're talking to a running
446 target, then trust the current value of $cpsr. This lets
447 "display/i $pc" always show the correct mode (though if there is
448 a symbol table we will not reach here, so it still may not be
449 displayed in the mode it will be executed). */
450 if (target_has_registers)
451 return arm_frame_is_thumb (get_current_frame ());
452
453 /* Otherwise we're out of luck; we assume ARM. */
454 return 0;
455 }
456
457 /* Determine if the address specified equals any of these magic return
458 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
459 architectures.
460
461 From ARMv6-M Reference Manual B1.5.8
462 Table B1-5 Exception return behavior
463
464 EXC_RETURN Return To Return Stack
465 0xFFFFFFF1 Handler mode Main
466 0xFFFFFFF9 Thread mode Main
467 0xFFFFFFFD Thread mode Process
468
469 From ARMv7-M Reference Manual B1.5.8
470 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
471
472 EXC_RETURN Return To Return Stack
473 0xFFFFFFF1 Handler mode Main
474 0xFFFFFFF9 Thread mode Main
475 0xFFFFFFFD Thread mode Process
476
477 Table B1-9 EXC_RETURN definition of exception return behavior, with
478 FP
479
480 EXC_RETURN Return To Return Stack Frame Type
481 0xFFFFFFE1 Handler mode Main Extended
482 0xFFFFFFE9 Thread mode Main Extended
483 0xFFFFFFED Thread mode Process Extended
484 0xFFFFFFF1 Handler mode Main Basic
485 0xFFFFFFF9 Thread mode Main Basic
486 0xFFFFFFFD Thread mode Process Basic
487
488 For more details see "B1.5.8 Exception return behavior"
489 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
490
491 static int
492 arm_m_addr_is_magic (CORE_ADDR addr)
493 {
494 switch (addr)
495 {
496 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
497 the exception return behavior. */
498 case 0xffffffe1:
499 case 0xffffffe9:
500 case 0xffffffed:
501 case 0xfffffff1:
502 case 0xfffffff9:
503 case 0xfffffffd:
504 /* Address is magic. */
505 return 1;
506
507 default:
508 /* Address is not magic. */
509 return 0;
510 }
511 }
512
513 /* Remove useless bits from addresses in a running program. */
514 static CORE_ADDR
515 arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
516 {
517 /* On M-profile devices, do not strip the low bit from EXC_RETURN
518 (the magic exception return address). */
519 if (gdbarch_tdep (gdbarch)->is_m
520 && arm_m_addr_is_magic (val))
521 return val;
522
523 if (arm_apcs_32)
524 return UNMAKE_THUMB_ADDR (val);
525 else
526 return (val & 0x03fffffc);
527 }
528
529 /* Return 1 if PC is the start of a compiler helper function which
530 can be safely ignored during prologue skipping. IS_THUMB is true
531 if the function is known to be a Thumb function due to the way it
532 is being called. */
533 static int
534 skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
535 {
536 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
537 struct bound_minimal_symbol msym;
538
539 msym = lookup_minimal_symbol_by_pc (pc);
540 if (msym.minsym != NULL
541 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
542 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
543 {
544 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
545
546 /* The GNU linker's Thumb call stub to foo is named
547 __foo_from_thumb. */
548 if (strstr (name, "_from_thumb") != NULL)
549 name += 2;
550
551 /* On soft-float targets, __truncdfsf2 is called to convert promoted
552 arguments to their argument types in non-prototyped
553 functions. */
554 if (startswith (name, "__truncdfsf2"))
555 return 1;
556 if (startswith (name, "__aeabi_d2f"))
557 return 1;
558
559 /* Internal functions related to thread-local storage. */
560 if (startswith (name, "__tls_get_addr"))
561 return 1;
562 if (startswith (name, "__aeabi_read_tp"))
563 return 1;
564 }
565 else
566 {
567 /* If we run against a stripped glibc, we may be unable to identify
568 special functions by name. Check for one important case,
569 __aeabi_read_tp, by comparing the *code* against the default
570 implementation (this is hand-written ARM assembler in glibc). */
571
572 if (!is_thumb
573 && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
574 == 0xe3e00a0f /* mov r0, #0xffff0fff */
575 && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
576 == 0xe240f01f) /* sub pc, r0, #31 */
577 return 1;
578 }
579
580 return 0;
581 }
582
583 /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
584 the first 16-bit of instruction, and INSN2 is the second 16-bit of
585 instruction. */
586 #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
587 ((bits ((insn1), 0, 3) << 12) \
588 | (bits ((insn1), 10, 10) << 11) \
589 | (bits ((insn2), 12, 14) << 8) \
590 | bits ((insn2), 0, 7))
591
592 /* Extract the immediate from instruction movw/movt of encoding A. INSN is
593 the 32-bit instruction. */
594 #define EXTRACT_MOVW_MOVT_IMM_A(insn) \
595 ((bits ((insn), 16, 19) << 12) \
596 | bits ((insn), 0, 11))
597
598 /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
599
600 static unsigned int
601 thumb_expand_immediate (unsigned int imm)
602 {
603 unsigned int count = imm >> 7;
604
605 if (count < 8)
606 switch (count / 2)
607 {
608 case 0:
609 return imm & 0xff;
610 case 1:
611 return (imm & 0xff) | ((imm & 0xff) << 16);
612 case 2:
613 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
614 case 3:
615 return (imm & 0xff) | ((imm & 0xff) << 8)
616 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
617 }
618
619 return (0x80 | (imm & 0x7f)) << (32 - count);
620 }
621
622 /* Return 1 if the 16-bit Thumb instruction INSN restores SP in
623 epilogue, 0 otherwise. */
624
625 static int
626 thumb_instruction_restores_sp (unsigned short insn)
627 {
628 return (insn == 0x46bd /* mov sp, r7 */
629 || (insn & 0xff80) == 0xb000 /* add sp, imm */
630 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
631 }
632
633 /* Analyze a Thumb prologue, looking for a recognizable stack frame
634 and frame pointer. Scan until we encounter a store that could
635 clobber the stack frame unexpectedly, or an unknown instruction.
636 Return the last address which is definitely safe to skip for an
637 initial breakpoint. */
638
639 static CORE_ADDR
640 thumb_analyze_prologue (struct gdbarch *gdbarch,
641 CORE_ADDR start, CORE_ADDR limit,
642 struct arm_prologue_cache *cache)
643 {
644 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
645 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
646 int i;
647 pv_t regs[16];
648 struct pv_area *stack;
649 struct cleanup *back_to;
650 CORE_ADDR offset;
651 CORE_ADDR unrecognized_pc = 0;
652
653 for (i = 0; i < 16; i++)
654 regs[i] = pv_register (i, 0);
655 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
656 back_to = make_cleanup_free_pv_area (stack);
657
658 while (start < limit)
659 {
660 unsigned short insn;
661
662 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
663
664 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
665 {
666 int regno;
667 int mask;
668
669 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
670 break;
671
672 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
673 whether to save LR (R14). */
674 mask = (insn & 0xff) | ((insn & 0x100) << 6);
675
676 /* Calculate offsets of saved R0-R7 and LR. */
677 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
678 if (mask & (1 << regno))
679 {
680 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
681 -4);
682 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
683 }
684 }
685 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
686 {
687 offset = (insn & 0x7f) << 2; /* get scaled offset */
688 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
689 -offset);
690 }
691 else if (thumb_instruction_restores_sp (insn))
692 {
693 /* Don't scan past the epilogue. */
694 break;
695 }
696 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
697 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
698 (insn & 0xff) << 2);
699 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
700 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
701 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
702 bits (insn, 6, 8));
703 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
704 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
705 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
706 bits (insn, 0, 7));
707 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
708 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
709 && pv_is_constant (regs[bits (insn, 3, 5)]))
710 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
711 regs[bits (insn, 6, 8)]);
712 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
713 && pv_is_constant (regs[bits (insn, 3, 6)]))
714 {
715 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
716 int rm = bits (insn, 3, 6);
717 regs[rd] = pv_add (regs[rd], regs[rm]);
718 }
719 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
720 {
721 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
722 int src_reg = (insn & 0x78) >> 3;
723 regs[dst_reg] = regs[src_reg];
724 }
725 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
726 {
727 /* Handle stores to the stack. Normally pushes are used,
728 but with GCC -mtpcs-frame, there may be other stores
729 in the prologue to create the frame. */
730 int regno = (insn >> 8) & 0x7;
731 pv_t addr;
732
733 offset = (insn & 0xff) << 2;
734 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
735
736 if (pv_area_store_would_trash (stack, addr))
737 break;
738
739 pv_area_store (stack, addr, 4, regs[regno]);
740 }
741 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
742 {
743 int rd = bits (insn, 0, 2);
744 int rn = bits (insn, 3, 5);
745 pv_t addr;
746
747 offset = bits (insn, 6, 10) << 2;
748 addr = pv_add_constant (regs[rn], offset);
749
750 if (pv_area_store_would_trash (stack, addr))
751 break;
752
753 pv_area_store (stack, addr, 4, regs[rd]);
754 }
755 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
756 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
757 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
758 /* Ignore stores of argument registers to the stack. */
759 ;
760 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
761 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
762 /* Ignore block loads from the stack, potentially copying
763 parameters from memory. */
764 ;
765 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
766 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
767 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
768 /* Similarly ignore single loads from the stack. */
769 ;
770 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
771 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
772 /* Skip register copies, i.e. saves to another register
773 instead of the stack. */
774 ;
775 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
776 /* Recognize constant loads; even with small stacks these are necessary
777 on Thumb. */
778 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
779 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
780 {
781 /* Constant pool loads, for the same reason. */
782 unsigned int constant;
783 CORE_ADDR loc;
784
785 loc = start + 4 + bits (insn, 0, 7) * 4;
786 constant = read_memory_unsigned_integer (loc, 4, byte_order);
787 regs[bits (insn, 8, 10)] = pv_constant (constant);
788 }
789 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
790 {
791 unsigned short inst2;
792
793 inst2 = read_memory_unsigned_integer (start + 2, 2,
794 byte_order_for_code);
795
796 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
797 {
798 /* BL, BLX. Allow some special function calls when
799 skipping the prologue; GCC generates these before
800 storing arguments to the stack. */
801 CORE_ADDR nextpc;
802 int j1, j2, imm1, imm2;
803
804 imm1 = sbits (insn, 0, 10);
805 imm2 = bits (inst2, 0, 10);
806 j1 = bit (inst2, 13);
807 j2 = bit (inst2, 11);
808
809 offset = ((imm1 << 12) + (imm2 << 1));
810 offset ^= ((!j2) << 22) | ((!j1) << 23);
811
812 nextpc = start + 4 + offset;
813 /* For BLX make sure to clear the low bits. */
814 if (bit (inst2, 12) == 0)
815 nextpc = nextpc & 0xfffffffc;
816
817 if (!skip_prologue_function (gdbarch, nextpc,
818 bit (inst2, 12) != 0))
819 break;
820 }
821
822 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
823 { registers } */
824 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
825 {
826 pv_t addr = regs[bits (insn, 0, 3)];
827 int regno;
828
829 if (pv_area_store_would_trash (stack, addr))
830 break;
831
832 /* Calculate offsets of saved registers. */
833 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
834 if (inst2 & (1 << regno))
835 {
836 addr = pv_add_constant (addr, -4);
837 pv_area_store (stack, addr, 4, regs[regno]);
838 }
839
840 if (insn & 0x0020)
841 regs[bits (insn, 0, 3)] = addr;
842 }
843
844 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
845 [Rn, #+/-imm]{!} */
846 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
847 {
848 int regno1 = bits (inst2, 12, 15);
849 int regno2 = bits (inst2, 8, 11);
850 pv_t addr = regs[bits (insn, 0, 3)];
851
852 offset = inst2 & 0xff;
853 if (insn & 0x0080)
854 addr = pv_add_constant (addr, offset);
855 else
856 addr = pv_add_constant (addr, -offset);
857
858 if (pv_area_store_would_trash (stack, addr))
859 break;
860
861 pv_area_store (stack, addr, 4, regs[regno1]);
862 pv_area_store (stack, pv_add_constant (addr, 4),
863 4, regs[regno2]);
864
865 if (insn & 0x0020)
866 regs[bits (insn, 0, 3)] = addr;
867 }
868
869 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
870 && (inst2 & 0x0c00) == 0x0c00
871 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
872 {
873 int regno = bits (inst2, 12, 15);
874 pv_t addr = regs[bits (insn, 0, 3)];
875
876 offset = inst2 & 0xff;
877 if (inst2 & 0x0200)
878 addr = pv_add_constant (addr, offset);
879 else
880 addr = pv_add_constant (addr, -offset);
881
882 if (pv_area_store_would_trash (stack, addr))
883 break;
884
885 pv_area_store (stack, addr, 4, regs[regno]);
886
887 if (inst2 & 0x0100)
888 regs[bits (insn, 0, 3)] = addr;
889 }
890
891 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
892 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
893 {
894 int regno = bits (inst2, 12, 15);
895 pv_t addr;
896
897 offset = inst2 & 0xfff;
898 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
899
900 if (pv_area_store_would_trash (stack, addr))
901 break;
902
903 pv_area_store (stack, addr, 4, regs[regno]);
904 }
905
906 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
907 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
908 /* Ignore stores of argument registers to the stack. */
909 ;
910
911 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
912 && (inst2 & 0x0d00) == 0x0c00
913 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
914 /* Ignore stores of argument registers to the stack. */
915 ;
916
917 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
918 { registers } */
919 && (inst2 & 0x8000) == 0x0000
920 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
921 /* Ignore block loads from the stack, potentially copying
922 parameters from memory. */
923 ;
924
925 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
926 [Rn, #+/-imm] */
927 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
928 /* Similarly ignore dual loads from the stack. */
929 ;
930
931 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
932 && (inst2 & 0x0d00) == 0x0c00
933 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
934 /* Similarly ignore single loads from the stack. */
935 ;
936
937 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
938 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
939 /* Similarly ignore single loads from the stack. */
940 ;
941
942 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
943 && (inst2 & 0x8000) == 0x0000)
944 {
945 unsigned int imm = ((bits (insn, 10, 10) << 11)
946 | (bits (inst2, 12, 14) << 8)
947 | bits (inst2, 0, 7));
948
949 regs[bits (inst2, 8, 11)]
950 = pv_add_constant (regs[bits (insn, 0, 3)],
951 thumb_expand_immediate (imm));
952 }
953
954 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
955 && (inst2 & 0x8000) == 0x0000)
956 {
957 unsigned int imm = ((bits (insn, 10, 10) << 11)
958 | (bits (inst2, 12, 14) << 8)
959 | bits (inst2, 0, 7));
960
961 regs[bits (inst2, 8, 11)]
962 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
963 }
964
965 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
966 && (inst2 & 0x8000) == 0x0000)
967 {
968 unsigned int imm = ((bits (insn, 10, 10) << 11)
969 | (bits (inst2, 12, 14) << 8)
970 | bits (inst2, 0, 7));
971
972 regs[bits (inst2, 8, 11)]
973 = pv_add_constant (regs[bits (insn, 0, 3)],
974 - (CORE_ADDR) thumb_expand_immediate (imm));
975 }
976
977 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
978 && (inst2 & 0x8000) == 0x0000)
979 {
980 unsigned int imm = ((bits (insn, 10, 10) << 11)
981 | (bits (inst2, 12, 14) << 8)
982 | bits (inst2, 0, 7));
983
984 regs[bits (inst2, 8, 11)]
985 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
986 }
987
988 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
989 {
990 unsigned int imm = ((bits (insn, 10, 10) << 11)
991 | (bits (inst2, 12, 14) << 8)
992 | bits (inst2, 0, 7));
993
994 regs[bits (inst2, 8, 11)]
995 = pv_constant (thumb_expand_immediate (imm));
996 }
997
998 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
999 {
1000 unsigned int imm
1001 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
1002
1003 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1004 }
1005
1006 else if (insn == 0xea5f /* mov.w Rd,Rm */
1007 && (inst2 & 0xf0f0) == 0)
1008 {
1009 int dst_reg = (inst2 & 0x0f00) >> 8;
1010 int src_reg = inst2 & 0xf;
1011 regs[dst_reg] = regs[src_reg];
1012 }
1013
1014 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1015 {
1016 /* Constant pool loads. */
1017 unsigned int constant;
1018 CORE_ADDR loc;
1019
1020 offset = bits (inst2, 0, 11);
1021 if (insn & 0x0080)
1022 loc = start + 4 + offset;
1023 else
1024 loc = start + 4 - offset;
1025
1026 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1027 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1028 }
1029
1030 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1031 {
1032 /* Constant pool loads. */
1033 unsigned int constant;
1034 CORE_ADDR loc;
1035
1036 offset = bits (inst2, 0, 7) << 2;
1037 if (insn & 0x0080)
1038 loc = start + 4 + offset;
1039 else
1040 loc = start + 4 - offset;
1041
1042 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1043 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1044
1045 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1046 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1047 }
1048
1049 else if (thumb2_instruction_changes_pc (insn, inst2))
1050 {
1051 /* Don't scan past anything that might change control flow. */
1052 break;
1053 }
1054 else
1055 {
1056 /* The optimizer might shove anything into the prologue,
1057 so we just skip what we don't recognize. */
1058 unrecognized_pc = start;
1059 }
1060
1061 start += 2;
1062 }
1063 else if (thumb_instruction_changes_pc (insn))
1064 {
1065 /* Don't scan past anything that might change control flow. */
1066 break;
1067 }
1068 else
1069 {
1070 /* The optimizer might shove anything into the prologue,
1071 so we just skip what we don't recognize. */
1072 unrecognized_pc = start;
1073 }
1074
1075 start += 2;
1076 }
1077
1078 if (arm_debug)
1079 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1080 paddress (gdbarch, start));
1081
1082 if (unrecognized_pc == 0)
1083 unrecognized_pc = start;
1084
1085 if (cache == NULL)
1086 {
1087 do_cleanups (back_to);
1088 return unrecognized_pc;
1089 }
1090
1091 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1092 {
1093 /* Frame pointer is fp. Frame size is constant. */
1094 cache->framereg = ARM_FP_REGNUM;
1095 cache->framesize = -regs[ARM_FP_REGNUM].k;
1096 }
1097 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1098 {
1099 /* Frame pointer is r7. Frame size is constant. */
1100 cache->framereg = THUMB_FP_REGNUM;
1101 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1102 }
1103 else
1104 {
1105 /* Try the stack pointer... this is a bit desperate. */
1106 cache->framereg = ARM_SP_REGNUM;
1107 cache->framesize = -regs[ARM_SP_REGNUM].k;
1108 }
1109
1110 for (i = 0; i < 16; i++)
1111 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1112 cache->saved_regs[i].addr = offset;
1113
1114 do_cleanups (back_to);
1115 return unrecognized_pc;
1116 }
1117
1118
1119 /* Try to analyze the instructions starting from PC, which load symbol
1120 __stack_chk_guard. Return the address of instruction after loading this
1121 symbol, set the dest register number to *BASEREG, and set the size of
1122 instructions for loading symbol in OFFSET. Return 0 if instructions are
1123 not recognized. */
1124
1125 static CORE_ADDR
1126 arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1127 unsigned int *destreg, int *offset)
1128 {
1129 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1130 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1131 unsigned int low, high, address;
1132
1133 address = 0;
1134 if (is_thumb)
1135 {
1136 unsigned short insn1
1137 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1138
1139 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1140 {
1141 *destreg = bits (insn1, 8, 10);
1142 *offset = 2;
1143 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1144 address = read_memory_unsigned_integer (address, 4,
1145 byte_order_for_code);
1146 }
1147 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1148 {
1149 unsigned short insn2
1150 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1151
1152 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1153
1154 insn1
1155 = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
1156 insn2
1157 = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
1158
1159 /* movt Rd, #const */
1160 if ((insn1 & 0xfbc0) == 0xf2c0)
1161 {
1162 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1163 *destreg = bits (insn2, 8, 11);
1164 *offset = 8;
1165 address = (high << 16 | low);
1166 }
1167 }
1168 }
1169 else
1170 {
1171 unsigned int insn
1172 = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1173
1174 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
1175 {
1176 address = bits (insn, 0, 11) + pc + 8;
1177 address = read_memory_unsigned_integer (address, 4,
1178 byte_order_for_code);
1179
1180 *destreg = bits (insn, 12, 15);
1181 *offset = 4;
1182 }
1183 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1184 {
1185 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1186
1187 insn
1188 = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
1189
1190 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1191 {
1192 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1193 *destreg = bits (insn, 12, 15);
1194 *offset = 8;
1195 address = (high << 16 | low);
1196 }
1197 }
1198 }
1199
1200 return address;
1201 }
1202
1203 /* Try to skip a sequence of instructions used for stack protector. If PC
1204 points to the first instruction of this sequence, return the address of
1205 first instruction after this sequence, otherwise, return original PC.
1206
1207 On arm, this sequence of instructions is composed of mainly three steps,
1208 Step 1: load symbol __stack_chk_guard,
1209 Step 2: load from address of __stack_chk_guard,
1210 Step 3: store it to somewhere else.
1211
1212 Usually, instructions on step 2 and step 3 are the same on various ARM
1213 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1214 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1215 instructions in step 1 vary from different ARM architectures. On ARMv7,
1216 they are,
1217
1218 movw Rn, #:lower16:__stack_chk_guard
1219 movt Rn, #:upper16:__stack_chk_guard
1220
1221 On ARMv5t, it is,
1222
1223 ldr Rn, .Label
1224 ....
1225 .Lable:
1226 .word __stack_chk_guard
1227
1228 Since ldr/str is a very popular instruction, we can't use them as
1229 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1230 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1231 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1232
1233 static CORE_ADDR
1234 arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1235 {
1236 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1237 unsigned int basereg;
1238 struct bound_minimal_symbol stack_chk_guard;
1239 int offset;
1240 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1241 CORE_ADDR addr;
1242
1243 /* Try to parse the instructions in Step 1. */
1244 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1245 &basereg, &offset);
1246 if (!addr)
1247 return pc;
1248
1249 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1250 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1251 Otherwise, this sequence cannot be for stack protector. */
1252 if (stack_chk_guard.minsym == NULL
1253 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
1254 return pc;
1255
1256 if (is_thumb)
1257 {
1258 unsigned int destreg;
1259 unsigned short insn
1260 = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
1261
1262 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1263 if ((insn & 0xf800) != 0x6800)
1264 return pc;
1265 if (bits (insn, 3, 5) != basereg)
1266 return pc;
1267 destreg = bits (insn, 0, 2);
1268
1269 insn = read_memory_unsigned_integer (pc + offset + 2, 2,
1270 byte_order_for_code);
1271 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1272 if ((insn & 0xf800) != 0x6000)
1273 return pc;
1274 if (destreg != bits (insn, 0, 2))
1275 return pc;
1276 }
1277 else
1278 {
1279 unsigned int destreg;
1280 unsigned int insn
1281 = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
1282
1283 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1284 if ((insn & 0x0e500000) != 0x04100000)
1285 return pc;
1286 if (bits (insn, 16, 19) != basereg)
1287 return pc;
1288 destreg = bits (insn, 12, 15);
1289 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1290 insn = read_memory_unsigned_integer (pc + offset + 4,
1291 4, byte_order_for_code);
1292 if ((insn & 0x0e500000) != 0x04000000)
1293 return pc;
1294 if (bits (insn, 12, 15) != destreg)
1295 return pc;
1296 }
1297 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1298 on arm. */
1299 if (is_thumb)
1300 return pc + offset + 4;
1301 else
1302 return pc + offset + 8;
1303 }
1304
1305 /* Advance the PC across any function entry prologue instructions to
1306 reach some "real" code.
1307
1308 The APCS (ARM Procedure Call Standard) defines the following
1309 prologue:
1310
1311 mov ip, sp
1312 [stmfd sp!, {a1,a2,a3,a4}]
1313 stmfd sp!, {...,fp,ip,lr,pc}
1314 [stfe f7, [sp, #-12]!]
1315 [stfe f6, [sp, #-12]!]
1316 [stfe f5, [sp, #-12]!]
1317 [stfe f4, [sp, #-12]!]
1318 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
1319
1320 static CORE_ADDR
1321 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1322 {
1323 CORE_ADDR func_addr, limit_pc;
1324
1325 /* See if we can determine the end of the prologue via the symbol table.
1326 If so, then return either PC, or the PC after the prologue, whichever
1327 is greater. */
1328 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1329 {
1330 CORE_ADDR post_prologue_pc
1331 = skip_prologue_using_sal (gdbarch, func_addr);
1332 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1333
1334 if (post_prologue_pc)
1335 post_prologue_pc
1336 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1337
1338
1339 /* GCC always emits a line note before the prologue and another
1340 one after, even if the two are at the same address or on the
1341 same line. Take advantage of this so that we do not need to
1342 know every instruction that might appear in the prologue. We
1343 will have producer information for most binaries; if it is
1344 missing (e.g. for -gstabs), assuming the GNU tools. */
1345 if (post_prologue_pc
1346 && (cust == NULL
1347 || COMPUNIT_PRODUCER (cust) == NULL
1348 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1349 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1350 return post_prologue_pc;
1351
1352 if (post_prologue_pc != 0)
1353 {
1354 CORE_ADDR analyzed_limit;
1355
1356 /* For non-GCC compilers, make sure the entire line is an
1357 acceptable prologue; GDB will round this function's
1358 return value up to the end of the following line so we
1359 can not skip just part of a line (and we do not want to).
1360
1361 RealView does not treat the prologue specially, but does
1362 associate prologue code with the opening brace; so this
1363 lets us skip the first line if we think it is the opening
1364 brace. */
1365 if (arm_pc_is_thumb (gdbarch, func_addr))
1366 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1367 post_prologue_pc, NULL);
1368 else
1369 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1370 post_prologue_pc, NULL);
1371
1372 if (analyzed_limit != post_prologue_pc)
1373 return func_addr;
1374
1375 return post_prologue_pc;
1376 }
1377 }
1378
1379 /* Can't determine prologue from the symbol table, need to examine
1380 instructions. */
1381
1382 /* Find an upper limit on the function prologue using the debug
1383 information. If the debug information could not be used to provide
1384 that bound, then use an arbitrary large number as the upper bound. */
1385 /* Like arm_scan_prologue, stop no later than pc + 64. */
1386 limit_pc = skip_prologue_using_sal (gdbarch, pc);
1387 if (limit_pc == 0)
1388 limit_pc = pc + 64; /* Magic. */
1389
1390
1391 /* Check if this is Thumb code. */
1392 if (arm_pc_is_thumb (gdbarch, pc))
1393 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1394 else
1395 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1396 }
1397
1398 /* *INDENT-OFF* */
1399 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1400 This function decodes a Thumb function prologue to determine:
1401 1) the size of the stack frame
1402 2) which registers are saved on it
1403 3) the offsets of saved regs
1404 4) the offset from the stack pointer to the frame pointer
1405
1406 A typical Thumb function prologue would create this stack frame
1407 (offsets relative to FP)
1408 old SP -> 24 stack parameters
1409 20 LR
1410 16 R7
1411 R7 -> 0 local variables (16 bytes)
1412 SP -> -12 additional stack space (12 bytes)
1413 The frame size would thus be 36 bytes, and the frame offset would be
1414 12 bytes. The frame register is R7.
1415
1416 The comments for thumb_skip_prolog() describe the algorithm we use
1417 to detect the end of the prolog. */
1418 /* *INDENT-ON* */
1419
1420 static void
1421 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
1422 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
1423 {
1424 CORE_ADDR prologue_start;
1425 CORE_ADDR prologue_end;
1426
1427 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1428 &prologue_end))
1429 {
1430 /* See comment in arm_scan_prologue for an explanation of
1431 this heuristics. */
1432 if (prologue_end > prologue_start + 64)
1433 {
1434 prologue_end = prologue_start + 64;
1435 }
1436 }
1437 else
1438 /* We're in the boondocks: we have no idea where the start of the
1439 function is. */
1440 return;
1441
1442 prologue_end = std::min (prologue_end, prev_pc);
1443
1444 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1445 }
1446
1447 /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1448 otherwise. */
1449
1450 static int
1451 arm_instruction_restores_sp (unsigned int insn)
1452 {
1453 if (bits (insn, 28, 31) != INST_NV)
1454 {
1455 if ((insn & 0x0df0f000) == 0x0080d000
1456 /* ADD SP (register or immediate). */
1457 || (insn & 0x0df0f000) == 0x0040d000
1458 /* SUB SP (register or immediate). */
1459 || (insn & 0x0ffffff0) == 0x01a0d000
1460 /* MOV SP. */
1461 || (insn & 0x0fff0000) == 0x08bd0000
1462 /* POP (LDMIA). */
1463 || (insn & 0x0fff0000) == 0x049d0000)
1464 /* POP of a single register. */
1465 return 1;
1466 }
1467
1468 return 0;
1469 }
1470
1471 /* Analyze an ARM mode prologue starting at PROLOGUE_START and
1472 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1473 fill it in. Return the first address not recognized as a prologue
1474 instruction.
1475
1476 We recognize all the instructions typically found in ARM prologues,
1477 plus harmless instructions which can be skipped (either for analysis
1478 purposes, or a more restrictive set that can be skipped when finding
1479 the end of the prologue). */
1480
1481 static CORE_ADDR
1482 arm_analyze_prologue (struct gdbarch *gdbarch,
1483 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1484 struct arm_prologue_cache *cache)
1485 {
1486 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1487 int regno;
1488 CORE_ADDR offset, current_pc;
1489 pv_t regs[ARM_FPS_REGNUM];
1490 struct pv_area *stack;
1491 struct cleanup *back_to;
1492 CORE_ADDR unrecognized_pc = 0;
1493
1494 /* Search the prologue looking for instructions that set up the
1495 frame pointer, adjust the stack pointer, and save registers.
1496
1497 Be careful, however, and if it doesn't look like a prologue,
1498 don't try to scan it. If, for instance, a frameless function
1499 begins with stmfd sp!, then we will tell ourselves there is
1500 a frame, which will confuse stack traceback, as well as "finish"
1501 and other operations that rely on a knowledge of the stack
1502 traceback. */
1503
1504 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1505 regs[regno] = pv_register (regno, 0);
1506 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1507 back_to = make_cleanup_free_pv_area (stack);
1508
1509 for (current_pc = prologue_start;
1510 current_pc < prologue_end;
1511 current_pc += 4)
1512 {
1513 unsigned int insn
1514 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
1515
1516 if (insn == 0xe1a0c00d) /* mov ip, sp */
1517 {
1518 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
1519 continue;
1520 }
1521 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1522 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1523 {
1524 unsigned imm = insn & 0xff; /* immediate value */
1525 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1526 int rd = bits (insn, 12, 15);
1527 imm = (imm >> rot) | (imm << (32 - rot));
1528 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
1529 continue;
1530 }
1531 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1532 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1533 {
1534 unsigned imm = insn & 0xff; /* immediate value */
1535 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1536 int rd = bits (insn, 12, 15);
1537 imm = (imm >> rot) | (imm << (32 - rot));
1538 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
1539 continue;
1540 }
1541 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1542 [sp, #-4]! */
1543 {
1544 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1545 break;
1546 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1547 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1548 regs[bits (insn, 12, 15)]);
1549 continue;
1550 }
1551 else if ((insn & 0xffff0000) == 0xe92d0000)
1552 /* stmfd sp!, {..., fp, ip, lr, pc}
1553 or
1554 stmfd sp!, {a1, a2, a3, a4} */
1555 {
1556 int mask = insn & 0xffff;
1557
1558 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1559 break;
1560
1561 /* Calculate offsets of saved registers. */
1562 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
1563 if (mask & (1 << regno))
1564 {
1565 regs[ARM_SP_REGNUM]
1566 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1567 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
1568 }
1569 }
1570 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1571 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
1572 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
1573 {
1574 /* No need to add this to saved_regs -- it's just an arg reg. */
1575 continue;
1576 }
1577 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1578 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
1579 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
1580 {
1581 /* No need to add this to saved_regs -- it's just an arg reg. */
1582 continue;
1583 }
1584 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1585 { registers } */
1586 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1587 {
1588 /* No need to add this to saved_regs -- it's just arg regs. */
1589 continue;
1590 }
1591 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1592 {
1593 unsigned imm = insn & 0xff; /* immediate value */
1594 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1595 imm = (imm >> rot) | (imm << (32 - rot));
1596 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
1597 }
1598 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1599 {
1600 unsigned imm = insn & 0xff; /* immediate value */
1601 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1602 imm = (imm >> rot) | (imm << (32 - rot));
1603 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
1604 }
1605 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1606 [sp, -#c]! */
1607 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1608 {
1609 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1610 break;
1611
1612 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1613 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
1614 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
1615 }
1616 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1617 [sp!] */
1618 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1619 {
1620 int n_saved_fp_regs;
1621 unsigned int fp_start_reg, fp_bound_reg;
1622
1623 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1624 break;
1625
1626 if ((insn & 0x800) == 0x800) /* N0 is set */
1627 {
1628 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1629 n_saved_fp_regs = 3;
1630 else
1631 n_saved_fp_regs = 1;
1632 }
1633 else
1634 {
1635 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1636 n_saved_fp_regs = 2;
1637 else
1638 n_saved_fp_regs = 4;
1639 }
1640
1641 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
1642 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1643 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
1644 {
1645 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1646 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1647 regs[fp_start_reg++]);
1648 }
1649 }
1650 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1651 {
1652 /* Allow some special function calls when skipping the
1653 prologue; GCC generates these before storing arguments to
1654 the stack. */
1655 CORE_ADDR dest = BranchDest (current_pc, insn);
1656
1657 if (skip_prologue_function (gdbarch, dest, 0))
1658 continue;
1659 else
1660 break;
1661 }
1662 else if ((insn & 0xf0000000) != 0xe0000000)
1663 break; /* Condition not true, exit early. */
1664 else if (arm_instruction_changes_pc (insn))
1665 /* Don't scan past anything that might change control flow. */
1666 break;
1667 else if (arm_instruction_restores_sp (insn))
1668 {
1669 /* Don't scan past the epilogue. */
1670 break;
1671 }
1672 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1673 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1674 /* Ignore block loads from the stack, potentially copying
1675 parameters from memory. */
1676 continue;
1677 else if ((insn & 0xfc500000) == 0xe4100000
1678 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1679 /* Similarly ignore single loads from the stack. */
1680 continue;
1681 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1682 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1683 register instead of the stack. */
1684 continue;
1685 else
1686 {
1687 /* The optimizer might shove anything into the prologue, if
1688 we build up cache (cache != NULL) from scanning prologue,
1689 we just skip what we don't recognize and scan further to
1690 make cache as complete as possible. However, if we skip
1691 prologue, we'll stop immediately on unrecognized
1692 instruction. */
1693 unrecognized_pc = current_pc;
1694 if (cache != NULL)
1695 continue;
1696 else
1697 break;
1698 }
1699 }
1700
1701 if (unrecognized_pc == 0)
1702 unrecognized_pc = current_pc;
1703
1704 if (cache)
1705 {
1706 int framereg, framesize;
1707
1708 /* The frame size is just the distance from the frame register
1709 to the original stack pointer. */
1710 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1711 {
1712 /* Frame pointer is fp. */
1713 framereg = ARM_FP_REGNUM;
1714 framesize = -regs[ARM_FP_REGNUM].k;
1715 }
1716 else
1717 {
1718 /* Try the stack pointer... this is a bit desperate. */
1719 framereg = ARM_SP_REGNUM;
1720 framesize = -regs[ARM_SP_REGNUM].k;
1721 }
1722
1723 cache->framereg = framereg;
1724 cache->framesize = framesize;
1725
1726 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1727 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1728 cache->saved_regs[regno].addr = offset;
1729 }
1730
1731 if (arm_debug)
1732 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1733 paddress (gdbarch, unrecognized_pc));
1734
1735 do_cleanups (back_to);
1736 return unrecognized_pc;
1737 }
1738
1739 static void
1740 arm_scan_prologue (struct frame_info *this_frame,
1741 struct arm_prologue_cache *cache)
1742 {
1743 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1744 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1745 CORE_ADDR prologue_start, prologue_end;
1746 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1747 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1748
1749 /* Assume there is no frame until proven otherwise. */
1750 cache->framereg = ARM_SP_REGNUM;
1751 cache->framesize = 0;
1752
1753 /* Check for Thumb prologue. */
1754 if (arm_frame_is_thumb (this_frame))
1755 {
1756 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1757 return;
1758 }
1759
1760 /* Find the function prologue. If we can't find the function in
1761 the symbol table, peek in the stack frame to find the PC. */
1762 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1763 &prologue_end))
1764 {
1765 /* One way to find the end of the prologue (which works well
1766 for unoptimized code) is to do the following:
1767
1768 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1769
1770 if (sal.line == 0)
1771 prologue_end = prev_pc;
1772 else if (sal.end < prologue_end)
1773 prologue_end = sal.end;
1774
1775 This mechanism is very accurate so long as the optimizer
1776 doesn't move any instructions from the function body into the
1777 prologue. If this happens, sal.end will be the last
1778 instruction in the first hunk of prologue code just before
1779 the first instruction that the scheduler has moved from
1780 the body to the prologue.
1781
1782 In order to make sure that we scan all of the prologue
1783 instructions, we use a slightly less accurate mechanism which
1784 may scan more than necessary. To help compensate for this
1785 lack of accuracy, the prologue scanning loop below contains
1786 several clauses which'll cause the loop to terminate early if
1787 an implausible prologue instruction is encountered.
1788
1789 The expression
1790
1791 prologue_start + 64
1792
1793 is a suitable endpoint since it accounts for the largest
1794 possible prologue plus up to five instructions inserted by
1795 the scheduler. */
1796
1797 if (prologue_end > prologue_start + 64)
1798 {
1799 prologue_end = prologue_start + 64; /* See above. */
1800 }
1801 }
1802 else
1803 {
1804 /* We have no symbol information. Our only option is to assume this
1805 function has a standard stack frame and the normal frame register.
1806 Then, we can find the value of our frame pointer on entrance to
1807 the callee (or at the present moment if this is the innermost frame).
1808 The value stored there should be the address of the stmfd + 8. */
1809 CORE_ADDR frame_loc;
1810 LONGEST return_value;
1811
1812 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1813 if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
1814 return;
1815 else
1816 {
1817 prologue_start = gdbarch_addr_bits_remove
1818 (gdbarch, return_value) - 8;
1819 prologue_end = prologue_start + 64; /* See above. */
1820 }
1821 }
1822
1823 if (prev_pc < prologue_end)
1824 prologue_end = prev_pc;
1825
1826 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1827 }
1828
1829 static struct arm_prologue_cache *
1830 arm_make_prologue_cache (struct frame_info *this_frame)
1831 {
1832 int reg;
1833 struct arm_prologue_cache *cache;
1834 CORE_ADDR unwound_fp;
1835
1836 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1837 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1838
1839 arm_scan_prologue (this_frame, cache);
1840
1841 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1842 if (unwound_fp == 0)
1843 return cache;
1844
1845 cache->prev_sp = unwound_fp + cache->framesize;
1846
1847 /* Calculate actual addresses of saved registers using offsets
1848 determined by arm_scan_prologue. */
1849 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1850 if (trad_frame_addr_p (cache->saved_regs, reg))
1851 cache->saved_regs[reg].addr += cache->prev_sp;
1852
1853 return cache;
1854 }
1855
1856 /* Implementation of the stop_reason hook for arm_prologue frames. */
1857
1858 static enum unwind_stop_reason
1859 arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1860 void **this_cache)
1861 {
1862 struct arm_prologue_cache *cache;
1863 CORE_ADDR pc;
1864
1865 if (*this_cache == NULL)
1866 *this_cache = arm_make_prologue_cache (this_frame);
1867 cache = (struct arm_prologue_cache *) *this_cache;
1868
1869 /* This is meant to halt the backtrace at "_start". */
1870 pc = get_frame_pc (this_frame);
1871 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1872 return UNWIND_OUTERMOST;
1873
1874 /* If we've hit a wall, stop. */
1875 if (cache->prev_sp == 0)
1876 return UNWIND_OUTERMOST;
1877
1878 return UNWIND_NO_REASON;
1879 }
1880
1881 /* Our frame ID for a normal frame is the current function's starting PC
1882 and the caller's SP when we were called. */
1883
1884 static void
1885 arm_prologue_this_id (struct frame_info *this_frame,
1886 void **this_cache,
1887 struct frame_id *this_id)
1888 {
1889 struct arm_prologue_cache *cache;
1890 struct frame_id id;
1891 CORE_ADDR pc, func;
1892
1893 if (*this_cache == NULL)
1894 *this_cache = arm_make_prologue_cache (this_frame);
1895 cache = (struct arm_prologue_cache *) *this_cache;
1896
1897 /* Use function start address as part of the frame ID. If we cannot
1898 identify the start address (due to missing symbol information),
1899 fall back to just using the current PC. */
1900 pc = get_frame_pc (this_frame);
1901 func = get_frame_func (this_frame);
1902 if (!func)
1903 func = pc;
1904
1905 id = frame_id_build (cache->prev_sp, func);
1906 *this_id = id;
1907 }
1908
1909 static struct value *
1910 arm_prologue_prev_register (struct frame_info *this_frame,
1911 void **this_cache,
1912 int prev_regnum)
1913 {
1914 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1915 struct arm_prologue_cache *cache;
1916
1917 if (*this_cache == NULL)
1918 *this_cache = arm_make_prologue_cache (this_frame);
1919 cache = (struct arm_prologue_cache *) *this_cache;
1920
1921 /* If we are asked to unwind the PC, then we need to return the LR
1922 instead. The prologue may save PC, but it will point into this
1923 frame's prologue, not the next frame's resume location. Also
1924 strip the saved T bit. A valid LR may have the low bit set, but
1925 a valid PC never does. */
1926 if (prev_regnum == ARM_PC_REGNUM)
1927 {
1928 CORE_ADDR lr;
1929
1930 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1931 return frame_unwind_got_constant (this_frame, prev_regnum,
1932 arm_addr_bits_remove (gdbarch, lr));
1933 }
1934
1935 /* SP is generally not saved to the stack, but this frame is
1936 identified by the next frame's stack pointer at the time of the call.
1937 The value was already reconstructed into PREV_SP. */
1938 if (prev_regnum == ARM_SP_REGNUM)
1939 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1940
1941 /* The CPSR may have been changed by the call instruction and by the
1942 called function. The only bit we can reconstruct is the T bit,
1943 by checking the low bit of LR as of the call. This is a reliable
1944 indicator of Thumb-ness except for some ARM v4T pre-interworking
1945 Thumb code, which could get away with a clear low bit as long as
1946 the called function did not use bx. Guess that all other
1947 bits are unchanged; the condition flags are presumably lost,
1948 but the processor status is likely valid. */
1949 if (prev_regnum == ARM_PS_REGNUM)
1950 {
1951 CORE_ADDR lr, cpsr;
1952 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
1953
1954 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1955 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1956 if (IS_THUMB_ADDR (lr))
1957 cpsr |= t_bit;
1958 else
1959 cpsr &= ~t_bit;
1960 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1961 }
1962
1963 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1964 prev_regnum);
1965 }
1966
1967 struct frame_unwind arm_prologue_unwind = {
1968 NORMAL_FRAME,
1969 arm_prologue_unwind_stop_reason,
1970 arm_prologue_this_id,
1971 arm_prologue_prev_register,
1972 NULL,
1973 default_frame_sniffer
1974 };
1975
1976 /* Maintain a list of ARM exception table entries per objfile, similar to the
1977 list of mapping symbols. We only cache entries for standard ARM-defined
1978 personality routines; the cache will contain only the frame unwinding
1979 instructions associated with the entry (not the descriptors). */
1980
1981 static const struct objfile_data *arm_exidx_data_key;
1982
1983 struct arm_exidx_entry
1984 {
1985 bfd_vma addr;
1986 gdb_byte *entry;
1987 };
1988 typedef struct arm_exidx_entry arm_exidx_entry_s;
1989 DEF_VEC_O(arm_exidx_entry_s);
1990
1991 struct arm_exidx_data
1992 {
1993 VEC(arm_exidx_entry_s) **section_maps;
1994 };
1995
1996 static void
1997 arm_exidx_data_free (struct objfile *objfile, void *arg)
1998 {
1999 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
2000 unsigned int i;
2001
2002 for (i = 0; i < objfile->obfd->section_count; i++)
2003 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2004 }
2005
2006 static inline int
2007 arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2008 const struct arm_exidx_entry *rhs)
2009 {
2010 return lhs->addr < rhs->addr;
2011 }
2012
2013 static struct obj_section *
2014 arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2015 {
2016 struct obj_section *osect;
2017
2018 ALL_OBJFILE_OSECTIONS (objfile, osect)
2019 if (bfd_get_section_flags (objfile->obfd,
2020 osect->the_bfd_section) & SEC_ALLOC)
2021 {
2022 bfd_vma start, size;
2023 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2024 size = bfd_get_section_size (osect->the_bfd_section);
2025
2026 if (start <= vma && vma < start + size)
2027 return osect;
2028 }
2029
2030 return NULL;
2031 }
2032
2033 /* Parse contents of exception table and exception index sections
2034 of OBJFILE, and fill in the exception table entry cache.
2035
2036 For each entry that refers to a standard ARM-defined personality
2037 routine, extract the frame unwinding instructions (from either
2038 the index or the table section). The unwinding instructions
2039 are normalized by:
2040 - extracting them from the rest of the table data
2041 - converting to host endianness
2042 - appending the implicit 0xb0 ("Finish") code
2043
2044 The extracted and normalized instructions are stored for later
2045 retrieval by the arm_find_exidx_entry routine. */
2046
2047 static void
2048 arm_exidx_new_objfile (struct objfile *objfile)
2049 {
2050 struct cleanup *cleanups;
2051 struct arm_exidx_data *data;
2052 asection *exidx, *extab;
2053 bfd_vma exidx_vma = 0, extab_vma = 0;
2054 bfd_size_type exidx_size = 0, extab_size = 0;
2055 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2056 LONGEST i;
2057
2058 /* If we've already touched this file, do nothing. */
2059 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2060 return;
2061 cleanups = make_cleanup (null_cleanup, NULL);
2062
2063 /* Read contents of exception table and index. */
2064 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
2065 if (exidx)
2066 {
2067 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2068 exidx_size = bfd_get_section_size (exidx);
2069 exidx_data = (gdb_byte *) xmalloc (exidx_size);
2070 make_cleanup (xfree, exidx_data);
2071
2072 if (!bfd_get_section_contents (objfile->obfd, exidx,
2073 exidx_data, 0, exidx_size))
2074 {
2075 do_cleanups (cleanups);
2076 return;
2077 }
2078 }
2079
2080 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2081 if (extab)
2082 {
2083 extab_vma = bfd_section_vma (objfile->obfd, extab);
2084 extab_size = bfd_get_section_size (extab);
2085 extab_data = (gdb_byte *) xmalloc (extab_size);
2086 make_cleanup (xfree, extab_data);
2087
2088 if (!bfd_get_section_contents (objfile->obfd, extab,
2089 extab_data, 0, extab_size))
2090 {
2091 do_cleanups (cleanups);
2092 return;
2093 }
2094 }
2095
2096 /* Allocate exception table data structure. */
2097 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2098 set_objfile_data (objfile, arm_exidx_data_key, data);
2099 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2100 objfile->obfd->section_count,
2101 VEC(arm_exidx_entry_s) *);
2102
2103 /* Fill in exception table. */
2104 for (i = 0; i < exidx_size / 8; i++)
2105 {
2106 struct arm_exidx_entry new_exidx_entry;
2107 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2108 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2109 bfd_vma addr = 0, word = 0;
2110 int n_bytes = 0, n_words = 0;
2111 struct obj_section *sec;
2112 gdb_byte *entry = NULL;
2113
2114 /* Extract address of start of function. */
2115 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2116 idx += exidx_vma + i * 8;
2117
2118 /* Find section containing function and compute section offset. */
2119 sec = arm_obj_section_from_vma (objfile, idx);
2120 if (sec == NULL)
2121 continue;
2122 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2123
2124 /* Determine address of exception table entry. */
2125 if (val == 1)
2126 {
2127 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2128 }
2129 else if ((val & 0xff000000) == 0x80000000)
2130 {
2131 /* Exception table entry embedded in .ARM.exidx
2132 -- must be short form. */
2133 word = val;
2134 n_bytes = 3;
2135 }
2136 else if (!(val & 0x80000000))
2137 {
2138 /* Exception table entry in .ARM.extab. */
2139 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2140 addr += exidx_vma + i * 8 + 4;
2141
2142 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2143 {
2144 word = bfd_h_get_32 (objfile->obfd,
2145 extab_data + addr - extab_vma);
2146 addr += 4;
2147
2148 if ((word & 0xff000000) == 0x80000000)
2149 {
2150 /* Short form. */
2151 n_bytes = 3;
2152 }
2153 else if ((word & 0xff000000) == 0x81000000
2154 || (word & 0xff000000) == 0x82000000)
2155 {
2156 /* Long form. */
2157 n_bytes = 2;
2158 n_words = ((word >> 16) & 0xff);
2159 }
2160 else if (!(word & 0x80000000))
2161 {
2162 bfd_vma pers;
2163 struct obj_section *pers_sec;
2164 int gnu_personality = 0;
2165
2166 /* Custom personality routine. */
2167 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2168 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2169
2170 /* Check whether we've got one of the variants of the
2171 GNU personality routines. */
2172 pers_sec = arm_obj_section_from_vma (objfile, pers);
2173 if (pers_sec)
2174 {
2175 static const char *personality[] =
2176 {
2177 "__gcc_personality_v0",
2178 "__gxx_personality_v0",
2179 "__gcj_personality_v0",
2180 "__gnu_objc_personality_v0",
2181 NULL
2182 };
2183
2184 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2185 int k;
2186
2187 for (k = 0; personality[k]; k++)
2188 if (lookup_minimal_symbol_by_pc_name
2189 (pc, personality[k], objfile))
2190 {
2191 gnu_personality = 1;
2192 break;
2193 }
2194 }
2195
2196 /* If so, the next word contains a word count in the high
2197 byte, followed by the same unwind instructions as the
2198 pre-defined forms. */
2199 if (gnu_personality
2200 && addr + 4 <= extab_vma + extab_size)
2201 {
2202 word = bfd_h_get_32 (objfile->obfd,
2203 extab_data + addr - extab_vma);
2204 addr += 4;
2205 n_bytes = 3;
2206 n_words = ((word >> 24) & 0xff);
2207 }
2208 }
2209 }
2210 }
2211
2212 /* Sanity check address. */
2213 if (n_words)
2214 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2215 n_words = n_bytes = 0;
2216
2217 /* The unwind instructions reside in WORD (only the N_BYTES least
2218 significant bytes are valid), followed by N_WORDS words in the
2219 extab section starting at ADDR. */
2220 if (n_bytes || n_words)
2221 {
2222 gdb_byte *p = entry
2223 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2224 n_bytes + n_words * 4 + 1);
2225
2226 while (n_bytes--)
2227 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2228
2229 while (n_words--)
2230 {
2231 word = bfd_h_get_32 (objfile->obfd,
2232 extab_data + addr - extab_vma);
2233 addr += 4;
2234
2235 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2236 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2237 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2238 *p++ = (gdb_byte) (word & 0xff);
2239 }
2240
2241 /* Implied "Finish" to terminate the list. */
2242 *p++ = 0xb0;
2243 }
2244
2245 /* Push entry onto vector. They are guaranteed to always
2246 appear in order of increasing addresses. */
2247 new_exidx_entry.addr = idx;
2248 new_exidx_entry.entry = entry;
2249 VEC_safe_push (arm_exidx_entry_s,
2250 data->section_maps[sec->the_bfd_section->index],
2251 &new_exidx_entry);
2252 }
2253
2254 do_cleanups (cleanups);
2255 }
2256
2257 /* Search for the exception table entry covering MEMADDR. If one is found,
2258 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2259 set *START to the start of the region covered by this entry. */
2260
2261 static gdb_byte *
2262 arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2263 {
2264 struct obj_section *sec;
2265
2266 sec = find_pc_section (memaddr);
2267 if (sec != NULL)
2268 {
2269 struct arm_exidx_data *data;
2270 VEC(arm_exidx_entry_s) *map;
2271 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2272 unsigned int idx;
2273
2274 data = ((struct arm_exidx_data *)
2275 objfile_data (sec->objfile, arm_exidx_data_key));
2276 if (data != NULL)
2277 {
2278 map = data->section_maps[sec->the_bfd_section->index];
2279 if (!VEC_empty (arm_exidx_entry_s, map))
2280 {
2281 struct arm_exidx_entry *map_sym;
2282
2283 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2284 arm_compare_exidx_entries);
2285
2286 /* VEC_lower_bound finds the earliest ordered insertion
2287 point. If the following symbol starts at this exact
2288 address, we use that; otherwise, the preceding
2289 exception table entry covers this address. */
2290 if (idx < VEC_length (arm_exidx_entry_s, map))
2291 {
2292 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2293 if (map_sym->addr == map_key.addr)
2294 {
2295 if (start)
2296 *start = map_sym->addr + obj_section_addr (sec);
2297 return map_sym->entry;
2298 }
2299 }
2300
2301 if (idx > 0)
2302 {
2303 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2304 if (start)
2305 *start = map_sym->addr + obj_section_addr (sec);
2306 return map_sym->entry;
2307 }
2308 }
2309 }
2310 }
2311
2312 return NULL;
2313 }
2314
2315 /* Given the current frame THIS_FRAME, and its associated frame unwinding
2316 instruction list from the ARM exception table entry ENTRY, allocate and
2317 return a prologue cache structure describing how to unwind this frame.
2318
2319 Return NULL if the unwinding instruction list contains a "spare",
2320 "reserved" or "refuse to unwind" instruction as defined in section
2321 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2322 for the ARM Architecture" document. */
2323
2324 static struct arm_prologue_cache *
2325 arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2326 {
2327 CORE_ADDR vsp = 0;
2328 int vsp_valid = 0;
2329
2330 struct arm_prologue_cache *cache;
2331 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2332 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2333
2334 for (;;)
2335 {
2336 gdb_byte insn;
2337
2338 /* Whenever we reload SP, we actually have to retrieve its
2339 actual value in the current frame. */
2340 if (!vsp_valid)
2341 {
2342 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2343 {
2344 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2345 vsp = get_frame_register_unsigned (this_frame, reg);
2346 }
2347 else
2348 {
2349 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2350 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2351 }
2352
2353 vsp_valid = 1;
2354 }
2355
2356 /* Decode next unwind instruction. */
2357 insn = *entry++;
2358
2359 if ((insn & 0xc0) == 0)
2360 {
2361 int offset = insn & 0x3f;
2362 vsp += (offset << 2) + 4;
2363 }
2364 else if ((insn & 0xc0) == 0x40)
2365 {
2366 int offset = insn & 0x3f;
2367 vsp -= (offset << 2) + 4;
2368 }
2369 else if ((insn & 0xf0) == 0x80)
2370 {
2371 int mask = ((insn & 0xf) << 8) | *entry++;
2372 int i;
2373
2374 /* The special case of an all-zero mask identifies
2375 "Refuse to unwind". We return NULL to fall back
2376 to the prologue analyzer. */
2377 if (mask == 0)
2378 return NULL;
2379
2380 /* Pop registers r4..r15 under mask. */
2381 for (i = 0; i < 12; i++)
2382 if (mask & (1 << i))
2383 {
2384 cache->saved_regs[4 + i].addr = vsp;
2385 vsp += 4;
2386 }
2387
2388 /* Special-case popping SP -- we need to reload vsp. */
2389 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2390 vsp_valid = 0;
2391 }
2392 else if ((insn & 0xf0) == 0x90)
2393 {
2394 int reg = insn & 0xf;
2395
2396 /* Reserved cases. */
2397 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2398 return NULL;
2399
2400 /* Set SP from another register and mark VSP for reload. */
2401 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2402 vsp_valid = 0;
2403 }
2404 else if ((insn & 0xf0) == 0xa0)
2405 {
2406 int count = insn & 0x7;
2407 int pop_lr = (insn & 0x8) != 0;
2408 int i;
2409
2410 /* Pop r4..r[4+count]. */
2411 for (i = 0; i <= count; i++)
2412 {
2413 cache->saved_regs[4 + i].addr = vsp;
2414 vsp += 4;
2415 }
2416
2417 /* If indicated by flag, pop LR as well. */
2418 if (pop_lr)
2419 {
2420 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2421 vsp += 4;
2422 }
2423 }
2424 else if (insn == 0xb0)
2425 {
2426 /* We could only have updated PC by popping into it; if so, it
2427 will show up as address. Otherwise, copy LR into PC. */
2428 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2429 cache->saved_regs[ARM_PC_REGNUM]
2430 = cache->saved_regs[ARM_LR_REGNUM];
2431
2432 /* We're done. */
2433 break;
2434 }
2435 else if (insn == 0xb1)
2436 {
2437 int mask = *entry++;
2438 int i;
2439
2440 /* All-zero mask and mask >= 16 is "spare". */
2441 if (mask == 0 || mask >= 16)
2442 return NULL;
2443
2444 /* Pop r0..r3 under mask. */
2445 for (i = 0; i < 4; i++)
2446 if (mask & (1 << i))
2447 {
2448 cache->saved_regs[i].addr = vsp;
2449 vsp += 4;
2450 }
2451 }
2452 else if (insn == 0xb2)
2453 {
2454 ULONGEST offset = 0;
2455 unsigned shift = 0;
2456
2457 do
2458 {
2459 offset |= (*entry & 0x7f) << shift;
2460 shift += 7;
2461 }
2462 while (*entry++ & 0x80);
2463
2464 vsp += 0x204 + (offset << 2);
2465 }
2466 else if (insn == 0xb3)
2467 {
2468 int start = *entry >> 4;
2469 int count = (*entry++) & 0xf;
2470 int i;
2471
2472 /* Only registers D0..D15 are valid here. */
2473 if (start + count >= 16)
2474 return NULL;
2475
2476 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2477 for (i = 0; i <= count; i++)
2478 {
2479 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2480 vsp += 8;
2481 }
2482
2483 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2484 vsp += 4;
2485 }
2486 else if ((insn & 0xf8) == 0xb8)
2487 {
2488 int count = insn & 0x7;
2489 int i;
2490
2491 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2492 for (i = 0; i <= count; i++)
2493 {
2494 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2495 vsp += 8;
2496 }
2497
2498 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2499 vsp += 4;
2500 }
2501 else if (insn == 0xc6)
2502 {
2503 int start = *entry >> 4;
2504 int count = (*entry++) & 0xf;
2505 int i;
2506
2507 /* Only registers WR0..WR15 are valid. */
2508 if (start + count >= 16)
2509 return NULL;
2510
2511 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2512 for (i = 0; i <= count; i++)
2513 {
2514 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2515 vsp += 8;
2516 }
2517 }
2518 else if (insn == 0xc7)
2519 {
2520 int mask = *entry++;
2521 int i;
2522
2523 /* All-zero mask and mask >= 16 is "spare". */
2524 if (mask == 0 || mask >= 16)
2525 return NULL;
2526
2527 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2528 for (i = 0; i < 4; i++)
2529 if (mask & (1 << i))
2530 {
2531 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2532 vsp += 4;
2533 }
2534 }
2535 else if ((insn & 0xf8) == 0xc0)
2536 {
2537 int count = insn & 0x7;
2538 int i;
2539
2540 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2541 for (i = 0; i <= count; i++)
2542 {
2543 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2544 vsp += 8;
2545 }
2546 }
2547 else if (insn == 0xc8)
2548 {
2549 int start = *entry >> 4;
2550 int count = (*entry++) & 0xf;
2551 int i;
2552
2553 /* Only registers D0..D31 are valid. */
2554 if (start + count >= 16)
2555 return NULL;
2556
2557 /* Pop VFP double-precision registers
2558 D[16+start]..D[16+start+count]. */
2559 for (i = 0; i <= count; i++)
2560 {
2561 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2562 vsp += 8;
2563 }
2564 }
2565 else if (insn == 0xc9)
2566 {
2567 int start = *entry >> 4;
2568 int count = (*entry++) & 0xf;
2569 int i;
2570
2571 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2572 for (i = 0; i <= count; i++)
2573 {
2574 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2575 vsp += 8;
2576 }
2577 }
2578 else if ((insn & 0xf8) == 0xd0)
2579 {
2580 int count = insn & 0x7;
2581 int i;
2582
2583 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2584 for (i = 0; i <= count; i++)
2585 {
2586 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2587 vsp += 8;
2588 }
2589 }
2590 else
2591 {
2592 /* Everything else is "spare". */
2593 return NULL;
2594 }
2595 }
2596
2597 /* If we restore SP from a register, assume this was the frame register.
2598 Otherwise just fall back to SP as frame register. */
2599 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2600 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2601 else
2602 cache->framereg = ARM_SP_REGNUM;
2603
2604 /* Determine offset to previous frame. */
2605 cache->framesize
2606 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2607
2608 /* We already got the previous SP. */
2609 cache->prev_sp = vsp;
2610
2611 return cache;
2612 }
2613
2614 /* Unwinding via ARM exception table entries. Note that the sniffer
2615 already computes a filled-in prologue cache, which is then used
2616 with the same arm_prologue_this_id and arm_prologue_prev_register
2617 routines also used for prologue-parsing based unwinding. */
2618
2619 static int
2620 arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2621 struct frame_info *this_frame,
2622 void **this_prologue_cache)
2623 {
2624 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2625 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2626 CORE_ADDR addr_in_block, exidx_region, func_start;
2627 struct arm_prologue_cache *cache;
2628 gdb_byte *entry;
2629
2630 /* See if we have an ARM exception table entry covering this address. */
2631 addr_in_block = get_frame_address_in_block (this_frame);
2632 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2633 if (!entry)
2634 return 0;
2635
2636 /* The ARM exception table does not describe unwind information
2637 for arbitrary PC values, but is guaranteed to be correct only
2638 at call sites. We have to decide here whether we want to use
2639 ARM exception table information for this frame, or fall back
2640 to using prologue parsing. (Note that if we have DWARF CFI,
2641 this sniffer isn't even called -- CFI is always preferred.)
2642
2643 Before we make this decision, however, we check whether we
2644 actually have *symbol* information for the current frame.
2645 If not, prologue parsing would not work anyway, so we might
2646 as well use the exception table and hope for the best. */
2647 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2648 {
2649 int exc_valid = 0;
2650
2651 /* If the next frame is "normal", we are at a call site in this
2652 frame, so exception information is guaranteed to be valid. */
2653 if (get_next_frame (this_frame)
2654 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2655 exc_valid = 1;
2656
2657 /* We also assume exception information is valid if we're currently
2658 blocked in a system call. The system library is supposed to
2659 ensure this, so that e.g. pthread cancellation works. */
2660 if (arm_frame_is_thumb (this_frame))
2661 {
2662 LONGEST insn;
2663
2664 if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2,
2665 byte_order_for_code, &insn)
2666 && (insn & 0xff00) == 0xdf00 /* svc */)
2667 exc_valid = 1;
2668 }
2669 else
2670 {
2671 LONGEST insn;
2672
2673 if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
2674 byte_order_for_code, &insn)
2675 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2676 exc_valid = 1;
2677 }
2678
2679 /* Bail out if we don't know that exception information is valid. */
2680 if (!exc_valid)
2681 return 0;
2682
2683 /* The ARM exception index does not mark the *end* of the region
2684 covered by the entry, and some functions will not have any entry.
2685 To correctly recognize the end of the covered region, the linker
2686 should have inserted dummy records with a CANTUNWIND marker.
2687
2688 Unfortunately, current versions of GNU ld do not reliably do
2689 this, and thus we may have found an incorrect entry above.
2690 As a (temporary) sanity check, we only use the entry if it
2691 lies *within* the bounds of the function. Note that this check
2692 might reject perfectly valid entries that just happen to cover
2693 multiple functions; therefore this check ought to be removed
2694 once the linker is fixed. */
2695 if (func_start > exidx_region)
2696 return 0;
2697 }
2698
2699 /* Decode the list of unwinding instructions into a prologue cache.
2700 Note that this may fail due to e.g. a "refuse to unwind" code. */
2701 cache = arm_exidx_fill_cache (this_frame, entry);
2702 if (!cache)
2703 return 0;
2704
2705 *this_prologue_cache = cache;
2706 return 1;
2707 }
2708
2709 struct frame_unwind arm_exidx_unwind = {
2710 NORMAL_FRAME,
2711 default_frame_unwind_stop_reason,
2712 arm_prologue_this_id,
2713 arm_prologue_prev_register,
2714 NULL,
2715 arm_exidx_unwind_sniffer
2716 };
2717
2718 static struct arm_prologue_cache *
2719 arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2720 {
2721 struct arm_prologue_cache *cache;
2722 int reg;
2723
2724 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2725 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2726
2727 /* Still rely on the offset calculated from prologue. */
2728 arm_scan_prologue (this_frame, cache);
2729
2730 /* Since we are in epilogue, the SP has been restored. */
2731 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2732
2733 /* Calculate actual addresses of saved registers using offsets
2734 determined by arm_scan_prologue. */
2735 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2736 if (trad_frame_addr_p (cache->saved_regs, reg))
2737 cache->saved_regs[reg].addr += cache->prev_sp;
2738
2739 return cache;
2740 }
2741
2742 /* Implementation of function hook 'this_id' in
2743 'struct frame_uwnind' for epilogue unwinder. */
2744
2745 static void
2746 arm_epilogue_frame_this_id (struct frame_info *this_frame,
2747 void **this_cache,
2748 struct frame_id *this_id)
2749 {
2750 struct arm_prologue_cache *cache;
2751 CORE_ADDR pc, func;
2752
2753 if (*this_cache == NULL)
2754 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2755 cache = (struct arm_prologue_cache *) *this_cache;
2756
2757 /* Use function start address as part of the frame ID. If we cannot
2758 identify the start address (due to missing symbol information),
2759 fall back to just using the current PC. */
2760 pc = get_frame_pc (this_frame);
2761 func = get_frame_func (this_frame);
2762 if (func == 0)
2763 func = pc;
2764
2765 (*this_id) = frame_id_build (cache->prev_sp, pc);
2766 }
2767
2768 /* Implementation of function hook 'prev_register' in
2769 'struct frame_uwnind' for epilogue unwinder. */
2770
2771 static struct value *
2772 arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2773 void **this_cache, int regnum)
2774 {
2775 if (*this_cache == NULL)
2776 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2777
2778 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2779 }
2780
2781 static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2782 CORE_ADDR pc);
2783 static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2784 CORE_ADDR pc);
2785
2786 /* Implementation of function hook 'sniffer' in
2787 'struct frame_uwnind' for epilogue unwinder. */
2788
2789 static int
2790 arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2791 struct frame_info *this_frame,
2792 void **this_prologue_cache)
2793 {
2794 if (frame_relative_level (this_frame) == 0)
2795 {
2796 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2797 CORE_ADDR pc = get_frame_pc (this_frame);
2798
2799 if (arm_frame_is_thumb (this_frame))
2800 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2801 else
2802 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2803 }
2804 else
2805 return 0;
2806 }
2807
2808 /* Frame unwinder from epilogue. */
2809
2810 static const struct frame_unwind arm_epilogue_frame_unwind =
2811 {
2812 NORMAL_FRAME,
2813 default_frame_unwind_stop_reason,
2814 arm_epilogue_frame_this_id,
2815 arm_epilogue_frame_prev_register,
2816 NULL,
2817 arm_epilogue_frame_sniffer,
2818 };
2819
2820 /* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2821 trampoline, return the target PC. Otherwise return 0.
2822
2823 void call0a (char c, short s, int i, long l) {}
2824
2825 int main (void)
2826 {
2827 (*pointer_to_call0a) (c, s, i, l);
2828 }
2829
2830 Instead of calling a stub library function _call_via_xx (xx is
2831 the register name), GCC may inline the trampoline in the object
2832 file as below (register r2 has the address of call0a).
2833
2834 .global main
2835 .type main, %function
2836 ...
2837 bl .L1
2838 ...
2839 .size main, .-main
2840
2841 .L1:
2842 bx r2
2843
2844 The trampoline 'bx r2' doesn't belong to main. */
2845
2846 static CORE_ADDR
2847 arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2848 {
2849 /* The heuristics of recognizing such trampoline is that FRAME is
2850 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2851 if (arm_frame_is_thumb (frame))
2852 {
2853 gdb_byte buf[2];
2854
2855 if (target_read_memory (pc, buf, 2) == 0)
2856 {
2857 struct gdbarch *gdbarch = get_frame_arch (frame);
2858 enum bfd_endian byte_order_for_code
2859 = gdbarch_byte_order_for_code (gdbarch);
2860 uint16_t insn
2861 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2862
2863 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2864 {
2865 CORE_ADDR dest
2866 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2867
2868 /* Clear the LSB so that gdb core sets step-resume
2869 breakpoint at the right address. */
2870 return UNMAKE_THUMB_ADDR (dest);
2871 }
2872 }
2873 }
2874
2875 return 0;
2876 }
2877
2878 static struct arm_prologue_cache *
2879 arm_make_stub_cache (struct frame_info *this_frame)
2880 {
2881 struct arm_prologue_cache *cache;
2882
2883 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2884 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2885
2886 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2887
2888 return cache;
2889 }
2890
2891 /* Our frame ID for a stub frame is the current SP and LR. */
2892
2893 static void
2894 arm_stub_this_id (struct frame_info *this_frame,
2895 void **this_cache,
2896 struct frame_id *this_id)
2897 {
2898 struct arm_prologue_cache *cache;
2899
2900 if (*this_cache == NULL)
2901 *this_cache = arm_make_stub_cache (this_frame);
2902 cache = (struct arm_prologue_cache *) *this_cache;
2903
2904 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
2905 }
2906
2907 static int
2908 arm_stub_unwind_sniffer (const struct frame_unwind *self,
2909 struct frame_info *this_frame,
2910 void **this_prologue_cache)
2911 {
2912 CORE_ADDR addr_in_block;
2913 gdb_byte dummy[4];
2914 CORE_ADDR pc, start_addr;
2915 const char *name;
2916
2917 addr_in_block = get_frame_address_in_block (this_frame);
2918 pc = get_frame_pc (this_frame);
2919 if (in_plt_section (addr_in_block)
2920 /* We also use the stub winder if the target memory is unreadable
2921 to avoid having the prologue unwinder trying to read it. */
2922 || target_read_memory (pc, dummy, 4) != 0)
2923 return 1;
2924
2925 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2926 && arm_skip_bx_reg (this_frame, pc) != 0)
2927 return 1;
2928
2929 return 0;
2930 }
2931
2932 struct frame_unwind arm_stub_unwind = {
2933 NORMAL_FRAME,
2934 default_frame_unwind_stop_reason,
2935 arm_stub_this_id,
2936 arm_prologue_prev_register,
2937 NULL,
2938 arm_stub_unwind_sniffer
2939 };
2940
2941 /* Put here the code to store, into CACHE->saved_regs, the addresses
2942 of the saved registers of frame described by THIS_FRAME. CACHE is
2943 returned. */
2944
2945 static struct arm_prologue_cache *
2946 arm_m_exception_cache (struct frame_info *this_frame)
2947 {
2948 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2949 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2950 struct arm_prologue_cache *cache;
2951 CORE_ADDR unwound_sp;
2952 LONGEST xpsr;
2953
2954 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2955 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2956
2957 unwound_sp = get_frame_register_unsigned (this_frame,
2958 ARM_SP_REGNUM);
2959
2960 /* The hardware saves eight 32-bit words, comprising xPSR,
2961 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2962 "B1.5.6 Exception entry behavior" in
2963 "ARMv7-M Architecture Reference Manual". */
2964 cache->saved_regs[0].addr = unwound_sp;
2965 cache->saved_regs[1].addr = unwound_sp + 4;
2966 cache->saved_regs[2].addr = unwound_sp + 8;
2967 cache->saved_regs[3].addr = unwound_sp + 12;
2968 cache->saved_regs[12].addr = unwound_sp + 16;
2969 cache->saved_regs[14].addr = unwound_sp + 20;
2970 cache->saved_regs[15].addr = unwound_sp + 24;
2971 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2972
2973 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2974 aligner between the top of the 32-byte stack frame and the
2975 previous context's stack pointer. */
2976 cache->prev_sp = unwound_sp + 32;
2977 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2978 && (xpsr & (1 << 9)) != 0)
2979 cache->prev_sp += 4;
2980
2981 return cache;
2982 }
2983
2984 /* Implementation of function hook 'this_id' in
2985 'struct frame_uwnind'. */
2986
2987 static void
2988 arm_m_exception_this_id (struct frame_info *this_frame,
2989 void **this_cache,
2990 struct frame_id *this_id)
2991 {
2992 struct arm_prologue_cache *cache;
2993
2994 if (*this_cache == NULL)
2995 *this_cache = arm_m_exception_cache (this_frame);
2996 cache = (struct arm_prologue_cache *) *this_cache;
2997
2998 /* Our frame ID for a stub frame is the current SP and LR. */
2999 *this_id = frame_id_build (cache->prev_sp,
3000 get_frame_pc (this_frame));
3001 }
3002
3003 /* Implementation of function hook 'prev_register' in
3004 'struct frame_uwnind'. */
3005
3006 static struct value *
3007 arm_m_exception_prev_register (struct frame_info *this_frame,
3008 void **this_cache,
3009 int prev_regnum)
3010 {
3011 struct arm_prologue_cache *cache;
3012
3013 if (*this_cache == NULL)
3014 *this_cache = arm_m_exception_cache (this_frame);
3015 cache = (struct arm_prologue_cache *) *this_cache;
3016
3017 /* The value was already reconstructed into PREV_SP. */
3018 if (prev_regnum == ARM_SP_REGNUM)
3019 return frame_unwind_got_constant (this_frame, prev_regnum,
3020 cache->prev_sp);
3021
3022 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3023 prev_regnum);
3024 }
3025
3026 /* Implementation of function hook 'sniffer' in
3027 'struct frame_uwnind'. */
3028
3029 static int
3030 arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3031 struct frame_info *this_frame,
3032 void **this_prologue_cache)
3033 {
3034 CORE_ADDR this_pc = get_frame_pc (this_frame);
3035
3036 /* No need to check is_m; this sniffer is only registered for
3037 M-profile architectures. */
3038
3039 /* Check if exception frame returns to a magic PC value. */
3040 return arm_m_addr_is_magic (this_pc);
3041 }
3042
3043 /* Frame unwinder for M-profile exceptions. */
3044
3045 struct frame_unwind arm_m_exception_unwind =
3046 {
3047 SIGTRAMP_FRAME,
3048 default_frame_unwind_stop_reason,
3049 arm_m_exception_this_id,
3050 arm_m_exception_prev_register,
3051 NULL,
3052 arm_m_exception_unwind_sniffer
3053 };
3054
3055 static CORE_ADDR
3056 arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
3057 {
3058 struct arm_prologue_cache *cache;
3059
3060 if (*this_cache == NULL)
3061 *this_cache = arm_make_prologue_cache (this_frame);
3062 cache = (struct arm_prologue_cache *) *this_cache;
3063
3064 return cache->prev_sp - cache->framesize;
3065 }
3066
3067 struct frame_base arm_normal_base = {
3068 &arm_prologue_unwind,
3069 arm_normal_frame_base,
3070 arm_normal_frame_base,
3071 arm_normal_frame_base
3072 };
3073
3074 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
3075 dummy frame. The frame ID's base needs to match the TOS value
3076 saved by save_dummy_frame_tos() and returned from
3077 arm_push_dummy_call, and the PC needs to match the dummy frame's
3078 breakpoint. */
3079
3080 static struct frame_id
3081 arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3082 {
3083 return frame_id_build (get_frame_register_unsigned (this_frame,
3084 ARM_SP_REGNUM),
3085 get_frame_pc (this_frame));
3086 }
3087
3088 /* Given THIS_FRAME, find the previous frame's resume PC (which will
3089 be used to construct the previous frame's ID, after looking up the
3090 containing function). */
3091
3092 static CORE_ADDR
3093 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3094 {
3095 CORE_ADDR pc;
3096 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
3097 return arm_addr_bits_remove (gdbarch, pc);
3098 }
3099
3100 static CORE_ADDR
3101 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3102 {
3103 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
3104 }
3105
3106 static struct value *
3107 arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3108 int regnum)
3109 {
3110 struct gdbarch * gdbarch = get_frame_arch (this_frame);
3111 CORE_ADDR lr, cpsr;
3112 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
3113
3114 switch (regnum)
3115 {
3116 case ARM_PC_REGNUM:
3117 /* The PC is normally copied from the return column, which
3118 describes saves of LR. However, that version may have an
3119 extra bit set to indicate Thumb state. The bit is not
3120 part of the PC. */
3121 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3122 return frame_unwind_got_constant (this_frame, regnum,
3123 arm_addr_bits_remove (gdbarch, lr));
3124
3125 case ARM_PS_REGNUM:
3126 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3127 cpsr = get_frame_register_unsigned (this_frame, regnum);
3128 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3129 if (IS_THUMB_ADDR (lr))
3130 cpsr |= t_bit;
3131 else
3132 cpsr &= ~t_bit;
3133 return frame_unwind_got_constant (this_frame, regnum, cpsr);
3134
3135 default:
3136 internal_error (__FILE__, __LINE__,
3137 _("Unexpected register %d"), regnum);
3138 }
3139 }
3140
3141 static void
3142 arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3143 struct dwarf2_frame_state_reg *reg,
3144 struct frame_info *this_frame)
3145 {
3146 switch (regnum)
3147 {
3148 case ARM_PC_REGNUM:
3149 case ARM_PS_REGNUM:
3150 reg->how = DWARF2_FRAME_REG_FN;
3151 reg->loc.fn = arm_dwarf2_prev_register;
3152 break;
3153 case ARM_SP_REGNUM:
3154 reg->how = DWARF2_FRAME_REG_CFA;
3155 break;
3156 }
3157 }
3158
3159 /* Implement the stack_frame_destroyed_p gdbarch method. */
3160
3161 static int
3162 thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3163 {
3164 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3165 unsigned int insn, insn2;
3166 int found_return = 0, found_stack_adjust = 0;
3167 CORE_ADDR func_start, func_end;
3168 CORE_ADDR scan_pc;
3169 gdb_byte buf[4];
3170
3171 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3172 return 0;
3173
3174 /* The epilogue is a sequence of instructions along the following lines:
3175
3176 - add stack frame size to SP or FP
3177 - [if frame pointer used] restore SP from FP
3178 - restore registers from SP [may include PC]
3179 - a return-type instruction [if PC wasn't already restored]
3180
3181 In a first pass, we scan forward from the current PC and verify the
3182 instructions we find as compatible with this sequence, ending in a
3183 return instruction.
3184
3185 However, this is not sufficient to distinguish indirect function calls
3186 within a function from indirect tail calls in the epilogue in some cases.
3187 Therefore, if we didn't already find any SP-changing instruction during
3188 forward scan, we add a backward scanning heuristic to ensure we actually
3189 are in the epilogue. */
3190
3191 scan_pc = pc;
3192 while (scan_pc < func_end && !found_return)
3193 {
3194 if (target_read_memory (scan_pc, buf, 2))
3195 break;
3196
3197 scan_pc += 2;
3198 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3199
3200 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3201 found_return = 1;
3202 else if (insn == 0x46f7) /* mov pc, lr */
3203 found_return = 1;
3204 else if (thumb_instruction_restores_sp (insn))
3205 {
3206 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
3207 found_return = 1;
3208 }
3209 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
3210 {
3211 if (target_read_memory (scan_pc, buf, 2))
3212 break;
3213
3214 scan_pc += 2;
3215 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3216
3217 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3218 {
3219 if (insn2 & 0x8000) /* <registers> include PC. */
3220 found_return = 1;
3221 }
3222 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3223 && (insn2 & 0x0fff) == 0x0b04)
3224 {
3225 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3226 found_return = 1;
3227 }
3228 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3229 && (insn2 & 0x0e00) == 0x0a00)
3230 ;
3231 else
3232 break;
3233 }
3234 else
3235 break;
3236 }
3237
3238 if (!found_return)
3239 return 0;
3240
3241 /* Since any instruction in the epilogue sequence, with the possible
3242 exception of return itself, updates the stack pointer, we need to
3243 scan backwards for at most one instruction. Try either a 16-bit or
3244 a 32-bit instruction. This is just a heuristic, so we do not worry
3245 too much about false positives. */
3246
3247 if (pc - 4 < func_start)
3248 return 0;
3249 if (target_read_memory (pc - 4, buf, 4))
3250 return 0;
3251
3252 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3253 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3254
3255 if (thumb_instruction_restores_sp (insn2))
3256 found_stack_adjust = 1;
3257 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3258 found_stack_adjust = 1;
3259 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3260 && (insn2 & 0x0fff) == 0x0b04)
3261 found_stack_adjust = 1;
3262 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3263 && (insn2 & 0x0e00) == 0x0a00)
3264 found_stack_adjust = 1;
3265
3266 return found_stack_adjust;
3267 }
3268
3269 static int
3270 arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
3271 {
3272 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3273 unsigned int insn;
3274 int found_return;
3275 CORE_ADDR func_start, func_end;
3276
3277 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3278 return 0;
3279
3280 /* We are in the epilogue if the previous instruction was a stack
3281 adjustment and the next instruction is a possible return (bx, mov
3282 pc, or pop). We could have to scan backwards to find the stack
3283 adjustment, or forwards to find the return, but this is a decent
3284 approximation. First scan forwards. */
3285
3286 found_return = 0;
3287 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3288 if (bits (insn, 28, 31) != INST_NV)
3289 {
3290 if ((insn & 0x0ffffff0) == 0x012fff10)
3291 /* BX. */
3292 found_return = 1;
3293 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3294 /* MOV PC. */
3295 found_return = 1;
3296 else if ((insn & 0x0fff0000) == 0x08bd0000
3297 && (insn & 0x0000c000) != 0)
3298 /* POP (LDMIA), including PC or LR. */
3299 found_return = 1;
3300 }
3301
3302 if (!found_return)
3303 return 0;
3304
3305 /* Scan backwards. This is just a heuristic, so do not worry about
3306 false positives from mode changes. */
3307
3308 if (pc < func_start + 4)
3309 return 0;
3310
3311 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3312 if (arm_instruction_restores_sp (insn))
3313 return 1;
3314
3315 return 0;
3316 }
3317
3318 /* Implement the stack_frame_destroyed_p gdbarch method. */
3319
3320 static int
3321 arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3322 {
3323 if (arm_pc_is_thumb (gdbarch, pc))
3324 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3325 else
3326 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3327 }
3328
3329 /* When arguments must be pushed onto the stack, they go on in reverse
3330 order. The code below implements a FILO (stack) to do this. */
3331
3332 struct stack_item
3333 {
3334 int len;
3335 struct stack_item *prev;
3336 gdb_byte *data;
3337 };
3338
3339 static struct stack_item *
3340 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
3341 {
3342 struct stack_item *si;
3343 si = XNEW (struct stack_item);
3344 si->data = (gdb_byte *) xmalloc (len);
3345 si->len = len;
3346 si->prev = prev;
3347 memcpy (si->data, contents, len);
3348 return si;
3349 }
3350
3351 static struct stack_item *
3352 pop_stack_item (struct stack_item *si)
3353 {
3354 struct stack_item *dead = si;
3355 si = si->prev;
3356 xfree (dead->data);
3357 xfree (dead);
3358 return si;
3359 }
3360
3361
3362 /* Return the alignment (in bytes) of the given type. */
3363
3364 static int
3365 arm_type_align (struct type *t)
3366 {
3367 int n;
3368 int align;
3369 int falign;
3370
3371 t = check_typedef (t);
3372 switch (TYPE_CODE (t))
3373 {
3374 default:
3375 /* Should never happen. */
3376 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3377 return 4;
3378
3379 case TYPE_CODE_PTR:
3380 case TYPE_CODE_ENUM:
3381 case TYPE_CODE_INT:
3382 case TYPE_CODE_FLT:
3383 case TYPE_CODE_SET:
3384 case TYPE_CODE_RANGE:
3385 case TYPE_CODE_REF:
3386 case TYPE_CODE_CHAR:
3387 case TYPE_CODE_BOOL:
3388 return TYPE_LENGTH (t);
3389
3390 case TYPE_CODE_ARRAY:
3391 if (TYPE_VECTOR (t))
3392 {
3393 /* Use the natural alignment for vector types (the same for
3394 scalar type), but the maximum alignment is 64-bit. */
3395 if (TYPE_LENGTH (t) > 8)
3396 return 8;
3397 else
3398 return TYPE_LENGTH (t);
3399 }
3400 else
3401 return arm_type_align (TYPE_TARGET_TYPE (t));
3402 case TYPE_CODE_COMPLEX:
3403 return arm_type_align (TYPE_TARGET_TYPE (t));
3404
3405 case TYPE_CODE_STRUCT:
3406 case TYPE_CODE_UNION:
3407 align = 1;
3408 for (n = 0; n < TYPE_NFIELDS (t); n++)
3409 {
3410 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3411 if (falign > align)
3412 align = falign;
3413 }
3414 return align;
3415 }
3416 }
3417
3418 /* Possible base types for a candidate for passing and returning in
3419 VFP registers. */
3420
3421 enum arm_vfp_cprc_base_type
3422 {
3423 VFP_CPRC_UNKNOWN,
3424 VFP_CPRC_SINGLE,
3425 VFP_CPRC_DOUBLE,
3426 VFP_CPRC_VEC64,
3427 VFP_CPRC_VEC128
3428 };
3429
3430 /* The length of one element of base type B. */
3431
3432 static unsigned
3433 arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3434 {
3435 switch (b)
3436 {
3437 case VFP_CPRC_SINGLE:
3438 return 4;
3439 case VFP_CPRC_DOUBLE:
3440 return 8;
3441 case VFP_CPRC_VEC64:
3442 return 8;
3443 case VFP_CPRC_VEC128:
3444 return 16;
3445 default:
3446 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3447 (int) b);
3448 }
3449 }
3450
3451 /* The character ('s', 'd' or 'q') for the type of VFP register used
3452 for passing base type B. */
3453
3454 static int
3455 arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3456 {
3457 switch (b)
3458 {
3459 case VFP_CPRC_SINGLE:
3460 return 's';
3461 case VFP_CPRC_DOUBLE:
3462 return 'd';
3463 case VFP_CPRC_VEC64:
3464 return 'd';
3465 case VFP_CPRC_VEC128:
3466 return 'q';
3467 default:
3468 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3469 (int) b);
3470 }
3471 }
3472
3473 /* Determine whether T may be part of a candidate for passing and
3474 returning in VFP registers, ignoring the limit on the total number
3475 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3476 classification of the first valid component found; if it is not
3477 VFP_CPRC_UNKNOWN, all components must have the same classification
3478 as *BASE_TYPE. If it is found that T contains a type not permitted
3479 for passing and returning in VFP registers, a type differently
3480 classified from *BASE_TYPE, or two types differently classified
3481 from each other, return -1, otherwise return the total number of
3482 base-type elements found (possibly 0 in an empty structure or
3483 array). Vector types are not currently supported, matching the
3484 generic AAPCS support. */
3485
3486 static int
3487 arm_vfp_cprc_sub_candidate (struct type *t,
3488 enum arm_vfp_cprc_base_type *base_type)
3489 {
3490 t = check_typedef (t);
3491 switch (TYPE_CODE (t))
3492 {
3493 case TYPE_CODE_FLT:
3494 switch (TYPE_LENGTH (t))
3495 {
3496 case 4:
3497 if (*base_type == VFP_CPRC_UNKNOWN)
3498 *base_type = VFP_CPRC_SINGLE;
3499 else if (*base_type != VFP_CPRC_SINGLE)
3500 return -1;
3501 return 1;
3502
3503 case 8:
3504 if (*base_type == VFP_CPRC_UNKNOWN)
3505 *base_type = VFP_CPRC_DOUBLE;
3506 else if (*base_type != VFP_CPRC_DOUBLE)
3507 return -1;
3508 return 1;
3509
3510 default:
3511 return -1;
3512 }
3513 break;
3514
3515 case TYPE_CODE_COMPLEX:
3516 /* Arguments of complex T where T is one of the types float or
3517 double get treated as if they are implemented as:
3518
3519 struct complexT
3520 {
3521 T real;
3522 T imag;
3523 };
3524
3525 */
3526 switch (TYPE_LENGTH (t))
3527 {
3528 case 8:
3529 if (*base_type == VFP_CPRC_UNKNOWN)
3530 *base_type = VFP_CPRC_SINGLE;
3531 else if (*base_type != VFP_CPRC_SINGLE)
3532 return -1;
3533 return 2;
3534
3535 case 16:
3536 if (*base_type == VFP_CPRC_UNKNOWN)
3537 *base_type = VFP_CPRC_DOUBLE;
3538 else if (*base_type != VFP_CPRC_DOUBLE)
3539 return -1;
3540 return 2;
3541
3542 default:
3543 return -1;
3544 }
3545 break;
3546
3547 case TYPE_CODE_ARRAY:
3548 {
3549 if (TYPE_VECTOR (t))
3550 {
3551 /* A 64-bit or 128-bit containerized vector type are VFP
3552 CPRCs. */
3553 switch (TYPE_LENGTH (t))
3554 {
3555 case 8:
3556 if (*base_type == VFP_CPRC_UNKNOWN)
3557 *base_type = VFP_CPRC_VEC64;
3558 return 1;
3559 case 16:
3560 if (*base_type == VFP_CPRC_UNKNOWN)
3561 *base_type = VFP_CPRC_VEC128;
3562 return 1;
3563 default:
3564 return -1;
3565 }
3566 }
3567 else
3568 {
3569 int count;
3570 unsigned unitlen;
3571
3572 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3573 base_type);
3574 if (count == -1)
3575 return -1;
3576 if (TYPE_LENGTH (t) == 0)
3577 {
3578 gdb_assert (count == 0);
3579 return 0;
3580 }
3581 else if (count == 0)
3582 return -1;
3583 unitlen = arm_vfp_cprc_unit_length (*base_type);
3584 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3585 return TYPE_LENGTH (t) / unitlen;
3586 }
3587 }
3588 break;
3589
3590 case TYPE_CODE_STRUCT:
3591 {
3592 int count = 0;
3593 unsigned unitlen;
3594 int i;
3595 for (i = 0; i < TYPE_NFIELDS (t); i++)
3596 {
3597 int sub_count = 0;
3598
3599 if (!field_is_static (&TYPE_FIELD (t, i)))
3600 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3601 base_type);
3602 if (sub_count == -1)
3603 return -1;
3604 count += sub_count;
3605 }
3606 if (TYPE_LENGTH (t) == 0)
3607 {
3608 gdb_assert (count == 0);
3609 return 0;
3610 }
3611 else if (count == 0)
3612 return -1;
3613 unitlen = arm_vfp_cprc_unit_length (*base_type);
3614 if (TYPE_LENGTH (t) != unitlen * count)
3615 return -1;
3616 return count;
3617 }
3618
3619 case TYPE_CODE_UNION:
3620 {
3621 int count = 0;
3622 unsigned unitlen;
3623 int i;
3624 for (i = 0; i < TYPE_NFIELDS (t); i++)
3625 {
3626 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3627 base_type);
3628 if (sub_count == -1)
3629 return -1;
3630 count = (count > sub_count ? count : sub_count);
3631 }
3632 if (TYPE_LENGTH (t) == 0)
3633 {
3634 gdb_assert (count == 0);
3635 return 0;
3636 }
3637 else if (count == 0)
3638 return -1;
3639 unitlen = arm_vfp_cprc_unit_length (*base_type);
3640 if (TYPE_LENGTH (t) != unitlen * count)
3641 return -1;
3642 return count;
3643 }
3644
3645 default:
3646 break;
3647 }
3648
3649 return -1;
3650 }
3651
3652 /* Determine whether T is a VFP co-processor register candidate (CPRC)
3653 if passed to or returned from a non-variadic function with the VFP
3654 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3655 *BASE_TYPE to the base type for T and *COUNT to the number of
3656 elements of that base type before returning. */
3657
3658 static int
3659 arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3660 int *count)
3661 {
3662 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3663 int c = arm_vfp_cprc_sub_candidate (t, &b);
3664 if (c <= 0 || c > 4)
3665 return 0;
3666 *base_type = b;
3667 *count = c;
3668 return 1;
3669 }
3670
3671 /* Return 1 if the VFP ABI should be used for passing arguments to and
3672 returning values from a function of type FUNC_TYPE, 0
3673 otherwise. */
3674
3675 static int
3676 arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3677 {
3678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3679 /* Variadic functions always use the base ABI. Assume that functions
3680 without debug info are not variadic. */
3681 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3682 return 0;
3683 /* The VFP ABI is only supported as a variant of AAPCS. */
3684 if (tdep->arm_abi != ARM_ABI_AAPCS)
3685 return 0;
3686 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3687 }
3688
3689 /* We currently only support passing parameters in integer registers, which
3690 conforms with GCC's default model, and VFP argument passing following
3691 the VFP variant of AAPCS. Several other variants exist and
3692 we should probably support some of them based on the selected ABI. */
3693
3694 static CORE_ADDR
3695 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3696 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3697 struct value **args, CORE_ADDR sp, int struct_return,
3698 CORE_ADDR struct_addr)
3699 {
3700 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3701 int argnum;
3702 int argreg;
3703 int nstack;
3704 struct stack_item *si = NULL;
3705 int use_vfp_abi;
3706 struct type *ftype;
3707 unsigned vfp_regs_free = (1 << 16) - 1;
3708
3709 /* Determine the type of this function and whether the VFP ABI
3710 applies. */
3711 ftype = check_typedef (value_type (function));
3712 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3713 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3714 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
3715
3716 /* Set the return address. For the ARM, the return breakpoint is
3717 always at BP_ADDR. */
3718 if (arm_pc_is_thumb (gdbarch, bp_addr))
3719 bp_addr |= 1;
3720 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
3721
3722 /* Walk through the list of args and determine how large a temporary
3723 stack is required. Need to take care here as structs may be
3724 passed on the stack, and we have to push them. */
3725 nstack = 0;
3726
3727 argreg = ARM_A1_REGNUM;
3728 nstack = 0;
3729
3730 /* The struct_return pointer occupies the first parameter
3731 passing register. */
3732 if (struct_return)
3733 {
3734 if (arm_debug)
3735 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
3736 gdbarch_register_name (gdbarch, argreg),
3737 paddress (gdbarch, struct_addr));
3738 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3739 argreg++;
3740 }
3741
3742 for (argnum = 0; argnum < nargs; argnum++)
3743 {
3744 int len;
3745 struct type *arg_type;
3746 struct type *target_type;
3747 enum type_code typecode;
3748 const bfd_byte *val;
3749 int align;
3750 enum arm_vfp_cprc_base_type vfp_base_type;
3751 int vfp_base_count;
3752 int may_use_core_reg = 1;
3753
3754 arg_type = check_typedef (value_type (args[argnum]));
3755 len = TYPE_LENGTH (arg_type);
3756 target_type = TYPE_TARGET_TYPE (arg_type);
3757 typecode = TYPE_CODE (arg_type);
3758 val = value_contents (args[argnum]);
3759
3760 align = arm_type_align (arg_type);
3761 /* Round alignment up to a whole number of words. */
3762 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3763 /* Different ABIs have different maximum alignments. */
3764 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3765 {
3766 /* The APCS ABI only requires word alignment. */
3767 align = INT_REGISTER_SIZE;
3768 }
3769 else
3770 {
3771 /* The AAPCS requires at most doubleword alignment. */
3772 if (align > INT_REGISTER_SIZE * 2)
3773 align = INT_REGISTER_SIZE * 2;
3774 }
3775
3776 if (use_vfp_abi
3777 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3778 &vfp_base_count))
3779 {
3780 int regno;
3781 int unit_length;
3782 int shift;
3783 unsigned mask;
3784
3785 /* Because this is a CPRC it cannot go in a core register or
3786 cause a core register to be skipped for alignment.
3787 Either it goes in VFP registers and the rest of this loop
3788 iteration is skipped for this argument, or it goes on the
3789 stack (and the stack alignment code is correct for this
3790 case). */
3791 may_use_core_reg = 0;
3792
3793 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3794 shift = unit_length / 4;
3795 mask = (1 << (shift * vfp_base_count)) - 1;
3796 for (regno = 0; regno < 16; regno += shift)
3797 if (((vfp_regs_free >> regno) & mask) == mask)
3798 break;
3799
3800 if (regno < 16)
3801 {
3802 int reg_char;
3803 int reg_scaled;
3804 int i;
3805
3806 vfp_regs_free &= ~(mask << regno);
3807 reg_scaled = regno / shift;
3808 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3809 for (i = 0; i < vfp_base_count; i++)
3810 {
3811 char name_buf[4];
3812 int regnum;
3813 if (reg_char == 'q')
3814 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
3815 val + i * unit_length);
3816 else
3817 {
3818 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3819 reg_char, reg_scaled + i);
3820 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3821 strlen (name_buf));
3822 regcache_cooked_write (regcache, regnum,
3823 val + i * unit_length);
3824 }
3825 }
3826 continue;
3827 }
3828 else
3829 {
3830 /* This CPRC could not go in VFP registers, so all VFP
3831 registers are now marked as used. */
3832 vfp_regs_free = 0;
3833 }
3834 }
3835
3836 /* Push stack padding for dowubleword alignment. */
3837 if (nstack & (align - 1))
3838 {
3839 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3840 nstack += INT_REGISTER_SIZE;
3841 }
3842
3843 /* Doubleword aligned quantities must go in even register pairs. */
3844 if (may_use_core_reg
3845 && argreg <= ARM_LAST_ARG_REGNUM
3846 && align > INT_REGISTER_SIZE
3847 && argreg & 1)
3848 argreg++;
3849
3850 /* If the argument is a pointer to a function, and it is a
3851 Thumb function, create a LOCAL copy of the value and set
3852 the THUMB bit in it. */
3853 if (TYPE_CODE_PTR == typecode
3854 && target_type != NULL
3855 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
3856 {
3857 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
3858 if (arm_pc_is_thumb (gdbarch, regval))
3859 {
3860 bfd_byte *copy = (bfd_byte *) alloca (len);
3861 store_unsigned_integer (copy, len, byte_order,
3862 MAKE_THUMB_ADDR (regval));
3863 val = copy;
3864 }
3865 }
3866
3867 /* Copy the argument to general registers or the stack in
3868 register-sized pieces. Large arguments are split between
3869 registers and stack. */
3870 while (len > 0)
3871 {
3872 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
3873 CORE_ADDR regval
3874 = extract_unsigned_integer (val, partial_len, byte_order);
3875
3876 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
3877 {
3878 /* The argument is being passed in a general purpose
3879 register. */
3880 if (byte_order == BFD_ENDIAN_BIG)
3881 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
3882 if (arm_debug)
3883 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
3884 argnum,
3885 gdbarch_register_name
3886 (gdbarch, argreg),
3887 phex (regval, INT_REGISTER_SIZE));
3888 regcache_cooked_write_unsigned (regcache, argreg, regval);
3889 argreg++;
3890 }
3891 else
3892 {
3893 gdb_byte buf[INT_REGISTER_SIZE];
3894
3895 memset (buf, 0, sizeof (buf));
3896 store_unsigned_integer (buf, partial_len, byte_order, regval);
3897
3898 /* Push the arguments onto the stack. */
3899 if (arm_debug)
3900 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3901 argnum, nstack);
3902 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
3903 nstack += INT_REGISTER_SIZE;
3904 }
3905
3906 len -= partial_len;
3907 val += partial_len;
3908 }
3909 }
3910 /* If we have an odd number of words to push, then decrement the stack
3911 by one word now, so first stack argument will be dword aligned. */
3912 if (nstack & 4)
3913 sp -= 4;
3914
3915 while (si)
3916 {
3917 sp -= si->len;
3918 write_memory (sp, si->data, si->len);
3919 si = pop_stack_item (si);
3920 }
3921
3922 /* Finally, update teh SP register. */
3923 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3924
3925 return sp;
3926 }
3927
3928
3929 /* Always align the frame to an 8-byte boundary. This is required on
3930 some platforms and harmless on the rest. */
3931
3932 static CORE_ADDR
3933 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3934 {
3935 /* Align the stack to eight bytes. */
3936 return sp & ~ (CORE_ADDR) 7;
3937 }
3938
3939 static void
3940 print_fpu_flags (struct ui_file *file, int flags)
3941 {
3942 if (flags & (1 << 0))
3943 fputs_filtered ("IVO ", file);
3944 if (flags & (1 << 1))
3945 fputs_filtered ("DVZ ", file);
3946 if (flags & (1 << 2))
3947 fputs_filtered ("OFL ", file);
3948 if (flags & (1 << 3))
3949 fputs_filtered ("UFL ", file);
3950 if (flags & (1 << 4))
3951 fputs_filtered ("INX ", file);
3952 fputc_filtered ('\n', file);
3953 }
3954
3955 /* Print interesting information about the floating point processor
3956 (if present) or emulator. */
3957 static void
3958 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
3959 struct frame_info *frame, const char *args)
3960 {
3961 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
3962 int type;
3963
3964 type = (status >> 24) & 127;
3965 if (status & (1 << 31))
3966 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
3967 else
3968 fprintf_filtered (file, _("Software FPU type %d\n"), type);
3969 /* i18n: [floating point unit] mask */
3970 fputs_filtered (_("mask: "), file);
3971 print_fpu_flags (file, status >> 16);
3972 /* i18n: [floating point unit] flags */
3973 fputs_filtered (_("flags: "), file);
3974 print_fpu_flags (file, status);
3975 }
3976
3977 /* Construct the ARM extended floating point type. */
3978 static struct type *
3979 arm_ext_type (struct gdbarch *gdbarch)
3980 {
3981 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3982
3983 if (!tdep->arm_ext_type)
3984 tdep->arm_ext_type
3985 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
3986 floatformats_arm_ext);
3987
3988 return tdep->arm_ext_type;
3989 }
3990
3991 static struct type *
3992 arm_neon_double_type (struct gdbarch *gdbarch)
3993 {
3994 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3995
3996 if (tdep->neon_double_type == NULL)
3997 {
3998 struct type *t, *elem;
3999
4000 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4001 TYPE_CODE_UNION);
4002 elem = builtin_type (gdbarch)->builtin_uint8;
4003 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4004 elem = builtin_type (gdbarch)->builtin_uint16;
4005 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4006 elem = builtin_type (gdbarch)->builtin_uint32;
4007 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4008 elem = builtin_type (gdbarch)->builtin_uint64;
4009 append_composite_type_field (t, "u64", elem);
4010 elem = builtin_type (gdbarch)->builtin_float;
4011 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4012 elem = builtin_type (gdbarch)->builtin_double;
4013 append_composite_type_field (t, "f64", elem);
4014
4015 TYPE_VECTOR (t) = 1;
4016 TYPE_NAME (t) = "neon_d";
4017 tdep->neon_double_type = t;
4018 }
4019
4020 return tdep->neon_double_type;
4021 }
4022
4023 /* FIXME: The vector types are not correctly ordered on big-endian
4024 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4025 bits of d0 - regardless of what unit size is being held in d0. So
4026 the offset of the first uint8 in d0 is 7, but the offset of the
4027 first float is 4. This code works as-is for little-endian
4028 targets. */
4029
4030 static struct type *
4031 arm_neon_quad_type (struct gdbarch *gdbarch)
4032 {
4033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4034
4035 if (tdep->neon_quad_type == NULL)
4036 {
4037 struct type *t, *elem;
4038
4039 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4040 TYPE_CODE_UNION);
4041 elem = builtin_type (gdbarch)->builtin_uint8;
4042 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4043 elem = builtin_type (gdbarch)->builtin_uint16;
4044 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4045 elem = builtin_type (gdbarch)->builtin_uint32;
4046 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4047 elem = builtin_type (gdbarch)->builtin_uint64;
4048 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4049 elem = builtin_type (gdbarch)->builtin_float;
4050 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4051 elem = builtin_type (gdbarch)->builtin_double;
4052 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4053
4054 TYPE_VECTOR (t) = 1;
4055 TYPE_NAME (t) = "neon_q";
4056 tdep->neon_quad_type = t;
4057 }
4058
4059 return tdep->neon_quad_type;
4060 }
4061
4062 /* Return the GDB type object for the "standard" data type of data in
4063 register N. */
4064
4065 static struct type *
4066 arm_register_type (struct gdbarch *gdbarch, int regnum)
4067 {
4068 int num_regs = gdbarch_num_regs (gdbarch);
4069
4070 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4071 && regnum >= num_regs && regnum < num_regs + 32)
4072 return builtin_type (gdbarch)->builtin_float;
4073
4074 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4075 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4076 return arm_neon_quad_type (gdbarch);
4077
4078 /* If the target description has register information, we are only
4079 in this function so that we can override the types of
4080 double-precision registers for NEON. */
4081 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4082 {
4083 struct type *t = tdesc_register_type (gdbarch, regnum);
4084
4085 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4086 && TYPE_CODE (t) == TYPE_CODE_FLT
4087 && gdbarch_tdep (gdbarch)->have_neon)
4088 return arm_neon_double_type (gdbarch);
4089 else
4090 return t;
4091 }
4092
4093 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
4094 {
4095 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4096 return builtin_type (gdbarch)->builtin_void;
4097
4098 return arm_ext_type (gdbarch);
4099 }
4100 else if (regnum == ARM_SP_REGNUM)
4101 return builtin_type (gdbarch)->builtin_data_ptr;
4102 else if (regnum == ARM_PC_REGNUM)
4103 return builtin_type (gdbarch)->builtin_func_ptr;
4104 else if (regnum >= ARRAY_SIZE (arm_register_names))
4105 /* These registers are only supported on targets which supply
4106 an XML description. */
4107 return builtin_type (gdbarch)->builtin_int0;
4108 else
4109 return builtin_type (gdbarch)->builtin_uint32;
4110 }
4111
4112 /* Map a DWARF register REGNUM onto the appropriate GDB register
4113 number. */
4114
4115 static int
4116 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
4117 {
4118 /* Core integer regs. */
4119 if (reg >= 0 && reg <= 15)
4120 return reg;
4121
4122 /* Legacy FPA encoding. These were once used in a way which
4123 overlapped with VFP register numbering, so their use is
4124 discouraged, but GDB doesn't support the ARM toolchain
4125 which used them for VFP. */
4126 if (reg >= 16 && reg <= 23)
4127 return ARM_F0_REGNUM + reg - 16;
4128
4129 /* New assignments for the FPA registers. */
4130 if (reg >= 96 && reg <= 103)
4131 return ARM_F0_REGNUM + reg - 96;
4132
4133 /* WMMX register assignments. */
4134 if (reg >= 104 && reg <= 111)
4135 return ARM_WCGR0_REGNUM + reg - 104;
4136
4137 if (reg >= 112 && reg <= 127)
4138 return ARM_WR0_REGNUM + reg - 112;
4139
4140 if (reg >= 192 && reg <= 199)
4141 return ARM_WC0_REGNUM + reg - 192;
4142
4143 /* VFP v2 registers. A double precision value is actually
4144 in d1 rather than s2, but the ABI only defines numbering
4145 for the single precision registers. This will "just work"
4146 in GDB for little endian targets (we'll read eight bytes,
4147 starting in s0 and then progressing to s1), but will be
4148 reversed on big endian targets with VFP. This won't
4149 be a problem for the new Neon quad registers; you're supposed
4150 to use DW_OP_piece for those. */
4151 if (reg >= 64 && reg <= 95)
4152 {
4153 char name_buf[4];
4154
4155 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
4156 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4157 strlen (name_buf));
4158 }
4159
4160 /* VFP v3 / Neon registers. This range is also used for VFP v2
4161 registers, except that it now describes d0 instead of s0. */
4162 if (reg >= 256 && reg <= 287)
4163 {
4164 char name_buf[4];
4165
4166 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
4167 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4168 strlen (name_buf));
4169 }
4170
4171 return -1;
4172 }
4173
4174 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4175 static int
4176 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
4177 {
4178 int reg = regnum;
4179 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
4180
4181 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4182 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4183
4184 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4185 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4186
4187 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4188 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4189
4190 if (reg < NUM_GREGS)
4191 return SIM_ARM_R0_REGNUM + reg;
4192 reg -= NUM_GREGS;
4193
4194 if (reg < NUM_FREGS)
4195 return SIM_ARM_FP0_REGNUM + reg;
4196 reg -= NUM_FREGS;
4197
4198 if (reg < NUM_SREGS)
4199 return SIM_ARM_FPS_REGNUM + reg;
4200 reg -= NUM_SREGS;
4201
4202 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
4203 }
4204
4205 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4206 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4207 It is thought that this is is the floating-point register format on
4208 little-endian systems. */
4209
4210 static void
4211 convert_from_extended (const struct floatformat *fmt, const void *ptr,
4212 void *dbl, int endianess)
4213 {
4214 DOUBLEST d;
4215
4216 if (endianess == BFD_ENDIAN_BIG)
4217 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4218 else
4219 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4220 ptr, &d);
4221 floatformat_from_doublest (fmt, &d, dbl);
4222 }
4223
4224 static void
4225 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4226 int endianess)
4227 {
4228 DOUBLEST d;
4229
4230 floatformat_to_doublest (fmt, ptr, &d);
4231 if (endianess == BFD_ENDIAN_BIG)
4232 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4233 else
4234 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4235 &d, dbl);
4236 }
4237
4238 /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4239 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4240 NULL if an error occurs. BUF is freed. */
4241
4242 static gdb_byte *
4243 extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4244 int old_len, int new_len)
4245 {
4246 gdb_byte *new_buf;
4247 int bytes_to_read = new_len - old_len;
4248
4249 new_buf = (gdb_byte *) xmalloc (new_len);
4250 memcpy (new_buf + bytes_to_read, buf, old_len);
4251 xfree (buf);
4252 if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
4253 {
4254 xfree (new_buf);
4255 return NULL;
4256 }
4257 return new_buf;
4258 }
4259
4260 /* An IT block is at most the 2-byte IT instruction followed by
4261 four 4-byte instructions. The furthest back we must search to
4262 find an IT block that affects the current instruction is thus
4263 2 + 3 * 4 == 14 bytes. */
4264 #define MAX_IT_BLOCK_PREFIX 14
4265
4266 /* Use a quick scan if there are more than this many bytes of
4267 code. */
4268 #define IT_SCAN_THRESHOLD 32
4269
4270 /* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4271 A breakpoint in an IT block may not be hit, depending on the
4272 condition flags. */
4273 static CORE_ADDR
4274 arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4275 {
4276 gdb_byte *buf;
4277 char map_type;
4278 CORE_ADDR boundary, func_start;
4279 int buf_len;
4280 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4281 int i, any, last_it, last_it_count;
4282
4283 /* If we are using BKPT breakpoints, none of this is necessary. */
4284 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4285 return bpaddr;
4286
4287 /* ARM mode does not have this problem. */
4288 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4289 return bpaddr;
4290
4291 /* We are setting a breakpoint in Thumb code that could potentially
4292 contain an IT block. The first step is to find how much Thumb
4293 code there is; we do not need to read outside of known Thumb
4294 sequences. */
4295 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4296 if (map_type == 0)
4297 /* Thumb-2 code must have mapping symbols to have a chance. */
4298 return bpaddr;
4299
4300 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4301
4302 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4303 && func_start > boundary)
4304 boundary = func_start;
4305
4306 /* Search for a candidate IT instruction. We have to do some fancy
4307 footwork to distinguish a real IT instruction from the second
4308 half of a 32-bit instruction, but there is no need for that if
4309 there's no candidate. */
4310 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
4311 if (buf_len == 0)
4312 /* No room for an IT instruction. */
4313 return bpaddr;
4314
4315 buf = (gdb_byte *) xmalloc (buf_len);
4316 if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
4317 return bpaddr;
4318 any = 0;
4319 for (i = 0; i < buf_len; i += 2)
4320 {
4321 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4322 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4323 {
4324 any = 1;
4325 break;
4326 }
4327 }
4328
4329 if (any == 0)
4330 {
4331 xfree (buf);
4332 return bpaddr;
4333 }
4334
4335 /* OK, the code bytes before this instruction contain at least one
4336 halfword which resembles an IT instruction. We know that it's
4337 Thumb code, but there are still two possibilities. Either the
4338 halfword really is an IT instruction, or it is the second half of
4339 a 32-bit Thumb instruction. The only way we can tell is to
4340 scan forwards from a known instruction boundary. */
4341 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4342 {
4343 int definite;
4344
4345 /* There's a lot of code before this instruction. Start with an
4346 optimistic search; it's easy to recognize halfwords that can
4347 not be the start of a 32-bit instruction, and use that to
4348 lock on to the instruction boundaries. */
4349 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4350 if (buf == NULL)
4351 return bpaddr;
4352 buf_len = IT_SCAN_THRESHOLD;
4353
4354 definite = 0;
4355 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4356 {
4357 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4358 if (thumb_insn_size (inst1) == 2)
4359 {
4360 definite = 1;
4361 break;
4362 }
4363 }
4364
4365 /* At this point, if DEFINITE, BUF[I] is the first place we
4366 are sure that we know the instruction boundaries, and it is far
4367 enough from BPADDR that we could not miss an IT instruction
4368 affecting BPADDR. If ! DEFINITE, give up - start from a
4369 known boundary. */
4370 if (! definite)
4371 {
4372 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4373 bpaddr - boundary);
4374 if (buf == NULL)
4375 return bpaddr;
4376 buf_len = bpaddr - boundary;
4377 i = 0;
4378 }
4379 }
4380 else
4381 {
4382 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4383 if (buf == NULL)
4384 return bpaddr;
4385 buf_len = bpaddr - boundary;
4386 i = 0;
4387 }
4388
4389 /* Scan forwards. Find the last IT instruction before BPADDR. */
4390 last_it = -1;
4391 last_it_count = 0;
4392 while (i < buf_len)
4393 {
4394 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4395 last_it_count--;
4396 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4397 {
4398 last_it = i;
4399 if (inst1 & 0x0001)
4400 last_it_count = 4;
4401 else if (inst1 & 0x0002)
4402 last_it_count = 3;
4403 else if (inst1 & 0x0004)
4404 last_it_count = 2;
4405 else
4406 last_it_count = 1;
4407 }
4408 i += thumb_insn_size (inst1);
4409 }
4410
4411 xfree (buf);
4412
4413 if (last_it == -1)
4414 /* There wasn't really an IT instruction after all. */
4415 return bpaddr;
4416
4417 if (last_it_count < 1)
4418 /* It was too far away. */
4419 return bpaddr;
4420
4421 /* This really is a trouble spot. Move the breakpoint to the IT
4422 instruction. */
4423 return bpaddr - buf_len + last_it;
4424 }
4425
4426 /* ARM displaced stepping support.
4427
4428 Generally ARM displaced stepping works as follows:
4429
4430 1. When an instruction is to be single-stepped, it is first decoded by
4431 arm_process_displaced_insn. Depending on the type of instruction, it is
4432 then copied to a scratch location, possibly in a modified form. The
4433 copy_* set of functions performs such modification, as necessary. A
4434 breakpoint is placed after the modified instruction in the scratch space
4435 to return control to GDB. Note in particular that instructions which
4436 modify the PC will no longer do so after modification.
4437
4438 2. The instruction is single-stepped, by setting the PC to the scratch
4439 location address, and resuming. Control returns to GDB when the
4440 breakpoint is hit.
4441
4442 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4443 function used for the current instruction. This function's job is to
4444 put the CPU/memory state back to what it would have been if the
4445 instruction had been executed unmodified in its original location. */
4446
4447 /* NOP instruction (mov r0, r0). */
4448 #define ARM_NOP 0xe1a00000
4449 #define THUMB_NOP 0x4600
4450
4451 /* Helper for register reads for displaced stepping. In particular, this
4452 returns the PC as it would be seen by the instruction at its original
4453 location. */
4454
4455 ULONGEST
4456 displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4457 int regno)
4458 {
4459 ULONGEST ret;
4460 CORE_ADDR from = dsc->insn_addr;
4461
4462 if (regno == ARM_PC_REGNUM)
4463 {
4464 /* Compute pipeline offset:
4465 - When executing an ARM instruction, PC reads as the address of the
4466 current instruction plus 8.
4467 - When executing a Thumb instruction, PC reads as the address of the
4468 current instruction plus 4. */
4469
4470 if (!dsc->is_thumb)
4471 from += 8;
4472 else
4473 from += 4;
4474
4475 if (debug_displaced)
4476 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4477 (unsigned long) from);
4478 return (ULONGEST) from;
4479 }
4480 else
4481 {
4482 regcache_cooked_read_unsigned (regs, regno, &ret);
4483 if (debug_displaced)
4484 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4485 regno, (unsigned long) ret);
4486 return ret;
4487 }
4488 }
4489
4490 static int
4491 displaced_in_arm_mode (struct regcache *regs)
4492 {
4493 ULONGEST ps;
4494 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4495
4496 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4497
4498 return (ps & t_bit) == 0;
4499 }
4500
4501 /* Write to the PC as from a branch instruction. */
4502
4503 static void
4504 branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4505 ULONGEST val)
4506 {
4507 if (!dsc->is_thumb)
4508 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4509 architecture versions < 6. */
4510 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4511 val & ~(ULONGEST) 0x3);
4512 else
4513 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4514 val & ~(ULONGEST) 0x1);
4515 }
4516
4517 /* Write to the PC as from a branch-exchange instruction. */
4518
4519 static void
4520 bx_write_pc (struct regcache *regs, ULONGEST val)
4521 {
4522 ULONGEST ps;
4523 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4524
4525 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4526
4527 if ((val & 1) == 1)
4528 {
4529 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
4530 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4531 }
4532 else if ((val & 2) == 0)
4533 {
4534 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4535 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
4536 }
4537 else
4538 {
4539 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4540 mode, align dest to 4 bytes). */
4541 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
4542 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4543 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
4544 }
4545 }
4546
4547 /* Write to the PC as if from a load instruction. */
4548
4549 static void
4550 load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4551 ULONGEST val)
4552 {
4553 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4554 bx_write_pc (regs, val);
4555 else
4556 branch_write_pc (regs, dsc, val);
4557 }
4558
4559 /* Write to the PC as if from an ALU instruction. */
4560
4561 static void
4562 alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4563 ULONGEST val)
4564 {
4565 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
4566 bx_write_pc (regs, val);
4567 else
4568 branch_write_pc (regs, dsc, val);
4569 }
4570
4571 /* Helper for writing to registers for displaced stepping. Writing to the PC
4572 has a varying effects depending on the instruction which does the write:
4573 this is controlled by the WRITE_PC argument. */
4574
4575 void
4576 displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4577 int regno, ULONGEST val, enum pc_write_style write_pc)
4578 {
4579 if (regno == ARM_PC_REGNUM)
4580 {
4581 if (debug_displaced)
4582 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4583 (unsigned long) val);
4584 switch (write_pc)
4585 {
4586 case BRANCH_WRITE_PC:
4587 branch_write_pc (regs, dsc, val);
4588 break;
4589
4590 case BX_WRITE_PC:
4591 bx_write_pc (regs, val);
4592 break;
4593
4594 case LOAD_WRITE_PC:
4595 load_write_pc (regs, dsc, val);
4596 break;
4597
4598 case ALU_WRITE_PC:
4599 alu_write_pc (regs, dsc, val);
4600 break;
4601
4602 case CANNOT_WRITE_PC:
4603 warning (_("Instruction wrote to PC in an unexpected way when "
4604 "single-stepping"));
4605 break;
4606
4607 default:
4608 internal_error (__FILE__, __LINE__,
4609 _("Invalid argument to displaced_write_reg"));
4610 }
4611
4612 dsc->wrote_to_pc = 1;
4613 }
4614 else
4615 {
4616 if (debug_displaced)
4617 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4618 regno, (unsigned long) val);
4619 regcache_cooked_write_unsigned (regs, regno, val);
4620 }
4621 }
4622
4623 /* This function is used to concisely determine if an instruction INSN
4624 references PC. Register fields of interest in INSN should have the
4625 corresponding fields of BITMASK set to 0b1111. The function
4626 returns return 1 if any of these fields in INSN reference the PC
4627 (also 0b1111, r15), else it returns 0. */
4628
4629 static int
4630 insn_references_pc (uint32_t insn, uint32_t bitmask)
4631 {
4632 uint32_t lowbit = 1;
4633
4634 while (bitmask != 0)
4635 {
4636 uint32_t mask;
4637
4638 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4639 ;
4640
4641 if (!lowbit)
4642 break;
4643
4644 mask = lowbit * 0xf;
4645
4646 if ((insn & mask) == mask)
4647 return 1;
4648
4649 bitmask &= ~mask;
4650 }
4651
4652 return 0;
4653 }
4654
4655 /* The simplest copy function. Many instructions have the same effect no
4656 matter what address they are executed at: in those cases, use this. */
4657
4658 static int
4659 arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4660 const char *iname, struct displaced_step_closure *dsc)
4661 {
4662 if (debug_displaced)
4663 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4664 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4665 iname);
4666
4667 dsc->modinsn[0] = insn;
4668
4669 return 0;
4670 }
4671
4672 static int
4673 thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4674 uint16_t insn2, const char *iname,
4675 struct displaced_step_closure *dsc)
4676 {
4677 if (debug_displaced)
4678 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4679 "opcode/class '%s' unmodified\n", insn1, insn2,
4680 iname);
4681
4682 dsc->modinsn[0] = insn1;
4683 dsc->modinsn[1] = insn2;
4684 dsc->numinsns = 2;
4685
4686 return 0;
4687 }
4688
4689 /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4690 modification. */
4691 static int
4692 thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
4693 const char *iname,
4694 struct displaced_step_closure *dsc)
4695 {
4696 if (debug_displaced)
4697 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4698 "opcode/class '%s' unmodified\n", insn,
4699 iname);
4700
4701 dsc->modinsn[0] = insn;
4702
4703 return 0;
4704 }
4705
4706 /* Preload instructions with immediate offset. */
4707
4708 static void
4709 cleanup_preload (struct gdbarch *gdbarch,
4710 struct regcache *regs, struct displaced_step_closure *dsc)
4711 {
4712 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4713 if (!dsc->u.preload.immed)
4714 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4715 }
4716
4717 static void
4718 install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4719 struct displaced_step_closure *dsc, unsigned int rn)
4720 {
4721 ULONGEST rn_val;
4722 /* Preload instructions:
4723
4724 {pli/pld} [rn, #+/-imm]
4725 ->
4726 {pli/pld} [r0, #+/-imm]. */
4727
4728 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4729 rn_val = displaced_read_reg (regs, dsc, rn);
4730 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4731 dsc->u.preload.immed = 1;
4732
4733 dsc->cleanup = &cleanup_preload;
4734 }
4735
4736 static int
4737 arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
4738 struct displaced_step_closure *dsc)
4739 {
4740 unsigned int rn = bits (insn, 16, 19);
4741
4742 if (!insn_references_pc (insn, 0x000f0000ul))
4743 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
4744
4745 if (debug_displaced)
4746 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4747 (unsigned long) insn);
4748
4749 dsc->modinsn[0] = insn & 0xfff0ffff;
4750
4751 install_preload (gdbarch, regs, dsc, rn);
4752
4753 return 0;
4754 }
4755
4756 static int
4757 thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4758 struct regcache *regs, struct displaced_step_closure *dsc)
4759 {
4760 unsigned int rn = bits (insn1, 0, 3);
4761 unsigned int u_bit = bit (insn1, 7);
4762 int imm12 = bits (insn2, 0, 11);
4763 ULONGEST pc_val;
4764
4765 if (rn != ARM_PC_REGNUM)
4766 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4767
4768 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4769 PLD (literal) Encoding T1. */
4770 if (debug_displaced)
4771 fprintf_unfiltered (gdb_stdlog,
4772 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4773 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4774 imm12);
4775
4776 if (!u_bit)
4777 imm12 = -1 * imm12;
4778
4779 /* Rewrite instruction {pli/pld} PC imm12 into:
4780 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4781
4782 {pli/pld} [r0, r1]
4783
4784 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4785
4786 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4787 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4788
4789 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4790
4791 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4792 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4793 dsc->u.preload.immed = 0;
4794
4795 /* {pli/pld} [r0, r1] */
4796 dsc->modinsn[0] = insn1 & 0xfff0;
4797 dsc->modinsn[1] = 0xf001;
4798 dsc->numinsns = 2;
4799
4800 dsc->cleanup = &cleanup_preload;
4801 return 0;
4802 }
4803
4804 /* Preload instructions with register offset. */
4805
4806 static void
4807 install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4808 struct displaced_step_closure *dsc, unsigned int rn,
4809 unsigned int rm)
4810 {
4811 ULONGEST rn_val, rm_val;
4812
4813 /* Preload register-offset instructions:
4814
4815 {pli/pld} [rn, rm {, shift}]
4816 ->
4817 {pli/pld} [r0, r1 {, shift}]. */
4818
4819 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4820 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4821 rn_val = displaced_read_reg (regs, dsc, rn);
4822 rm_val = displaced_read_reg (regs, dsc, rm);
4823 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4824 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
4825 dsc->u.preload.immed = 0;
4826
4827 dsc->cleanup = &cleanup_preload;
4828 }
4829
4830 static int
4831 arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4832 struct regcache *regs,
4833 struct displaced_step_closure *dsc)
4834 {
4835 unsigned int rn = bits (insn, 16, 19);
4836 unsigned int rm = bits (insn, 0, 3);
4837
4838
4839 if (!insn_references_pc (insn, 0x000f000ful))
4840 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4841
4842 if (debug_displaced)
4843 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4844 (unsigned long) insn);
4845
4846 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
4847
4848 install_preload_reg (gdbarch, regs, dsc, rn, rm);
4849 return 0;
4850 }
4851
4852 /* Copy/cleanup coprocessor load and store instructions. */
4853
4854 static void
4855 cleanup_copro_load_store (struct gdbarch *gdbarch,
4856 struct regcache *regs,
4857 struct displaced_step_closure *dsc)
4858 {
4859 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
4860
4861 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4862
4863 if (dsc->u.ldst.writeback)
4864 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4865 }
4866
4867 static void
4868 install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4869 struct displaced_step_closure *dsc,
4870 int writeback, unsigned int rn)
4871 {
4872 ULONGEST rn_val;
4873
4874 /* Coprocessor load/store instructions:
4875
4876 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4877 ->
4878 {stc/stc2} [r0, #+/-imm].
4879
4880 ldc/ldc2 are handled identically. */
4881
4882 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4883 rn_val = displaced_read_reg (regs, dsc, rn);
4884 /* PC should be 4-byte aligned. */
4885 rn_val = rn_val & 0xfffffffc;
4886 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4887
4888 dsc->u.ldst.writeback = writeback;
4889 dsc->u.ldst.rn = rn;
4890
4891 dsc->cleanup = &cleanup_copro_load_store;
4892 }
4893
4894 static int
4895 arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4896 struct regcache *regs,
4897 struct displaced_step_closure *dsc)
4898 {
4899 unsigned int rn = bits (insn, 16, 19);
4900
4901 if (!insn_references_pc (insn, 0x000f0000ul))
4902 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4903
4904 if (debug_displaced)
4905 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4906 "load/store insn %.8lx\n", (unsigned long) insn);
4907
4908 dsc->modinsn[0] = insn & 0xfff0ffff;
4909
4910 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
4911
4912 return 0;
4913 }
4914
4915 static int
4916 thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4917 uint16_t insn2, struct regcache *regs,
4918 struct displaced_step_closure *dsc)
4919 {
4920 unsigned int rn = bits (insn1, 0, 3);
4921
4922 if (rn != ARM_PC_REGNUM)
4923 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4924 "copro load/store", dsc);
4925
4926 if (debug_displaced)
4927 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4928 "load/store insn %.4x%.4x\n", insn1, insn2);
4929
4930 dsc->modinsn[0] = insn1 & 0xfff0;
4931 dsc->modinsn[1] = insn2;
4932 dsc->numinsns = 2;
4933
4934 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4935 doesn't support writeback, so pass 0. */
4936 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4937
4938 return 0;
4939 }
4940
4941 /* Clean up branch instructions (actually perform the branch, by setting
4942 PC). */
4943
4944 static void
4945 cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
4946 struct displaced_step_closure *dsc)
4947 {
4948 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
4949 int branch_taken = condition_true (dsc->u.branch.cond, status);
4950 enum pc_write_style write_pc = dsc->u.branch.exchange
4951 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4952
4953 if (!branch_taken)
4954 return;
4955
4956 if (dsc->u.branch.link)
4957 {
4958 /* The value of LR should be the next insn of current one. In order
4959 not to confuse logic hanlding later insn `bx lr', if current insn mode
4960 is Thumb, the bit 0 of LR value should be set to 1. */
4961 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4962
4963 if (dsc->is_thumb)
4964 next_insn_addr |= 0x1;
4965
4966 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4967 CANNOT_WRITE_PC);
4968 }
4969
4970 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
4971 }
4972
4973 /* Copy B/BL/BLX instructions with immediate destinations. */
4974
4975 static void
4976 install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
4977 struct displaced_step_closure *dsc,
4978 unsigned int cond, int exchange, int link, long offset)
4979 {
4980 /* Implement "BL<cond> <label>" as:
4981
4982 Preparation: cond <- instruction condition
4983 Insn: mov r0, r0 (nop)
4984 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
4985
4986 B<cond> similar, but don't set r14 in cleanup. */
4987
4988 dsc->u.branch.cond = cond;
4989 dsc->u.branch.link = link;
4990 dsc->u.branch.exchange = exchange;
4991
4992 dsc->u.branch.dest = dsc->insn_addr;
4993 if (link && exchange)
4994 /* For BLX, offset is computed from the Align (PC, 4). */
4995 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
4996
4997 if (dsc->is_thumb)
4998 dsc->u.branch.dest += 4 + offset;
4999 else
5000 dsc->u.branch.dest += 8 + offset;
5001
5002 dsc->cleanup = &cleanup_branch;
5003 }
5004 static int
5005 arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5006 struct regcache *regs, struct displaced_step_closure *dsc)
5007 {
5008 unsigned int cond = bits (insn, 28, 31);
5009 int exchange = (cond == 0xf);
5010 int link = exchange || bit (insn, 24);
5011 long offset;
5012
5013 if (debug_displaced)
5014 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5015 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5016 (unsigned long) insn);
5017 if (exchange)
5018 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5019 then arrange the switch into Thumb mode. */
5020 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5021 else
5022 offset = bits (insn, 0, 23) << 2;
5023
5024 if (bit (offset, 25))
5025 offset = offset | ~0x3ffffff;
5026
5027 dsc->modinsn[0] = ARM_NOP;
5028
5029 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5030 return 0;
5031 }
5032
5033 static int
5034 thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
5035 uint16_t insn2, struct regcache *regs,
5036 struct displaced_step_closure *dsc)
5037 {
5038 int link = bit (insn2, 14);
5039 int exchange = link && !bit (insn2, 12);
5040 int cond = INST_AL;
5041 long offset = 0;
5042 int j1 = bit (insn2, 13);
5043 int j2 = bit (insn2, 11);
5044 int s = sbits (insn1, 10, 10);
5045 int i1 = !(j1 ^ bit (insn1, 10));
5046 int i2 = !(j2 ^ bit (insn1, 10));
5047
5048 if (!link && !exchange) /* B */
5049 {
5050 offset = (bits (insn2, 0, 10) << 1);
5051 if (bit (insn2, 12)) /* Encoding T4 */
5052 {
5053 offset |= (bits (insn1, 0, 9) << 12)
5054 | (i2 << 22)
5055 | (i1 << 23)
5056 | (s << 24);
5057 cond = INST_AL;
5058 }
5059 else /* Encoding T3 */
5060 {
5061 offset |= (bits (insn1, 0, 5) << 12)
5062 | (j1 << 18)
5063 | (j2 << 19)
5064 | (s << 20);
5065 cond = bits (insn1, 6, 9);
5066 }
5067 }
5068 else
5069 {
5070 offset = (bits (insn1, 0, 9) << 12);
5071 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
5072 offset |= exchange ?
5073 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
5074 }
5075
5076 if (debug_displaced)
5077 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5078 "%.4x %.4x with offset %.8lx\n",
5079 link ? (exchange) ? "blx" : "bl" : "b",
5080 insn1, insn2, offset);
5081
5082 dsc->modinsn[0] = THUMB_NOP;
5083
5084 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5085 return 0;
5086 }
5087
5088 /* Copy B Thumb instructions. */
5089 static int
5090 thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
5091 struct displaced_step_closure *dsc)
5092 {
5093 unsigned int cond = 0;
5094 int offset = 0;
5095 unsigned short bit_12_15 = bits (insn, 12, 15);
5096 CORE_ADDR from = dsc->insn_addr;
5097
5098 if (bit_12_15 == 0xd)
5099 {
5100 /* offset = SignExtend (imm8:0, 32) */
5101 offset = sbits ((insn << 1), 0, 8);
5102 cond = bits (insn, 8, 11);
5103 }
5104 else if (bit_12_15 == 0xe) /* Encoding T2 */
5105 {
5106 offset = sbits ((insn << 1), 0, 11);
5107 cond = INST_AL;
5108 }
5109
5110 if (debug_displaced)
5111 fprintf_unfiltered (gdb_stdlog,
5112 "displaced: copying b immediate insn %.4x "
5113 "with offset %d\n", insn, offset);
5114
5115 dsc->u.branch.cond = cond;
5116 dsc->u.branch.link = 0;
5117 dsc->u.branch.exchange = 0;
5118 dsc->u.branch.dest = from + 4 + offset;
5119
5120 dsc->modinsn[0] = THUMB_NOP;
5121
5122 dsc->cleanup = &cleanup_branch;
5123
5124 return 0;
5125 }
5126
5127 /* Copy BX/BLX with register-specified destinations. */
5128
5129 static void
5130 install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5131 struct displaced_step_closure *dsc, int link,
5132 unsigned int cond, unsigned int rm)
5133 {
5134 /* Implement {BX,BLX}<cond> <reg>" as:
5135
5136 Preparation: cond <- instruction condition
5137 Insn: mov r0, r0 (nop)
5138 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5139
5140 Don't set r14 in cleanup for BX. */
5141
5142 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
5143
5144 dsc->u.branch.cond = cond;
5145 dsc->u.branch.link = link;
5146
5147 dsc->u.branch.exchange = 1;
5148
5149 dsc->cleanup = &cleanup_branch;
5150 }
5151
5152 static int
5153 arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5154 struct regcache *regs, struct displaced_step_closure *dsc)
5155 {
5156 unsigned int cond = bits (insn, 28, 31);
5157 /* BX: x12xxx1x
5158 BLX: x12xxx3x. */
5159 int link = bit (insn, 5);
5160 unsigned int rm = bits (insn, 0, 3);
5161
5162 if (debug_displaced)
5163 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5164 (unsigned long) insn);
5165
5166 dsc->modinsn[0] = ARM_NOP;
5167
5168 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
5169 return 0;
5170 }
5171
5172 static int
5173 thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5174 struct regcache *regs,
5175 struct displaced_step_closure *dsc)
5176 {
5177 int link = bit (insn, 7);
5178 unsigned int rm = bits (insn, 3, 6);
5179
5180 if (debug_displaced)
5181 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5182 (unsigned short) insn);
5183
5184 dsc->modinsn[0] = THUMB_NOP;
5185
5186 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5187
5188 return 0;
5189 }
5190
5191
5192 /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
5193
5194 static void
5195 cleanup_alu_imm (struct gdbarch *gdbarch,
5196 struct regcache *regs, struct displaced_step_closure *dsc)
5197 {
5198 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5199 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5200 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5201 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5202 }
5203
5204 static int
5205 arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5206 struct displaced_step_closure *dsc)
5207 {
5208 unsigned int rn = bits (insn, 16, 19);
5209 unsigned int rd = bits (insn, 12, 15);
5210 unsigned int op = bits (insn, 21, 24);
5211 int is_mov = (op == 0xd);
5212 ULONGEST rd_val, rn_val;
5213
5214 if (!insn_references_pc (insn, 0x000ff000ul))
5215 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5216
5217 if (debug_displaced)
5218 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5219 "%.8lx\n", is_mov ? "move" : "ALU",
5220 (unsigned long) insn);
5221
5222 /* Instruction is of form:
5223
5224 <op><cond> rd, [rn,] #imm
5225
5226 Rewrite as:
5227
5228 Preparation: tmp1, tmp2 <- r0, r1;
5229 r0, r1 <- rd, rn
5230 Insn: <op><cond> r0, r1, #imm
5231 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5232 */
5233
5234 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5235 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5236 rn_val = displaced_read_reg (regs, dsc, rn);
5237 rd_val = displaced_read_reg (regs, dsc, rd);
5238 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5239 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5240 dsc->rd = rd;
5241
5242 if (is_mov)
5243 dsc->modinsn[0] = insn & 0xfff00fff;
5244 else
5245 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5246
5247 dsc->cleanup = &cleanup_alu_imm;
5248
5249 return 0;
5250 }
5251
5252 static int
5253 thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5254 uint16_t insn2, struct regcache *regs,
5255 struct displaced_step_closure *dsc)
5256 {
5257 unsigned int op = bits (insn1, 5, 8);
5258 unsigned int rn, rm, rd;
5259 ULONGEST rd_val, rn_val;
5260
5261 rn = bits (insn1, 0, 3); /* Rn */
5262 rm = bits (insn2, 0, 3); /* Rm */
5263 rd = bits (insn2, 8, 11); /* Rd */
5264
5265 /* This routine is only called for instruction MOV. */
5266 gdb_assert (op == 0x2 && rn == 0xf);
5267
5268 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5269 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5270
5271 if (debug_displaced)
5272 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5273 "ALU", insn1, insn2);
5274
5275 /* Instruction is of form:
5276
5277 <op><cond> rd, [rn,] #imm
5278
5279 Rewrite as:
5280
5281 Preparation: tmp1, tmp2 <- r0, r1;
5282 r0, r1 <- rd, rn
5283 Insn: <op><cond> r0, r1, #imm
5284 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5285 */
5286
5287 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5288 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5289 rn_val = displaced_read_reg (regs, dsc, rn);
5290 rd_val = displaced_read_reg (regs, dsc, rd);
5291 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5292 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5293 dsc->rd = rd;
5294
5295 dsc->modinsn[0] = insn1;
5296 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5297 dsc->numinsns = 2;
5298
5299 dsc->cleanup = &cleanup_alu_imm;
5300
5301 return 0;
5302 }
5303
5304 /* Copy/cleanup arithmetic/logic insns with register RHS. */
5305
5306 static void
5307 cleanup_alu_reg (struct gdbarch *gdbarch,
5308 struct regcache *regs, struct displaced_step_closure *dsc)
5309 {
5310 ULONGEST rd_val;
5311 int i;
5312
5313 rd_val = displaced_read_reg (regs, dsc, 0);
5314
5315 for (i = 0; i < 3; i++)
5316 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5317
5318 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5319 }
5320
5321 static void
5322 install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5323 struct displaced_step_closure *dsc,
5324 unsigned int rd, unsigned int rn, unsigned int rm)
5325 {
5326 ULONGEST rd_val, rn_val, rm_val;
5327
5328 /* Instruction is of form:
5329
5330 <op><cond> rd, [rn,] rm [, <shift>]
5331
5332 Rewrite as:
5333
5334 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5335 r0, r1, r2 <- rd, rn, rm
5336 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
5337 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5338 */
5339
5340 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5341 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5342 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5343 rd_val = displaced_read_reg (regs, dsc, rd);
5344 rn_val = displaced_read_reg (regs, dsc, rn);
5345 rm_val = displaced_read_reg (regs, dsc, rm);
5346 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5347 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5348 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5349 dsc->rd = rd;
5350
5351 dsc->cleanup = &cleanup_alu_reg;
5352 }
5353
5354 static int
5355 arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5356 struct displaced_step_closure *dsc)
5357 {
5358 unsigned int op = bits (insn, 21, 24);
5359 int is_mov = (op == 0xd);
5360
5361 if (!insn_references_pc (insn, 0x000ff00ful))
5362 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5363
5364 if (debug_displaced)
5365 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5366 is_mov ? "move" : "ALU", (unsigned long) insn);
5367
5368 if (is_mov)
5369 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5370 else
5371 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5372
5373 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5374 bits (insn, 0, 3));
5375 return 0;
5376 }
5377
5378 static int
5379 thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5380 struct regcache *regs,
5381 struct displaced_step_closure *dsc)
5382 {
5383 unsigned rm, rd;
5384
5385 rm = bits (insn, 3, 6);
5386 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
5387
5388 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
5389 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5390
5391 if (debug_displaced)
5392 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5393 (unsigned short) insn);
5394
5395 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
5396
5397 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
5398
5399 return 0;
5400 }
5401
5402 /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5403
5404 static void
5405 cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
5406 struct regcache *regs,
5407 struct displaced_step_closure *dsc)
5408 {
5409 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5410 int i;
5411
5412 for (i = 0; i < 4; i++)
5413 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5414
5415 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5416 }
5417
5418 static void
5419 install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5420 struct displaced_step_closure *dsc,
5421 unsigned int rd, unsigned int rn, unsigned int rm,
5422 unsigned rs)
5423 {
5424 int i;
5425 ULONGEST rd_val, rn_val, rm_val, rs_val;
5426
5427 /* Instruction is of form:
5428
5429 <op><cond> rd, [rn,] rm, <shift> rs
5430
5431 Rewrite as:
5432
5433 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5434 r0, r1, r2, r3 <- rd, rn, rm, rs
5435 Insn: <op><cond> r0, r1, r2, <shift> r3
5436 Cleanup: tmp5 <- r0
5437 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5438 rd <- tmp5
5439 */
5440
5441 for (i = 0; i < 4; i++)
5442 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
5443
5444 rd_val = displaced_read_reg (regs, dsc, rd);
5445 rn_val = displaced_read_reg (regs, dsc, rn);
5446 rm_val = displaced_read_reg (regs, dsc, rm);
5447 rs_val = displaced_read_reg (regs, dsc, rs);
5448 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5449 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5450 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5451 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5452 dsc->rd = rd;
5453 dsc->cleanup = &cleanup_alu_shifted_reg;
5454 }
5455
5456 static int
5457 arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5458 struct regcache *regs,
5459 struct displaced_step_closure *dsc)
5460 {
5461 unsigned int op = bits (insn, 21, 24);
5462 int is_mov = (op == 0xd);
5463 unsigned int rd, rn, rm, rs;
5464
5465 if (!insn_references_pc (insn, 0x000fff0ful))
5466 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5467
5468 if (debug_displaced)
5469 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5470 "%.8lx\n", is_mov ? "move" : "ALU",
5471 (unsigned long) insn);
5472
5473 rn = bits (insn, 16, 19);
5474 rm = bits (insn, 0, 3);
5475 rs = bits (insn, 8, 11);
5476 rd = bits (insn, 12, 15);
5477
5478 if (is_mov)
5479 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5480 else
5481 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5482
5483 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
5484
5485 return 0;
5486 }
5487
5488 /* Clean up load instructions. */
5489
5490 static void
5491 cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
5492 struct displaced_step_closure *dsc)
5493 {
5494 ULONGEST rt_val, rt_val2 = 0, rn_val;
5495
5496 rt_val = displaced_read_reg (regs, dsc, 0);
5497 if (dsc->u.ldst.xfersize == 8)
5498 rt_val2 = displaced_read_reg (regs, dsc, 1);
5499 rn_val = displaced_read_reg (regs, dsc, 2);
5500
5501 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5502 if (dsc->u.ldst.xfersize > 4)
5503 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5504 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5505 if (!dsc->u.ldst.immed)
5506 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5507
5508 /* Handle register writeback. */
5509 if (dsc->u.ldst.writeback)
5510 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5511 /* Put result in right place. */
5512 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5513 if (dsc->u.ldst.xfersize == 8)
5514 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5515 }
5516
5517 /* Clean up store instructions. */
5518
5519 static void
5520 cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
5521 struct displaced_step_closure *dsc)
5522 {
5523 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
5524
5525 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5526 if (dsc->u.ldst.xfersize > 4)
5527 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5528 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5529 if (!dsc->u.ldst.immed)
5530 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5531 if (!dsc->u.ldst.restore_r4)
5532 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5533
5534 /* Writeback. */
5535 if (dsc->u.ldst.writeback)
5536 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5537 }
5538
5539 /* Copy "extra" load/store instructions. These are halfword/doubleword
5540 transfers, which have a different encoding to byte/word transfers. */
5541
5542 static int
5543 arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
5544 struct regcache *regs, struct displaced_step_closure *dsc)
5545 {
5546 unsigned int op1 = bits (insn, 20, 24);
5547 unsigned int op2 = bits (insn, 5, 6);
5548 unsigned int rt = bits (insn, 12, 15);
5549 unsigned int rn = bits (insn, 16, 19);
5550 unsigned int rm = bits (insn, 0, 3);
5551 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5552 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5553 int immed = (op1 & 0x4) != 0;
5554 int opcode;
5555 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5556
5557 if (!insn_references_pc (insn, 0x000ff00ful))
5558 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5559
5560 if (debug_displaced)
5561 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5562 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
5563 (unsigned long) insn);
5564
5565 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5566
5567 if (opcode < 0)
5568 internal_error (__FILE__, __LINE__,
5569 _("copy_extra_ld_st: instruction decode error"));
5570
5571 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5572 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5573 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5574 if (!immed)
5575 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5576
5577 rt_val = displaced_read_reg (regs, dsc, rt);
5578 if (bytesize[opcode] == 8)
5579 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5580 rn_val = displaced_read_reg (regs, dsc, rn);
5581 if (!immed)
5582 rm_val = displaced_read_reg (regs, dsc, rm);
5583
5584 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5585 if (bytesize[opcode] == 8)
5586 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5587 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5588 if (!immed)
5589 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5590
5591 dsc->rd = rt;
5592 dsc->u.ldst.xfersize = bytesize[opcode];
5593 dsc->u.ldst.rn = rn;
5594 dsc->u.ldst.immed = immed;
5595 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5596 dsc->u.ldst.restore_r4 = 0;
5597
5598 if (immed)
5599 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5600 ->
5601 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5602 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5603 else
5604 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5605 ->
5606 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5607 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5608
5609 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5610
5611 return 0;
5612 }
5613
5614 /* Copy byte/half word/word loads and stores. */
5615
5616 static void
5617 install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5618 struct displaced_step_closure *dsc, int load,
5619 int immed, int writeback, int size, int usermode,
5620 int rt, int rm, int rn)
5621 {
5622 ULONGEST rt_val, rn_val, rm_val = 0;
5623
5624 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5625 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5626 if (!immed)
5627 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5628 if (!load)
5629 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
5630
5631 rt_val = displaced_read_reg (regs, dsc, rt);
5632 rn_val = displaced_read_reg (regs, dsc, rn);
5633 if (!immed)
5634 rm_val = displaced_read_reg (regs, dsc, rm);
5635
5636 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5637 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5638 if (!immed)
5639 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5640 dsc->rd = rt;
5641 dsc->u.ldst.xfersize = size;
5642 dsc->u.ldst.rn = rn;
5643 dsc->u.ldst.immed = immed;
5644 dsc->u.ldst.writeback = writeback;
5645
5646 /* To write PC we can do:
5647
5648 Before this sequence of instructions:
5649 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5650 r2 is the Rn value got from dispalced_read_reg.
5651
5652 Insn1: push {pc} Write address of STR instruction + offset on stack
5653 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5654 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5655 = addr(Insn1) + offset - addr(Insn3) - 8
5656 = offset - 16
5657 Insn4: add r4, r4, #8 r4 = offset - 8
5658 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5659 = from + offset
5660 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
5661
5662 Otherwise we don't know what value to write for PC, since the offset is
5663 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5664 of this can be found in Section "Saving from r15" in
5665 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
5666
5667 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5668 }
5669
5670
5671 static int
5672 thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5673 uint16_t insn2, struct regcache *regs,
5674 struct displaced_step_closure *dsc, int size)
5675 {
5676 unsigned int u_bit = bit (insn1, 7);
5677 unsigned int rt = bits (insn2, 12, 15);
5678 int imm12 = bits (insn2, 0, 11);
5679 ULONGEST pc_val;
5680
5681 if (debug_displaced)
5682 fprintf_unfiltered (gdb_stdlog,
5683 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5684 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5685 imm12);
5686
5687 if (!u_bit)
5688 imm12 = -1 * imm12;
5689
5690 /* Rewrite instruction LDR Rt imm12 into:
5691
5692 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5693
5694 LDR R0, R2, R3,
5695
5696 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5697
5698
5699 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5700 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5701 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5702
5703 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5704
5705 pc_val = pc_val & 0xfffffffc;
5706
5707 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5708 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5709
5710 dsc->rd = rt;
5711
5712 dsc->u.ldst.xfersize = size;
5713 dsc->u.ldst.immed = 0;
5714 dsc->u.ldst.writeback = 0;
5715 dsc->u.ldst.restore_r4 = 0;
5716
5717 /* LDR R0, R2, R3 */
5718 dsc->modinsn[0] = 0xf852;
5719 dsc->modinsn[1] = 0x3;
5720 dsc->numinsns = 2;
5721
5722 dsc->cleanup = &cleanup_load;
5723
5724 return 0;
5725 }
5726
5727 static int
5728 thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5729 uint16_t insn2, struct regcache *regs,
5730 struct displaced_step_closure *dsc,
5731 int writeback, int immed)
5732 {
5733 unsigned int rt = bits (insn2, 12, 15);
5734 unsigned int rn = bits (insn1, 0, 3);
5735 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5736 /* In LDR (register), there is also a register Rm, which is not allowed to
5737 be PC, so we don't have to check it. */
5738
5739 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5740 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5741 dsc);
5742
5743 if (debug_displaced)
5744 fprintf_unfiltered (gdb_stdlog,
5745 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5746 rt, rn, insn1, insn2);
5747
5748 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5749 0, rt, rm, rn);
5750
5751 dsc->u.ldst.restore_r4 = 0;
5752
5753 if (immed)
5754 /* ldr[b]<cond> rt, [rn, #imm], etc.
5755 ->
5756 ldr[b]<cond> r0, [r2, #imm]. */
5757 {
5758 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5759 dsc->modinsn[1] = insn2 & 0x0fff;
5760 }
5761 else
5762 /* ldr[b]<cond> rt, [rn, rm], etc.
5763 ->
5764 ldr[b]<cond> r0, [r2, r3]. */
5765 {
5766 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5767 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5768 }
5769
5770 dsc->numinsns = 2;
5771
5772 return 0;
5773 }
5774
5775
5776 static int
5777 arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5778 struct regcache *regs,
5779 struct displaced_step_closure *dsc,
5780 int load, int size, int usermode)
5781 {
5782 int immed = !bit (insn, 25);
5783 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5784 unsigned int rt = bits (insn, 12, 15);
5785 unsigned int rn = bits (insn, 16, 19);
5786 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5787
5788 if (!insn_references_pc (insn, 0x000ff00ful))
5789 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5790
5791 if (debug_displaced)
5792 fprintf_unfiltered (gdb_stdlog,
5793 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
5794 load ? (size == 1 ? "ldrb" : "ldr")
5795 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
5796 rt, rn,
5797 (unsigned long) insn);
5798
5799 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5800 usermode, rt, rm, rn);
5801
5802 if (load || rt != ARM_PC_REGNUM)
5803 {
5804 dsc->u.ldst.restore_r4 = 0;
5805
5806 if (immed)
5807 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5808 ->
5809 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5810 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5811 else
5812 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5813 ->
5814 {ldr,str}[b]<cond> r0, [r2, r3]. */
5815 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5816 }
5817 else
5818 {
5819 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5820 dsc->u.ldst.restore_r4 = 1;
5821 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5822 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
5823 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5824 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5825 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5826
5827 /* As above. */
5828 if (immed)
5829 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5830 else
5831 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5832
5833 dsc->numinsns = 6;
5834 }
5835
5836 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5837
5838 return 0;
5839 }
5840
5841 /* Cleanup LDM instructions with fully-populated register list. This is an
5842 unfortunate corner case: it's impossible to implement correctly by modifying
5843 the instruction. The issue is as follows: we have an instruction,
5844
5845 ldm rN, {r0-r15}
5846
5847 which we must rewrite to avoid loading PC. A possible solution would be to
5848 do the load in two halves, something like (with suitable cleanup
5849 afterwards):
5850
5851 mov r8, rN
5852 ldm[id][ab] r8!, {r0-r7}
5853 str r7, <temp>
5854 ldm[id][ab] r8, {r7-r14}
5855 <bkpt>
5856
5857 but at present there's no suitable place for <temp>, since the scratch space
5858 is overwritten before the cleanup routine is called. For now, we simply
5859 emulate the instruction. */
5860
5861 static void
5862 cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5863 struct displaced_step_closure *dsc)
5864 {
5865 int inc = dsc->u.block.increment;
5866 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5867 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5868 uint32_t regmask = dsc->u.block.regmask;
5869 int regno = inc ? 0 : 15;
5870 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5871 int exception_return = dsc->u.block.load && dsc->u.block.user
5872 && (regmask & 0x8000) != 0;
5873 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5874 int do_transfer = condition_true (dsc->u.block.cond, status);
5875 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5876
5877 if (!do_transfer)
5878 return;
5879
5880 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5881 sensible we can do here. Complain loudly. */
5882 if (exception_return)
5883 error (_("Cannot single-step exception return"));
5884
5885 /* We don't handle any stores here for now. */
5886 gdb_assert (dsc->u.block.load != 0);
5887
5888 if (debug_displaced)
5889 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5890 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5891 dsc->u.block.increment ? "inc" : "dec",
5892 dsc->u.block.before ? "before" : "after");
5893
5894 while (regmask)
5895 {
5896 uint32_t memword;
5897
5898 if (inc)
5899 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
5900 regno++;
5901 else
5902 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5903 regno--;
5904
5905 xfer_addr += bump_before;
5906
5907 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5908 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5909
5910 xfer_addr += bump_after;
5911
5912 regmask &= ~(1 << regno);
5913 }
5914
5915 if (dsc->u.block.writeback)
5916 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5917 CANNOT_WRITE_PC);
5918 }
5919
5920 /* Clean up an STM which included the PC in the register list. */
5921
5922 static void
5923 cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5924 struct displaced_step_closure *dsc)
5925 {
5926 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5927 int store_executed = condition_true (dsc->u.block.cond, status);
5928 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5929 CORE_ADDR stm_insn_addr;
5930 uint32_t pc_val;
5931 long offset;
5932 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5933
5934 /* If condition code fails, there's nothing else to do. */
5935 if (!store_executed)
5936 return;
5937
5938 if (dsc->u.block.increment)
5939 {
5940 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5941
5942 if (dsc->u.block.before)
5943 pc_stored_at += 4;
5944 }
5945 else
5946 {
5947 pc_stored_at = dsc->u.block.xfer_addr;
5948
5949 if (dsc->u.block.before)
5950 pc_stored_at -= 4;
5951 }
5952
5953 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5954 stm_insn_addr = dsc->scratch_base;
5955 offset = pc_val - stm_insn_addr;
5956
5957 if (debug_displaced)
5958 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5959 "STM instruction\n", offset);
5960
5961 /* Rewrite the stored PC to the proper value for the non-displaced original
5962 instruction. */
5963 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5964 dsc->insn_addr + offset);
5965 }
5966
5967 /* Clean up an LDM which includes the PC in the register list. We clumped all
5968 the registers in the transferred list into a contiguous range r0...rX (to
5969 avoid loading PC directly and losing control of the debugged program), so we
5970 must undo that here. */
5971
5972 static void
5973 cleanup_block_load_pc (struct gdbarch *gdbarch,
5974 struct regcache *regs,
5975 struct displaced_step_closure *dsc)
5976 {
5977 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5978 int load_executed = condition_true (dsc->u.block.cond, status);
5979 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
5980 unsigned int regs_loaded = bitcount (mask);
5981 unsigned int num_to_shuffle = regs_loaded, clobbered;
5982
5983 /* The method employed here will fail if the register list is fully populated
5984 (we need to avoid loading PC directly). */
5985 gdb_assert (num_to_shuffle < 16);
5986
5987 if (!load_executed)
5988 return;
5989
5990 clobbered = (1 << num_to_shuffle) - 1;
5991
5992 while (num_to_shuffle > 0)
5993 {
5994 if ((mask & (1 << write_reg)) != 0)
5995 {
5996 unsigned int read_reg = num_to_shuffle - 1;
5997
5998 if (read_reg != write_reg)
5999 {
6000 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
6001 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6002 if (debug_displaced)
6003 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6004 "loaded register r%d to r%d\n"), read_reg,
6005 write_reg);
6006 }
6007 else if (debug_displaced)
6008 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6009 "r%d already in the right place\n"),
6010 write_reg);
6011
6012 clobbered &= ~(1 << write_reg);
6013
6014 num_to_shuffle--;
6015 }
6016
6017 write_reg--;
6018 }
6019
6020 /* Restore any registers we scribbled over. */
6021 for (write_reg = 0; clobbered != 0; write_reg++)
6022 {
6023 if ((clobbered & (1 << write_reg)) != 0)
6024 {
6025 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6026 CANNOT_WRITE_PC);
6027 if (debug_displaced)
6028 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6029 "clobbered register r%d\n"), write_reg);
6030 clobbered &= ~(1 << write_reg);
6031 }
6032 }
6033
6034 /* Perform register writeback manually. */
6035 if (dsc->u.block.writeback)
6036 {
6037 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6038
6039 if (dsc->u.block.increment)
6040 new_rn_val += regs_loaded * 4;
6041 else
6042 new_rn_val -= regs_loaded * 4;
6043
6044 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6045 CANNOT_WRITE_PC);
6046 }
6047 }
6048
6049 /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6050 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6051
6052 static int
6053 arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6054 struct regcache *regs,
6055 struct displaced_step_closure *dsc)
6056 {
6057 int load = bit (insn, 20);
6058 int user = bit (insn, 22);
6059 int increment = bit (insn, 23);
6060 int before = bit (insn, 24);
6061 int writeback = bit (insn, 21);
6062 int rn = bits (insn, 16, 19);
6063
6064 /* Block transfers which don't mention PC can be run directly
6065 out-of-line. */
6066 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
6067 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
6068
6069 if (rn == ARM_PC_REGNUM)
6070 {
6071 warning (_("displaced: Unpredictable LDM or STM with "
6072 "base register r15"));
6073 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
6074 }
6075
6076 if (debug_displaced)
6077 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6078 "%.8lx\n", (unsigned long) insn);
6079
6080 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6081 dsc->u.block.rn = rn;
6082
6083 dsc->u.block.load = load;
6084 dsc->u.block.user = user;
6085 dsc->u.block.increment = increment;
6086 dsc->u.block.before = before;
6087 dsc->u.block.writeback = writeback;
6088 dsc->u.block.cond = bits (insn, 28, 31);
6089
6090 dsc->u.block.regmask = insn & 0xffff;
6091
6092 if (load)
6093 {
6094 if ((insn & 0xffff) == 0xffff)
6095 {
6096 /* LDM with a fully-populated register list. This case is
6097 particularly tricky. Implement for now by fully emulating the
6098 instruction (which might not behave perfectly in all cases, but
6099 these instructions should be rare enough for that not to matter
6100 too much). */
6101 dsc->modinsn[0] = ARM_NOP;
6102
6103 dsc->cleanup = &cleanup_block_load_all;
6104 }
6105 else
6106 {
6107 /* LDM of a list of registers which includes PC. Implement by
6108 rewriting the list of registers to be transferred into a
6109 contiguous chunk r0...rX before doing the transfer, then shuffling
6110 registers into the correct places in the cleanup routine. */
6111 unsigned int regmask = insn & 0xffff;
6112 unsigned int num_in_list = bitcount (regmask), new_regmask;
6113 unsigned int i;
6114
6115 for (i = 0; i < num_in_list; i++)
6116 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6117
6118 /* Writeback makes things complicated. We need to avoid clobbering
6119 the base register with one of the registers in our modified
6120 register list, but just using a different register can't work in
6121 all cases, e.g.:
6122
6123 ldm r14!, {r0-r13,pc}
6124
6125 which would need to be rewritten as:
6126
6127 ldm rN!, {r0-r14}
6128
6129 but that can't work, because there's no free register for N.
6130
6131 Solve this by turning off the writeback bit, and emulating
6132 writeback manually in the cleanup routine. */
6133
6134 if (writeback)
6135 insn &= ~(1 << 21);
6136
6137 new_regmask = (1 << num_in_list) - 1;
6138
6139 if (debug_displaced)
6140 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6141 "{..., pc}: original reg list %.4x, modified "
6142 "list %.4x\n"), rn, writeback ? "!" : "",
6143 (int) insn & 0xffff, new_regmask);
6144
6145 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6146
6147 dsc->cleanup = &cleanup_block_load_pc;
6148 }
6149 }
6150 else
6151 {
6152 /* STM of a list of registers which includes PC. Run the instruction
6153 as-is, but out of line: this will store the wrong value for the PC,
6154 so we must manually fix up the memory in the cleanup routine.
6155 Doing things this way has the advantage that we can auto-detect
6156 the offset of the PC write (which is architecture-dependent) in
6157 the cleanup routine. */
6158 dsc->modinsn[0] = insn;
6159
6160 dsc->cleanup = &cleanup_block_store_pc;
6161 }
6162
6163 return 0;
6164 }
6165
6166 static int
6167 thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6168 struct regcache *regs,
6169 struct displaced_step_closure *dsc)
6170 {
6171 int rn = bits (insn1, 0, 3);
6172 int load = bit (insn1, 4);
6173 int writeback = bit (insn1, 5);
6174
6175 /* Block transfers which don't mention PC can be run directly
6176 out-of-line. */
6177 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6178 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
6179
6180 if (rn == ARM_PC_REGNUM)
6181 {
6182 warning (_("displaced: Unpredictable LDM or STM with "
6183 "base register r15"));
6184 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6185 "unpredictable ldm/stm", dsc);
6186 }
6187
6188 if (debug_displaced)
6189 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6190 "%.4x%.4x\n", insn1, insn2);
6191
6192 /* Clear bit 13, since it should be always zero. */
6193 dsc->u.block.regmask = (insn2 & 0xdfff);
6194 dsc->u.block.rn = rn;
6195
6196 dsc->u.block.load = load;
6197 dsc->u.block.user = 0;
6198 dsc->u.block.increment = bit (insn1, 7);
6199 dsc->u.block.before = bit (insn1, 8);
6200 dsc->u.block.writeback = writeback;
6201 dsc->u.block.cond = INST_AL;
6202 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6203
6204 if (load)
6205 {
6206 if (dsc->u.block.regmask == 0xffff)
6207 {
6208 /* This branch is impossible to happen. */
6209 gdb_assert (0);
6210 }
6211 else
6212 {
6213 unsigned int regmask = dsc->u.block.regmask;
6214 unsigned int num_in_list = bitcount (regmask), new_regmask;
6215 unsigned int i;
6216
6217 for (i = 0; i < num_in_list; i++)
6218 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6219
6220 if (writeback)
6221 insn1 &= ~(1 << 5);
6222
6223 new_regmask = (1 << num_in_list) - 1;
6224
6225 if (debug_displaced)
6226 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6227 "{..., pc}: original reg list %.4x, modified "
6228 "list %.4x\n"), rn, writeback ? "!" : "",
6229 (int) dsc->u.block.regmask, new_regmask);
6230
6231 dsc->modinsn[0] = insn1;
6232 dsc->modinsn[1] = (new_regmask & 0xffff);
6233 dsc->numinsns = 2;
6234
6235 dsc->cleanup = &cleanup_block_load_pc;
6236 }
6237 }
6238 else
6239 {
6240 dsc->modinsn[0] = insn1;
6241 dsc->modinsn[1] = insn2;
6242 dsc->numinsns = 2;
6243 dsc->cleanup = &cleanup_block_store_pc;
6244 }
6245 return 0;
6246 }
6247
6248 /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6249 This is used to avoid a dependency on BFD's bfd_endian enum. */
6250
6251 ULONGEST
6252 arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6253 int byte_order)
6254 {
6255 return read_memory_unsigned_integer (memaddr, len,
6256 (enum bfd_endian) byte_order);
6257 }
6258
6259 /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6260
6261 CORE_ADDR
6262 arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6263 CORE_ADDR val)
6264 {
6265 return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
6266 }
6267
6268 /* Wrapper over syscall_next_pc for use in get_next_pcs. */
6269
6270 static CORE_ADDR
6271 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
6272 {
6273 return 0;
6274 }
6275
6276 /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6277
6278 int
6279 arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6280 {
6281 return arm_is_thumb (self->regcache);
6282 }
6283
6284 /* single_step() is called just before we want to resume the inferior,
6285 if we want to single-step it but there is no hardware or kernel
6286 single-step support. We find the target of the coming instructions
6287 and breakpoint them. */
6288
6289 VEC (CORE_ADDR) *
6290 arm_software_single_step (struct regcache *regcache)
6291 {
6292 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6293 struct arm_get_next_pcs next_pcs_ctx;
6294 CORE_ADDR pc;
6295 int i;
6296 VEC (CORE_ADDR) *next_pcs = NULL;
6297 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
6298
6299 arm_get_next_pcs_ctor (&next_pcs_ctx,
6300 &arm_get_next_pcs_ops,
6301 gdbarch_byte_order (gdbarch),
6302 gdbarch_byte_order_for_code (gdbarch),
6303 0,
6304 regcache);
6305
6306 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
6307
6308 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
6309 {
6310 pc = gdbarch_addr_bits_remove (gdbarch, pc);
6311 VEC_replace (CORE_ADDR, next_pcs, i, pc);
6312 }
6313
6314 discard_cleanups (old_chain);
6315
6316 return next_pcs;
6317 }
6318
6319 /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6320 for Linux, where some SVC instructions must be treated specially. */
6321
6322 static void
6323 cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6324 struct displaced_step_closure *dsc)
6325 {
6326 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6327
6328 if (debug_displaced)
6329 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6330 "%.8lx\n", (unsigned long) resume_addr);
6331
6332 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6333 }
6334
6335
6336 /* Common copy routine for svc instruciton. */
6337
6338 static int
6339 install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6340 struct displaced_step_closure *dsc)
6341 {
6342 /* Preparation: none.
6343 Insn: unmodified svc.
6344 Cleanup: pc <- insn_addr + insn_size. */
6345
6346 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6347 instruction. */
6348 dsc->wrote_to_pc = 1;
6349
6350 /* Allow OS-specific code to override SVC handling. */
6351 if (dsc->u.svc.copy_svc_os)
6352 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6353 else
6354 {
6355 dsc->cleanup = &cleanup_svc;
6356 return 0;
6357 }
6358 }
6359
6360 static int
6361 arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6362 struct regcache *regs, struct displaced_step_closure *dsc)
6363 {
6364
6365 if (debug_displaced)
6366 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6367 (unsigned long) insn);
6368
6369 dsc->modinsn[0] = insn;
6370
6371 return install_svc (gdbarch, regs, dsc);
6372 }
6373
6374 static int
6375 thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6376 struct regcache *regs, struct displaced_step_closure *dsc)
6377 {
6378
6379 if (debug_displaced)
6380 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6381 insn);
6382
6383 dsc->modinsn[0] = insn;
6384
6385 return install_svc (gdbarch, regs, dsc);
6386 }
6387
6388 /* Copy undefined instructions. */
6389
6390 static int
6391 arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6392 struct displaced_step_closure *dsc)
6393 {
6394 if (debug_displaced)
6395 fprintf_unfiltered (gdb_stdlog,
6396 "displaced: copying undefined insn %.8lx\n",
6397 (unsigned long) insn);
6398
6399 dsc->modinsn[0] = insn;
6400
6401 return 0;
6402 }
6403
6404 static int
6405 thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6406 struct displaced_step_closure *dsc)
6407 {
6408
6409 if (debug_displaced)
6410 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6411 "%.4x %.4x\n", (unsigned short) insn1,
6412 (unsigned short) insn2);
6413
6414 dsc->modinsn[0] = insn1;
6415 dsc->modinsn[1] = insn2;
6416 dsc->numinsns = 2;
6417
6418 return 0;
6419 }
6420
6421 /* Copy unpredictable instructions. */
6422
6423 static int
6424 arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6425 struct displaced_step_closure *dsc)
6426 {
6427 if (debug_displaced)
6428 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6429 "%.8lx\n", (unsigned long) insn);
6430
6431 dsc->modinsn[0] = insn;
6432
6433 return 0;
6434 }
6435
6436 /* The decode_* functions are instruction decoding helpers. They mostly follow
6437 the presentation in the ARM ARM. */
6438
6439 static int
6440 arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6441 struct regcache *regs,
6442 struct displaced_step_closure *dsc)
6443 {
6444 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6445 unsigned int rn = bits (insn, 16, 19);
6446
6447 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
6448 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
6449 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
6450 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
6451 else if ((op1 & 0x60) == 0x20)
6452 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6453 else if ((op1 & 0x71) == 0x40)
6454 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6455 dsc);
6456 else if ((op1 & 0x77) == 0x41)
6457 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6458 else if ((op1 & 0x77) == 0x45)
6459 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6460 else if ((op1 & 0x77) == 0x51)
6461 {
6462 if (rn != 0xf)
6463 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6464 else
6465 return arm_copy_unpred (gdbarch, insn, dsc);
6466 }
6467 else if ((op1 & 0x77) == 0x55)
6468 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6469 else if (op1 == 0x57)
6470 switch (op2)
6471 {
6472 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6473 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6474 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6475 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6476 default: return arm_copy_unpred (gdbarch, insn, dsc);
6477 }
6478 else if ((op1 & 0x63) == 0x43)
6479 return arm_copy_unpred (gdbarch, insn, dsc);
6480 else if ((op2 & 0x1) == 0x0)
6481 switch (op1 & ~0x80)
6482 {
6483 case 0x61:
6484 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6485 case 0x65:
6486 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6487 case 0x71: case 0x75:
6488 /* pld/pldw reg. */
6489 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
6490 case 0x63: case 0x67: case 0x73: case 0x77:
6491 return arm_copy_unpred (gdbarch, insn, dsc);
6492 default:
6493 return arm_copy_undef (gdbarch, insn, dsc);
6494 }
6495 else
6496 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6497 }
6498
6499 static int
6500 arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6501 struct regcache *regs,
6502 struct displaced_step_closure *dsc)
6503 {
6504 if (bit (insn, 27) == 0)
6505 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6506 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6507 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6508 {
6509 case 0x0: case 0x2:
6510 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
6511
6512 case 0x1: case 0x3:
6513 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
6514
6515 case 0x4: case 0x5: case 0x6: case 0x7:
6516 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6517
6518 case 0x8:
6519 switch ((insn & 0xe00000) >> 21)
6520 {
6521 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6522 /* stc/stc2. */
6523 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6524
6525 case 0x2:
6526 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6527
6528 default:
6529 return arm_copy_undef (gdbarch, insn, dsc);
6530 }
6531
6532 case 0x9:
6533 {
6534 int rn_f = (bits (insn, 16, 19) == 0xf);
6535 switch ((insn & 0xe00000) >> 21)
6536 {
6537 case 0x1: case 0x3:
6538 /* ldc/ldc2 imm (undefined for rn == pc). */
6539 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6540 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6541
6542 case 0x2:
6543 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6544
6545 case 0x4: case 0x5: case 0x6: case 0x7:
6546 /* ldc/ldc2 lit (undefined for rn != pc). */
6547 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6548 : arm_copy_undef (gdbarch, insn, dsc);
6549
6550 default:
6551 return arm_copy_undef (gdbarch, insn, dsc);
6552 }
6553 }
6554
6555 case 0xa:
6556 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6557
6558 case 0xb:
6559 if (bits (insn, 16, 19) == 0xf)
6560 /* ldc/ldc2 lit. */
6561 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6562 else
6563 return arm_copy_undef (gdbarch, insn, dsc);
6564
6565 case 0xc:
6566 if (bit (insn, 4))
6567 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6568 else
6569 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6570
6571 case 0xd:
6572 if (bit (insn, 4))
6573 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6574 else
6575 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6576
6577 default:
6578 return arm_copy_undef (gdbarch, insn, dsc);
6579 }
6580 }
6581
6582 /* Decode miscellaneous instructions in dp/misc encoding space. */
6583
6584 static int
6585 arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6586 struct regcache *regs,
6587 struct displaced_step_closure *dsc)
6588 {
6589 unsigned int op2 = bits (insn, 4, 6);
6590 unsigned int op = bits (insn, 21, 22);
6591
6592 switch (op2)
6593 {
6594 case 0x0:
6595 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6596
6597 case 0x1:
6598 if (op == 0x1) /* bx. */
6599 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6600 else if (op == 0x3)
6601 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
6602 else
6603 return arm_copy_undef (gdbarch, insn, dsc);
6604
6605 case 0x2:
6606 if (op == 0x1)
6607 /* Not really supported. */
6608 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
6609 else
6610 return arm_copy_undef (gdbarch, insn, dsc);
6611
6612 case 0x3:
6613 if (op == 0x1)
6614 return arm_copy_bx_blx_reg (gdbarch, insn,
6615 regs, dsc); /* blx register. */
6616 else
6617 return arm_copy_undef (gdbarch, insn, dsc);
6618
6619 case 0x5:
6620 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6621
6622 case 0x7:
6623 if (op == 0x1)
6624 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
6625 else if (op == 0x3)
6626 /* Not really supported. */
6627 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
6628
6629 default:
6630 return arm_copy_undef (gdbarch, insn, dsc);
6631 }
6632 }
6633
6634 static int
6635 arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6636 struct regcache *regs,
6637 struct displaced_step_closure *dsc)
6638 {
6639 if (bit (insn, 25))
6640 switch (bits (insn, 20, 24))
6641 {
6642 case 0x10:
6643 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
6644
6645 case 0x14:
6646 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
6647
6648 case 0x12: case 0x16:
6649 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
6650
6651 default:
6652 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
6653 }
6654 else
6655 {
6656 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6657
6658 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6659 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
6660 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6661 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6662 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6663 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
6664 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6665 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6666 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6667 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6668 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6669 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
6670 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6671 /* 2nd arg means "unprivileged". */
6672 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6673 dsc);
6674 }
6675
6676 /* Should be unreachable. */
6677 return 1;
6678 }
6679
6680 static int
6681 arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6682 struct regcache *regs,
6683 struct displaced_step_closure *dsc)
6684 {
6685 int a = bit (insn, 25), b = bit (insn, 4);
6686 uint32_t op1 = bits (insn, 20, 24);
6687
6688 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6689 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6690 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
6691 else if ((!a && (op1 & 0x17) == 0x02)
6692 || (a && (op1 & 0x17) == 0x02 && !b))
6693 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
6694 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6695 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6696 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
6697 else if ((!a && (op1 & 0x17) == 0x03)
6698 || (a && (op1 & 0x17) == 0x03 && !b))
6699 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
6700 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6701 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6702 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6703 else if ((!a && (op1 & 0x17) == 0x06)
6704 || (a && (op1 & 0x17) == 0x06 && !b))
6705 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6706 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6707 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6708 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6709 else if ((!a && (op1 & 0x17) == 0x07)
6710 || (a && (op1 & 0x17) == 0x07 && !b))
6711 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6712
6713 /* Should be unreachable. */
6714 return 1;
6715 }
6716
6717 static int
6718 arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6719 struct displaced_step_closure *dsc)
6720 {
6721 switch (bits (insn, 20, 24))
6722 {
6723 case 0x00: case 0x01: case 0x02: case 0x03:
6724 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6725
6726 case 0x04: case 0x05: case 0x06: case 0x07:
6727 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6728
6729 case 0x08: case 0x09: case 0x0a: case 0x0b:
6730 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6731 return arm_copy_unmodified (gdbarch, insn,
6732 "decode/pack/unpack/saturate/reverse", dsc);
6733
6734 case 0x18:
6735 if (bits (insn, 5, 7) == 0) /* op2. */
6736 {
6737 if (bits (insn, 12, 15) == 0xf)
6738 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
6739 else
6740 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
6741 }
6742 else
6743 return arm_copy_undef (gdbarch, insn, dsc);
6744
6745 case 0x1a: case 0x1b:
6746 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6747 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
6748 else
6749 return arm_copy_undef (gdbarch, insn, dsc);
6750
6751 case 0x1c: case 0x1d:
6752 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6753 {
6754 if (bits (insn, 0, 3) == 0xf)
6755 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
6756 else
6757 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
6758 }
6759 else
6760 return arm_copy_undef (gdbarch, insn, dsc);
6761
6762 case 0x1e: case 0x1f:
6763 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6764 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
6765 else
6766 return arm_copy_undef (gdbarch, insn, dsc);
6767 }
6768
6769 /* Should be unreachable. */
6770 return 1;
6771 }
6772
6773 static int
6774 arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
6775 struct regcache *regs,
6776 struct displaced_step_closure *dsc)
6777 {
6778 if (bit (insn, 25))
6779 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6780 else
6781 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
6782 }
6783
6784 static int
6785 arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6786 struct regcache *regs,
6787 struct displaced_step_closure *dsc)
6788 {
6789 unsigned int opcode = bits (insn, 20, 24);
6790
6791 switch (opcode)
6792 {
6793 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6794 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6795
6796 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6797 case 0x12: case 0x16:
6798 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6799
6800 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6801 case 0x13: case 0x17:
6802 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6803
6804 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6805 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6806 /* Note: no writeback for these instructions. Bit 25 will always be
6807 zero though (via caller), so the following works OK. */
6808 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6809 }
6810
6811 /* Should be unreachable. */
6812 return 1;
6813 }
6814
6815 /* Decode shifted register instructions. */
6816
6817 static int
6818 thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6819 uint16_t insn2, struct regcache *regs,
6820 struct displaced_step_closure *dsc)
6821 {
6822 /* PC is only allowed to be used in instruction MOV. */
6823
6824 unsigned int op = bits (insn1, 5, 8);
6825 unsigned int rn = bits (insn1, 0, 3);
6826
6827 if (op == 0x2 && rn == 0xf) /* MOV */
6828 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6829 else
6830 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6831 "dp (shift reg)", dsc);
6832 }
6833
6834
6835 /* Decode extension register load/store. Exactly the same as
6836 arm_decode_ext_reg_ld_st. */
6837
6838 static int
6839 thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6840 uint16_t insn2, struct regcache *regs,
6841 struct displaced_step_closure *dsc)
6842 {
6843 unsigned int opcode = bits (insn1, 4, 8);
6844
6845 switch (opcode)
6846 {
6847 case 0x04: case 0x05:
6848 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6849 "vfp/neon vmov", dsc);
6850
6851 case 0x08: case 0x0c: /* 01x00 */
6852 case 0x0a: case 0x0e: /* 01x10 */
6853 case 0x12: case 0x16: /* 10x10 */
6854 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6855 "vfp/neon vstm/vpush", dsc);
6856
6857 case 0x09: case 0x0d: /* 01x01 */
6858 case 0x0b: case 0x0f: /* 01x11 */
6859 case 0x13: case 0x17: /* 10x11 */
6860 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6861 "vfp/neon vldm/vpop", dsc);
6862
6863 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6864 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6865 "vstr", dsc);
6866 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6867 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6868 }
6869
6870 /* Should be unreachable. */
6871 return 1;
6872 }
6873
6874 static int
6875 arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
6876 struct regcache *regs, struct displaced_step_closure *dsc)
6877 {
6878 unsigned int op1 = bits (insn, 20, 25);
6879 int op = bit (insn, 4);
6880 unsigned int coproc = bits (insn, 8, 11);
6881
6882 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6883 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6884 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6885 && (coproc & 0xe) != 0xa)
6886 /* stc/stc2. */
6887 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6888 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6889 && (coproc & 0xe) != 0xa)
6890 /* ldc/ldc2 imm/lit. */
6891 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6892 else if ((op1 & 0x3e) == 0x00)
6893 return arm_copy_undef (gdbarch, insn, dsc);
6894 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6895 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6896 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6897 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6898 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6899 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6900 else if ((op1 & 0x30) == 0x20 && !op)
6901 {
6902 if ((coproc & 0xe) == 0xa)
6903 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6904 else
6905 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6906 }
6907 else if ((op1 & 0x30) == 0x20 && op)
6908 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6909 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6910 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6911 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6912 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6913 else if ((op1 & 0x30) == 0x30)
6914 return arm_copy_svc (gdbarch, insn, regs, dsc);
6915 else
6916 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6917 }
6918
6919 static int
6920 thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6921 uint16_t insn2, struct regcache *regs,
6922 struct displaced_step_closure *dsc)
6923 {
6924 unsigned int coproc = bits (insn2, 8, 11);
6925 unsigned int bit_5_8 = bits (insn1, 5, 8);
6926 unsigned int bit_9 = bit (insn1, 9);
6927 unsigned int bit_4 = bit (insn1, 4);
6928
6929 if (bit_9 == 0)
6930 {
6931 if (bit_5_8 == 2)
6932 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6933 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6934 dsc);
6935 else if (bit_5_8 == 0) /* UNDEFINED. */
6936 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6937 else
6938 {
6939 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6940 if ((coproc & 0xe) == 0xa)
6941 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6942 dsc);
6943 else /* coproc is not 101x. */
6944 {
6945 if (bit_4 == 0) /* STC/STC2. */
6946 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6947 "stc/stc2", dsc);
6948 else /* LDC/LDC2 {literal, immeidate}. */
6949 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6950 regs, dsc);
6951 }
6952 }
6953 }
6954 else
6955 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6956
6957 return 0;
6958 }
6959
6960 static void
6961 install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6962 struct displaced_step_closure *dsc, int rd)
6963 {
6964 /* ADR Rd, #imm
6965
6966 Rewrite as:
6967
6968 Preparation: Rd <- PC
6969 Insn: ADD Rd, #imm
6970 Cleanup: Null.
6971 */
6972
6973 /* Rd <- PC */
6974 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6975 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
6976 }
6977
6978 static int
6979 thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
6980 struct displaced_step_closure *dsc,
6981 int rd, unsigned int imm)
6982 {
6983
6984 /* Encoding T2: ADDS Rd, #imm */
6985 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
6986
6987 install_pc_relative (gdbarch, regs, dsc, rd);
6988
6989 return 0;
6990 }
6991
6992 static int
6993 thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
6994 struct regcache *regs,
6995 struct displaced_step_closure *dsc)
6996 {
6997 unsigned int rd = bits (insn, 8, 10);
6998 unsigned int imm8 = bits (insn, 0, 7);
6999
7000 if (debug_displaced)
7001 fprintf_unfiltered (gdb_stdlog,
7002 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7003 rd, imm8, insn);
7004
7005 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7006 }
7007
7008 static int
7009 thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7010 uint16_t insn2, struct regcache *regs,
7011 struct displaced_step_closure *dsc)
7012 {
7013 unsigned int rd = bits (insn2, 8, 11);
7014 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7015 extract raw immediate encoding rather than computing immediate. When
7016 generating ADD or SUB instruction, we can simply perform OR operation to
7017 set immediate into ADD. */
7018 unsigned int imm_3_8 = insn2 & 0x70ff;
7019 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7020
7021 if (debug_displaced)
7022 fprintf_unfiltered (gdb_stdlog,
7023 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7024 rd, imm_i, imm_3_8, insn1, insn2);
7025
7026 if (bit (insn1, 7)) /* Encoding T2 */
7027 {
7028 /* Encoding T3: SUB Rd, Rd, #imm */
7029 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7030 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7031 }
7032 else /* Encoding T3 */
7033 {
7034 /* Encoding T3: ADD Rd, Rd, #imm */
7035 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7036 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7037 }
7038 dsc->numinsns = 2;
7039
7040 install_pc_relative (gdbarch, regs, dsc, rd);
7041
7042 return 0;
7043 }
7044
7045 static int
7046 thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
7047 struct regcache *regs,
7048 struct displaced_step_closure *dsc)
7049 {
7050 unsigned int rt = bits (insn1, 8, 10);
7051 unsigned int pc;
7052 int imm8 = (bits (insn1, 0, 7) << 2);
7053
7054 /* LDR Rd, #imm8
7055
7056 Rwrite as:
7057
7058 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7059
7060 Insn: LDR R0, [R2, R3];
7061 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
7062
7063 if (debug_displaced)
7064 fprintf_unfiltered (gdb_stdlog,
7065 "displaced: copying thumb ldr r%d [pc #%d]\n"
7066 , rt, imm8);
7067
7068 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
7069 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
7070 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
7071 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7072 /* The assembler calculates the required value of the offset from the
7073 Align(PC,4) value of this instruction to the label. */
7074 pc = pc & 0xfffffffc;
7075
7076 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
7077 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
7078
7079 dsc->rd = rt;
7080 dsc->u.ldst.xfersize = 4;
7081 dsc->u.ldst.rn = 0;
7082 dsc->u.ldst.immed = 0;
7083 dsc->u.ldst.writeback = 0;
7084 dsc->u.ldst.restore_r4 = 0;
7085
7086 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7087
7088 dsc->cleanup = &cleanup_load;
7089
7090 return 0;
7091 }
7092
7093 /* Copy Thumb cbnz/cbz insruction. */
7094
7095 static int
7096 thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7097 struct regcache *regs,
7098 struct displaced_step_closure *dsc)
7099 {
7100 int non_zero = bit (insn1, 11);
7101 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7102 CORE_ADDR from = dsc->insn_addr;
7103 int rn = bits (insn1, 0, 2);
7104 int rn_val = displaced_read_reg (regs, dsc, rn);
7105
7106 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7107 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7108 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7109 condition is false, let it be, cleanup_branch will do nothing. */
7110 if (dsc->u.branch.cond)
7111 {
7112 dsc->u.branch.cond = INST_AL;
7113 dsc->u.branch.dest = from + 4 + imm5;
7114 }
7115 else
7116 dsc->u.branch.dest = from + 2;
7117
7118 dsc->u.branch.link = 0;
7119 dsc->u.branch.exchange = 0;
7120
7121 if (debug_displaced)
7122 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7123 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7124 rn, rn_val, insn1, dsc->u.branch.dest);
7125
7126 dsc->modinsn[0] = THUMB_NOP;
7127
7128 dsc->cleanup = &cleanup_branch;
7129 return 0;
7130 }
7131
7132 /* Copy Table Branch Byte/Halfword */
7133 static int
7134 thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7135 uint16_t insn2, struct regcache *regs,
7136 struct displaced_step_closure *dsc)
7137 {
7138 ULONGEST rn_val, rm_val;
7139 int is_tbh = bit (insn2, 4);
7140 CORE_ADDR halfwords = 0;
7141 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7142
7143 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7144 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7145
7146 if (is_tbh)
7147 {
7148 gdb_byte buf[2];
7149
7150 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7151 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7152 }
7153 else
7154 {
7155 gdb_byte buf[1];
7156
7157 target_read_memory (rn_val + rm_val, buf, 1);
7158 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7159 }
7160
7161 if (debug_displaced)
7162 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7163 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7164 (unsigned int) rn_val, (unsigned int) rm_val,
7165 (unsigned int) halfwords);
7166
7167 dsc->u.branch.cond = INST_AL;
7168 dsc->u.branch.link = 0;
7169 dsc->u.branch.exchange = 0;
7170 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7171
7172 dsc->cleanup = &cleanup_branch;
7173
7174 return 0;
7175 }
7176
7177 static void
7178 cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7179 struct displaced_step_closure *dsc)
7180 {
7181 /* PC <- r7 */
7182 int val = displaced_read_reg (regs, dsc, 7);
7183 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7184
7185 /* r7 <- r8 */
7186 val = displaced_read_reg (regs, dsc, 8);
7187 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7188
7189 /* r8 <- tmp[0] */
7190 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7191
7192 }
7193
7194 static int
7195 thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
7196 struct regcache *regs,
7197 struct displaced_step_closure *dsc)
7198 {
7199 dsc->u.block.regmask = insn1 & 0x00ff;
7200
7201 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7202 to :
7203
7204 (1) register list is full, that is, r0-r7 are used.
7205 Prepare: tmp[0] <- r8
7206
7207 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7208 MOV r8, r7; Move value of r7 to r8;
7209 POP {r7}; Store PC value into r7.
7210
7211 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7212
7213 (2) register list is not full, supposing there are N registers in
7214 register list (except PC, 0 <= N <= 7).
7215 Prepare: for each i, 0 - N, tmp[i] <- ri.
7216
7217 POP {r0, r1, ...., rN};
7218
7219 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7220 from tmp[] properly.
7221 */
7222 if (debug_displaced)
7223 fprintf_unfiltered (gdb_stdlog,
7224 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7225 dsc->u.block.regmask, insn1);
7226
7227 if (dsc->u.block.regmask == 0xff)
7228 {
7229 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7230
7231 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7232 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7233 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7234
7235 dsc->numinsns = 3;
7236 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7237 }
7238 else
7239 {
7240 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
7241 unsigned int i;
7242 unsigned int new_regmask;
7243
7244 for (i = 0; i < num_in_list + 1; i++)
7245 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7246
7247 new_regmask = (1 << (num_in_list + 1)) - 1;
7248
7249 if (debug_displaced)
7250 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7251 "{..., pc}: original reg list %.4x,"
7252 " modified list %.4x\n"),
7253 (int) dsc->u.block.regmask, new_regmask);
7254
7255 dsc->u.block.regmask |= 0x8000;
7256 dsc->u.block.writeback = 0;
7257 dsc->u.block.cond = INST_AL;
7258
7259 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7260
7261 dsc->cleanup = &cleanup_block_load_pc;
7262 }
7263
7264 return 0;
7265 }
7266
7267 static void
7268 thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7269 struct regcache *regs,
7270 struct displaced_step_closure *dsc)
7271 {
7272 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7273 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7274 int err = 0;
7275
7276 /* 16-bit thumb instructions. */
7277 switch (op_bit_12_15)
7278 {
7279 /* Shift (imme), add, subtract, move and compare. */
7280 case 0: case 1: case 2: case 3:
7281 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7282 "shift/add/sub/mov/cmp",
7283 dsc);
7284 break;
7285 case 4:
7286 switch (op_bit_10_11)
7287 {
7288 case 0: /* Data-processing */
7289 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7290 "data-processing",
7291 dsc);
7292 break;
7293 case 1: /* Special data instructions and branch and exchange. */
7294 {
7295 unsigned short op = bits (insn1, 7, 9);
7296 if (op == 6 || op == 7) /* BX or BLX */
7297 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7298 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7299 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7300 else
7301 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7302 dsc);
7303 }
7304 break;
7305 default: /* LDR (literal) */
7306 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7307 }
7308 break;
7309 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7310 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7311 break;
7312 case 10:
7313 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7314 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7315 else /* Generate SP-relative address */
7316 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7317 break;
7318 case 11: /* Misc 16-bit instructions */
7319 {
7320 switch (bits (insn1, 8, 11))
7321 {
7322 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7323 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7324 break;
7325 case 12: case 13: /* POP */
7326 if (bit (insn1, 8)) /* PC is in register list. */
7327 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7328 else
7329 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7330 break;
7331 case 15: /* If-Then, and hints */
7332 if (bits (insn1, 0, 3))
7333 /* If-Then makes up to four following instructions conditional.
7334 IT instruction itself is not conditional, so handle it as a
7335 common unmodified instruction. */
7336 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7337 dsc);
7338 else
7339 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7340 break;
7341 default:
7342 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7343 }
7344 }
7345 break;
7346 case 12:
7347 if (op_bit_10_11 < 2) /* Store multiple registers */
7348 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7349 else /* Load multiple registers */
7350 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7351 break;
7352 case 13: /* Conditional branch and supervisor call */
7353 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7354 err = thumb_copy_b (gdbarch, insn1, dsc);
7355 else
7356 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7357 break;
7358 case 14: /* Unconditional branch */
7359 err = thumb_copy_b (gdbarch, insn1, dsc);
7360 break;
7361 default:
7362 err = 1;
7363 }
7364
7365 if (err)
7366 internal_error (__FILE__, __LINE__,
7367 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7368 }
7369
7370 static int
7371 decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7372 uint16_t insn1, uint16_t insn2,
7373 struct regcache *regs,
7374 struct displaced_step_closure *dsc)
7375 {
7376 int rt = bits (insn2, 12, 15);
7377 int rn = bits (insn1, 0, 3);
7378 int op1 = bits (insn1, 7, 8);
7379
7380 switch (bits (insn1, 5, 6))
7381 {
7382 case 0: /* Load byte and memory hints */
7383 if (rt == 0xf) /* PLD/PLI */
7384 {
7385 if (rn == 0xf)
7386 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7387 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7388 else
7389 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7390 "pli/pld", dsc);
7391 }
7392 else
7393 {
7394 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7395 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7396 1);
7397 else
7398 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7399 "ldrb{reg, immediate}/ldrbt",
7400 dsc);
7401 }
7402
7403 break;
7404 case 1: /* Load halfword and memory hints. */
7405 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7406 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7407 "pld/unalloc memhint", dsc);
7408 else
7409 {
7410 if (rn == 0xf)
7411 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7412 2);
7413 else
7414 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7415 "ldrh/ldrht", dsc);
7416 }
7417 break;
7418 case 2: /* Load word */
7419 {
7420 int insn2_bit_8_11 = bits (insn2, 8, 11);
7421
7422 if (rn == 0xf)
7423 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7424 else if (op1 == 0x1) /* Encoding T3 */
7425 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7426 0, 1);
7427 else /* op1 == 0x0 */
7428 {
7429 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7430 /* LDR (immediate) */
7431 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7432 dsc, bit (insn2, 8), 1);
7433 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7434 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7435 "ldrt", dsc);
7436 else
7437 /* LDR (register) */
7438 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7439 dsc, 0, 0);
7440 }
7441 break;
7442 }
7443 default:
7444 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7445 break;
7446 }
7447 return 0;
7448 }
7449
7450 static void
7451 thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7452 uint16_t insn2, struct regcache *regs,
7453 struct displaced_step_closure *dsc)
7454 {
7455 int err = 0;
7456 unsigned short op = bit (insn2, 15);
7457 unsigned int op1 = bits (insn1, 11, 12);
7458
7459 switch (op1)
7460 {
7461 case 1:
7462 {
7463 switch (bits (insn1, 9, 10))
7464 {
7465 case 0:
7466 if (bit (insn1, 6))
7467 {
7468 /* Load/store {dual, execlusive}, table branch. */
7469 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7470 && bits (insn2, 5, 7) == 0)
7471 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7472 dsc);
7473 else
7474 /* PC is not allowed to use in load/store {dual, exclusive}
7475 instructions. */
7476 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7477 "load/store dual/ex", dsc);
7478 }
7479 else /* load/store multiple */
7480 {
7481 switch (bits (insn1, 7, 8))
7482 {
7483 case 0: case 3: /* SRS, RFE */
7484 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7485 "srs/rfe", dsc);
7486 break;
7487 case 1: case 2: /* LDM/STM/PUSH/POP */
7488 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7489 break;
7490 }
7491 }
7492 break;
7493
7494 case 1:
7495 /* Data-processing (shift register). */
7496 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7497 dsc);
7498 break;
7499 default: /* Coprocessor instructions. */
7500 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7501 break;
7502 }
7503 break;
7504 }
7505 case 2: /* op1 = 2 */
7506 if (op) /* Branch and misc control. */
7507 {
7508 if (bit (insn2, 14) /* BLX/BL */
7509 || bit (insn2, 12) /* Unconditional branch */
7510 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7511 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7512 else
7513 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7514 "misc ctrl", dsc);
7515 }
7516 else
7517 {
7518 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7519 {
7520 int op = bits (insn1, 4, 8);
7521 int rn = bits (insn1, 0, 3);
7522 if ((op == 0 || op == 0xa) && rn == 0xf)
7523 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7524 regs, dsc);
7525 else
7526 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7527 "dp/pb", dsc);
7528 }
7529 else /* Data processing (modified immeidate) */
7530 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7531 "dp/mi", dsc);
7532 }
7533 break;
7534 case 3: /* op1 = 3 */
7535 switch (bits (insn1, 9, 10))
7536 {
7537 case 0:
7538 if (bit (insn1, 4))
7539 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7540 regs, dsc);
7541 else /* NEON Load/Store and Store single data item */
7542 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7543 "neon elt/struct load/store",
7544 dsc);
7545 break;
7546 case 1: /* op1 = 3, bits (9, 10) == 1 */
7547 switch (bits (insn1, 7, 8))
7548 {
7549 case 0: case 1: /* Data processing (register) */
7550 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7551 "dp(reg)", dsc);
7552 break;
7553 case 2: /* Multiply and absolute difference */
7554 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7555 "mul/mua/diff", dsc);
7556 break;
7557 case 3: /* Long multiply and divide */
7558 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7559 "lmul/lmua", dsc);
7560 break;
7561 }
7562 break;
7563 default: /* Coprocessor instructions */
7564 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7565 break;
7566 }
7567 break;
7568 default:
7569 err = 1;
7570 }
7571
7572 if (err)
7573 internal_error (__FILE__, __LINE__,
7574 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7575
7576 }
7577
7578 static void
7579 thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7580 struct regcache *regs,
7581 struct displaced_step_closure *dsc)
7582 {
7583 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7584 uint16_t insn1
7585 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7586
7587 if (debug_displaced)
7588 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7589 "at %.8lx\n", insn1, (unsigned long) from);
7590
7591 dsc->is_thumb = 1;
7592 dsc->insn_size = thumb_insn_size (insn1);
7593 if (thumb_insn_size (insn1) == 4)
7594 {
7595 uint16_t insn2
7596 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7597 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7598 }
7599 else
7600 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
7601 }
7602
7603 void
7604 arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7605 CORE_ADDR to, struct regcache *regs,
7606 struct displaced_step_closure *dsc)
7607 {
7608 int err = 0;
7609 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7610 uint32_t insn;
7611
7612 /* Most displaced instructions use a 1-instruction scratch space, so set this
7613 here and override below if/when necessary. */
7614 dsc->numinsns = 1;
7615 dsc->insn_addr = from;
7616 dsc->scratch_base = to;
7617 dsc->cleanup = NULL;
7618 dsc->wrote_to_pc = 0;
7619
7620 if (!displaced_in_arm_mode (regs))
7621 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
7622
7623 dsc->is_thumb = 0;
7624 dsc->insn_size = 4;
7625 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7626 if (debug_displaced)
7627 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7628 "at %.8lx\n", (unsigned long) insn,
7629 (unsigned long) from);
7630
7631 if ((insn & 0xf0000000) == 0xf0000000)
7632 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
7633 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7634 {
7635 case 0x0: case 0x1: case 0x2: case 0x3:
7636 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
7637 break;
7638
7639 case 0x4: case 0x5: case 0x6:
7640 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
7641 break;
7642
7643 case 0x7:
7644 err = arm_decode_media (gdbarch, insn, dsc);
7645 break;
7646
7647 case 0x8: case 0x9: case 0xa: case 0xb:
7648 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
7649 break;
7650
7651 case 0xc: case 0xd: case 0xe: case 0xf:
7652 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
7653 break;
7654 }
7655
7656 if (err)
7657 internal_error (__FILE__, __LINE__,
7658 _("arm_process_displaced_insn: Instruction decode error"));
7659 }
7660
7661 /* Actually set up the scratch space for a displaced instruction. */
7662
7663 void
7664 arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7665 CORE_ADDR to, struct displaced_step_closure *dsc)
7666 {
7667 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7668 unsigned int i, len, offset;
7669 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7670 int size = dsc->is_thumb? 2 : 4;
7671 const gdb_byte *bkp_insn;
7672
7673 offset = 0;
7674 /* Poke modified instruction(s). */
7675 for (i = 0; i < dsc->numinsns; i++)
7676 {
7677 if (debug_displaced)
7678 {
7679 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7680 if (size == 4)
7681 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7682 dsc->modinsn[i]);
7683 else if (size == 2)
7684 fprintf_unfiltered (gdb_stdlog, "%.4x",
7685 (unsigned short)dsc->modinsn[i]);
7686
7687 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7688 (unsigned long) to + offset);
7689
7690 }
7691 write_memory_unsigned_integer (to + offset, size,
7692 byte_order_for_code,
7693 dsc->modinsn[i]);
7694 offset += size;
7695 }
7696
7697 /* Choose the correct breakpoint instruction. */
7698 if (dsc->is_thumb)
7699 {
7700 bkp_insn = tdep->thumb_breakpoint;
7701 len = tdep->thumb_breakpoint_size;
7702 }
7703 else
7704 {
7705 bkp_insn = tdep->arm_breakpoint;
7706 len = tdep->arm_breakpoint_size;
7707 }
7708
7709 /* Put breakpoint afterwards. */
7710 write_memory (to + offset, bkp_insn, len);
7711
7712 if (debug_displaced)
7713 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7714 paddress (gdbarch, from), paddress (gdbarch, to));
7715 }
7716
7717 /* Entry point for cleaning things up after a displaced instruction has been
7718 single-stepped. */
7719
7720 void
7721 arm_displaced_step_fixup (struct gdbarch *gdbarch,
7722 struct displaced_step_closure *dsc,
7723 CORE_ADDR from, CORE_ADDR to,
7724 struct regcache *regs)
7725 {
7726 if (dsc->cleanup)
7727 dsc->cleanup (gdbarch, regs, dsc);
7728
7729 if (!dsc->wrote_to_pc)
7730 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7731 dsc->insn_addr + dsc->insn_size);
7732
7733 }
7734
7735 #include "bfd-in2.h"
7736 #include "libcoff.h"
7737
7738 static int
7739 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7740 {
7741 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
7742
7743 if (arm_pc_is_thumb (gdbarch, memaddr))
7744 {
7745 static asymbol *asym;
7746 static combined_entry_type ce;
7747 static struct coff_symbol_struct csym;
7748 static struct bfd fake_bfd;
7749 static bfd_target fake_target;
7750
7751 if (csym.native == NULL)
7752 {
7753 /* Create a fake symbol vector containing a Thumb symbol.
7754 This is solely so that the code in print_insn_little_arm()
7755 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7756 the presence of a Thumb symbol and switch to decoding
7757 Thumb instructions. */
7758
7759 fake_target.flavour = bfd_target_coff_flavour;
7760 fake_bfd.xvec = &fake_target;
7761 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7762 csym.native = &ce;
7763 csym.symbol.the_bfd = &fake_bfd;
7764 csym.symbol.name = "fake";
7765 asym = (asymbol *) & csym;
7766 }
7767
7768 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7769 info->symbols = &asym;
7770 }
7771 else
7772 info->symbols = NULL;
7773
7774 if (info->endian == BFD_ENDIAN_BIG)
7775 return print_insn_big_arm (memaddr, info);
7776 else
7777 return print_insn_little_arm (memaddr, info);
7778 }
7779
7780 /* The following define instruction sequences that will cause ARM
7781 cpu's to take an undefined instruction trap. These are used to
7782 signal a breakpoint to GDB.
7783
7784 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7785 modes. A different instruction is required for each mode. The ARM
7786 cpu's can also be big or little endian. Thus four different
7787 instructions are needed to support all cases.
7788
7789 Note: ARMv4 defines several new instructions that will take the
7790 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7791 not in fact add the new instructions. The new undefined
7792 instructions in ARMv4 are all instructions that had no defined
7793 behaviour in earlier chips. There is no guarantee that they will
7794 raise an exception, but may be treated as NOP's. In practice, it
7795 may only safe to rely on instructions matching:
7796
7797 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7798 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7799 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7800
7801 Even this may only true if the condition predicate is true. The
7802 following use a condition predicate of ALWAYS so it is always TRUE.
7803
7804 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7805 and NetBSD all use a software interrupt rather than an undefined
7806 instruction to force a trap. This can be handled by by the
7807 abi-specific code during establishment of the gdbarch vector. */
7808
7809 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7810 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7811 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7812 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7813
7814 static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7815 static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7816 static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7817 static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7818
7819 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7820
7821 static int
7822 arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7823 {
7824 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7825 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7826
7827 if (arm_pc_is_thumb (gdbarch, *pcptr))
7828 {
7829 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
7830
7831 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7832 check whether we are replacing a 32-bit instruction. */
7833 if (tdep->thumb2_breakpoint != NULL)
7834 {
7835 gdb_byte buf[2];
7836
7837 if (target_read_memory (*pcptr, buf, 2) == 0)
7838 {
7839 unsigned short inst1;
7840
7841 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7842 if (thumb_insn_size (inst1) == 4)
7843 return ARM_BP_KIND_THUMB2;
7844 }
7845 }
7846
7847 return ARM_BP_KIND_THUMB;
7848 }
7849 else
7850 return ARM_BP_KIND_ARM;
7851
7852 }
7853
7854 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7855
7856 static const gdb_byte *
7857 arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7858 {
7859 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7860
7861 switch (kind)
7862 {
7863 case ARM_BP_KIND_ARM:
7864 *size = tdep->arm_breakpoint_size;
7865 return tdep->arm_breakpoint;
7866 case ARM_BP_KIND_THUMB:
7867 *size = tdep->thumb_breakpoint_size;
7868 return tdep->thumb_breakpoint;
7869 case ARM_BP_KIND_THUMB2:
7870 *size = tdep->thumb2_breakpoint_size;
7871 return tdep->thumb2_breakpoint;
7872 default:
7873 gdb_assert_not_reached ("unexpected arm breakpoint kind");
7874 }
7875 }
7876
7877 /* Implement the breakpoint_kind_from_current_state gdbarch method. */
7878
7879 static int
7880 arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
7881 struct regcache *regcache,
7882 CORE_ADDR *pcptr)
7883 {
7884 gdb_byte buf[4];
7885
7886 /* Check the memory pointed by PC is readable. */
7887 if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
7888 {
7889 struct arm_get_next_pcs next_pcs_ctx;
7890 CORE_ADDR pc;
7891 int i;
7892 VEC (CORE_ADDR) *next_pcs = NULL;
7893 struct cleanup *old_chain
7894 = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
7895
7896 arm_get_next_pcs_ctor (&next_pcs_ctx,
7897 &arm_get_next_pcs_ops,
7898 gdbarch_byte_order (gdbarch),
7899 gdbarch_byte_order_for_code (gdbarch),
7900 0,
7901 regcache);
7902
7903 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
7904
7905 /* If MEMADDR is the next instruction of current pc, do the
7906 software single step computation, and get the thumb mode by
7907 the destination address. */
7908 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
7909 {
7910 if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
7911 {
7912 do_cleanups (old_chain);
7913
7914 if (IS_THUMB_ADDR (pc))
7915 {
7916 *pcptr = MAKE_THUMB_ADDR (*pcptr);
7917 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7918 }
7919 else
7920 return ARM_BP_KIND_ARM;
7921 }
7922 }
7923
7924 do_cleanups (old_chain);
7925 }
7926
7927 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7928 }
7929
7930 /* Extract from an array REGBUF containing the (raw) register state a
7931 function return value of type TYPE, and copy that, in virtual
7932 format, into VALBUF. */
7933
7934 static void
7935 arm_extract_return_value (struct type *type, struct regcache *regs,
7936 gdb_byte *valbuf)
7937 {
7938 struct gdbarch *gdbarch = get_regcache_arch (regs);
7939 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7940
7941 if (TYPE_CODE_FLT == TYPE_CODE (type))
7942 {
7943 switch (gdbarch_tdep (gdbarch)->fp_model)
7944 {
7945 case ARM_FLOAT_FPA:
7946 {
7947 /* The value is in register F0 in internal format. We need to
7948 extract the raw value and then convert it to the desired
7949 internal type. */
7950 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7951
7952 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7953 convert_from_extended (floatformat_from_type (type), tmpbuf,
7954 valbuf, gdbarch_byte_order (gdbarch));
7955 }
7956 break;
7957
7958 case ARM_FLOAT_SOFT_FPA:
7959 case ARM_FLOAT_SOFT_VFP:
7960 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7961 not using the VFP ABI code. */
7962 case ARM_FLOAT_VFP:
7963 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7964 if (TYPE_LENGTH (type) > 4)
7965 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7966 valbuf + INT_REGISTER_SIZE);
7967 break;
7968
7969 default:
7970 internal_error (__FILE__, __LINE__,
7971 _("arm_extract_return_value: "
7972 "Floating point model not supported"));
7973 break;
7974 }
7975 }
7976 else if (TYPE_CODE (type) == TYPE_CODE_INT
7977 || TYPE_CODE (type) == TYPE_CODE_CHAR
7978 || TYPE_CODE (type) == TYPE_CODE_BOOL
7979 || TYPE_CODE (type) == TYPE_CODE_PTR
7980 || TYPE_CODE (type) == TYPE_CODE_REF
7981 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7982 {
7983 /* If the type is a plain integer, then the access is
7984 straight-forward. Otherwise we have to play around a bit
7985 more. */
7986 int len = TYPE_LENGTH (type);
7987 int regno = ARM_A1_REGNUM;
7988 ULONGEST tmp;
7989
7990 while (len > 0)
7991 {
7992 /* By using store_unsigned_integer we avoid having to do
7993 anything special for small big-endian values. */
7994 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7995 store_unsigned_integer (valbuf,
7996 (len > INT_REGISTER_SIZE
7997 ? INT_REGISTER_SIZE : len),
7998 byte_order, tmp);
7999 len -= INT_REGISTER_SIZE;
8000 valbuf += INT_REGISTER_SIZE;
8001 }
8002 }
8003 else
8004 {
8005 /* For a structure or union the behaviour is as if the value had
8006 been stored to word-aligned memory and then loaded into
8007 registers with 32-bit load instruction(s). */
8008 int len = TYPE_LENGTH (type);
8009 int regno = ARM_A1_REGNUM;
8010 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8011
8012 while (len > 0)
8013 {
8014 regcache_cooked_read (regs, regno++, tmpbuf);
8015 memcpy (valbuf, tmpbuf,
8016 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8017 len -= INT_REGISTER_SIZE;
8018 valbuf += INT_REGISTER_SIZE;
8019 }
8020 }
8021 }
8022
8023
8024 /* Will a function return an aggregate type in memory or in a
8025 register? Return 0 if an aggregate type can be returned in a
8026 register, 1 if it must be returned in memory. */
8027
8028 static int
8029 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8030 {
8031 enum type_code code;
8032
8033 type = check_typedef (type);
8034
8035 /* Simple, non-aggregate types (ie not including vectors and
8036 complex) are always returned in a register (or registers). */
8037 code = TYPE_CODE (type);
8038 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
8039 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
8040 return 0;
8041
8042 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
8043 {
8044 /* Vector values should be returned using ARM registers if they
8045 are not over 16 bytes. */
8046 return (TYPE_LENGTH (type) > 16);
8047 }
8048
8049 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
8050 {
8051 /* The AAPCS says all aggregates not larger than a word are returned
8052 in a register. */
8053 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
8054 return 0;
8055
8056 return 1;
8057 }
8058 else
8059 {
8060 int nRc;
8061
8062 /* All aggregate types that won't fit in a register must be returned
8063 in memory. */
8064 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8065 return 1;
8066
8067 /* In the ARM ABI, "integer" like aggregate types are returned in
8068 registers. For an aggregate type to be integer like, its size
8069 must be less than or equal to INT_REGISTER_SIZE and the
8070 offset of each addressable subfield must be zero. Note that bit
8071 fields are not addressable, and all addressable subfields of
8072 unions always start at offset zero.
8073
8074 This function is based on the behaviour of GCC 2.95.1.
8075 See: gcc/arm.c: arm_return_in_memory() for details.
8076
8077 Note: All versions of GCC before GCC 2.95.2 do not set up the
8078 parameters correctly for a function returning the following
8079 structure: struct { float f;}; This should be returned in memory,
8080 not a register. Richard Earnshaw sent me a patch, but I do not
8081 know of any way to detect if a function like the above has been
8082 compiled with the correct calling convention. */
8083
8084 /* Assume all other aggregate types can be returned in a register.
8085 Run a check for structures, unions and arrays. */
8086 nRc = 0;
8087
8088 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8089 {
8090 int i;
8091 /* Need to check if this struct/union is "integer" like. For
8092 this to be true, its size must be less than or equal to
8093 INT_REGISTER_SIZE and the offset of each addressable
8094 subfield must be zero. Note that bit fields are not
8095 addressable, and unions always start at offset zero. If any
8096 of the subfields is a floating point type, the struct/union
8097 cannot be an integer type. */
8098
8099 /* For each field in the object, check:
8100 1) Is it FP? --> yes, nRc = 1;
8101 2) Is it addressable (bitpos != 0) and
8102 not packed (bitsize == 0)?
8103 --> yes, nRc = 1
8104 */
8105
8106 for (i = 0; i < TYPE_NFIELDS (type); i++)
8107 {
8108 enum type_code field_type_code;
8109
8110 field_type_code
8111 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8112 i)));
8113
8114 /* Is it a floating point type field? */
8115 if (field_type_code == TYPE_CODE_FLT)
8116 {
8117 nRc = 1;
8118 break;
8119 }
8120
8121 /* If bitpos != 0, then we have to care about it. */
8122 if (TYPE_FIELD_BITPOS (type, i) != 0)
8123 {
8124 /* Bitfields are not addressable. If the field bitsize is
8125 zero, then the field is not packed. Hence it cannot be
8126 a bitfield or any other packed type. */
8127 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8128 {
8129 nRc = 1;
8130 break;
8131 }
8132 }
8133 }
8134 }
8135
8136 return nRc;
8137 }
8138 }
8139
8140 /* Write into appropriate registers a function return value of type
8141 TYPE, given in virtual format. */
8142
8143 static void
8144 arm_store_return_value (struct type *type, struct regcache *regs,
8145 const gdb_byte *valbuf)
8146 {
8147 struct gdbarch *gdbarch = get_regcache_arch (regs);
8148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8149
8150 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8151 {
8152 gdb_byte buf[MAX_REGISTER_SIZE];
8153
8154 switch (gdbarch_tdep (gdbarch)->fp_model)
8155 {
8156 case ARM_FLOAT_FPA:
8157
8158 convert_to_extended (floatformat_from_type (type), buf, valbuf,
8159 gdbarch_byte_order (gdbarch));
8160 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
8161 break;
8162
8163 case ARM_FLOAT_SOFT_FPA:
8164 case ARM_FLOAT_SOFT_VFP:
8165 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8166 not using the VFP ABI code. */
8167 case ARM_FLOAT_VFP:
8168 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
8169 if (TYPE_LENGTH (type) > 4)
8170 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
8171 valbuf + INT_REGISTER_SIZE);
8172 break;
8173
8174 default:
8175 internal_error (__FILE__, __LINE__,
8176 _("arm_store_return_value: Floating "
8177 "point model not supported"));
8178 break;
8179 }
8180 }
8181 else if (TYPE_CODE (type) == TYPE_CODE_INT
8182 || TYPE_CODE (type) == TYPE_CODE_CHAR
8183 || TYPE_CODE (type) == TYPE_CODE_BOOL
8184 || TYPE_CODE (type) == TYPE_CODE_PTR
8185 || TYPE_CODE (type) == TYPE_CODE_REF
8186 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8187 {
8188 if (TYPE_LENGTH (type) <= 4)
8189 {
8190 /* Values of one word or less are zero/sign-extended and
8191 returned in r0. */
8192 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8193 LONGEST val = unpack_long (type, valbuf);
8194
8195 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
8196 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
8197 }
8198 else
8199 {
8200 /* Integral values greater than one word are stored in consecutive
8201 registers starting with r0. This will always be a multiple of
8202 the regiser size. */
8203 int len = TYPE_LENGTH (type);
8204 int regno = ARM_A1_REGNUM;
8205
8206 while (len > 0)
8207 {
8208 regcache_cooked_write (regs, regno++, valbuf);
8209 len -= INT_REGISTER_SIZE;
8210 valbuf += INT_REGISTER_SIZE;
8211 }
8212 }
8213 }
8214 else
8215 {
8216 /* For a structure or union the behaviour is as if the value had
8217 been stored to word-aligned memory and then loaded into
8218 registers with 32-bit load instruction(s). */
8219 int len = TYPE_LENGTH (type);
8220 int regno = ARM_A1_REGNUM;
8221 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8222
8223 while (len > 0)
8224 {
8225 memcpy (tmpbuf, valbuf,
8226 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8227 regcache_cooked_write (regs, regno++, tmpbuf);
8228 len -= INT_REGISTER_SIZE;
8229 valbuf += INT_REGISTER_SIZE;
8230 }
8231 }
8232 }
8233
8234
8235 /* Handle function return values. */
8236
8237 static enum return_value_convention
8238 arm_return_value (struct gdbarch *gdbarch, struct value *function,
8239 struct type *valtype, struct regcache *regcache,
8240 gdb_byte *readbuf, const gdb_byte *writebuf)
8241 {
8242 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8243 struct type *func_type = function ? value_type (function) : NULL;
8244 enum arm_vfp_cprc_base_type vfp_base_type;
8245 int vfp_base_count;
8246
8247 if (arm_vfp_abi_for_function (gdbarch, func_type)
8248 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8249 {
8250 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8251 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8252 int i;
8253 for (i = 0; i < vfp_base_count; i++)
8254 {
8255 if (reg_char == 'q')
8256 {
8257 if (writebuf)
8258 arm_neon_quad_write (gdbarch, regcache, i,
8259 writebuf + i * unit_length);
8260
8261 if (readbuf)
8262 arm_neon_quad_read (gdbarch, regcache, i,
8263 readbuf + i * unit_length);
8264 }
8265 else
8266 {
8267 char name_buf[4];
8268 int regnum;
8269
8270 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
8271 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8272 strlen (name_buf));
8273 if (writebuf)
8274 regcache_cooked_write (regcache, regnum,
8275 writebuf + i * unit_length);
8276 if (readbuf)
8277 regcache_cooked_read (regcache, regnum,
8278 readbuf + i * unit_length);
8279 }
8280 }
8281 return RETURN_VALUE_REGISTER_CONVENTION;
8282 }
8283
8284 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8285 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8286 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8287 {
8288 if (tdep->struct_return == pcc_struct_return
8289 || arm_return_in_memory (gdbarch, valtype))
8290 return RETURN_VALUE_STRUCT_CONVENTION;
8291 }
8292 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8293 {
8294 if (arm_return_in_memory (gdbarch, valtype))
8295 return RETURN_VALUE_STRUCT_CONVENTION;
8296 }
8297
8298 if (writebuf)
8299 arm_store_return_value (valtype, regcache, writebuf);
8300
8301 if (readbuf)
8302 arm_extract_return_value (valtype, regcache, readbuf);
8303
8304 return RETURN_VALUE_REGISTER_CONVENTION;
8305 }
8306
8307
8308 static int
8309 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
8310 {
8311 struct gdbarch *gdbarch = get_frame_arch (frame);
8312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8313 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8314 CORE_ADDR jb_addr;
8315 gdb_byte buf[INT_REGISTER_SIZE];
8316
8317 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
8318
8319 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
8320 INT_REGISTER_SIZE))
8321 return 0;
8322
8323 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
8324 return 1;
8325 }
8326
8327 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8328 return the target PC. Otherwise return 0. */
8329
8330 CORE_ADDR
8331 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
8332 {
8333 const char *name;
8334 int namelen;
8335 CORE_ADDR start_addr;
8336
8337 /* Find the starting address and name of the function containing the PC. */
8338 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
8339 {
8340 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8341 check here. */
8342 start_addr = arm_skip_bx_reg (frame, pc);
8343 if (start_addr != 0)
8344 return start_addr;
8345
8346 return 0;
8347 }
8348
8349 /* If PC is in a Thumb call or return stub, return the address of the
8350 target PC, which is in a register. The thunk functions are called
8351 _call_via_xx, where x is the register name. The possible names
8352 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8353 functions, named __ARM_call_via_r[0-7]. */
8354 if (startswith (name, "_call_via_")
8355 || startswith (name, "__ARM_call_via_"))
8356 {
8357 /* Use the name suffix to determine which register contains the
8358 target PC. */
8359 static char *table[15] =
8360 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8361 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8362 };
8363 int regno;
8364 int offset = strlen (name) - 2;
8365
8366 for (regno = 0; regno <= 14; regno++)
8367 if (strcmp (&name[offset], table[regno]) == 0)
8368 return get_frame_register_unsigned (frame, regno);
8369 }
8370
8371 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8372 non-interworking calls to foo. We could decode the stubs
8373 to find the target but it's easier to use the symbol table. */
8374 namelen = strlen (name);
8375 if (name[0] == '_' && name[1] == '_'
8376 && ((namelen > 2 + strlen ("_from_thumb")
8377 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
8378 || (namelen > 2 + strlen ("_from_arm")
8379 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
8380 {
8381 char *target_name;
8382 int target_len = namelen - 2;
8383 struct bound_minimal_symbol minsym;
8384 struct objfile *objfile;
8385 struct obj_section *sec;
8386
8387 if (name[namelen - 1] == 'b')
8388 target_len -= strlen ("_from_thumb");
8389 else
8390 target_len -= strlen ("_from_arm");
8391
8392 target_name = (char *) alloca (target_len + 1);
8393 memcpy (target_name, name + 2, target_len);
8394 target_name[target_len] = '\0';
8395
8396 sec = find_pc_section (pc);
8397 objfile = (sec == NULL) ? NULL : sec->objfile;
8398 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
8399 if (minsym.minsym != NULL)
8400 return BMSYMBOL_VALUE_ADDRESS (minsym);
8401 else
8402 return 0;
8403 }
8404
8405 return 0; /* not a stub */
8406 }
8407
8408 static void
8409 set_arm_command (char *args, int from_tty)
8410 {
8411 printf_unfiltered (_("\
8412 \"set arm\" must be followed by an apporpriate subcommand.\n"));
8413 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8414 }
8415
8416 static void
8417 show_arm_command (char *args, int from_tty)
8418 {
8419 cmd_show_list (showarmcmdlist, from_tty, "");
8420 }
8421
8422 static void
8423 arm_update_current_architecture (void)
8424 {
8425 struct gdbarch_info info;
8426
8427 /* If the current architecture is not ARM, we have nothing to do. */
8428 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
8429 return;
8430
8431 /* Update the architecture. */
8432 gdbarch_info_init (&info);
8433
8434 if (!gdbarch_update_p (info))
8435 internal_error (__FILE__, __LINE__, _("could not update architecture"));
8436 }
8437
8438 static void
8439 set_fp_model_sfunc (char *args, int from_tty,
8440 struct cmd_list_element *c)
8441 {
8442 int fp_model;
8443
8444 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8445 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8446 {
8447 arm_fp_model = (enum arm_float_model) fp_model;
8448 break;
8449 }
8450
8451 if (fp_model == ARM_FLOAT_LAST)
8452 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
8453 current_fp_model);
8454
8455 arm_update_current_architecture ();
8456 }
8457
8458 static void
8459 show_fp_model (struct ui_file *file, int from_tty,
8460 struct cmd_list_element *c, const char *value)
8461 {
8462 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8463
8464 if (arm_fp_model == ARM_FLOAT_AUTO
8465 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8466 fprintf_filtered (file, _("\
8467 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8468 fp_model_strings[tdep->fp_model]);
8469 else
8470 fprintf_filtered (file, _("\
8471 The current ARM floating point model is \"%s\".\n"),
8472 fp_model_strings[arm_fp_model]);
8473 }
8474
8475 static void
8476 arm_set_abi (char *args, int from_tty,
8477 struct cmd_list_element *c)
8478 {
8479 int arm_abi;
8480
8481 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8482 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8483 {
8484 arm_abi_global = (enum arm_abi_kind) arm_abi;
8485 break;
8486 }
8487
8488 if (arm_abi == ARM_ABI_LAST)
8489 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8490 arm_abi_string);
8491
8492 arm_update_current_architecture ();
8493 }
8494
8495 static void
8496 arm_show_abi (struct ui_file *file, int from_tty,
8497 struct cmd_list_element *c, const char *value)
8498 {
8499 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8500
8501 if (arm_abi_global == ARM_ABI_AUTO
8502 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8503 fprintf_filtered (file, _("\
8504 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8505 arm_abi_strings[tdep->arm_abi]);
8506 else
8507 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8508 arm_abi_string);
8509 }
8510
8511 static void
8512 arm_show_fallback_mode (struct ui_file *file, int from_tty,
8513 struct cmd_list_element *c, const char *value)
8514 {
8515 fprintf_filtered (file,
8516 _("The current execution mode assumed "
8517 "(when symbols are unavailable) is \"%s\".\n"),
8518 arm_fallback_mode_string);
8519 }
8520
8521 static void
8522 arm_show_force_mode (struct ui_file *file, int from_tty,
8523 struct cmd_list_element *c, const char *value)
8524 {
8525 fprintf_filtered (file,
8526 _("The current execution mode assumed "
8527 "(even when symbols are available) is \"%s\".\n"),
8528 arm_force_mode_string);
8529 }
8530
8531 /* If the user changes the register disassembly style used for info
8532 register and other commands, we have to also switch the style used
8533 in opcodes for disassembly output. This function is run in the "set
8534 arm disassembly" command, and does that. */
8535
8536 static void
8537 set_disassembly_style_sfunc (char *args, int from_tty,
8538 struct cmd_list_element *c)
8539 {
8540 set_disassembly_style ();
8541 }
8542 \f
8543 /* Return the ARM register name corresponding to register I. */
8544 static const char *
8545 arm_register_name (struct gdbarch *gdbarch, int i)
8546 {
8547 const int num_regs = gdbarch_num_regs (gdbarch);
8548
8549 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8550 && i >= num_regs && i < num_regs + 32)
8551 {
8552 static const char *const vfp_pseudo_names[] = {
8553 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8554 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8555 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8556 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8557 };
8558
8559 return vfp_pseudo_names[i - num_regs];
8560 }
8561
8562 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8563 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8564 {
8565 static const char *const neon_pseudo_names[] = {
8566 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8567 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8568 };
8569
8570 return neon_pseudo_names[i - num_regs - 32];
8571 }
8572
8573 if (i >= ARRAY_SIZE (arm_register_names))
8574 /* These registers are only supported on targets which supply
8575 an XML description. */
8576 return "";
8577
8578 return arm_register_names[i];
8579 }
8580
8581 static void
8582 set_disassembly_style (void)
8583 {
8584 int current;
8585
8586 /* Find the style that the user wants. */
8587 for (current = 0; current < num_disassembly_options; current++)
8588 if (disassembly_style == valid_disassembly_styles[current])
8589 break;
8590 gdb_assert (current < num_disassembly_options);
8591
8592 /* Synchronize the disassembler. */
8593 set_arm_regname_option (current);
8594 }
8595
8596 /* Test whether the coff symbol specific value corresponds to a Thumb
8597 function. */
8598
8599 static int
8600 coff_sym_is_thumb (int val)
8601 {
8602 return (val == C_THUMBEXT
8603 || val == C_THUMBSTAT
8604 || val == C_THUMBEXTFUNC
8605 || val == C_THUMBSTATFUNC
8606 || val == C_THUMBLABEL);
8607 }
8608
8609 /* arm_coff_make_msymbol_special()
8610 arm_elf_make_msymbol_special()
8611
8612 These functions test whether the COFF or ELF symbol corresponds to
8613 an address in thumb code, and set a "special" bit in a minimal
8614 symbol to indicate that it does. */
8615
8616 static void
8617 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8618 {
8619 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8620
8621 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
8622 == ST_BRANCH_TO_THUMB)
8623 MSYMBOL_SET_SPECIAL (msym);
8624 }
8625
8626 static void
8627 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8628 {
8629 if (coff_sym_is_thumb (val))
8630 MSYMBOL_SET_SPECIAL (msym);
8631 }
8632
8633 static void
8634 arm_objfile_data_free (struct objfile *objfile, void *arg)
8635 {
8636 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
8637 unsigned int i;
8638
8639 for (i = 0; i < objfile->obfd->section_count; i++)
8640 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8641 }
8642
8643 static void
8644 arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8645 asymbol *sym)
8646 {
8647 const char *name = bfd_asymbol_name (sym);
8648 struct arm_per_objfile *data;
8649 VEC(arm_mapping_symbol_s) **map_p;
8650 struct arm_mapping_symbol new_map_sym;
8651
8652 gdb_assert (name[0] == '$');
8653 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8654 return;
8655
8656 data = (struct arm_per_objfile *) objfile_data (objfile,
8657 arm_objfile_data_key);
8658 if (data == NULL)
8659 {
8660 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8661 struct arm_per_objfile);
8662 set_objfile_data (objfile, arm_objfile_data_key, data);
8663 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8664 objfile->obfd->section_count,
8665 VEC(arm_mapping_symbol_s) *);
8666 }
8667 map_p = &data->section_maps[bfd_get_section (sym)->index];
8668
8669 new_map_sym.value = sym->value;
8670 new_map_sym.type = name[1];
8671
8672 /* Assume that most mapping symbols appear in order of increasing
8673 value. If they were randomly distributed, it would be faster to
8674 always push here and then sort at first use. */
8675 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8676 {
8677 struct arm_mapping_symbol *prev_map_sym;
8678
8679 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8680 if (prev_map_sym->value >= sym->value)
8681 {
8682 unsigned int idx;
8683 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8684 arm_compare_mapping_symbols);
8685 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8686 return;
8687 }
8688 }
8689
8690 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8691 }
8692
8693 static void
8694 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
8695 {
8696 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8697 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
8698
8699 /* If necessary, set the T bit. */
8700 if (arm_apcs_32)
8701 {
8702 ULONGEST val, t_bit;
8703 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
8704 t_bit = arm_psr_thumb_bit (gdbarch);
8705 if (arm_pc_is_thumb (gdbarch, pc))
8706 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8707 val | t_bit);
8708 else
8709 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8710 val & ~t_bit);
8711 }
8712 }
8713
8714 /* Read the contents of a NEON quad register, by reading from two
8715 double registers. This is used to implement the quad pseudo
8716 registers, and for argument passing in case the quad registers are
8717 missing; vectors are passed in quad registers when using the VFP
8718 ABI, even if a NEON unit is not present. REGNUM is the index of
8719 the quad register, in [0, 15]. */
8720
8721 static enum register_status
8722 arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8723 int regnum, gdb_byte *buf)
8724 {
8725 char name_buf[4];
8726 gdb_byte reg_buf[8];
8727 int offset, double_regnum;
8728 enum register_status status;
8729
8730 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8731 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8732 strlen (name_buf));
8733
8734 /* d0 is always the least significant half of q0. */
8735 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8736 offset = 8;
8737 else
8738 offset = 0;
8739
8740 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8741 if (status != REG_VALID)
8742 return status;
8743 memcpy (buf + offset, reg_buf, 8);
8744
8745 offset = 8 - offset;
8746 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8747 if (status != REG_VALID)
8748 return status;
8749 memcpy (buf + offset, reg_buf, 8);
8750
8751 return REG_VALID;
8752 }
8753
8754 static enum register_status
8755 arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8756 int regnum, gdb_byte *buf)
8757 {
8758 const int num_regs = gdbarch_num_regs (gdbarch);
8759 char name_buf[4];
8760 gdb_byte reg_buf[8];
8761 int offset, double_regnum;
8762
8763 gdb_assert (regnum >= num_regs);
8764 regnum -= num_regs;
8765
8766 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8767 /* Quad-precision register. */
8768 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
8769 else
8770 {
8771 enum register_status status;
8772
8773 /* Single-precision register. */
8774 gdb_assert (regnum < 32);
8775
8776 /* s0 is always the least significant half of d0. */
8777 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8778 offset = (regnum & 1) ? 0 : 4;
8779 else
8780 offset = (regnum & 1) ? 4 : 0;
8781
8782 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8783 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8784 strlen (name_buf));
8785
8786 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8787 if (status == REG_VALID)
8788 memcpy (buf, reg_buf + offset, 4);
8789 return status;
8790 }
8791 }
8792
8793 /* Store the contents of BUF to a NEON quad register, by writing to
8794 two double registers. This is used to implement the quad pseudo
8795 registers, and for argument passing in case the quad registers are
8796 missing; vectors are passed in quad registers when using the VFP
8797 ABI, even if a NEON unit is not present. REGNUM is the index
8798 of the quad register, in [0, 15]. */
8799
8800 static void
8801 arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8802 int regnum, const gdb_byte *buf)
8803 {
8804 char name_buf[4];
8805 int offset, double_regnum;
8806
8807 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8808 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8809 strlen (name_buf));
8810
8811 /* d0 is always the least significant half of q0. */
8812 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8813 offset = 8;
8814 else
8815 offset = 0;
8816
8817 regcache_raw_write (regcache, double_regnum, buf + offset);
8818 offset = 8 - offset;
8819 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8820 }
8821
8822 static void
8823 arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8824 int regnum, const gdb_byte *buf)
8825 {
8826 const int num_regs = gdbarch_num_regs (gdbarch);
8827 char name_buf[4];
8828 gdb_byte reg_buf[8];
8829 int offset, double_regnum;
8830
8831 gdb_assert (regnum >= num_regs);
8832 regnum -= num_regs;
8833
8834 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8835 /* Quad-precision register. */
8836 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8837 else
8838 {
8839 /* Single-precision register. */
8840 gdb_assert (regnum < 32);
8841
8842 /* s0 is always the least significant half of d0. */
8843 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8844 offset = (regnum & 1) ? 0 : 4;
8845 else
8846 offset = (regnum & 1) ? 4 : 0;
8847
8848 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8849 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8850 strlen (name_buf));
8851
8852 regcache_raw_read (regcache, double_regnum, reg_buf);
8853 memcpy (reg_buf + offset, buf, 4);
8854 regcache_raw_write (regcache, double_regnum, reg_buf);
8855 }
8856 }
8857
8858 static struct value *
8859 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8860 {
8861 const int *reg_p = (const int *) baton;
8862 return value_of_register (*reg_p, frame);
8863 }
8864 \f
8865 static enum gdb_osabi
8866 arm_elf_osabi_sniffer (bfd *abfd)
8867 {
8868 unsigned int elfosabi;
8869 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
8870
8871 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
8872
8873 if (elfosabi == ELFOSABI_ARM)
8874 /* GNU tools use this value. Check note sections in this case,
8875 as well. */
8876 bfd_map_over_sections (abfd,
8877 generic_elf_osabi_sniff_abi_tag_sections,
8878 &osabi);
8879
8880 /* Anything else will be handled by the generic ELF sniffer. */
8881 return osabi;
8882 }
8883
8884 static int
8885 arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8886 struct reggroup *group)
8887 {
8888 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8889 this, FPS register belongs to save_regroup, restore_reggroup, and
8890 all_reggroup, of course. */
8891 if (regnum == ARM_FPS_REGNUM)
8892 return (group == float_reggroup
8893 || group == save_reggroup
8894 || group == restore_reggroup
8895 || group == all_reggroup);
8896 else
8897 return default_register_reggroup_p (gdbarch, regnum, group);
8898 }
8899
8900 \f
8901 /* For backward-compatibility we allow two 'g' packet lengths with
8902 the remote protocol depending on whether FPA registers are
8903 supplied. M-profile targets do not have FPA registers, but some
8904 stubs already exist in the wild which use a 'g' packet which
8905 supplies them albeit with dummy values. The packet format which
8906 includes FPA registers should be considered deprecated for
8907 M-profile targets. */
8908
8909 static void
8910 arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8911 {
8912 if (gdbarch_tdep (gdbarch)->is_m)
8913 {
8914 /* If we know from the executable this is an M-profile target,
8915 cater for remote targets whose register set layout is the
8916 same as the FPA layout. */
8917 register_remote_g_packet_guess (gdbarch,
8918 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
8919 (16 * INT_REGISTER_SIZE)
8920 + (8 * FP_REGISTER_SIZE)
8921 + (2 * INT_REGISTER_SIZE),
8922 tdesc_arm_with_m_fpa_layout);
8923
8924 /* The regular M-profile layout. */
8925 register_remote_g_packet_guess (gdbarch,
8926 /* r0-r12,sp,lr,pc; xpsr */
8927 (16 * INT_REGISTER_SIZE)
8928 + INT_REGISTER_SIZE,
8929 tdesc_arm_with_m);
8930
8931 /* M-profile plus M4F VFP. */
8932 register_remote_g_packet_guess (gdbarch,
8933 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8934 (16 * INT_REGISTER_SIZE)
8935 + (16 * VFP_REGISTER_SIZE)
8936 + (2 * INT_REGISTER_SIZE),
8937 tdesc_arm_with_m_vfp_d16);
8938 }
8939
8940 /* Otherwise we don't have a useful guess. */
8941 }
8942
8943 /* Implement the code_of_frame_writable gdbarch method. */
8944
8945 static int
8946 arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8947 {
8948 if (gdbarch_tdep (gdbarch)->is_m
8949 && get_frame_type (frame) == SIGTRAMP_FRAME)
8950 {
8951 /* M-profile exception frames return to some magic PCs, where
8952 isn't writable at all. */
8953 return 0;
8954 }
8955 else
8956 return 1;
8957 }
8958
8959 \f
8960 /* Initialize the current architecture based on INFO. If possible,
8961 re-use an architecture from ARCHES, which is a list of
8962 architectures already created during this debugging session.
8963
8964 Called e.g. at program startup, when reading a core file, and when
8965 reading a binary file. */
8966
8967 static struct gdbarch *
8968 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8969 {
8970 struct gdbarch_tdep *tdep;
8971 struct gdbarch *gdbarch;
8972 struct gdbarch_list *best_arch;
8973 enum arm_abi_kind arm_abi = arm_abi_global;
8974 enum arm_float_model fp_model = arm_fp_model;
8975 struct tdesc_arch_data *tdesc_data = NULL;
8976 int i, is_m = 0;
8977 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8978 int have_wmmx_registers = 0;
8979 int have_neon = 0;
8980 int have_fpa_registers = 1;
8981 const struct target_desc *tdesc = info.target_desc;
8982
8983 /* If we have an object to base this architecture on, try to determine
8984 its ABI. */
8985
8986 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8987 {
8988 int ei_osabi, e_flags;
8989
8990 switch (bfd_get_flavour (info.abfd))
8991 {
8992 case bfd_target_aout_flavour:
8993 /* Assume it's an old APCS-style ABI. */
8994 arm_abi = ARM_ABI_APCS;
8995 break;
8996
8997 case bfd_target_coff_flavour:
8998 /* Assume it's an old APCS-style ABI. */
8999 /* XXX WinCE? */
9000 arm_abi = ARM_ABI_APCS;
9001 break;
9002
9003 case bfd_target_elf_flavour:
9004 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
9005 e_flags = elf_elfheader (info.abfd)->e_flags;
9006
9007 if (ei_osabi == ELFOSABI_ARM)
9008 {
9009 /* GNU tools used to use this value, but do not for EABI
9010 objects. There's nowhere to tag an EABI version
9011 anyway, so assume APCS. */
9012 arm_abi = ARM_ABI_APCS;
9013 }
9014 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
9015 {
9016 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9017 int attr_arch, attr_profile;
9018
9019 switch (eabi_ver)
9020 {
9021 case EF_ARM_EABI_UNKNOWN:
9022 /* Assume GNU tools. */
9023 arm_abi = ARM_ABI_APCS;
9024 break;
9025
9026 case EF_ARM_EABI_VER4:
9027 case EF_ARM_EABI_VER5:
9028 arm_abi = ARM_ABI_AAPCS;
9029 /* EABI binaries default to VFP float ordering.
9030 They may also contain build attributes that can
9031 be used to identify if the VFP argument-passing
9032 ABI is in use. */
9033 if (fp_model == ARM_FLOAT_AUTO)
9034 {
9035 #ifdef HAVE_ELF
9036 switch (bfd_elf_get_obj_attr_int (info.abfd,
9037 OBJ_ATTR_PROC,
9038 Tag_ABI_VFP_args))
9039 {
9040 case AEABI_VFP_args_base:
9041 /* "The user intended FP parameter/result
9042 passing to conform to AAPCS, base
9043 variant". */
9044 fp_model = ARM_FLOAT_SOFT_VFP;
9045 break;
9046 case AEABI_VFP_args_vfp:
9047 /* "The user intended FP parameter/result
9048 passing to conform to AAPCS, VFP
9049 variant". */
9050 fp_model = ARM_FLOAT_VFP;
9051 break;
9052 case AEABI_VFP_args_toolchain:
9053 /* "The user intended FP parameter/result
9054 passing to conform to tool chain-specific
9055 conventions" - we don't know any such
9056 conventions, so leave it as "auto". */
9057 break;
9058 case AEABI_VFP_args_compatible:
9059 /* "Code is compatible with both the base
9060 and VFP variants; the user did not permit
9061 non-variadic functions to pass FP
9062 parameters/results" - leave it as
9063 "auto". */
9064 break;
9065 default:
9066 /* Attribute value not mentioned in the
9067 November 2012 ABI, so leave it as
9068 "auto". */
9069 break;
9070 }
9071 #else
9072 fp_model = ARM_FLOAT_SOFT_VFP;
9073 #endif
9074 }
9075 break;
9076
9077 default:
9078 /* Leave it as "auto". */
9079 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9080 break;
9081 }
9082
9083 #ifdef HAVE_ELF
9084 /* Detect M-profile programs. This only works if the
9085 executable file includes build attributes; GCC does
9086 copy them to the executable, but e.g. RealView does
9087 not. */
9088 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9089 Tag_CPU_arch);
9090 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9091 OBJ_ATTR_PROC,
9092 Tag_CPU_arch_profile);
9093 /* GCC specifies the profile for v6-M; RealView only
9094 specifies the profile for architectures starting with
9095 V7 (as opposed to architectures with a tag
9096 numerically greater than TAG_CPU_ARCH_V7). */
9097 if (!tdesc_has_registers (tdesc)
9098 && (attr_arch == TAG_CPU_ARCH_V6_M
9099 || attr_arch == TAG_CPU_ARCH_V6S_M
9100 || attr_profile == 'M'))
9101 is_m = 1;
9102 #endif
9103 }
9104
9105 if (fp_model == ARM_FLOAT_AUTO)
9106 {
9107 int e_flags = elf_elfheader (info.abfd)->e_flags;
9108
9109 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9110 {
9111 case 0:
9112 /* Leave it as "auto". Strictly speaking this case
9113 means FPA, but almost nobody uses that now, and
9114 many toolchains fail to set the appropriate bits
9115 for the floating-point model they use. */
9116 break;
9117 case EF_ARM_SOFT_FLOAT:
9118 fp_model = ARM_FLOAT_SOFT_FPA;
9119 break;
9120 case EF_ARM_VFP_FLOAT:
9121 fp_model = ARM_FLOAT_VFP;
9122 break;
9123 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9124 fp_model = ARM_FLOAT_SOFT_VFP;
9125 break;
9126 }
9127 }
9128
9129 if (e_flags & EF_ARM_BE8)
9130 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9131
9132 break;
9133
9134 default:
9135 /* Leave it as "auto". */
9136 break;
9137 }
9138 }
9139
9140 /* Check any target description for validity. */
9141 if (tdesc_has_registers (tdesc))
9142 {
9143 /* For most registers we require GDB's default names; but also allow
9144 the numeric names for sp / lr / pc, as a convenience. */
9145 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9146 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9147 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9148
9149 const struct tdesc_feature *feature;
9150 int valid_p;
9151
9152 feature = tdesc_find_feature (tdesc,
9153 "org.gnu.gdb.arm.core");
9154 if (feature == NULL)
9155 {
9156 feature = tdesc_find_feature (tdesc,
9157 "org.gnu.gdb.arm.m-profile");
9158 if (feature == NULL)
9159 return NULL;
9160 else
9161 is_m = 1;
9162 }
9163
9164 tdesc_data = tdesc_data_alloc ();
9165
9166 valid_p = 1;
9167 for (i = 0; i < ARM_SP_REGNUM; i++)
9168 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9169 arm_register_names[i]);
9170 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9171 ARM_SP_REGNUM,
9172 arm_sp_names);
9173 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9174 ARM_LR_REGNUM,
9175 arm_lr_names);
9176 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9177 ARM_PC_REGNUM,
9178 arm_pc_names);
9179 if (is_m)
9180 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9181 ARM_PS_REGNUM, "xpsr");
9182 else
9183 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9184 ARM_PS_REGNUM, "cpsr");
9185
9186 if (!valid_p)
9187 {
9188 tdesc_data_cleanup (tdesc_data);
9189 return NULL;
9190 }
9191
9192 feature = tdesc_find_feature (tdesc,
9193 "org.gnu.gdb.arm.fpa");
9194 if (feature != NULL)
9195 {
9196 valid_p = 1;
9197 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9198 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9199 arm_register_names[i]);
9200 if (!valid_p)
9201 {
9202 tdesc_data_cleanup (tdesc_data);
9203 return NULL;
9204 }
9205 }
9206 else
9207 have_fpa_registers = 0;
9208
9209 feature = tdesc_find_feature (tdesc,
9210 "org.gnu.gdb.xscale.iwmmxt");
9211 if (feature != NULL)
9212 {
9213 static const char *const iwmmxt_names[] = {
9214 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9215 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9216 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9217 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9218 };
9219
9220 valid_p = 1;
9221 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9222 valid_p
9223 &= tdesc_numbered_register (feature, tdesc_data, i,
9224 iwmmxt_names[i - ARM_WR0_REGNUM]);
9225
9226 /* Check for the control registers, but do not fail if they
9227 are missing. */
9228 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9229 tdesc_numbered_register (feature, tdesc_data, i,
9230 iwmmxt_names[i - ARM_WR0_REGNUM]);
9231
9232 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9233 valid_p
9234 &= tdesc_numbered_register (feature, tdesc_data, i,
9235 iwmmxt_names[i - ARM_WR0_REGNUM]);
9236
9237 if (!valid_p)
9238 {
9239 tdesc_data_cleanup (tdesc_data);
9240 return NULL;
9241 }
9242
9243 have_wmmx_registers = 1;
9244 }
9245
9246 /* If we have a VFP unit, check whether the single precision registers
9247 are present. If not, then we will synthesize them as pseudo
9248 registers. */
9249 feature = tdesc_find_feature (tdesc,
9250 "org.gnu.gdb.arm.vfp");
9251 if (feature != NULL)
9252 {
9253 static const char *const vfp_double_names[] = {
9254 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9255 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9256 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9257 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9258 };
9259
9260 /* Require the double precision registers. There must be either
9261 16 or 32. */
9262 valid_p = 1;
9263 for (i = 0; i < 32; i++)
9264 {
9265 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9266 ARM_D0_REGNUM + i,
9267 vfp_double_names[i]);
9268 if (!valid_p)
9269 break;
9270 }
9271 if (!valid_p && i == 16)
9272 valid_p = 1;
9273
9274 /* Also require FPSCR. */
9275 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9276 ARM_FPSCR_REGNUM, "fpscr");
9277 if (!valid_p)
9278 {
9279 tdesc_data_cleanup (tdesc_data);
9280 return NULL;
9281 }
9282
9283 if (tdesc_unnumbered_register (feature, "s0") == 0)
9284 have_vfp_pseudos = 1;
9285
9286 vfp_register_count = i;
9287
9288 /* If we have VFP, also check for NEON. The architecture allows
9289 NEON without VFP (integer vector operations only), but GDB
9290 does not support that. */
9291 feature = tdesc_find_feature (tdesc,
9292 "org.gnu.gdb.arm.neon");
9293 if (feature != NULL)
9294 {
9295 /* NEON requires 32 double-precision registers. */
9296 if (i != 32)
9297 {
9298 tdesc_data_cleanup (tdesc_data);
9299 return NULL;
9300 }
9301
9302 /* If there are quad registers defined by the stub, use
9303 their type; otherwise (normally) provide them with
9304 the default type. */
9305 if (tdesc_unnumbered_register (feature, "q0") == 0)
9306 have_neon_pseudos = 1;
9307
9308 have_neon = 1;
9309 }
9310 }
9311 }
9312
9313 /* If there is already a candidate, use it. */
9314 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9315 best_arch != NULL;
9316 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9317 {
9318 if (arm_abi != ARM_ABI_AUTO
9319 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
9320 continue;
9321
9322 if (fp_model != ARM_FLOAT_AUTO
9323 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
9324 continue;
9325
9326 /* There are various other properties in tdep that we do not
9327 need to check here: those derived from a target description,
9328 since gdbarches with a different target description are
9329 automatically disqualified. */
9330
9331 /* Do check is_m, though, since it might come from the binary. */
9332 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9333 continue;
9334
9335 /* Found a match. */
9336 break;
9337 }
9338
9339 if (best_arch != NULL)
9340 {
9341 if (tdesc_data != NULL)
9342 tdesc_data_cleanup (tdesc_data);
9343 return best_arch->gdbarch;
9344 }
9345
9346 tdep = XCNEW (struct gdbarch_tdep);
9347 gdbarch = gdbarch_alloc (&info, tdep);
9348
9349 /* Record additional information about the architecture we are defining.
9350 These are gdbarch discriminators, like the OSABI. */
9351 tdep->arm_abi = arm_abi;
9352 tdep->fp_model = fp_model;
9353 tdep->is_m = is_m;
9354 tdep->have_fpa_registers = have_fpa_registers;
9355 tdep->have_wmmx_registers = have_wmmx_registers;
9356 gdb_assert (vfp_register_count == 0
9357 || vfp_register_count == 16
9358 || vfp_register_count == 32);
9359 tdep->vfp_register_count = vfp_register_count;
9360 tdep->have_vfp_pseudos = have_vfp_pseudos;
9361 tdep->have_neon_pseudos = have_neon_pseudos;
9362 tdep->have_neon = have_neon;
9363
9364 arm_register_g_packet_guesses (gdbarch);
9365
9366 /* Breakpoints. */
9367 switch (info.byte_order_for_code)
9368 {
9369 case BFD_ENDIAN_BIG:
9370 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9371 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9372 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9373 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9374
9375 break;
9376
9377 case BFD_ENDIAN_LITTLE:
9378 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9379 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9380 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9381 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9382
9383 break;
9384
9385 default:
9386 internal_error (__FILE__, __LINE__,
9387 _("arm_gdbarch_init: bad byte order for float format"));
9388 }
9389
9390 /* On ARM targets char defaults to unsigned. */
9391 set_gdbarch_char_signed (gdbarch, 0);
9392
9393 /* Note: for displaced stepping, this includes the breakpoint, and one word
9394 of additional scratch space. This setting isn't used for anything beside
9395 displaced stepping at present. */
9396 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9397
9398 /* This should be low enough for everything. */
9399 tdep->lowest_pc = 0x20;
9400 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
9401
9402 /* The default, for both APCS and AAPCS, is to return small
9403 structures in registers. */
9404 tdep->struct_return = reg_struct_return;
9405
9406 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
9407 set_gdbarch_frame_align (gdbarch, arm_frame_align);
9408
9409 if (is_m)
9410 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9411
9412 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9413
9414 /* Frame handling. */
9415 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
9416 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
9417 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
9418
9419 frame_base_set_default (gdbarch, &arm_normal_base);
9420
9421 /* Address manipulation. */
9422 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9423
9424 /* Advance PC across function entry code. */
9425 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9426
9427 /* Detect whether PC is at a point where the stack has been destroyed. */
9428 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
9429
9430 /* Skip trampolines. */
9431 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9432
9433 /* The stack grows downward. */
9434 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9435
9436 /* Breakpoint manipulation. */
9437 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
9438 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
9439 set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
9440 arm_breakpoint_kind_from_current_state);
9441
9442 /* Information about registers, etc. */
9443 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9444 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9445 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
9446 set_gdbarch_register_type (gdbarch, arm_register_type);
9447 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
9448
9449 /* This "info float" is FPA-specific. Use the generic version if we
9450 do not have FPA. */
9451 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9452 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9453
9454 /* Internal <-> external register number maps. */
9455 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
9456 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9457
9458 set_gdbarch_register_name (gdbarch, arm_register_name);
9459
9460 /* Returning results. */
9461 set_gdbarch_return_value (gdbarch, arm_return_value);
9462
9463 /* Disassembly. */
9464 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9465
9466 /* Minsymbol frobbing. */
9467 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9468 set_gdbarch_coff_make_msymbol_special (gdbarch,
9469 arm_coff_make_msymbol_special);
9470 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
9471
9472 /* Thumb-2 IT block support. */
9473 set_gdbarch_adjust_breakpoint_address (gdbarch,
9474 arm_adjust_breakpoint_address);
9475
9476 /* Virtual tables. */
9477 set_gdbarch_vbit_in_delta (gdbarch, 1);
9478
9479 /* Hook in the ABI-specific overrides, if they have been registered. */
9480 gdbarch_init_osabi (info, gdbarch);
9481
9482 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9483
9484 /* Add some default predicates. */
9485 if (is_m)
9486 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
9487 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9488 dwarf2_append_unwinders (gdbarch);
9489 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
9490 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
9491 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
9492
9493 /* Now we have tuned the configuration, set a few final things,
9494 based on what the OS ABI has told us. */
9495
9496 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9497 binaries are always marked. */
9498 if (tdep->arm_abi == ARM_ABI_AUTO)
9499 tdep->arm_abi = ARM_ABI_APCS;
9500
9501 /* Watchpoints are not steppable. */
9502 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9503
9504 /* We used to default to FPA for generic ARM, but almost nobody
9505 uses that now, and we now provide a way for the user to force
9506 the model. So default to the most useful variant. */
9507 if (tdep->fp_model == ARM_FLOAT_AUTO)
9508 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9509
9510 if (tdep->jb_pc >= 0)
9511 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9512
9513 /* Floating point sizes and format. */
9514 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
9515 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
9516 {
9517 set_gdbarch_double_format
9518 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9519 set_gdbarch_long_double_format
9520 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9521 }
9522 else
9523 {
9524 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9525 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
9526 }
9527
9528 if (have_vfp_pseudos)
9529 {
9530 /* NOTE: These are the only pseudo registers used by
9531 the ARM target at the moment. If more are added, a
9532 little more care in numbering will be needed. */
9533
9534 int num_pseudos = 32;
9535 if (have_neon_pseudos)
9536 num_pseudos += 16;
9537 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9538 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9539 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9540 }
9541
9542 if (tdesc_data)
9543 {
9544 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9545
9546 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
9547
9548 /* Override tdesc_register_type to adjust the types of VFP
9549 registers for NEON. */
9550 set_gdbarch_register_type (gdbarch, arm_register_type);
9551 }
9552
9553 /* Add standard register aliases. We add aliases even for those
9554 nanes which are used by the current architecture - it's simpler,
9555 and does no harm, since nothing ever lists user registers. */
9556 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9557 user_reg_add (gdbarch, arm_register_aliases[i].name,
9558 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9559
9560 return gdbarch;
9561 }
9562
9563 static void
9564 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
9565 {
9566 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9567
9568 if (tdep == NULL)
9569 return;
9570
9571 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
9572 (unsigned long) tdep->lowest_pc);
9573 }
9574
9575 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
9576
9577 void
9578 _initialize_arm_tdep (void)
9579 {
9580 struct ui_file *stb;
9581 long length;
9582 const char *setname;
9583 const char *setdesc;
9584 const char *const *regnames;
9585 int i;
9586 static std::string helptext;
9587 char regdesc[1024], *rdptr = regdesc;
9588 size_t rest = sizeof (regdesc);
9589
9590 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
9591
9592 arm_objfile_data_key
9593 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
9594
9595 /* Add ourselves to objfile event chain. */
9596 observer_attach_new_objfile (arm_exidx_new_objfile);
9597 arm_exidx_data_key
9598 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9599
9600 /* Register an ELF OS ABI sniffer for ARM binaries. */
9601 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9602 bfd_target_elf_flavour,
9603 arm_elf_osabi_sniffer);
9604
9605 /* Initialize the standard target descriptions. */
9606 initialize_tdesc_arm_with_m ();
9607 initialize_tdesc_arm_with_m_fpa_layout ();
9608 initialize_tdesc_arm_with_m_vfp_d16 ();
9609 initialize_tdesc_arm_with_iwmmxt ();
9610 initialize_tdesc_arm_with_vfpv2 ();
9611 initialize_tdesc_arm_with_vfpv3 ();
9612 initialize_tdesc_arm_with_neon ();
9613
9614 /* Get the number of possible sets of register names defined in opcodes. */
9615 num_disassembly_options = get_arm_regname_num_options ();
9616
9617 /* Add root prefix command for all "set arm"/"show arm" commands. */
9618 add_prefix_cmd ("arm", no_class, set_arm_command,
9619 _("Various ARM-specific commands."),
9620 &setarmcmdlist, "set arm ", 0, &setlist);
9621
9622 add_prefix_cmd ("arm", no_class, show_arm_command,
9623 _("Various ARM-specific commands."),
9624 &showarmcmdlist, "show arm ", 0, &showlist);
9625
9626 /* Sync the opcode insn printer with our register viewer. */
9627 parse_arm_disassembler_option ("reg-names-std");
9628
9629 /* Initialize the array that will be passed to
9630 add_setshow_enum_cmd(). */
9631 valid_disassembly_styles = XNEWVEC (const char *,
9632 num_disassembly_options + 1);
9633 for (i = 0; i < num_disassembly_options; i++)
9634 {
9635 get_arm_regnames (i, &setname, &setdesc, &regnames);
9636 valid_disassembly_styles[i] = setname;
9637 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
9638 rdptr += length;
9639 rest -= length;
9640 /* When we find the default names, tell the disassembler to use
9641 them. */
9642 if (!strcmp (setname, "std"))
9643 {
9644 disassembly_style = setname;
9645 set_arm_regname_option (i);
9646 }
9647 }
9648 /* Mark the end of valid options. */
9649 valid_disassembly_styles[num_disassembly_options] = NULL;
9650
9651 /* Create the help text. */
9652 stb = mem_fileopen ();
9653 fprintf_unfiltered (stb, "%s%s%s",
9654 _("The valid values are:\n"),
9655 regdesc,
9656 _("The default is \"std\"."));
9657 helptext = ui_file_as_string (stb);
9658 ui_file_delete (stb);
9659
9660 add_setshow_enum_cmd("disassembler", no_class,
9661 valid_disassembly_styles, &disassembly_style,
9662 _("Set the disassembly style."),
9663 _("Show the disassembly style."),
9664 helptext.c_str (),
9665 set_disassembly_style_sfunc,
9666 NULL, /* FIXME: i18n: The disassembly style is
9667 \"%s\". */
9668 &setarmcmdlist, &showarmcmdlist);
9669
9670 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9671 _("Set usage of ARM 32-bit mode."),
9672 _("Show usage of ARM 32-bit mode."),
9673 _("When off, a 26-bit PC will be used."),
9674 NULL,
9675 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9676 mode is %s. */
9677 &setarmcmdlist, &showarmcmdlist);
9678
9679 /* Add a command to allow the user to force the FPU model. */
9680 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9681 _("Set the floating point type."),
9682 _("Show the floating point type."),
9683 _("auto - Determine the FP typefrom the OS-ABI.\n\
9684 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9685 fpa - FPA co-processor (GCC compiled).\n\
9686 softvfp - Software FP with pure-endian doubles.\n\
9687 vfp - VFP co-processor."),
9688 set_fp_model_sfunc, show_fp_model,
9689 &setarmcmdlist, &showarmcmdlist);
9690
9691 /* Add a command to allow the user to force the ABI. */
9692 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9693 _("Set the ABI."),
9694 _("Show the ABI."),
9695 NULL, arm_set_abi, arm_show_abi,
9696 &setarmcmdlist, &showarmcmdlist);
9697
9698 /* Add two commands to allow the user to force the assumed
9699 execution mode. */
9700 add_setshow_enum_cmd ("fallback-mode", class_support,
9701 arm_mode_strings, &arm_fallback_mode_string,
9702 _("Set the mode assumed when symbols are unavailable."),
9703 _("Show the mode assumed when symbols are unavailable."),
9704 NULL, NULL, arm_show_fallback_mode,
9705 &setarmcmdlist, &showarmcmdlist);
9706 add_setshow_enum_cmd ("force-mode", class_support,
9707 arm_mode_strings, &arm_force_mode_string,
9708 _("Set the mode assumed even when symbols are available."),
9709 _("Show the mode assumed even when symbols are available."),
9710 NULL, NULL, arm_show_force_mode,
9711 &setarmcmdlist, &showarmcmdlist);
9712
9713 /* Debugging flag. */
9714 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9715 _("Set ARM debugging."),
9716 _("Show ARM debugging."),
9717 _("When on, arm-specific debugging is enabled."),
9718 NULL,
9719 NULL, /* FIXME: i18n: "ARM debugging is %s. */
9720 &setdebuglist, &showdebuglist);
9721 }
9722
9723 /* ARM-reversible process record data structures. */
9724
9725 #define ARM_INSN_SIZE_BYTES 4
9726 #define THUMB_INSN_SIZE_BYTES 2
9727 #define THUMB2_INSN_SIZE_BYTES 4
9728
9729
9730 /* Position of the bit within a 32-bit ARM instruction
9731 that defines whether the instruction is a load or store. */
9732 #define INSN_S_L_BIT_NUM 20
9733
9734 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9735 do \
9736 { \
9737 unsigned int reg_len = LENGTH; \
9738 if (reg_len) \
9739 { \
9740 REGS = XNEWVEC (uint32_t, reg_len); \
9741 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9742 } \
9743 } \
9744 while (0)
9745
9746 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9747 do \
9748 { \
9749 unsigned int mem_len = LENGTH; \
9750 if (mem_len) \
9751 { \
9752 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9753 memcpy(&MEMS->len, &RECORD_BUF[0], \
9754 sizeof(struct arm_mem_r) * LENGTH); \
9755 } \
9756 } \
9757 while (0)
9758
9759 /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9760 #define INSN_RECORDED(ARM_RECORD) \
9761 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9762
9763 /* ARM memory record structure. */
9764 struct arm_mem_r
9765 {
9766 uint32_t len; /* Record length. */
9767 uint32_t addr; /* Memory address. */
9768 };
9769
9770 /* ARM instruction record contains opcode of current insn
9771 and execution state (before entry to decode_insn()),
9772 contains list of to-be-modified registers and
9773 memory blocks (on return from decode_insn()). */
9774
9775 typedef struct insn_decode_record_t
9776 {
9777 struct gdbarch *gdbarch;
9778 struct regcache *regcache;
9779 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9780 uint32_t arm_insn; /* Should accommodate thumb. */
9781 uint32_t cond; /* Condition code. */
9782 uint32_t opcode; /* Insn opcode. */
9783 uint32_t decode; /* Insn decode bits. */
9784 uint32_t mem_rec_count; /* No of mem records. */
9785 uint32_t reg_rec_count; /* No of reg records. */
9786 uint32_t *arm_regs; /* Registers to be saved for this record. */
9787 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9788 } insn_decode_record;
9789
9790
9791 /* Checks ARM SBZ and SBO mandatory fields. */
9792
9793 static int
9794 sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9795 {
9796 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9797
9798 if (!len)
9799 return 1;
9800
9801 if (!sbo)
9802 ones = ~ones;
9803
9804 while (ones)
9805 {
9806 if (!(ones & sbo))
9807 {
9808 return 0;
9809 }
9810 ones = ones >> 1;
9811 }
9812 return 1;
9813 }
9814
9815 enum arm_record_result
9816 {
9817 ARM_RECORD_SUCCESS = 0,
9818 ARM_RECORD_FAILURE = 1
9819 };
9820
9821 typedef enum
9822 {
9823 ARM_RECORD_STRH=1,
9824 ARM_RECORD_STRD
9825 } arm_record_strx_t;
9826
9827 typedef enum
9828 {
9829 ARM_RECORD=1,
9830 THUMB_RECORD,
9831 THUMB2_RECORD
9832 } record_type_t;
9833
9834
9835 static int
9836 arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9837 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9838 {
9839
9840 struct regcache *reg_cache = arm_insn_r->regcache;
9841 ULONGEST u_regval[2]= {0};
9842
9843 uint32_t reg_src1 = 0, reg_src2 = 0;
9844 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
9845
9846 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9847 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
9848
9849 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9850 {
9851 /* 1) Handle misc store, immediate offset. */
9852 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9853 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9854 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9855 regcache_raw_read_unsigned (reg_cache, reg_src1,
9856 &u_regval[0]);
9857 if (ARM_PC_REGNUM == reg_src1)
9858 {
9859 /* If R15 was used as Rn, hence current PC+8. */
9860 u_regval[0] = u_regval[0] + 8;
9861 }
9862 offset_8 = (immed_high << 4) | immed_low;
9863 /* Calculate target store address. */
9864 if (14 == arm_insn_r->opcode)
9865 {
9866 tgt_mem_addr = u_regval[0] + offset_8;
9867 }
9868 else
9869 {
9870 tgt_mem_addr = u_regval[0] - offset_8;
9871 }
9872 if (ARM_RECORD_STRH == str_type)
9873 {
9874 record_buf_mem[0] = 2;
9875 record_buf_mem[1] = tgt_mem_addr;
9876 arm_insn_r->mem_rec_count = 1;
9877 }
9878 else if (ARM_RECORD_STRD == str_type)
9879 {
9880 record_buf_mem[0] = 4;
9881 record_buf_mem[1] = tgt_mem_addr;
9882 record_buf_mem[2] = 4;
9883 record_buf_mem[3] = tgt_mem_addr + 4;
9884 arm_insn_r->mem_rec_count = 2;
9885 }
9886 }
9887 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9888 {
9889 /* 2) Store, register offset. */
9890 /* Get Rm. */
9891 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9892 /* Get Rn. */
9893 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9894 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9895 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9896 if (15 == reg_src2)
9897 {
9898 /* If R15 was used as Rn, hence current PC+8. */
9899 u_regval[0] = u_regval[0] + 8;
9900 }
9901 /* Calculate target store address, Rn +/- Rm, register offset. */
9902 if (12 == arm_insn_r->opcode)
9903 {
9904 tgt_mem_addr = u_regval[0] + u_regval[1];
9905 }
9906 else
9907 {
9908 tgt_mem_addr = u_regval[1] - u_regval[0];
9909 }
9910 if (ARM_RECORD_STRH == str_type)
9911 {
9912 record_buf_mem[0] = 2;
9913 record_buf_mem[1] = tgt_mem_addr;
9914 arm_insn_r->mem_rec_count = 1;
9915 }
9916 else if (ARM_RECORD_STRD == str_type)
9917 {
9918 record_buf_mem[0] = 4;
9919 record_buf_mem[1] = tgt_mem_addr;
9920 record_buf_mem[2] = 4;
9921 record_buf_mem[3] = tgt_mem_addr + 4;
9922 arm_insn_r->mem_rec_count = 2;
9923 }
9924 }
9925 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9926 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9927 {
9928 /* 3) Store, immediate pre-indexed. */
9929 /* 5) Store, immediate post-indexed. */
9930 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9931 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9932 offset_8 = (immed_high << 4) | immed_low;
9933 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9934 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9935 /* Calculate target store address, Rn +/- Rm, register offset. */
9936 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9937 {
9938 tgt_mem_addr = u_regval[0] + offset_8;
9939 }
9940 else
9941 {
9942 tgt_mem_addr = u_regval[0] - offset_8;
9943 }
9944 if (ARM_RECORD_STRH == str_type)
9945 {
9946 record_buf_mem[0] = 2;
9947 record_buf_mem[1] = tgt_mem_addr;
9948 arm_insn_r->mem_rec_count = 1;
9949 }
9950 else if (ARM_RECORD_STRD == str_type)
9951 {
9952 record_buf_mem[0] = 4;
9953 record_buf_mem[1] = tgt_mem_addr;
9954 record_buf_mem[2] = 4;
9955 record_buf_mem[3] = tgt_mem_addr + 4;
9956 arm_insn_r->mem_rec_count = 2;
9957 }
9958 /* Record Rn also as it changes. */
9959 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9960 arm_insn_r->reg_rec_count = 1;
9961 }
9962 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9963 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9964 {
9965 /* 4) Store, register pre-indexed. */
9966 /* 6) Store, register post -indexed. */
9967 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9968 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9969 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9970 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9971 /* Calculate target store address, Rn +/- Rm, register offset. */
9972 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9973 {
9974 tgt_mem_addr = u_regval[0] + u_regval[1];
9975 }
9976 else
9977 {
9978 tgt_mem_addr = u_regval[1] - u_regval[0];
9979 }
9980 if (ARM_RECORD_STRH == str_type)
9981 {
9982 record_buf_mem[0] = 2;
9983 record_buf_mem[1] = tgt_mem_addr;
9984 arm_insn_r->mem_rec_count = 1;
9985 }
9986 else if (ARM_RECORD_STRD == str_type)
9987 {
9988 record_buf_mem[0] = 4;
9989 record_buf_mem[1] = tgt_mem_addr;
9990 record_buf_mem[2] = 4;
9991 record_buf_mem[3] = tgt_mem_addr + 4;
9992 arm_insn_r->mem_rec_count = 2;
9993 }
9994 /* Record Rn also as it changes. */
9995 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9996 arm_insn_r->reg_rec_count = 1;
9997 }
9998 return 0;
9999 }
10000
10001 /* Handling ARM extension space insns. */
10002
10003 static int
10004 arm_record_extension_space (insn_decode_record *arm_insn_r)
10005 {
10006 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
10007 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
10008 uint32_t record_buf[8], record_buf_mem[8];
10009 uint32_t reg_src1 = 0;
10010 struct regcache *reg_cache = arm_insn_r->regcache;
10011 ULONGEST u_regval = 0;
10012
10013 gdb_assert (!INSN_RECORDED(arm_insn_r));
10014 /* Handle unconditional insn extension space. */
10015
10016 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
10017 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10018 if (arm_insn_r->cond)
10019 {
10020 /* PLD has no affect on architectural state, it just affects
10021 the caches. */
10022 if (5 == ((opcode1 & 0xE0) >> 5))
10023 {
10024 /* BLX(1) */
10025 record_buf[0] = ARM_PS_REGNUM;
10026 record_buf[1] = ARM_LR_REGNUM;
10027 arm_insn_r->reg_rec_count = 2;
10028 }
10029 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10030 }
10031
10032
10033 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10034 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10035 {
10036 ret = -1;
10037 /* Undefined instruction on ARM V5; need to handle if later
10038 versions define it. */
10039 }
10040
10041 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10042 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10043 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10044
10045 /* Handle arithmetic insn extension space. */
10046 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10047 && !INSN_RECORDED(arm_insn_r))
10048 {
10049 /* Handle MLA(S) and MUL(S). */
10050 if (0 <= insn_op1 && 3 >= insn_op1)
10051 {
10052 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10053 record_buf[1] = ARM_PS_REGNUM;
10054 arm_insn_r->reg_rec_count = 2;
10055 }
10056 else if (4 <= insn_op1 && 15 >= insn_op1)
10057 {
10058 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10059 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10060 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10061 record_buf[2] = ARM_PS_REGNUM;
10062 arm_insn_r->reg_rec_count = 3;
10063 }
10064 }
10065
10066 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10067 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10068 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10069
10070 /* Handle control insn extension space. */
10071
10072 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10073 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10074 {
10075 if (!bit (arm_insn_r->arm_insn,25))
10076 {
10077 if (!bits (arm_insn_r->arm_insn, 4, 7))
10078 {
10079 if ((0 == insn_op1) || (2 == insn_op1))
10080 {
10081 /* MRS. */
10082 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10083 arm_insn_r->reg_rec_count = 1;
10084 }
10085 else if (1 == insn_op1)
10086 {
10087 /* CSPR is going to be changed. */
10088 record_buf[0] = ARM_PS_REGNUM;
10089 arm_insn_r->reg_rec_count = 1;
10090 }
10091 else if (3 == insn_op1)
10092 {
10093 /* SPSR is going to be changed. */
10094 /* We need to get SPSR value, which is yet to be done. */
10095 return -1;
10096 }
10097 }
10098 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10099 {
10100 if (1 == insn_op1)
10101 {
10102 /* BX. */
10103 record_buf[0] = ARM_PS_REGNUM;
10104 arm_insn_r->reg_rec_count = 1;
10105 }
10106 else if (3 == insn_op1)
10107 {
10108 /* CLZ. */
10109 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10110 arm_insn_r->reg_rec_count = 1;
10111 }
10112 }
10113 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10114 {
10115 /* BLX. */
10116 record_buf[0] = ARM_PS_REGNUM;
10117 record_buf[1] = ARM_LR_REGNUM;
10118 arm_insn_r->reg_rec_count = 2;
10119 }
10120 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10121 {
10122 /* QADD, QSUB, QDADD, QDSUB */
10123 record_buf[0] = ARM_PS_REGNUM;
10124 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10125 arm_insn_r->reg_rec_count = 2;
10126 }
10127 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10128 {
10129 /* BKPT. */
10130 record_buf[0] = ARM_PS_REGNUM;
10131 record_buf[1] = ARM_LR_REGNUM;
10132 arm_insn_r->reg_rec_count = 2;
10133
10134 /* Save SPSR also;how? */
10135 return -1;
10136 }
10137 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10138 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10139 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10140 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10141 )
10142 {
10143 if (0 == insn_op1 || 1 == insn_op1)
10144 {
10145 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10146 /* We dont do optimization for SMULW<y> where we
10147 need only Rd. */
10148 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10149 record_buf[1] = ARM_PS_REGNUM;
10150 arm_insn_r->reg_rec_count = 2;
10151 }
10152 else if (2 == insn_op1)
10153 {
10154 /* SMLAL<x><y>. */
10155 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10156 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10157 arm_insn_r->reg_rec_count = 2;
10158 }
10159 else if (3 == insn_op1)
10160 {
10161 /* SMUL<x><y>. */
10162 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10163 arm_insn_r->reg_rec_count = 1;
10164 }
10165 }
10166 }
10167 else
10168 {
10169 /* MSR : immediate form. */
10170 if (1 == insn_op1)
10171 {
10172 /* CSPR is going to be changed. */
10173 record_buf[0] = ARM_PS_REGNUM;
10174 arm_insn_r->reg_rec_count = 1;
10175 }
10176 else if (3 == insn_op1)
10177 {
10178 /* SPSR is going to be changed. */
10179 /* we need to get SPSR value, which is yet to be done */
10180 return -1;
10181 }
10182 }
10183 }
10184
10185 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10186 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10187 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10188
10189 /* Handle load/store insn extension space. */
10190
10191 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10192 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10193 && !INSN_RECORDED(arm_insn_r))
10194 {
10195 /* SWP/SWPB. */
10196 if (0 == insn_op1)
10197 {
10198 /* These insn, changes register and memory as well. */
10199 /* SWP or SWPB insn. */
10200 /* Get memory address given by Rn. */
10201 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10202 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10203 /* SWP insn ?, swaps word. */
10204 if (8 == arm_insn_r->opcode)
10205 {
10206 record_buf_mem[0] = 4;
10207 }
10208 else
10209 {
10210 /* SWPB insn, swaps only byte. */
10211 record_buf_mem[0] = 1;
10212 }
10213 record_buf_mem[1] = u_regval;
10214 arm_insn_r->mem_rec_count = 1;
10215 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10216 arm_insn_r->reg_rec_count = 1;
10217 }
10218 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10219 {
10220 /* STRH. */
10221 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10222 ARM_RECORD_STRH);
10223 }
10224 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10225 {
10226 /* LDRD. */
10227 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10228 record_buf[1] = record_buf[0] + 1;
10229 arm_insn_r->reg_rec_count = 2;
10230 }
10231 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10232 {
10233 /* STRD. */
10234 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10235 ARM_RECORD_STRD);
10236 }
10237 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10238 {
10239 /* LDRH, LDRSB, LDRSH. */
10240 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10241 arm_insn_r->reg_rec_count = 1;
10242 }
10243
10244 }
10245
10246 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10247 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10248 && !INSN_RECORDED(arm_insn_r))
10249 {
10250 ret = -1;
10251 /* Handle coprocessor insn extension space. */
10252 }
10253
10254 /* To be done for ARMv5 and later; as of now we return -1. */
10255 if (-1 == ret)
10256 return ret;
10257
10258 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10259 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10260
10261 return ret;
10262 }
10263
10264 /* Handling opcode 000 insns. */
10265
10266 static int
10267 arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10268 {
10269 struct regcache *reg_cache = arm_insn_r->regcache;
10270 uint32_t record_buf[8], record_buf_mem[8];
10271 ULONGEST u_regval[2] = {0};
10272
10273 uint32_t reg_src1 = 0, reg_dest = 0;
10274 uint32_t opcode1 = 0;
10275
10276 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10277 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10278 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10279
10280 /* Data processing insn /multiply insn. */
10281 if (9 == arm_insn_r->decode
10282 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10283 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
10284 {
10285 /* Handle multiply instructions. */
10286 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10287 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10288 {
10289 /* Handle MLA and MUL. */
10290 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10291 record_buf[1] = ARM_PS_REGNUM;
10292 arm_insn_r->reg_rec_count = 2;
10293 }
10294 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10295 {
10296 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10297 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10298 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10299 record_buf[2] = ARM_PS_REGNUM;
10300 arm_insn_r->reg_rec_count = 3;
10301 }
10302 }
10303 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10304 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
10305 {
10306 /* Handle misc load insns, as 20th bit (L = 1). */
10307 /* LDR insn has a capability to do branching, if
10308 MOV LR, PC is precceded by LDR insn having Rn as R15
10309 in that case, it emulates branch and link insn, and hence we
10310 need to save CSPR and PC as well. I am not sure this is right
10311 place; as opcode = 010 LDR insn make this happen, if R15 was
10312 used. */
10313 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10314 if (15 != reg_dest)
10315 {
10316 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10317 arm_insn_r->reg_rec_count = 1;
10318 }
10319 else
10320 {
10321 record_buf[0] = reg_dest;
10322 record_buf[1] = ARM_PS_REGNUM;
10323 arm_insn_r->reg_rec_count = 2;
10324 }
10325 }
10326 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10327 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
10328 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10329 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
10330 {
10331 /* Handle MSR insn. */
10332 if (9 == arm_insn_r->opcode)
10333 {
10334 /* CSPR is going to be changed. */
10335 record_buf[0] = ARM_PS_REGNUM;
10336 arm_insn_r->reg_rec_count = 1;
10337 }
10338 else
10339 {
10340 /* SPSR is going to be changed. */
10341 /* How to read SPSR value? */
10342 return -1;
10343 }
10344 }
10345 else if (9 == arm_insn_r->decode
10346 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10347 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10348 {
10349 /* Handling SWP, SWPB. */
10350 /* These insn, changes register and memory as well. */
10351 /* SWP or SWPB insn. */
10352
10353 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10354 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10355 /* SWP insn ?, swaps word. */
10356 if (8 == arm_insn_r->opcode)
10357 {
10358 record_buf_mem[0] = 4;
10359 }
10360 else
10361 {
10362 /* SWPB insn, swaps only byte. */
10363 record_buf_mem[0] = 1;
10364 }
10365 record_buf_mem[1] = u_regval[0];
10366 arm_insn_r->mem_rec_count = 1;
10367 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10368 arm_insn_r->reg_rec_count = 1;
10369 }
10370 else if (3 == arm_insn_r->decode && 0x12 == opcode1
10371 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10372 {
10373 /* Handle BLX, branch and link/exchange. */
10374 if (9 == arm_insn_r->opcode)
10375 {
10376 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10377 and R14 stores the return address. */
10378 record_buf[0] = ARM_PS_REGNUM;
10379 record_buf[1] = ARM_LR_REGNUM;
10380 arm_insn_r->reg_rec_count = 2;
10381 }
10382 }
10383 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10384 {
10385 /* Handle enhanced software breakpoint insn, BKPT. */
10386 /* CPSR is changed to be executed in ARM state, disabling normal
10387 interrupts, entering abort mode. */
10388 /* According to high vector configuration PC is set. */
10389 /* user hit breakpoint and type reverse, in
10390 that case, we need to go back with previous CPSR and
10391 Program Counter. */
10392 record_buf[0] = ARM_PS_REGNUM;
10393 record_buf[1] = ARM_LR_REGNUM;
10394 arm_insn_r->reg_rec_count = 2;
10395
10396 /* Save SPSR also; how? */
10397 return -1;
10398 }
10399 else if (11 == arm_insn_r->decode
10400 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10401 {
10402 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
10403
10404 /* Handle str(x) insn */
10405 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10406 ARM_RECORD_STRH);
10407 }
10408 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10409 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10410 {
10411 /* Handle BX, branch and link/exchange. */
10412 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10413 record_buf[0] = ARM_PS_REGNUM;
10414 arm_insn_r->reg_rec_count = 1;
10415 }
10416 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10417 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10418 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10419 {
10420 /* Count leading zeros: CLZ. */
10421 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10422 arm_insn_r->reg_rec_count = 1;
10423 }
10424 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10425 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10426 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10427 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
10428 )
10429 {
10430 /* Handle MRS insn. */
10431 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10432 arm_insn_r->reg_rec_count = 1;
10433 }
10434 else if (arm_insn_r->opcode <= 15)
10435 {
10436 /* Normal data processing insns. */
10437 /* Out of 11 shifter operands mode, all the insn modifies destination
10438 register, which is specified by 13-16 decode. */
10439 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10440 record_buf[1] = ARM_PS_REGNUM;
10441 arm_insn_r->reg_rec_count = 2;
10442 }
10443 else
10444 {
10445 return -1;
10446 }
10447
10448 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10449 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10450 return 0;
10451 }
10452
10453 /* Handling opcode 001 insns. */
10454
10455 static int
10456 arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10457 {
10458 uint32_t record_buf[8], record_buf_mem[8];
10459
10460 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10461 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10462
10463 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10464 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10465 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10466 )
10467 {
10468 /* Handle MSR insn. */
10469 if (9 == arm_insn_r->opcode)
10470 {
10471 /* CSPR is going to be changed. */
10472 record_buf[0] = ARM_PS_REGNUM;
10473 arm_insn_r->reg_rec_count = 1;
10474 }
10475 else
10476 {
10477 /* SPSR is going to be changed. */
10478 }
10479 }
10480 else if (arm_insn_r->opcode <= 15)
10481 {
10482 /* Normal data processing insns. */
10483 /* Out of 11 shifter operands mode, all the insn modifies destination
10484 register, which is specified by 13-16 decode. */
10485 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10486 record_buf[1] = ARM_PS_REGNUM;
10487 arm_insn_r->reg_rec_count = 2;
10488 }
10489 else
10490 {
10491 return -1;
10492 }
10493
10494 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10495 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10496 return 0;
10497 }
10498
10499 static int
10500 arm_record_media (insn_decode_record *arm_insn_r)
10501 {
10502 uint32_t record_buf[8];
10503
10504 switch (bits (arm_insn_r->arm_insn, 22, 24))
10505 {
10506 case 0:
10507 /* Parallel addition and subtraction, signed */
10508 case 1:
10509 /* Parallel addition and subtraction, unsigned */
10510 case 2:
10511 case 3:
10512 /* Packing, unpacking, saturation and reversal */
10513 {
10514 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10515
10516 record_buf[arm_insn_r->reg_rec_count++] = rd;
10517 }
10518 break;
10519
10520 case 4:
10521 case 5:
10522 /* Signed multiplies */
10523 {
10524 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10525 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10526
10527 record_buf[arm_insn_r->reg_rec_count++] = rd;
10528 if (op1 == 0x0)
10529 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10530 else if (op1 == 0x4)
10531 record_buf[arm_insn_r->reg_rec_count++]
10532 = bits (arm_insn_r->arm_insn, 12, 15);
10533 }
10534 break;
10535
10536 case 6:
10537 {
10538 if (bit (arm_insn_r->arm_insn, 21)
10539 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10540 {
10541 /* SBFX */
10542 record_buf[arm_insn_r->reg_rec_count++]
10543 = bits (arm_insn_r->arm_insn, 12, 15);
10544 }
10545 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10546 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10547 {
10548 /* USAD8 and USADA8 */
10549 record_buf[arm_insn_r->reg_rec_count++]
10550 = bits (arm_insn_r->arm_insn, 16, 19);
10551 }
10552 }
10553 break;
10554
10555 case 7:
10556 {
10557 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10558 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10559 {
10560 /* Permanently UNDEFINED */
10561 return -1;
10562 }
10563 else
10564 {
10565 /* BFC, BFI and UBFX */
10566 record_buf[arm_insn_r->reg_rec_count++]
10567 = bits (arm_insn_r->arm_insn, 12, 15);
10568 }
10569 }
10570 break;
10571
10572 default:
10573 return -1;
10574 }
10575
10576 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10577
10578 return 0;
10579 }
10580
10581 /* Handle ARM mode instructions with opcode 010. */
10582
10583 static int
10584 arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10585 {
10586 struct regcache *reg_cache = arm_insn_r->regcache;
10587
10588 uint32_t reg_base , reg_dest;
10589 uint32_t offset_12, tgt_mem_addr;
10590 uint32_t record_buf[8], record_buf_mem[8];
10591 unsigned char wback;
10592 ULONGEST u_regval;
10593
10594 /* Calculate wback. */
10595 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10596 || (bit (arm_insn_r->arm_insn, 21) == 1);
10597
10598 arm_insn_r->reg_rec_count = 0;
10599 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10600
10601 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10602 {
10603 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10604 and LDRT. */
10605
10606 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10607 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10608
10609 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10610 preceeds a LDR instruction having R15 as reg_base, it
10611 emulates a branch and link instruction, and hence we need to save
10612 CPSR and PC as well. */
10613 if (ARM_PC_REGNUM == reg_dest)
10614 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10615
10616 /* If wback is true, also save the base register, which is going to be
10617 written to. */
10618 if (wback)
10619 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10620 }
10621 else
10622 {
10623 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10624
10625 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
10626 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10627
10628 /* Handle bit U. */
10629 if (bit (arm_insn_r->arm_insn, 23))
10630 {
10631 /* U == 1: Add the offset. */
10632 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10633 }
10634 else
10635 {
10636 /* U == 0: subtract the offset. */
10637 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10638 }
10639
10640 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10641 bytes. */
10642 if (bit (arm_insn_r->arm_insn, 22))
10643 {
10644 /* STRB and STRBT: 1 byte. */
10645 record_buf_mem[0] = 1;
10646 }
10647 else
10648 {
10649 /* STR and STRT: 4 bytes. */
10650 record_buf_mem[0] = 4;
10651 }
10652
10653 /* Handle bit P. */
10654 if (bit (arm_insn_r->arm_insn, 24))
10655 record_buf_mem[1] = tgt_mem_addr;
10656 else
10657 record_buf_mem[1] = (uint32_t) u_regval;
10658
10659 arm_insn_r->mem_rec_count = 1;
10660
10661 /* If wback is true, also save the base register, which is going to be
10662 written to. */
10663 if (wback)
10664 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10665 }
10666
10667 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10668 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10669 return 0;
10670 }
10671
10672 /* Handling opcode 011 insns. */
10673
10674 static int
10675 arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10676 {
10677 struct regcache *reg_cache = arm_insn_r->regcache;
10678
10679 uint32_t shift_imm = 0;
10680 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10681 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10682 uint32_t record_buf[8], record_buf_mem[8];
10683
10684 LONGEST s_word;
10685 ULONGEST u_regval[2];
10686
10687 if (bit (arm_insn_r->arm_insn, 4))
10688 return arm_record_media (arm_insn_r);
10689
10690 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10691 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10692
10693 /* Handle enhanced store insns and LDRD DSP insn,
10694 order begins according to addressing modes for store insns
10695 STRH insn. */
10696
10697 /* LDR or STR? */
10698 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10699 {
10700 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10701 /* LDR insn has a capability to do branching, if
10702 MOV LR, PC is precedded by LDR insn having Rn as R15
10703 in that case, it emulates branch and link insn, and hence we
10704 need to save CSPR and PC as well. */
10705 if (15 != reg_dest)
10706 {
10707 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10708 arm_insn_r->reg_rec_count = 1;
10709 }
10710 else
10711 {
10712 record_buf[0] = reg_dest;
10713 record_buf[1] = ARM_PS_REGNUM;
10714 arm_insn_r->reg_rec_count = 2;
10715 }
10716 }
10717 else
10718 {
10719 if (! bits (arm_insn_r->arm_insn, 4, 11))
10720 {
10721 /* Store insn, register offset and register pre-indexed,
10722 register post-indexed. */
10723 /* Get Rm. */
10724 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10725 /* Get Rn. */
10726 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10727 regcache_raw_read_unsigned (reg_cache, reg_src1
10728 , &u_regval[0]);
10729 regcache_raw_read_unsigned (reg_cache, reg_src2
10730 , &u_regval[1]);
10731 if (15 == reg_src2)
10732 {
10733 /* If R15 was used as Rn, hence current PC+8. */
10734 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10735 u_regval[0] = u_regval[0] + 8;
10736 }
10737 /* Calculate target store address, Rn +/- Rm, register offset. */
10738 /* U == 1. */
10739 if (bit (arm_insn_r->arm_insn, 23))
10740 {
10741 tgt_mem_addr = u_regval[0] + u_regval[1];
10742 }
10743 else
10744 {
10745 tgt_mem_addr = u_regval[1] - u_regval[0];
10746 }
10747
10748 switch (arm_insn_r->opcode)
10749 {
10750 /* STR. */
10751 case 8:
10752 case 12:
10753 /* STR. */
10754 case 9:
10755 case 13:
10756 /* STRT. */
10757 case 1:
10758 case 5:
10759 /* STR. */
10760 case 0:
10761 case 4:
10762 record_buf_mem[0] = 4;
10763 break;
10764
10765 /* STRB. */
10766 case 10:
10767 case 14:
10768 /* STRB. */
10769 case 11:
10770 case 15:
10771 /* STRBT. */
10772 case 3:
10773 case 7:
10774 /* STRB. */
10775 case 2:
10776 case 6:
10777 record_buf_mem[0] = 1;
10778 break;
10779
10780 default:
10781 gdb_assert_not_reached ("no decoding pattern found");
10782 break;
10783 }
10784 record_buf_mem[1] = tgt_mem_addr;
10785 arm_insn_r->mem_rec_count = 1;
10786
10787 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10788 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10789 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10790 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10791 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10792 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10793 )
10794 {
10795 /* Rn is going to be changed in pre-indexed mode and
10796 post-indexed mode as well. */
10797 record_buf[0] = reg_src2;
10798 arm_insn_r->reg_rec_count = 1;
10799 }
10800 }
10801 else
10802 {
10803 /* Store insn, scaled register offset; scaled pre-indexed. */
10804 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10805 /* Get Rm. */
10806 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10807 /* Get Rn. */
10808 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10809 /* Get shift_imm. */
10810 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10811 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10812 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10813 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10814 /* Offset_12 used as shift. */
10815 switch (offset_12)
10816 {
10817 case 0:
10818 /* Offset_12 used as index. */
10819 offset_12 = u_regval[0] << shift_imm;
10820 break;
10821
10822 case 1:
10823 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10824 break;
10825
10826 case 2:
10827 if (!shift_imm)
10828 {
10829 if (bit (u_regval[0], 31))
10830 {
10831 offset_12 = 0xFFFFFFFF;
10832 }
10833 else
10834 {
10835 offset_12 = 0;
10836 }
10837 }
10838 else
10839 {
10840 /* This is arithmetic shift. */
10841 offset_12 = s_word >> shift_imm;
10842 }
10843 break;
10844
10845 case 3:
10846 if (!shift_imm)
10847 {
10848 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10849 &u_regval[1]);
10850 /* Get C flag value and shift it by 31. */
10851 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10852 | (u_regval[0]) >> 1);
10853 }
10854 else
10855 {
10856 offset_12 = (u_regval[0] >> shift_imm) \
10857 | (u_regval[0] <<
10858 (sizeof(uint32_t) - shift_imm));
10859 }
10860 break;
10861
10862 default:
10863 gdb_assert_not_reached ("no decoding pattern found");
10864 break;
10865 }
10866
10867 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10868 /* bit U set. */
10869 if (bit (arm_insn_r->arm_insn, 23))
10870 {
10871 tgt_mem_addr = u_regval[1] + offset_12;
10872 }
10873 else
10874 {
10875 tgt_mem_addr = u_regval[1] - offset_12;
10876 }
10877
10878 switch (arm_insn_r->opcode)
10879 {
10880 /* STR. */
10881 case 8:
10882 case 12:
10883 /* STR. */
10884 case 9:
10885 case 13:
10886 /* STRT. */
10887 case 1:
10888 case 5:
10889 /* STR. */
10890 case 0:
10891 case 4:
10892 record_buf_mem[0] = 4;
10893 break;
10894
10895 /* STRB. */
10896 case 10:
10897 case 14:
10898 /* STRB. */
10899 case 11:
10900 case 15:
10901 /* STRBT. */
10902 case 3:
10903 case 7:
10904 /* STRB. */
10905 case 2:
10906 case 6:
10907 record_buf_mem[0] = 1;
10908 break;
10909
10910 default:
10911 gdb_assert_not_reached ("no decoding pattern found");
10912 break;
10913 }
10914 record_buf_mem[1] = tgt_mem_addr;
10915 arm_insn_r->mem_rec_count = 1;
10916
10917 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10918 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10919 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10920 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10921 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10922 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10923 )
10924 {
10925 /* Rn is going to be changed in register scaled pre-indexed
10926 mode,and scaled post indexed mode. */
10927 record_buf[0] = reg_src2;
10928 arm_insn_r->reg_rec_count = 1;
10929 }
10930 }
10931 }
10932
10933 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10934 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10935 return 0;
10936 }
10937
10938 /* Handle ARM mode instructions with opcode 100. */
10939
10940 static int
10941 arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10942 {
10943 struct regcache *reg_cache = arm_insn_r->regcache;
10944 uint32_t register_count = 0, register_bits;
10945 uint32_t reg_base, addr_mode;
10946 uint32_t record_buf[24], record_buf_mem[48];
10947 uint32_t wback;
10948 ULONGEST u_regval;
10949
10950 /* Fetch the list of registers. */
10951 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10952 arm_insn_r->reg_rec_count = 0;
10953
10954 /* Fetch the base register that contains the address we are loading data
10955 to. */
10956 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10957
10958 /* Calculate wback. */
10959 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
10960
10961 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10962 {
10963 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
10964
10965 /* Find out which registers are going to be loaded from memory. */
10966 while (register_bits)
10967 {
10968 if (register_bits & 0x00000001)
10969 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10970 register_bits = register_bits >> 1;
10971 register_count++;
10972 }
10973
10974
10975 /* If wback is true, also save the base register, which is going to be
10976 written to. */
10977 if (wback)
10978 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10979
10980 /* Save the CPSR register. */
10981 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10982 }
10983 else
10984 {
10985 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
10986
10987 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
10988
10989 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10990
10991 /* Find out how many registers are going to be stored to memory. */
10992 while (register_bits)
10993 {
10994 if (register_bits & 0x00000001)
10995 register_count++;
10996 register_bits = register_bits >> 1;
10997 }
10998
10999 switch (addr_mode)
11000 {
11001 /* STMDA (STMED): Decrement after. */
11002 case 0:
11003 record_buf_mem[1] = (uint32_t) u_regval
11004 - register_count * INT_REGISTER_SIZE + 4;
11005 break;
11006 /* STM (STMIA, STMEA): Increment after. */
11007 case 1:
11008 record_buf_mem[1] = (uint32_t) u_regval;
11009 break;
11010 /* STMDB (STMFD): Decrement before. */
11011 case 2:
11012 record_buf_mem[1] = (uint32_t) u_regval
11013 - register_count * INT_REGISTER_SIZE;
11014 break;
11015 /* STMIB (STMFA): Increment before. */
11016 case 3:
11017 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
11018 break;
11019 default:
11020 gdb_assert_not_reached ("no decoding pattern found");
11021 break;
11022 }
11023
11024 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
11025 arm_insn_r->mem_rec_count = 1;
11026
11027 /* If wback is true, also save the base register, which is going to be
11028 written to. */
11029 if (wback)
11030 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
11031 }
11032
11033 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11034 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11035 return 0;
11036 }
11037
11038 /* Handling opcode 101 insns. */
11039
11040 static int
11041 arm_record_b_bl (insn_decode_record *arm_insn_r)
11042 {
11043 uint32_t record_buf[8];
11044
11045 /* Handle B, BL, BLX(1) insns. */
11046 /* B simply branches so we do nothing here. */
11047 /* Note: BLX(1) doesnt fall here but instead it falls into
11048 extension space. */
11049 if (bit (arm_insn_r->arm_insn, 24))
11050 {
11051 record_buf[0] = ARM_LR_REGNUM;
11052 arm_insn_r->reg_rec_count = 1;
11053 }
11054
11055 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11056
11057 return 0;
11058 }
11059
11060 static int
11061 arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
11062 {
11063 printf_unfiltered (_("Process record does not support instruction "
11064 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11065 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11066
11067 return -1;
11068 }
11069
11070 /* Record handler for vector data transfer instructions. */
11071
11072 static int
11073 arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11074 {
11075 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11076 uint32_t record_buf[4];
11077
11078 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11079 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11080 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11081 bit_l = bit (arm_insn_r->arm_insn, 20);
11082 bit_c = bit (arm_insn_r->arm_insn, 8);
11083
11084 /* Handle VMOV instruction. */
11085 if (bit_l && bit_c)
11086 {
11087 record_buf[0] = reg_t;
11088 arm_insn_r->reg_rec_count = 1;
11089 }
11090 else if (bit_l && !bit_c)
11091 {
11092 /* Handle VMOV instruction. */
11093 if (bits_a == 0x00)
11094 {
11095 record_buf[0] = reg_t;
11096 arm_insn_r->reg_rec_count = 1;
11097 }
11098 /* Handle VMRS instruction. */
11099 else if (bits_a == 0x07)
11100 {
11101 if (reg_t == 15)
11102 reg_t = ARM_PS_REGNUM;
11103
11104 record_buf[0] = reg_t;
11105 arm_insn_r->reg_rec_count = 1;
11106 }
11107 }
11108 else if (!bit_l && !bit_c)
11109 {
11110 /* Handle VMOV instruction. */
11111 if (bits_a == 0x00)
11112 {
11113 record_buf[0] = ARM_D0_REGNUM + reg_v;
11114
11115 arm_insn_r->reg_rec_count = 1;
11116 }
11117 /* Handle VMSR instruction. */
11118 else if (bits_a == 0x07)
11119 {
11120 record_buf[0] = ARM_FPSCR_REGNUM;
11121 arm_insn_r->reg_rec_count = 1;
11122 }
11123 }
11124 else if (!bit_l && bit_c)
11125 {
11126 /* Handle VMOV instruction. */
11127 if (!(bits_a & 0x04))
11128 {
11129 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11130 + ARM_D0_REGNUM;
11131 arm_insn_r->reg_rec_count = 1;
11132 }
11133 /* Handle VDUP instruction. */
11134 else
11135 {
11136 if (bit (arm_insn_r->arm_insn, 21))
11137 {
11138 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11139 record_buf[0] = reg_v + ARM_D0_REGNUM;
11140 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11141 arm_insn_r->reg_rec_count = 2;
11142 }
11143 else
11144 {
11145 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11146 record_buf[0] = reg_v + ARM_D0_REGNUM;
11147 arm_insn_r->reg_rec_count = 1;
11148 }
11149 }
11150 }
11151
11152 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11153 return 0;
11154 }
11155
11156 /* Record handler for extension register load/store instructions. */
11157
11158 static int
11159 arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11160 {
11161 uint32_t opcode, single_reg;
11162 uint8_t op_vldm_vstm;
11163 uint32_t record_buf[8], record_buf_mem[128];
11164 ULONGEST u_regval = 0;
11165
11166 struct regcache *reg_cache = arm_insn_r->regcache;
11167
11168 opcode = bits (arm_insn_r->arm_insn, 20, 24);
11169 single_reg = !bit (arm_insn_r->arm_insn, 8);
11170 op_vldm_vstm = opcode & 0x1b;
11171
11172 /* Handle VMOV instructions. */
11173 if ((opcode & 0x1e) == 0x04)
11174 {
11175 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
11176 {
11177 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11178 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11179 arm_insn_r->reg_rec_count = 2;
11180 }
11181 else
11182 {
11183 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11184 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
11185
11186 if (single_reg)
11187 {
11188 /* The first S register number m is REG_M:M (M is bit 5),
11189 the corresponding D register number is REG_M:M / 2, which
11190 is REG_M. */
11191 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11192 /* The second S register number is REG_M:M + 1, the
11193 corresponding D register number is (REG_M:M + 1) / 2.
11194 IOW, if bit M is 1, the first and second S registers
11195 are mapped to different D registers, otherwise, they are
11196 in the same D register. */
11197 if (bit_m)
11198 {
11199 record_buf[arm_insn_r->reg_rec_count++]
11200 = ARM_D0_REGNUM + reg_m + 1;
11201 }
11202 }
11203 else
11204 {
11205 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
11206 arm_insn_r->reg_rec_count = 1;
11207 }
11208 }
11209 }
11210 /* Handle VSTM and VPUSH instructions. */
11211 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
11212 || op_vldm_vstm == 0x12)
11213 {
11214 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11215 uint32_t memory_index = 0;
11216
11217 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11218 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11219 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11220 imm_off32 = imm_off8 << 2;
11221 memory_count = imm_off8;
11222
11223 if (bit (arm_insn_r->arm_insn, 23))
11224 start_address = u_regval;
11225 else
11226 start_address = u_regval - imm_off32;
11227
11228 if (bit (arm_insn_r->arm_insn, 21))
11229 {
11230 record_buf[0] = reg_rn;
11231 arm_insn_r->reg_rec_count = 1;
11232 }
11233
11234 while (memory_count > 0)
11235 {
11236 if (single_reg)
11237 {
11238 record_buf_mem[memory_index] = 4;
11239 record_buf_mem[memory_index + 1] = start_address;
11240 start_address = start_address + 4;
11241 memory_index = memory_index + 2;
11242 }
11243 else
11244 {
11245 record_buf_mem[memory_index] = 4;
11246 record_buf_mem[memory_index + 1] = start_address;
11247 record_buf_mem[memory_index + 2] = 4;
11248 record_buf_mem[memory_index + 3] = start_address + 4;
11249 start_address = start_address + 8;
11250 memory_index = memory_index + 4;
11251 }
11252 memory_count--;
11253 }
11254 arm_insn_r->mem_rec_count = (memory_index >> 1);
11255 }
11256 /* Handle VLDM instructions. */
11257 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
11258 || op_vldm_vstm == 0x13)
11259 {
11260 uint32_t reg_count, reg_vd;
11261 uint32_t reg_index = 0;
11262 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
11263
11264 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11265 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11266
11267 /* REG_VD is the first D register number. If the instruction
11268 loads memory to S registers (SINGLE_REG is TRUE), the register
11269 number is (REG_VD << 1 | bit D), so the corresponding D
11270 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11271 if (!single_reg)
11272 reg_vd = reg_vd | (bit_d << 4);
11273
11274 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
11275 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
11276
11277 /* If the instruction loads memory to D register, REG_COUNT should
11278 be divided by 2, according to the ARM Architecture Reference
11279 Manual. If the instruction loads memory to S register, divide by
11280 2 as well because two S registers are mapped to D register. */
11281 reg_count = reg_count / 2;
11282 if (single_reg && bit_d)
11283 {
11284 /* Increase the register count if S register list starts from
11285 an odd number (bit d is one). */
11286 reg_count++;
11287 }
11288
11289 while (reg_count > 0)
11290 {
11291 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
11292 reg_count--;
11293 }
11294 arm_insn_r->reg_rec_count = reg_index;
11295 }
11296 /* VSTR Vector store register. */
11297 else if ((opcode & 0x13) == 0x10)
11298 {
11299 uint32_t start_address, reg_rn, imm_off32, imm_off8;
11300 uint32_t memory_index = 0;
11301
11302 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11303 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11304 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11305 imm_off32 = imm_off8 << 2;
11306
11307 if (bit (arm_insn_r->arm_insn, 23))
11308 start_address = u_regval + imm_off32;
11309 else
11310 start_address = u_regval - imm_off32;
11311
11312 if (single_reg)
11313 {
11314 record_buf_mem[memory_index] = 4;
11315 record_buf_mem[memory_index + 1] = start_address;
11316 arm_insn_r->mem_rec_count = 1;
11317 }
11318 else
11319 {
11320 record_buf_mem[memory_index] = 4;
11321 record_buf_mem[memory_index + 1] = start_address;
11322 record_buf_mem[memory_index + 2] = 4;
11323 record_buf_mem[memory_index + 3] = start_address + 4;
11324 arm_insn_r->mem_rec_count = 2;
11325 }
11326 }
11327 /* VLDR Vector load register. */
11328 else if ((opcode & 0x13) == 0x11)
11329 {
11330 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11331
11332 if (!single_reg)
11333 {
11334 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11335 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11336 }
11337 else
11338 {
11339 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
11340 /* Record register D rather than pseudo register S. */
11341 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
11342 }
11343 arm_insn_r->reg_rec_count = 1;
11344 }
11345
11346 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11347 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11348 return 0;
11349 }
11350
11351 /* Record handler for arm/thumb mode VFP data processing instructions. */
11352
11353 static int
11354 arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11355 {
11356 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11357 uint32_t record_buf[4];
11358 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11359 enum insn_types curr_insn_type = INSN_INV;
11360
11361 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11362 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11363 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11364 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11365 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11366 bit_d = bit (arm_insn_r->arm_insn, 22);
11367 opc1 = opc1 & 0x04;
11368
11369 /* Handle VMLA, VMLS. */
11370 if (opc1 == 0x00)
11371 {
11372 if (bit (arm_insn_r->arm_insn, 10))
11373 {
11374 if (bit (arm_insn_r->arm_insn, 6))
11375 curr_insn_type = INSN_T0;
11376 else
11377 curr_insn_type = INSN_T1;
11378 }
11379 else
11380 {
11381 if (dp_op_sz)
11382 curr_insn_type = INSN_T1;
11383 else
11384 curr_insn_type = INSN_T2;
11385 }
11386 }
11387 /* Handle VNMLA, VNMLS, VNMUL. */
11388 else if (opc1 == 0x01)
11389 {
11390 if (dp_op_sz)
11391 curr_insn_type = INSN_T1;
11392 else
11393 curr_insn_type = INSN_T2;
11394 }
11395 /* Handle VMUL. */
11396 else if (opc1 == 0x02 && !(opc3 & 0x01))
11397 {
11398 if (bit (arm_insn_r->arm_insn, 10))
11399 {
11400 if (bit (arm_insn_r->arm_insn, 6))
11401 curr_insn_type = INSN_T0;
11402 else
11403 curr_insn_type = INSN_T1;
11404 }
11405 else
11406 {
11407 if (dp_op_sz)
11408 curr_insn_type = INSN_T1;
11409 else
11410 curr_insn_type = INSN_T2;
11411 }
11412 }
11413 /* Handle VADD, VSUB. */
11414 else if (opc1 == 0x03)
11415 {
11416 if (!bit (arm_insn_r->arm_insn, 9))
11417 {
11418 if (bit (arm_insn_r->arm_insn, 6))
11419 curr_insn_type = INSN_T0;
11420 else
11421 curr_insn_type = INSN_T1;
11422 }
11423 else
11424 {
11425 if (dp_op_sz)
11426 curr_insn_type = INSN_T1;
11427 else
11428 curr_insn_type = INSN_T2;
11429 }
11430 }
11431 /* Handle VDIV. */
11432 else if (opc1 == 0x0b)
11433 {
11434 if (dp_op_sz)
11435 curr_insn_type = INSN_T1;
11436 else
11437 curr_insn_type = INSN_T2;
11438 }
11439 /* Handle all other vfp data processing instructions. */
11440 else if (opc1 == 0x0b)
11441 {
11442 /* Handle VMOV. */
11443 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11444 {
11445 if (bit (arm_insn_r->arm_insn, 4))
11446 {
11447 if (bit (arm_insn_r->arm_insn, 6))
11448 curr_insn_type = INSN_T0;
11449 else
11450 curr_insn_type = INSN_T1;
11451 }
11452 else
11453 {
11454 if (dp_op_sz)
11455 curr_insn_type = INSN_T1;
11456 else
11457 curr_insn_type = INSN_T2;
11458 }
11459 }
11460 /* Handle VNEG and VABS. */
11461 else if ((opc2 == 0x01 && opc3 == 0x01)
11462 || (opc2 == 0x00 && opc3 == 0x03))
11463 {
11464 if (!bit (arm_insn_r->arm_insn, 11))
11465 {
11466 if (bit (arm_insn_r->arm_insn, 6))
11467 curr_insn_type = INSN_T0;
11468 else
11469 curr_insn_type = INSN_T1;
11470 }
11471 else
11472 {
11473 if (dp_op_sz)
11474 curr_insn_type = INSN_T1;
11475 else
11476 curr_insn_type = INSN_T2;
11477 }
11478 }
11479 /* Handle VSQRT. */
11480 else if (opc2 == 0x01 && opc3 == 0x03)
11481 {
11482 if (dp_op_sz)
11483 curr_insn_type = INSN_T1;
11484 else
11485 curr_insn_type = INSN_T2;
11486 }
11487 /* Handle VCVT. */
11488 else if (opc2 == 0x07 && opc3 == 0x03)
11489 {
11490 if (!dp_op_sz)
11491 curr_insn_type = INSN_T1;
11492 else
11493 curr_insn_type = INSN_T2;
11494 }
11495 else if (opc3 & 0x01)
11496 {
11497 /* Handle VCVT. */
11498 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11499 {
11500 if (!bit (arm_insn_r->arm_insn, 18))
11501 curr_insn_type = INSN_T2;
11502 else
11503 {
11504 if (dp_op_sz)
11505 curr_insn_type = INSN_T1;
11506 else
11507 curr_insn_type = INSN_T2;
11508 }
11509 }
11510 /* Handle VCVT. */
11511 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11512 {
11513 if (dp_op_sz)
11514 curr_insn_type = INSN_T1;
11515 else
11516 curr_insn_type = INSN_T2;
11517 }
11518 /* Handle VCVTB, VCVTT. */
11519 else if ((opc2 & 0x0e) == 0x02)
11520 curr_insn_type = INSN_T2;
11521 /* Handle VCMP, VCMPE. */
11522 else if ((opc2 & 0x0e) == 0x04)
11523 curr_insn_type = INSN_T3;
11524 }
11525 }
11526
11527 switch (curr_insn_type)
11528 {
11529 case INSN_T0:
11530 reg_vd = reg_vd | (bit_d << 4);
11531 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11532 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11533 arm_insn_r->reg_rec_count = 2;
11534 break;
11535
11536 case INSN_T1:
11537 reg_vd = reg_vd | (bit_d << 4);
11538 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11539 arm_insn_r->reg_rec_count = 1;
11540 break;
11541
11542 case INSN_T2:
11543 reg_vd = (reg_vd << 1) | bit_d;
11544 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11545 arm_insn_r->reg_rec_count = 1;
11546 break;
11547
11548 case INSN_T3:
11549 record_buf[0] = ARM_FPSCR_REGNUM;
11550 arm_insn_r->reg_rec_count = 1;
11551 break;
11552
11553 default:
11554 gdb_assert_not_reached ("no decoding pattern found");
11555 break;
11556 }
11557
11558 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11559 return 0;
11560 }
11561
11562 /* Handling opcode 110 insns. */
11563
11564 static int
11565 arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11566 {
11567 uint32_t op1, op1_ebit, coproc;
11568
11569 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11570 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11571 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11572
11573 if ((coproc & 0x0e) == 0x0a)
11574 {
11575 /* Handle extension register ld/st instructions. */
11576 if (!(op1 & 0x20))
11577 return arm_record_exreg_ld_st_insn (arm_insn_r);
11578
11579 /* 64-bit transfers between arm core and extension registers. */
11580 if ((op1 & 0x3e) == 0x04)
11581 return arm_record_exreg_ld_st_insn (arm_insn_r);
11582 }
11583 else
11584 {
11585 /* Handle coprocessor ld/st instructions. */
11586 if (!(op1 & 0x3a))
11587 {
11588 /* Store. */
11589 if (!op1_ebit)
11590 return arm_record_unsupported_insn (arm_insn_r);
11591 else
11592 /* Load. */
11593 return arm_record_unsupported_insn (arm_insn_r);
11594 }
11595
11596 /* Move to coprocessor from two arm core registers. */
11597 if (op1 == 0x4)
11598 return arm_record_unsupported_insn (arm_insn_r);
11599
11600 /* Move to two arm core registers from coprocessor. */
11601 if (op1 == 0x5)
11602 {
11603 uint32_t reg_t[2];
11604
11605 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11606 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11607 arm_insn_r->reg_rec_count = 2;
11608
11609 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11610 return 0;
11611 }
11612 }
11613 return arm_record_unsupported_insn (arm_insn_r);
11614 }
11615
11616 /* Handling opcode 111 insns. */
11617
11618 static int
11619 arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11620 {
11621 uint32_t op, op1_sbit, op1_ebit, coproc;
11622 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11623 struct regcache *reg_cache = arm_insn_r->regcache;
11624
11625 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
11626 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11627 op1_sbit = bit (arm_insn_r->arm_insn, 24);
11628 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11629 op = bit (arm_insn_r->arm_insn, 4);
11630
11631 /* Handle arm SWI/SVC system call instructions. */
11632 if (op1_sbit)
11633 {
11634 if (tdep->arm_syscall_record != NULL)
11635 {
11636 ULONGEST svc_operand, svc_number;
11637
11638 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11639
11640 if (svc_operand) /* OABI. */
11641 svc_number = svc_operand - 0x900000;
11642 else /* EABI. */
11643 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11644
11645 return tdep->arm_syscall_record (reg_cache, svc_number);
11646 }
11647 else
11648 {
11649 printf_unfiltered (_("no syscall record support\n"));
11650 return -1;
11651 }
11652 }
11653
11654 if ((coproc & 0x0e) == 0x0a)
11655 {
11656 /* VFP data-processing instructions. */
11657 if (!op1_sbit && !op)
11658 return arm_record_vfp_data_proc_insn (arm_insn_r);
11659
11660 /* Advanced SIMD, VFP instructions. */
11661 if (!op1_sbit && op)
11662 return arm_record_vdata_transfer_insn (arm_insn_r);
11663 }
11664 else
11665 {
11666 /* Coprocessor data operations. */
11667 if (!op1_sbit && !op)
11668 return arm_record_unsupported_insn (arm_insn_r);
11669
11670 /* Move to Coprocessor from ARM core register. */
11671 if (!op1_sbit && !op1_ebit && op)
11672 return arm_record_unsupported_insn (arm_insn_r);
11673
11674 /* Move to arm core register from coprocessor. */
11675 if (!op1_sbit && op1_ebit && op)
11676 {
11677 uint32_t record_buf[1];
11678
11679 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11680 if (record_buf[0] == 15)
11681 record_buf[0] = ARM_PS_REGNUM;
11682
11683 arm_insn_r->reg_rec_count = 1;
11684 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11685 record_buf);
11686 return 0;
11687 }
11688 }
11689
11690 return arm_record_unsupported_insn (arm_insn_r);
11691 }
11692
11693 /* Handling opcode 000 insns. */
11694
11695 static int
11696 thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11697 {
11698 uint32_t record_buf[8];
11699 uint32_t reg_src1 = 0;
11700
11701 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11702
11703 record_buf[0] = ARM_PS_REGNUM;
11704 record_buf[1] = reg_src1;
11705 thumb_insn_r->reg_rec_count = 2;
11706
11707 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11708
11709 return 0;
11710 }
11711
11712
11713 /* Handling opcode 001 insns. */
11714
11715 static int
11716 thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11717 {
11718 uint32_t record_buf[8];
11719 uint32_t reg_src1 = 0;
11720
11721 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11722
11723 record_buf[0] = ARM_PS_REGNUM;
11724 record_buf[1] = reg_src1;
11725 thumb_insn_r->reg_rec_count = 2;
11726
11727 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11728
11729 return 0;
11730 }
11731
11732 /* Handling opcode 010 insns. */
11733
11734 static int
11735 thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11736 {
11737 struct regcache *reg_cache = thumb_insn_r->regcache;
11738 uint32_t record_buf[8], record_buf_mem[8];
11739
11740 uint32_t reg_src1 = 0, reg_src2 = 0;
11741 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11742
11743 ULONGEST u_regval[2] = {0};
11744
11745 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11746
11747 if (bit (thumb_insn_r->arm_insn, 12))
11748 {
11749 /* Handle load/store register offset. */
11750 opcode2 = bits (thumb_insn_r->arm_insn, 9, 10);
11751 if (opcode2 >= 12 && opcode2 <= 15)
11752 {
11753 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11754 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11755 record_buf[0] = reg_src1;
11756 thumb_insn_r->reg_rec_count = 1;
11757 }
11758 else if (opcode2 >= 8 && opcode2 <= 10)
11759 {
11760 /* STR(2), STRB(2), STRH(2) . */
11761 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11762 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11763 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11764 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11765 if (8 == opcode2)
11766 record_buf_mem[0] = 4; /* STR (2). */
11767 else if (10 == opcode2)
11768 record_buf_mem[0] = 1; /* STRB (2). */
11769 else if (9 == opcode2)
11770 record_buf_mem[0] = 2; /* STRH (2). */
11771 record_buf_mem[1] = u_regval[0] + u_regval[1];
11772 thumb_insn_r->mem_rec_count = 1;
11773 }
11774 }
11775 else if (bit (thumb_insn_r->arm_insn, 11))
11776 {
11777 /* Handle load from literal pool. */
11778 /* LDR(3). */
11779 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11780 record_buf[0] = reg_src1;
11781 thumb_insn_r->reg_rec_count = 1;
11782 }
11783 else if (opcode1)
11784 {
11785 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11786 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11787 if ((3 == opcode2) && (!opcode3))
11788 {
11789 /* Branch with exchange. */
11790 record_buf[0] = ARM_PS_REGNUM;
11791 thumb_insn_r->reg_rec_count = 1;
11792 }
11793 else
11794 {
11795 /* Format 8; special data processing insns. */
11796 record_buf[0] = ARM_PS_REGNUM;
11797 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11798 | bits (thumb_insn_r->arm_insn, 0, 2));
11799 thumb_insn_r->reg_rec_count = 2;
11800 }
11801 }
11802 else
11803 {
11804 /* Format 5; data processing insns. */
11805 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11806 if (bit (thumb_insn_r->arm_insn, 7))
11807 {
11808 reg_src1 = reg_src1 + 8;
11809 }
11810 record_buf[0] = ARM_PS_REGNUM;
11811 record_buf[1] = reg_src1;
11812 thumb_insn_r->reg_rec_count = 2;
11813 }
11814
11815 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11816 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11817 record_buf_mem);
11818
11819 return 0;
11820 }
11821
11822 /* Handling opcode 001 insns. */
11823
11824 static int
11825 thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11826 {
11827 struct regcache *reg_cache = thumb_insn_r->regcache;
11828 uint32_t record_buf[8], record_buf_mem[8];
11829
11830 uint32_t reg_src1 = 0;
11831 uint32_t opcode = 0, immed_5 = 0;
11832
11833 ULONGEST u_regval = 0;
11834
11835 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11836
11837 if (opcode)
11838 {
11839 /* LDR(1). */
11840 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11841 record_buf[0] = reg_src1;
11842 thumb_insn_r->reg_rec_count = 1;
11843 }
11844 else
11845 {
11846 /* STR(1). */
11847 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11848 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11849 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11850 record_buf_mem[0] = 4;
11851 record_buf_mem[1] = u_regval + (immed_5 * 4);
11852 thumb_insn_r->mem_rec_count = 1;
11853 }
11854
11855 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11856 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11857 record_buf_mem);
11858
11859 return 0;
11860 }
11861
11862 /* Handling opcode 100 insns. */
11863
11864 static int
11865 thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11866 {
11867 struct regcache *reg_cache = thumb_insn_r->regcache;
11868 uint32_t record_buf[8], record_buf_mem[8];
11869
11870 uint32_t reg_src1 = 0;
11871 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11872
11873 ULONGEST u_regval = 0;
11874
11875 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11876
11877 if (3 == opcode)
11878 {
11879 /* LDR(4). */
11880 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11881 record_buf[0] = reg_src1;
11882 thumb_insn_r->reg_rec_count = 1;
11883 }
11884 else if (1 == opcode)
11885 {
11886 /* LDRH(1). */
11887 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11888 record_buf[0] = reg_src1;
11889 thumb_insn_r->reg_rec_count = 1;
11890 }
11891 else if (2 == opcode)
11892 {
11893 /* STR(3). */
11894 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11895 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11896 record_buf_mem[0] = 4;
11897 record_buf_mem[1] = u_regval + (immed_8 * 4);
11898 thumb_insn_r->mem_rec_count = 1;
11899 }
11900 else if (0 == opcode)
11901 {
11902 /* STRH(1). */
11903 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11904 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11905 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11906 record_buf_mem[0] = 2;
11907 record_buf_mem[1] = u_regval + (immed_5 * 2);
11908 thumb_insn_r->mem_rec_count = 1;
11909 }
11910
11911 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11912 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11913 record_buf_mem);
11914
11915 return 0;
11916 }
11917
11918 /* Handling opcode 101 insns. */
11919
11920 static int
11921 thumb_record_misc (insn_decode_record *thumb_insn_r)
11922 {
11923 struct regcache *reg_cache = thumb_insn_r->regcache;
11924
11925 uint32_t opcode = 0, opcode1 = 0, opcode2 = 0;
11926 uint32_t register_bits = 0, register_count = 0;
11927 uint32_t index = 0, start_address = 0;
11928 uint32_t record_buf[24], record_buf_mem[48];
11929 uint32_t reg_src1;
11930
11931 ULONGEST u_regval = 0;
11932
11933 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11934 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
11935 opcode2 = bits (thumb_insn_r->arm_insn, 9, 12);
11936
11937 if (14 == opcode2)
11938 {
11939 /* POP. */
11940 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11941 while (register_bits)
11942 {
11943 if (register_bits & 0x00000001)
11944 record_buf[index++] = register_count;
11945 register_bits = register_bits >> 1;
11946 register_count++;
11947 }
11948 record_buf[index++] = ARM_PS_REGNUM;
11949 record_buf[index++] = ARM_SP_REGNUM;
11950 thumb_insn_r->reg_rec_count = index;
11951 }
11952 else if (10 == opcode2)
11953 {
11954 /* PUSH. */
11955 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11956 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11957 while (register_bits)
11958 {
11959 if (register_bits & 0x00000001)
11960 register_count++;
11961 register_bits = register_bits >> 1;
11962 }
11963 start_address = u_regval - \
11964 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
11965 thumb_insn_r->mem_rec_count = register_count;
11966 while (register_count)
11967 {
11968 record_buf_mem[(register_count * 2) - 1] = start_address;
11969 record_buf_mem[(register_count * 2) - 2] = 4;
11970 start_address = start_address + 4;
11971 register_count--;
11972 }
11973 record_buf[0] = ARM_SP_REGNUM;
11974 thumb_insn_r->reg_rec_count = 1;
11975 }
11976 else if (0x1E == opcode1)
11977 {
11978 /* BKPT insn. */
11979 /* Handle enhanced software breakpoint insn, BKPT. */
11980 /* CPSR is changed to be executed in ARM state, disabling normal
11981 interrupts, entering abort mode. */
11982 /* According to high vector configuration PC is set. */
11983 /* User hits breakpoint and type reverse, in that case, we need to go back with
11984 previous CPSR and Program Counter. */
11985 record_buf[0] = ARM_PS_REGNUM;
11986 record_buf[1] = ARM_LR_REGNUM;
11987 thumb_insn_r->reg_rec_count = 2;
11988 /* We need to save SPSR value, which is not yet done. */
11989 printf_unfiltered (_("Process record does not support instruction "
11990 "0x%0x at address %s.\n"),
11991 thumb_insn_r->arm_insn,
11992 paddress (thumb_insn_r->gdbarch,
11993 thumb_insn_r->this_addr));
11994 return -1;
11995 }
11996 else if ((0 == opcode) || (1 == opcode))
11997 {
11998 /* ADD(5), ADD(6). */
11999 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12000 record_buf[0] = reg_src1;
12001 thumb_insn_r->reg_rec_count = 1;
12002 }
12003 else if (2 == opcode)
12004 {
12005 /* ADD(7), SUB(4). */
12006 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12007 record_buf[0] = ARM_SP_REGNUM;
12008 thumb_insn_r->reg_rec_count = 1;
12009 }
12010
12011 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12012 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12013 record_buf_mem);
12014
12015 return 0;
12016 }
12017
12018 /* Handling opcode 110 insns. */
12019
12020 static int
12021 thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12022 {
12023 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12024 struct regcache *reg_cache = thumb_insn_r->regcache;
12025
12026 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12027 uint32_t reg_src1 = 0;
12028 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
12029 uint32_t index = 0, start_address = 0;
12030 uint32_t record_buf[24], record_buf_mem[48];
12031
12032 ULONGEST u_regval = 0;
12033
12034 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12035 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12036
12037 if (1 == opcode2)
12038 {
12039
12040 /* LDMIA. */
12041 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12042 /* Get Rn. */
12043 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12044 while (register_bits)
12045 {
12046 if (register_bits & 0x00000001)
12047 record_buf[index++] = register_count;
12048 register_bits = register_bits >> 1;
12049 register_count++;
12050 }
12051 record_buf[index++] = reg_src1;
12052 thumb_insn_r->reg_rec_count = index;
12053 }
12054 else if (0 == opcode2)
12055 {
12056 /* It handles both STMIA. */
12057 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12058 /* Get Rn. */
12059 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12060 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12061 while (register_bits)
12062 {
12063 if (register_bits & 0x00000001)
12064 register_count++;
12065 register_bits = register_bits >> 1;
12066 }
12067 start_address = u_regval;
12068 thumb_insn_r->mem_rec_count = register_count;
12069 while (register_count)
12070 {
12071 record_buf_mem[(register_count * 2) - 1] = start_address;
12072 record_buf_mem[(register_count * 2) - 2] = 4;
12073 start_address = start_address + 4;
12074 register_count--;
12075 }
12076 }
12077 else if (0x1F == opcode1)
12078 {
12079 /* Handle arm syscall insn. */
12080 if (tdep->arm_syscall_record != NULL)
12081 {
12082 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12083 ret = tdep->arm_syscall_record (reg_cache, u_regval);
12084 }
12085 else
12086 {
12087 printf_unfiltered (_("no syscall record support\n"));
12088 return -1;
12089 }
12090 }
12091
12092 /* B (1), conditional branch is automatically taken care in process_record,
12093 as PC is saved there. */
12094
12095 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12096 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12097 record_buf_mem);
12098
12099 return ret;
12100 }
12101
12102 /* Handling opcode 111 insns. */
12103
12104 static int
12105 thumb_record_branch (insn_decode_record *thumb_insn_r)
12106 {
12107 uint32_t record_buf[8];
12108 uint32_t bits_h = 0;
12109
12110 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12111
12112 if (2 == bits_h || 3 == bits_h)
12113 {
12114 /* BL */
12115 record_buf[0] = ARM_LR_REGNUM;
12116 thumb_insn_r->reg_rec_count = 1;
12117 }
12118 else if (1 == bits_h)
12119 {
12120 /* BLX(1). */
12121 record_buf[0] = ARM_PS_REGNUM;
12122 record_buf[1] = ARM_LR_REGNUM;
12123 thumb_insn_r->reg_rec_count = 2;
12124 }
12125
12126 /* B(2) is automatically taken care in process_record, as PC is
12127 saved there. */
12128
12129 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12130
12131 return 0;
12132 }
12133
12134 /* Handler for thumb2 load/store multiple instructions. */
12135
12136 static int
12137 thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12138 {
12139 struct regcache *reg_cache = thumb2_insn_r->regcache;
12140
12141 uint32_t reg_rn, op;
12142 uint32_t register_bits = 0, register_count = 0;
12143 uint32_t index = 0, start_address = 0;
12144 uint32_t record_buf[24], record_buf_mem[48];
12145
12146 ULONGEST u_regval = 0;
12147
12148 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12149 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12150
12151 if (0 == op || 3 == op)
12152 {
12153 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12154 {
12155 /* Handle RFE instruction. */
12156 record_buf[0] = ARM_PS_REGNUM;
12157 thumb2_insn_r->reg_rec_count = 1;
12158 }
12159 else
12160 {
12161 /* Handle SRS instruction after reading banked SP. */
12162 return arm_record_unsupported_insn (thumb2_insn_r);
12163 }
12164 }
12165 else if (1 == op || 2 == op)
12166 {
12167 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12168 {
12169 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12170 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12171 while (register_bits)
12172 {
12173 if (register_bits & 0x00000001)
12174 record_buf[index++] = register_count;
12175
12176 register_count++;
12177 register_bits = register_bits >> 1;
12178 }
12179 record_buf[index++] = reg_rn;
12180 record_buf[index++] = ARM_PS_REGNUM;
12181 thumb2_insn_r->reg_rec_count = index;
12182 }
12183 else
12184 {
12185 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12186 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12187 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12188 while (register_bits)
12189 {
12190 if (register_bits & 0x00000001)
12191 register_count++;
12192
12193 register_bits = register_bits >> 1;
12194 }
12195
12196 if (1 == op)
12197 {
12198 /* Start address calculation for LDMDB/LDMEA. */
12199 start_address = u_regval;
12200 }
12201 else if (2 == op)
12202 {
12203 /* Start address calculation for LDMDB/LDMEA. */
12204 start_address = u_regval - register_count * 4;
12205 }
12206
12207 thumb2_insn_r->mem_rec_count = register_count;
12208 while (register_count)
12209 {
12210 record_buf_mem[register_count * 2 - 1] = start_address;
12211 record_buf_mem[register_count * 2 - 2] = 4;
12212 start_address = start_address + 4;
12213 register_count--;
12214 }
12215 record_buf[0] = reg_rn;
12216 record_buf[1] = ARM_PS_REGNUM;
12217 thumb2_insn_r->reg_rec_count = 2;
12218 }
12219 }
12220
12221 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12222 record_buf_mem);
12223 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12224 record_buf);
12225 return ARM_RECORD_SUCCESS;
12226 }
12227
12228 /* Handler for thumb2 load/store (dual/exclusive) and table branch
12229 instructions. */
12230
12231 static int
12232 thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12233 {
12234 struct regcache *reg_cache = thumb2_insn_r->regcache;
12235
12236 uint32_t reg_rd, reg_rn, offset_imm;
12237 uint32_t reg_dest1, reg_dest2;
12238 uint32_t address, offset_addr;
12239 uint32_t record_buf[8], record_buf_mem[8];
12240 uint32_t op1, op2, op3;
12241
12242 ULONGEST u_regval[2];
12243
12244 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12245 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12246 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12247
12248 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12249 {
12250 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12251 {
12252 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12253 record_buf[0] = reg_dest1;
12254 record_buf[1] = ARM_PS_REGNUM;
12255 thumb2_insn_r->reg_rec_count = 2;
12256 }
12257
12258 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12259 {
12260 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12261 record_buf[2] = reg_dest2;
12262 thumb2_insn_r->reg_rec_count = 3;
12263 }
12264 }
12265 else
12266 {
12267 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12268 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12269
12270 if (0 == op1 && 0 == op2)
12271 {
12272 /* Handle STREX. */
12273 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12274 address = u_regval[0] + (offset_imm * 4);
12275 record_buf_mem[0] = 4;
12276 record_buf_mem[1] = address;
12277 thumb2_insn_r->mem_rec_count = 1;
12278 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12279 record_buf[0] = reg_rd;
12280 thumb2_insn_r->reg_rec_count = 1;
12281 }
12282 else if (1 == op1 && 0 == op2)
12283 {
12284 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12285 record_buf[0] = reg_rd;
12286 thumb2_insn_r->reg_rec_count = 1;
12287 address = u_regval[0];
12288 record_buf_mem[1] = address;
12289
12290 if (4 == op3)
12291 {
12292 /* Handle STREXB. */
12293 record_buf_mem[0] = 1;
12294 thumb2_insn_r->mem_rec_count = 1;
12295 }
12296 else if (5 == op3)
12297 {
12298 /* Handle STREXH. */
12299 record_buf_mem[0] = 2 ;
12300 thumb2_insn_r->mem_rec_count = 1;
12301 }
12302 else if (7 == op3)
12303 {
12304 /* Handle STREXD. */
12305 address = u_regval[0];
12306 record_buf_mem[0] = 4;
12307 record_buf_mem[2] = 4;
12308 record_buf_mem[3] = address + 4;
12309 thumb2_insn_r->mem_rec_count = 2;
12310 }
12311 }
12312 else
12313 {
12314 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12315
12316 if (bit (thumb2_insn_r->arm_insn, 24))
12317 {
12318 if (bit (thumb2_insn_r->arm_insn, 23))
12319 offset_addr = u_regval[0] + (offset_imm * 4);
12320 else
12321 offset_addr = u_regval[0] - (offset_imm * 4);
12322
12323 address = offset_addr;
12324 }
12325 else
12326 address = u_regval[0];
12327
12328 record_buf_mem[0] = 4;
12329 record_buf_mem[1] = address;
12330 record_buf_mem[2] = 4;
12331 record_buf_mem[3] = address + 4;
12332 thumb2_insn_r->mem_rec_count = 2;
12333 record_buf[0] = reg_rn;
12334 thumb2_insn_r->reg_rec_count = 1;
12335 }
12336 }
12337
12338 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12339 record_buf);
12340 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12341 record_buf_mem);
12342 return ARM_RECORD_SUCCESS;
12343 }
12344
12345 /* Handler for thumb2 data processing (shift register and modified immediate)
12346 instructions. */
12347
12348 static int
12349 thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12350 {
12351 uint32_t reg_rd, op;
12352 uint32_t record_buf[8];
12353
12354 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12355 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12356
12357 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12358 {
12359 record_buf[0] = ARM_PS_REGNUM;
12360 thumb2_insn_r->reg_rec_count = 1;
12361 }
12362 else
12363 {
12364 record_buf[0] = reg_rd;
12365 record_buf[1] = ARM_PS_REGNUM;
12366 thumb2_insn_r->reg_rec_count = 2;
12367 }
12368
12369 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12370 record_buf);
12371 return ARM_RECORD_SUCCESS;
12372 }
12373
12374 /* Generic handler for thumb2 instructions which effect destination and PS
12375 registers. */
12376
12377 static int
12378 thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12379 {
12380 uint32_t reg_rd;
12381 uint32_t record_buf[8];
12382
12383 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12384
12385 record_buf[0] = reg_rd;
12386 record_buf[1] = ARM_PS_REGNUM;
12387 thumb2_insn_r->reg_rec_count = 2;
12388
12389 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12390 record_buf);
12391 return ARM_RECORD_SUCCESS;
12392 }
12393
12394 /* Handler for thumb2 branch and miscellaneous control instructions. */
12395
12396 static int
12397 thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12398 {
12399 uint32_t op, op1, op2;
12400 uint32_t record_buf[8];
12401
12402 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12403 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12404 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12405
12406 /* Handle MSR insn. */
12407 if (!(op1 & 0x2) && 0x38 == op)
12408 {
12409 if (!(op2 & 0x3))
12410 {
12411 /* CPSR is going to be changed. */
12412 record_buf[0] = ARM_PS_REGNUM;
12413 thumb2_insn_r->reg_rec_count = 1;
12414 }
12415 else
12416 {
12417 arm_record_unsupported_insn(thumb2_insn_r);
12418 return -1;
12419 }
12420 }
12421 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12422 {
12423 /* BLX. */
12424 record_buf[0] = ARM_PS_REGNUM;
12425 record_buf[1] = ARM_LR_REGNUM;
12426 thumb2_insn_r->reg_rec_count = 2;
12427 }
12428
12429 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12430 record_buf);
12431 return ARM_RECORD_SUCCESS;
12432 }
12433
12434 /* Handler for thumb2 store single data item instructions. */
12435
12436 static int
12437 thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12438 {
12439 struct regcache *reg_cache = thumb2_insn_r->regcache;
12440
12441 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12442 uint32_t address, offset_addr;
12443 uint32_t record_buf[8], record_buf_mem[8];
12444 uint32_t op1, op2;
12445
12446 ULONGEST u_regval[2];
12447
12448 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12449 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12450 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12451 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12452
12453 if (bit (thumb2_insn_r->arm_insn, 23))
12454 {
12455 /* T2 encoding. */
12456 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12457 offset_addr = u_regval[0] + offset_imm;
12458 address = offset_addr;
12459 }
12460 else
12461 {
12462 /* T3 encoding. */
12463 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12464 {
12465 /* Handle STRB (register). */
12466 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12467 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12468 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12469 offset_addr = u_regval[1] << shift_imm;
12470 address = u_regval[0] + offset_addr;
12471 }
12472 else
12473 {
12474 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12475 if (bit (thumb2_insn_r->arm_insn, 10))
12476 {
12477 if (bit (thumb2_insn_r->arm_insn, 9))
12478 offset_addr = u_regval[0] + offset_imm;
12479 else
12480 offset_addr = u_regval[0] - offset_imm;
12481
12482 address = offset_addr;
12483 }
12484 else
12485 address = u_regval[0];
12486 }
12487 }
12488
12489 switch (op1)
12490 {
12491 /* Store byte instructions. */
12492 case 4:
12493 case 0:
12494 record_buf_mem[0] = 1;
12495 break;
12496 /* Store half word instructions. */
12497 case 1:
12498 case 5:
12499 record_buf_mem[0] = 2;
12500 break;
12501 /* Store word instructions. */
12502 case 2:
12503 case 6:
12504 record_buf_mem[0] = 4;
12505 break;
12506
12507 default:
12508 gdb_assert_not_reached ("no decoding pattern found");
12509 break;
12510 }
12511
12512 record_buf_mem[1] = address;
12513 thumb2_insn_r->mem_rec_count = 1;
12514 record_buf[0] = reg_rn;
12515 thumb2_insn_r->reg_rec_count = 1;
12516
12517 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12518 record_buf);
12519 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12520 record_buf_mem);
12521 return ARM_RECORD_SUCCESS;
12522 }
12523
12524 /* Handler for thumb2 load memory hints instructions. */
12525
12526 static int
12527 thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12528 {
12529 uint32_t record_buf[8];
12530 uint32_t reg_rt, reg_rn;
12531
12532 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12533 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12534
12535 if (ARM_PC_REGNUM != reg_rt)
12536 {
12537 record_buf[0] = reg_rt;
12538 record_buf[1] = reg_rn;
12539 record_buf[2] = ARM_PS_REGNUM;
12540 thumb2_insn_r->reg_rec_count = 3;
12541
12542 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12543 record_buf);
12544 return ARM_RECORD_SUCCESS;
12545 }
12546
12547 return ARM_RECORD_FAILURE;
12548 }
12549
12550 /* Handler for thumb2 load word instructions. */
12551
12552 static int
12553 thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12554 {
12555 uint32_t record_buf[8];
12556
12557 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12558 record_buf[1] = ARM_PS_REGNUM;
12559 thumb2_insn_r->reg_rec_count = 2;
12560
12561 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12562 record_buf);
12563 return ARM_RECORD_SUCCESS;
12564 }
12565
12566 /* Handler for thumb2 long multiply, long multiply accumulate, and
12567 divide instructions. */
12568
12569 static int
12570 thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12571 {
12572 uint32_t opcode1 = 0, opcode2 = 0;
12573 uint32_t record_buf[8];
12574
12575 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12576 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12577
12578 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12579 {
12580 /* Handle SMULL, UMULL, SMULAL. */
12581 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12582 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12583 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12584 record_buf[2] = ARM_PS_REGNUM;
12585 thumb2_insn_r->reg_rec_count = 3;
12586 }
12587 else if (1 == opcode1 || 3 == opcode2)
12588 {
12589 /* Handle SDIV and UDIV. */
12590 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12591 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12592 record_buf[2] = ARM_PS_REGNUM;
12593 thumb2_insn_r->reg_rec_count = 3;
12594 }
12595 else
12596 return ARM_RECORD_FAILURE;
12597
12598 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12599 record_buf);
12600 return ARM_RECORD_SUCCESS;
12601 }
12602
12603 /* Record handler for thumb32 coprocessor instructions. */
12604
12605 static int
12606 thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12607 {
12608 if (bit (thumb2_insn_r->arm_insn, 25))
12609 return arm_record_coproc_data_proc (thumb2_insn_r);
12610 else
12611 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12612 }
12613
12614 /* Record handler for advance SIMD structure load/store instructions. */
12615
12616 static int
12617 thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12618 {
12619 struct regcache *reg_cache = thumb2_insn_r->regcache;
12620 uint32_t l_bit, a_bit, b_bits;
12621 uint32_t record_buf[128], record_buf_mem[128];
12622 uint32_t reg_rn, reg_vd, address, f_elem;
12623 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12624 uint8_t f_ebytes;
12625
12626 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12627 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12628 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12629 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12630 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12631 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12632 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
12633 f_elem = 8 / f_ebytes;
12634
12635 if (!l_bit)
12636 {
12637 ULONGEST u_regval = 0;
12638 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12639 address = u_regval;
12640
12641 if (!a_bit)
12642 {
12643 /* Handle VST1. */
12644 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12645 {
12646 if (b_bits == 0x07)
12647 bf_regs = 1;
12648 else if (b_bits == 0x0a)
12649 bf_regs = 2;
12650 else if (b_bits == 0x06)
12651 bf_regs = 3;
12652 else if (b_bits == 0x02)
12653 bf_regs = 4;
12654 else
12655 bf_regs = 0;
12656
12657 for (index_r = 0; index_r < bf_regs; index_r++)
12658 {
12659 for (index_e = 0; index_e < f_elem; index_e++)
12660 {
12661 record_buf_mem[index_m++] = f_ebytes;
12662 record_buf_mem[index_m++] = address;
12663 address = address + f_ebytes;
12664 thumb2_insn_r->mem_rec_count += 1;
12665 }
12666 }
12667 }
12668 /* Handle VST2. */
12669 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12670 {
12671 if (b_bits == 0x09 || b_bits == 0x08)
12672 bf_regs = 1;
12673 else if (b_bits == 0x03)
12674 bf_regs = 2;
12675 else
12676 bf_regs = 0;
12677
12678 for (index_r = 0; index_r < bf_regs; index_r++)
12679 for (index_e = 0; index_e < f_elem; index_e++)
12680 {
12681 for (loop_t = 0; loop_t < 2; loop_t++)
12682 {
12683 record_buf_mem[index_m++] = f_ebytes;
12684 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12685 thumb2_insn_r->mem_rec_count += 1;
12686 }
12687 address = address + (2 * f_ebytes);
12688 }
12689 }
12690 /* Handle VST3. */
12691 else if ((b_bits & 0x0e) == 0x04)
12692 {
12693 for (index_e = 0; index_e < f_elem; index_e++)
12694 {
12695 for (loop_t = 0; loop_t < 3; loop_t++)
12696 {
12697 record_buf_mem[index_m++] = f_ebytes;
12698 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12699 thumb2_insn_r->mem_rec_count += 1;
12700 }
12701 address = address + (3 * f_ebytes);
12702 }
12703 }
12704 /* Handle VST4. */
12705 else if (!(b_bits & 0x0e))
12706 {
12707 for (index_e = 0; index_e < f_elem; index_e++)
12708 {
12709 for (loop_t = 0; loop_t < 4; loop_t++)
12710 {
12711 record_buf_mem[index_m++] = f_ebytes;
12712 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12713 thumb2_insn_r->mem_rec_count += 1;
12714 }
12715 address = address + (4 * f_ebytes);
12716 }
12717 }
12718 }
12719 else
12720 {
12721 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12722
12723 if (bft_size == 0x00)
12724 f_ebytes = 1;
12725 else if (bft_size == 0x01)
12726 f_ebytes = 2;
12727 else if (bft_size == 0x02)
12728 f_ebytes = 4;
12729 else
12730 f_ebytes = 0;
12731
12732 /* Handle VST1. */
12733 if (!(b_bits & 0x0b) || b_bits == 0x08)
12734 thumb2_insn_r->mem_rec_count = 1;
12735 /* Handle VST2. */
12736 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12737 thumb2_insn_r->mem_rec_count = 2;
12738 /* Handle VST3. */
12739 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12740 thumb2_insn_r->mem_rec_count = 3;
12741 /* Handle VST4. */
12742 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12743 thumb2_insn_r->mem_rec_count = 4;
12744
12745 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12746 {
12747 record_buf_mem[index_m] = f_ebytes;
12748 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12749 }
12750 }
12751 }
12752 else
12753 {
12754 if (!a_bit)
12755 {
12756 /* Handle VLD1. */
12757 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12758 thumb2_insn_r->reg_rec_count = 1;
12759 /* Handle VLD2. */
12760 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12761 thumb2_insn_r->reg_rec_count = 2;
12762 /* Handle VLD3. */
12763 else if ((b_bits & 0x0e) == 0x04)
12764 thumb2_insn_r->reg_rec_count = 3;
12765 /* Handle VLD4. */
12766 else if (!(b_bits & 0x0e))
12767 thumb2_insn_r->reg_rec_count = 4;
12768 }
12769 else
12770 {
12771 /* Handle VLD1. */
12772 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12773 thumb2_insn_r->reg_rec_count = 1;
12774 /* Handle VLD2. */
12775 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12776 thumb2_insn_r->reg_rec_count = 2;
12777 /* Handle VLD3. */
12778 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12779 thumb2_insn_r->reg_rec_count = 3;
12780 /* Handle VLD4. */
12781 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12782 thumb2_insn_r->reg_rec_count = 4;
12783
12784 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12785 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12786 }
12787 }
12788
12789 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12790 {
12791 record_buf[index_r] = reg_rn;
12792 thumb2_insn_r->reg_rec_count += 1;
12793 }
12794
12795 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12796 record_buf);
12797 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12798 record_buf_mem);
12799 return 0;
12800 }
12801
12802 /* Decodes thumb2 instruction type and invokes its record handler. */
12803
12804 static unsigned int
12805 thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12806 {
12807 uint32_t op, op1, op2;
12808
12809 op = bit (thumb2_insn_r->arm_insn, 15);
12810 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12811 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12812
12813 if (op1 == 0x01)
12814 {
12815 if (!(op2 & 0x64 ))
12816 {
12817 /* Load/store multiple instruction. */
12818 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12819 }
12820 else if (!((op2 & 0x64) ^ 0x04))
12821 {
12822 /* Load/store (dual/exclusive) and table branch instruction. */
12823 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12824 }
12825 else if (!((op2 & 0x20) ^ 0x20))
12826 {
12827 /* Data-processing (shifted register). */
12828 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12829 }
12830 else if (op2 & 0x40)
12831 {
12832 /* Co-processor instructions. */
12833 return thumb2_record_coproc_insn (thumb2_insn_r);
12834 }
12835 }
12836 else if (op1 == 0x02)
12837 {
12838 if (op)
12839 {
12840 /* Branches and miscellaneous control instructions. */
12841 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12842 }
12843 else if (op2 & 0x20)
12844 {
12845 /* Data-processing (plain binary immediate) instruction. */
12846 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12847 }
12848 else
12849 {
12850 /* Data-processing (modified immediate). */
12851 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12852 }
12853 }
12854 else if (op1 == 0x03)
12855 {
12856 if (!(op2 & 0x71 ))
12857 {
12858 /* Store single data item. */
12859 return thumb2_record_str_single_data (thumb2_insn_r);
12860 }
12861 else if (!((op2 & 0x71) ^ 0x10))
12862 {
12863 /* Advanced SIMD or structure load/store instructions. */
12864 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
12865 }
12866 else if (!((op2 & 0x67) ^ 0x01))
12867 {
12868 /* Load byte, memory hints instruction. */
12869 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12870 }
12871 else if (!((op2 & 0x67) ^ 0x03))
12872 {
12873 /* Load halfword, memory hints instruction. */
12874 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12875 }
12876 else if (!((op2 & 0x67) ^ 0x05))
12877 {
12878 /* Load word instruction. */
12879 return thumb2_record_ld_word (thumb2_insn_r);
12880 }
12881 else if (!((op2 & 0x70) ^ 0x20))
12882 {
12883 /* Data-processing (register) instruction. */
12884 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12885 }
12886 else if (!((op2 & 0x78) ^ 0x30))
12887 {
12888 /* Multiply, multiply accumulate, abs diff instruction. */
12889 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12890 }
12891 else if (!((op2 & 0x78) ^ 0x38))
12892 {
12893 /* Long multiply, long multiply accumulate, and divide. */
12894 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12895 }
12896 else if (op2 & 0x40)
12897 {
12898 /* Co-processor instructions. */
12899 return thumb2_record_coproc_insn (thumb2_insn_r);
12900 }
12901 }
12902
12903 return -1;
12904 }
12905
12906 /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12907 and positive val on fauilure. */
12908
12909 static int
12910 extract_arm_insn (insn_decode_record *insn_record, uint32_t insn_size)
12911 {
12912 gdb_byte buf[insn_size];
12913
12914 memset (&buf[0], 0, insn_size);
12915
12916 if (target_read_memory (insn_record->this_addr, &buf[0], insn_size))
12917 return 1;
12918 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12919 insn_size,
12920 gdbarch_byte_order_for_code (insn_record->gdbarch));
12921 return 0;
12922 }
12923
12924 typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
12925
12926 /* Decode arm/thumb insn depending on condition cods and opcodes; and
12927 dispatch it. */
12928
12929 static int
12930 decode_insn (insn_decode_record *arm_record, record_type_t record_type,
12931 uint32_t insn_size)
12932 {
12933
12934 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
12935 instruction. */
12936 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
12937 {
12938 arm_record_data_proc_misc_ld_str, /* 000. */
12939 arm_record_data_proc_imm, /* 001. */
12940 arm_record_ld_st_imm_offset, /* 010. */
12941 arm_record_ld_st_reg_offset, /* 011. */
12942 arm_record_ld_st_multiple, /* 100. */
12943 arm_record_b_bl, /* 101. */
12944 arm_record_asimd_vfp_coproc, /* 110. */
12945 arm_record_coproc_data_proc /* 111. */
12946 };
12947
12948 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
12949 instruction. */
12950 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
12951 { \
12952 thumb_record_shift_add_sub, /* 000. */
12953 thumb_record_add_sub_cmp_mov, /* 001. */
12954 thumb_record_ld_st_reg_offset, /* 010. */
12955 thumb_record_ld_st_imm_offset, /* 011. */
12956 thumb_record_ld_st_stack, /* 100. */
12957 thumb_record_misc, /* 101. */
12958 thumb_record_ldm_stm_swi, /* 110. */
12959 thumb_record_branch /* 111. */
12960 };
12961
12962 uint32_t ret = 0; /* return value: negative:failure 0:success. */
12963 uint32_t insn_id = 0;
12964
12965 if (extract_arm_insn (arm_record, insn_size))
12966 {
12967 if (record_debug)
12968 {
12969 printf_unfiltered (_("Process record: error reading memory at "
12970 "addr %s len = %d.\n"),
12971 paddress (arm_record->gdbarch,
12972 arm_record->this_addr), insn_size);
12973 }
12974 return -1;
12975 }
12976 else if (ARM_RECORD == record_type)
12977 {
12978 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
12979 insn_id = bits (arm_record->arm_insn, 25, 27);
12980
12981 if (arm_record->cond == 0xf)
12982 ret = arm_record_extension_space (arm_record);
12983 else
12984 {
12985 /* If this insn has fallen into extension space
12986 then we need not decode it anymore. */
12987 ret = arm_handle_insn[insn_id] (arm_record);
12988 }
12989 if (ret != ARM_RECORD_SUCCESS)
12990 {
12991 arm_record_unsupported_insn (arm_record);
12992 ret = -1;
12993 }
12994 }
12995 else if (THUMB_RECORD == record_type)
12996 {
12997 /* As thumb does not have condition codes, we set negative. */
12998 arm_record->cond = -1;
12999 insn_id = bits (arm_record->arm_insn, 13, 15);
13000 ret = thumb_handle_insn[insn_id] (arm_record);
13001 if (ret != ARM_RECORD_SUCCESS)
13002 {
13003 arm_record_unsupported_insn (arm_record);
13004 ret = -1;
13005 }
13006 }
13007 else if (THUMB2_RECORD == record_type)
13008 {
13009 /* As thumb does not have condition codes, we set negative. */
13010 arm_record->cond = -1;
13011
13012 /* Swap first half of 32bit thumb instruction with second half. */
13013 arm_record->arm_insn
13014 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
13015
13016 ret = thumb2_record_decode_insn_handler (arm_record);
13017
13018 if (ret != ARM_RECORD_SUCCESS)
13019 {
13020 arm_record_unsupported_insn (arm_record);
13021 ret = -1;
13022 }
13023 }
13024 else
13025 {
13026 /* Throw assertion. */
13027 gdb_assert_not_reached ("not a valid instruction, could not decode");
13028 }
13029
13030 return ret;
13031 }
13032
13033
13034 /* Cleans up local record registers and memory allocations. */
13035
13036 static void
13037 deallocate_reg_mem (insn_decode_record *record)
13038 {
13039 xfree (record->arm_regs);
13040 xfree (record->arm_mems);
13041 }
13042
13043
13044 /* Parse the current instruction and record the values of the registers and
13045 memory that will be changed in current instruction to record_arch_list".
13046 Return -1 if something is wrong. */
13047
13048 int
13049 arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13050 CORE_ADDR insn_addr)
13051 {
13052
13053 uint32_t no_of_rec = 0;
13054 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13055 ULONGEST t_bit = 0, insn_id = 0;
13056
13057 ULONGEST u_regval = 0;
13058
13059 insn_decode_record arm_record;
13060
13061 memset (&arm_record, 0, sizeof (insn_decode_record));
13062 arm_record.regcache = regcache;
13063 arm_record.this_addr = insn_addr;
13064 arm_record.gdbarch = gdbarch;
13065
13066
13067 if (record_debug > 1)
13068 {
13069 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
13070 "addr = %s\n",
13071 paddress (gdbarch, arm_record.this_addr));
13072 }
13073
13074 if (extract_arm_insn (&arm_record, 2))
13075 {
13076 if (record_debug)
13077 {
13078 printf_unfiltered (_("Process record: error reading memory at "
13079 "addr %s len = %d.\n"),
13080 paddress (arm_record.gdbarch,
13081 arm_record.this_addr), 2);
13082 }
13083 return -1;
13084 }
13085
13086 /* Check the insn, whether it is thumb or arm one. */
13087
13088 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13089 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13090
13091
13092 if (!(u_regval & t_bit))
13093 {
13094 /* We are decoding arm insn. */
13095 ret = decode_insn (&arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13096 }
13097 else
13098 {
13099 insn_id = bits (arm_record.arm_insn, 11, 15);
13100 /* is it thumb2 insn? */
13101 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
13102 {
13103 ret = decode_insn (&arm_record, THUMB2_RECORD,
13104 THUMB2_INSN_SIZE_BYTES);
13105 }
13106 else
13107 {
13108 /* We are decoding thumb insn. */
13109 ret = decode_insn (&arm_record, THUMB_RECORD, THUMB_INSN_SIZE_BYTES);
13110 }
13111 }
13112
13113 if (0 == ret)
13114 {
13115 /* Record registers. */
13116 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
13117 if (arm_record.arm_regs)
13118 {
13119 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13120 {
13121 if (record_full_arch_list_add_reg
13122 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
13123 ret = -1;
13124 }
13125 }
13126 /* Record memories. */
13127 if (arm_record.arm_mems)
13128 {
13129 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13130 {
13131 if (record_full_arch_list_add_mem
13132 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
13133 arm_record.arm_mems[no_of_rec].len))
13134 ret = -1;
13135 }
13136 }
13137
13138 if (record_full_arch_list_add_end ())
13139 ret = -1;
13140 }
13141
13142
13143 deallocate_reg_mem (&arm_record);
13144
13145 return ret;
13146 }
This page took 0.348941 seconds and 4 git commands to generate.