0ee3e24788f6c3b0751adb97e7d33e143a3b8e61
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "symfile.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "solib-svr4.h"
37 #include "osabi.h"
38
39 #include "arm-tdep.h"
40 #include "gdb/sim-arm.h"
41
42 #include "elf-bfd.h"
43 #include "coff/internal.h"
44 #include "elf/arm.h"
45
46 #include "gdb_assert.h"
47
48 static int arm_debug;
49
50 /* Each OS has a different mechanism for accessing the various
51 registers stored in the sigcontext structure.
52
53 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
54 function pointer) which may be used to determine the addresses
55 of the various saved registers in the sigcontext structure.
56
57 For the ARM target, there are three parameters to this function.
58 The first is the pc value of the frame under consideration, the
59 second the stack pointer of this frame, and the last is the
60 register number to fetch.
61
62 If the tm.h file does not define this macro, then it's assumed that
63 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
64 be 0.
65
66 When it comes time to multi-arching this code, see the identically
67 named machinery in ia64-tdep.c for an example of how it could be
68 done. It should not be necessary to modify the code below where
69 this macro is used. */
70
71 #ifdef SIGCONTEXT_REGISTER_ADDRESS
72 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
73 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
74 #endif
75 #else
76 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
77 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
78 #endif
79
80 /* Macros for setting and testing a bit in a minimal symbol that marks
81 it as Thumb function. The MSB of the minimal symbol's "info" field
82 is used for this purpose. This field is already being used to store
83 the symbol size, so the assumption is that the symbol size cannot
84 exceed 2^31.
85
86 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
87 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
88 MSYMBOL_SIZE Returns the size of the minimal symbol,
89 i.e. the "info" field with the "special" bit
90 masked out. */
91
92 #define MSYMBOL_SET_SPECIAL(msym) \
93 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
94 | 0x80000000)
95
96 #define MSYMBOL_IS_SPECIAL(msym) \
97 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
98
99 #define MSYMBOL_SIZE(msym) \
100 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
101
102 /* The list of available "set arm ..." and "show arm ..." commands. */
103 static struct cmd_list_element *setarmcmdlist = NULL;
104 static struct cmd_list_element *showarmcmdlist = NULL;
105
106 /* The type of floating-point to use. Keep this in sync with enum
107 arm_float_model, and the help string in _initialize_arm_tdep. */
108 static const char *fp_model_strings[] =
109 {
110 "auto",
111 "softfpa",
112 "fpa",
113 "softvfp",
114 "vfp"
115 };
116
117 /* A variable that can be configured by the user. */
118 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
119 static const char *current_fp_model = "auto";
120
121 /* Number of different reg name sets (options). */
122 static int num_disassembly_options;
123
124 /* We have more registers than the disassembler as gdb can print the value
125 of special registers as well.
126 The general register names are overwritten by whatever is being used by
127 the disassembler at the moment. We also adjust the case of cpsr and fps. */
128
129 /* Initial value: Register names used in ARM's ISA documentation. */
130 static char * arm_register_name_strings[] =
131 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
132 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
133 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
134 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
135 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
136 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
137 "fps", "cpsr" }; /* 24 25 */
138 static char **arm_register_names = arm_register_name_strings;
139
140 /* Valid register name styles. */
141 static const char **valid_disassembly_styles;
142
143 /* Disassembly style to use. Default to "std" register names. */
144 static const char *disassembly_style;
145 /* Index to that option in the opcodes table. */
146 static int current_option;
147
148 /* This is used to keep the bfd arch_info in sync with the disassembly
149 style. */
150 static void set_disassembly_style_sfunc(char *, int,
151 struct cmd_list_element *);
152 static void set_disassembly_style (void);
153
154 static void convert_from_extended (const struct floatformat *, const void *,
155 void *);
156 static void convert_to_extended (const struct floatformat *, void *,
157 const void *);
158
159 /* Define other aspects of the stack frame. We keep the offsets of
160 all saved registers, 'cause we need 'em a lot! We also keep the
161 current size of the stack frame, and the offset of the frame
162 pointer from the stack pointer (for frameless functions, and when
163 we're still in the prologue of a function with a frame). */
164
165 struct frame_extra_info
166 {
167 int framesize;
168 int frameoffset;
169 int framereg;
170 };
171
172 /* Addresses for calling Thumb functions have the bit 0 set.
173 Here are some macros to test, set, or clear bit 0 of addresses. */
174 #define IS_THUMB_ADDR(addr) ((addr) & 1)
175 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
176 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
177
178 static int
179 arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
180 {
181 return (DEPRECATED_FRAME_SAVED_PC (thisframe) >= LOWEST_PC);
182 }
183
184 /* Set to true if the 32-bit mode is in use. */
185
186 int arm_apcs_32 = 1;
187
188 /* Flag set by arm_fix_call_dummy that tells whether the target
189 function is a Thumb function. This flag is checked by
190 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
191 its use in valops.c) to pass the function address as an additional
192 parameter. */
193
194 static int target_is_thumb;
195
196 /* Flag set by arm_fix_call_dummy that tells whether the calling
197 function is a Thumb function. This flag is checked by
198 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
199
200 static int caller_is_thumb;
201
202 /* Determine if the program counter specified in MEMADDR is in a Thumb
203 function. */
204
205 int
206 arm_pc_is_thumb (CORE_ADDR memaddr)
207 {
208 struct minimal_symbol *sym;
209
210 /* If bit 0 of the address is set, assume this is a Thumb address. */
211 if (IS_THUMB_ADDR (memaddr))
212 return 1;
213
214 /* Thumb functions have a "special" bit set in minimal symbols. */
215 sym = lookup_minimal_symbol_by_pc (memaddr);
216 if (sym)
217 {
218 return (MSYMBOL_IS_SPECIAL (sym));
219 }
220 else
221 {
222 return 0;
223 }
224 }
225
226 /* Determine if the program counter specified in MEMADDR is in a call
227 dummy being called from a Thumb function. */
228
229 int
230 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
231 {
232 CORE_ADDR sp = read_sp ();
233
234 /* FIXME: Until we switch for the new call dummy macros, this heuristic
235 is the best we can do. We are trying to determine if the pc is on
236 the stack, which (hopefully) will only happen in a call dummy.
237 We hope the current stack pointer is not so far alway from the dummy
238 frame location (true if we have not pushed large data structures or
239 gone too many levels deep) and that our 1024 is not enough to consider
240 code regions as part of the stack (true for most practical purposes). */
241 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
242 return caller_is_thumb;
243 else
244 return 0;
245 }
246
247 /* Remove useless bits from addresses in a running program. */
248 static CORE_ADDR
249 arm_addr_bits_remove (CORE_ADDR val)
250 {
251 if (arm_apcs_32)
252 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
253 else
254 return (val & 0x03fffffc);
255 }
256
257 /* When reading symbols, we need to zap the low bit of the address,
258 which may be set to 1 for Thumb functions. */
259 static CORE_ADDR
260 arm_smash_text_address (CORE_ADDR val)
261 {
262 return val & ~1;
263 }
264
265 /* Immediately after a function call, return the saved pc. Can't
266 always go through the frames for this because on some machines the
267 new frame is not set up until the new function executes some
268 instructions. */
269
270 static CORE_ADDR
271 arm_saved_pc_after_call (struct frame_info *frame)
272 {
273 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
274 }
275
276 /* Determine whether the function invocation represented by FI has a
277 frame on the stack associated with it. If it does return zero,
278 otherwise return 1. */
279
280 static int
281 arm_frameless_function_invocation (struct frame_info *fi)
282 {
283 CORE_ADDR func_start, after_prologue;
284 int frameless;
285
286 /* Sometimes we have functions that do a little setup (like saving the
287 vN registers with the stmdb instruction, but DO NOT set up a frame.
288 The symbol table will report this as a prologue. However, it is
289 important not to try to parse these partial frames as frames, or we
290 will get really confused.
291
292 So I will demand 3 instructions between the start & end of the
293 prologue before I call it a real prologue, i.e. at least
294 mov ip, sp,
295 stmdb sp!, {}
296 sub sp, ip, #4. */
297
298 func_start = (get_frame_func (fi) + FUNCTION_START_OFFSET);
299 after_prologue = SKIP_PROLOGUE (func_start);
300
301 /* There are some frameless functions whose first two instructions
302 follow the standard APCS form, in which case after_prologue will
303 be func_start + 8. */
304
305 frameless = (after_prologue < func_start + 12);
306 return frameless;
307 }
308
309 /* The address of the arguments in the frame. */
310 static CORE_ADDR
311 arm_frame_args_address (struct frame_info *fi)
312 {
313 return get_frame_base (fi);
314 }
315
316 /* The address of the local variables in the frame. */
317 static CORE_ADDR
318 arm_frame_locals_address (struct frame_info *fi)
319 {
320 return get_frame_base (fi);
321 }
322
323 /* The number of arguments being passed in the frame. */
324 static int
325 arm_frame_num_args (struct frame_info *fi)
326 {
327 /* We have no way of knowing. */
328 return -1;
329 }
330
331 /* A typical Thumb prologue looks like this:
332 push {r7, lr}
333 add sp, sp, #-28
334 add r7, sp, #12
335 Sometimes the latter instruction may be replaced by:
336 mov r7, sp
337
338 or like this:
339 push {r7, lr}
340 mov r7, sp
341 sub sp, #12
342
343 or, on tpcs, like this:
344 sub sp,#16
345 push {r7, lr}
346 (many instructions)
347 mov r7, sp
348 sub sp, #12
349
350 There is always one instruction of three classes:
351 1 - push
352 2 - setting of r7
353 3 - adjusting of sp
354
355 When we have found at least one of each class we are done with the prolog.
356 Note that the "sub sp, #NN" before the push does not count.
357 */
358
359 static CORE_ADDR
360 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
361 {
362 CORE_ADDR current_pc;
363 /* findmask:
364 bit 0 - push { rlist }
365 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
366 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
367 */
368 int findmask = 0;
369
370 for (current_pc = pc;
371 current_pc + 2 < func_end && current_pc < pc + 40;
372 current_pc += 2)
373 {
374 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
375
376 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
377 {
378 findmask |= 1; /* push found */
379 }
380 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
381 sub sp, #simm */
382 {
383 if ((findmask & 1) == 0) /* before push ? */
384 continue;
385 else
386 findmask |= 4; /* add/sub sp found */
387 }
388 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
389 {
390 findmask |= 2; /* setting of r7 found */
391 }
392 else if (insn == 0x466f) /* mov r7, sp */
393 {
394 findmask |= 2; /* setting of r7 found */
395 }
396 else if (findmask == (4+2+1))
397 {
398 /* We have found one of each type of prologue instruction */
399 break;
400 }
401 else
402 /* Something in the prolog that we don't care about or some
403 instruction from outside the prolog scheduled here for
404 optimization. */
405 continue;
406 }
407
408 return current_pc;
409 }
410
411 /* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
413
414 The APCS (ARM Procedure Call Standard) defines the following
415 prologue:
416
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
425
426 static CORE_ADDR
427 arm_skip_prologue (CORE_ADDR pc)
428 {
429 unsigned long inst;
430 CORE_ADDR skip_pc;
431 CORE_ADDR func_addr, func_end = 0;
432 char *func_name;
433 struct symtab_and_line sal;
434
435 /* If we're in a dummy frame, don't even try to skip the prologue. */
436 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
437 return pc;
438
439 /* See what the symbol table says. */
440
441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
442 {
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
449 /* Don't use this trick for assembly source files. */
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
454 }
455
456 /* Check if this is Thumb code. */
457 if (arm_pc_is_thumb (pc))
458 return thumb_skip_prologue (pc, func_end);
459
460 /* Can't find the prologue end in the symbol table, try it the hard way
461 by disassembling the instructions. */
462
463 /* Like arm_scan_prologue, stop no later than pc + 64. */
464 if (func_end == 0 || func_end > pc + 64)
465 func_end = pc + 64;
466
467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
468 {
469 inst = read_memory_integer (skip_pc, 4);
470
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
474
475 /* Some prologues begin with "str lr, [sp, #-4]!". */
476 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
477 continue;
478
479 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
480 continue;
481
482 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
483 continue;
484
485 /* Any insns after this point may float into the code, if it makes
486 for better instruction scheduling, so we skip them only if we
487 find them, but still consider the function to be frame-ful. */
488
489 /* We may have either one sfmfd instruction here, or several stfe
490 insns, depending on the version of floating point code we
491 support. */
492 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
493 continue;
494
495 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
496 continue;
497
498 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
499 continue;
500
501 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
502 continue;
503
504 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
505 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
506 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
507 continue;
508
509 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
510 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
511 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
512 continue;
513
514 /* Un-recognized instruction; stop scanning. */
515 break;
516 }
517
518 return skip_pc; /* End of prologue */
519 }
520
521 /* *INDENT-OFF* */
522 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
523 This function decodes a Thumb function prologue to determine:
524 1) the size of the stack frame
525 2) which registers are saved on it
526 3) the offsets of saved regs
527 4) the offset from the stack pointer to the frame pointer
528 This information is stored in the "extra" fields of the frame_info.
529
530 A typical Thumb function prologue would create this stack frame
531 (offsets relative to FP)
532 old SP -> 24 stack parameters
533 20 LR
534 16 R7
535 R7 -> 0 local variables (16 bytes)
536 SP -> -12 additional stack space (12 bytes)
537 The frame size would thus be 36 bytes, and the frame offset would be
538 12 bytes. The frame register is R7.
539
540 The comments for thumb_skip_prolog() describe the algorithm we use
541 to detect the end of the prolog. */
542 /* *INDENT-ON* */
543
544 static void
545 thumb_scan_prologue (struct frame_info *fi)
546 {
547 CORE_ADDR prologue_start;
548 CORE_ADDR prologue_end;
549 CORE_ADDR current_pc;
550 /* Which register has been copied to register n? */
551 int saved_reg[16];
552 /* findmask:
553 bit 0 - push { rlist }
554 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
555 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
556 */
557 int findmask = 0;
558 int i;
559
560 /* Don't try to scan dummy frames. */
561 if (fi != NULL
562 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
563 return;
564
565 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
569 if (sal.line == 0) /* no line info, use current PC */
570 prologue_end = get_frame_pc (fi);
571 else if (sal.end < prologue_end) /* next line begins after fn end */
572 prologue_end = sal.end; /* (probably means no prologue) */
573 }
574 else
575 /* We're in the boondocks: allow for
576 16 pushes, an add, and "mv fp,sp". */
577 prologue_end = prologue_start + 40;
578
579 prologue_end = min (prologue_end, get_frame_pc (fi));
580
581 /* Initialize the saved register map. When register H is copied to
582 register L, we will put H in saved_reg[L]. */
583 for (i = 0; i < 16; i++)
584 saved_reg[i] = i;
585
586 /* Search the prologue looking for instructions that set up the
587 frame pointer, adjust the stack pointer, and save registers.
588 Do this until all basic prolog instructions are found. */
589
590 get_frame_extra_info (fi)->framesize = 0;
591 for (current_pc = prologue_start;
592 (current_pc < prologue_end) && ((findmask & 7) != 7);
593 current_pc += 2)
594 {
595 unsigned short insn;
596 int regno;
597 int offset;
598
599 insn = read_memory_unsigned_integer (current_pc, 2);
600
601 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
602 {
603 int mask;
604 findmask |= 1; /* push found */
605 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
606 whether to save LR (R14). */
607 mask = (insn & 0xff) | ((insn & 0x100) << 6);
608
609 /* Calculate offsets of saved R0-R7 and LR. */
610 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
611 if (mask & (1 << regno))
612 {
613 get_frame_extra_info (fi)->framesize += 4;
614 get_frame_saved_regs (fi)[saved_reg[regno]] =
615 -(get_frame_extra_info (fi)->framesize);
616 /* Reset saved register map. */
617 saved_reg[regno] = regno;
618 }
619 }
620 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
621 sub sp, #simm */
622 {
623 if ((findmask & 1) == 0) /* before push? */
624 continue;
625 else
626 findmask |= 4; /* add/sub sp found */
627
628 offset = (insn & 0x7f) << 2; /* get scaled offset */
629 if (insn & 0x80) /* is it signed? (==subtracting) */
630 {
631 get_frame_extra_info (fi)->frameoffset += offset;
632 offset = -offset;
633 }
634 get_frame_extra_info (fi)->framesize -= offset;
635 }
636 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
637 {
638 findmask |= 2; /* setting of r7 found */
639 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
640 /* get scaled offset */
641 get_frame_extra_info (fi)->frameoffset = (insn & 0xff) << 2;
642 }
643 else if (insn == 0x466f) /* mov r7, sp */
644 {
645 findmask |= 2; /* setting of r7 found */
646 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
647 get_frame_extra_info (fi)->frameoffset = 0;
648 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
649 }
650 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
651 {
652 int lo_reg = insn & 7; /* dest. register (r0-r7) */
653 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
654 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
655 }
656 else
657 /* Something in the prolog that we don't care about or some
658 instruction from outside the prolog scheduled here for
659 optimization. */
660 continue;
661 }
662 }
663
664 /* This function decodes an ARM function prologue to determine:
665 1) the size of the stack frame
666 2) which registers are saved on it
667 3) the offsets of saved regs
668 4) the offset from the stack pointer to the frame pointer
669 This information is stored in the "extra" fields of the frame_info.
670
671 There are two basic forms for the ARM prologue. The fixed argument
672 function call will look like:
673
674 mov ip, sp
675 stmfd sp!, {fp, ip, lr, pc}
676 sub fp, ip, #4
677 [sub sp, sp, #4]
678
679 Which would create this stack frame (offsets relative to FP):
680 IP -> 4 (caller's stack)
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
686
687 The frame size would thus be 32 bytes, and the frame offset would be
688 28 bytes. The stmfd call can also save any of the vN registers it
689 plans to use, which increases the frame size accordingly.
690
691 Note: The stored PC is 8 off of the STMFD instruction that stored it
692 because the ARM Store instructions always store PC + 8 when you read
693 the PC register.
694
695 A variable argument function call will look like:
696
697 mov ip, sp
698 stmfd sp!, {a1, a2, a3, a4}
699 stmfd sp!, {fp, ip, lr, pc}
700 sub fp, ip, #20
701
702 Which would create this stack frame (offsets relative to FP):
703 IP -> 20 (caller's stack)
704 16 A4
705 12 A3
706 8 A2
707 4 A1
708 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
709 -4 LR (return address in caller)
710 -8 IP (copy of caller's SP)
711 -12 FP (caller's FP)
712 SP -> -28 Local variables
713
714 The frame size would thus be 48 bytes, and the frame offset would be
715 28 bytes.
716
717 There is another potential complication, which is that the optimizer
718 will try to separate the store of fp in the "stmfd" instruction from
719 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
720 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
721
722 Also, note, the original version of the ARM toolchain claimed that there
723 should be an
724
725 instruction at the end of the prologue. I have never seen GCC produce
726 this, and the ARM docs don't mention it. We still test for it below in
727 case it happens...
728
729 */
730
731 static void
732 arm_scan_prologue (struct frame_info *fi)
733 {
734 int regno, sp_offset, fp_offset;
735 LONGEST return_value;
736 CORE_ADDR prologue_start, prologue_end, current_pc;
737
738 /* Assume there is no frame until proven otherwise. */
739 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
740 get_frame_extra_info (fi)->framesize = 0;
741 get_frame_extra_info (fi)->frameoffset = 0;
742
743 /* Check for Thumb prologue. */
744 if (arm_pc_is_thumb (get_frame_pc (fi)))
745 {
746 thumb_scan_prologue (fi);
747 return;
748 }
749
750 /* Find the function prologue. If we can't find the function in
751 the symbol table, peek in the stack frame to find the PC. */
752 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
753 {
754 /* One way to find the end of the prologue (which works well
755 for unoptimized code) is to do the following:
756
757 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
758
759 if (sal.line == 0)
760 prologue_end = get_frame_pc (fi);
761 else if (sal.end < prologue_end)
762 prologue_end = sal.end;
763
764 This mechanism is very accurate so long as the optimizer
765 doesn't move any instructions from the function body into the
766 prologue. If this happens, sal.end will be the last
767 instruction in the first hunk of prologue code just before
768 the first instruction that the scheduler has moved from
769 the body to the prologue.
770
771 In order to make sure that we scan all of the prologue
772 instructions, we use a slightly less accurate mechanism which
773 may scan more than necessary. To help compensate for this
774 lack of accuracy, the prologue scanning loop below contains
775 several clauses which'll cause the loop to terminate early if
776 an implausible prologue instruction is encountered.
777
778 The expression
779
780 prologue_start + 64
781
782 is a suitable endpoint since it accounts for the largest
783 possible prologue plus up to five instructions inserted by
784 the scheduler. */
785
786 if (prologue_end > prologue_start + 64)
787 {
788 prologue_end = prologue_start + 64; /* See above. */
789 }
790 }
791 else
792 {
793 /* Get address of the stmfd in the prologue of the callee;
794 the saved PC is the address of the stmfd + 8. */
795 if (!safe_read_memory_integer (get_frame_base (fi), 4, &return_value))
796 return;
797 else
798 {
799 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
800 prologue_end = prologue_start + 64; /* See above. */
801 }
802 }
803
804 /* Now search the prologue looking for instructions that set up the
805 frame pointer, adjust the stack pointer, and save registers.
806
807 Be careful, however, and if it doesn't look like a prologue,
808 don't try to scan it. If, for instance, a frameless function
809 begins with stmfd sp!, then we will tell ourselves there is
810 a frame, which will confuse stack traceback, as well as "finish"
811 and other operations that rely on a knowledge of the stack
812 traceback.
813
814 In the APCS, the prologue should start with "mov ip, sp" so
815 if we don't see this as the first insn, we will stop.
816
817 [Note: This doesn't seem to be true any longer, so it's now an
818 optional part of the prologue. - Kevin Buettner, 2001-11-20]
819
820 [Note further: The "mov ip,sp" only seems to be missing in
821 frameless functions at optimization level "-O2" or above,
822 in which case it is often (but not always) replaced by
823 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
824
825 sp_offset = fp_offset = 0;
826
827 for (current_pc = prologue_start;
828 current_pc < prologue_end;
829 current_pc += 4)
830 {
831 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
832
833 if (insn == 0xe1a0c00d) /* mov ip, sp */
834 {
835 continue;
836 }
837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
838 {
839 /* Function is frameless: extra_info defaults OK? */
840 continue;
841 }
842 else if ((insn & 0xffff0000) == 0xe92d0000)
843 /* stmfd sp!, {..., fp, ip, lr, pc}
844 or
845 stmfd sp!, {a1, a2, a3, a4} */
846 {
847 int mask = insn & 0xffff;
848
849 /* Calculate offsets of saved registers. */
850 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
851 if (mask & (1 << regno))
852 {
853 sp_offset -= 4;
854 get_frame_saved_regs (fi)[regno] = sp_offset;
855 }
856 }
857 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
858 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
859 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
860 {
861 /* No need to add this to saved_regs -- it's just an arg reg. */
862 continue;
863 }
864 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
865 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
866 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
867 {
868 /* No need to add this to saved_regs -- it's just an arg reg. */
869 continue;
870 }
871 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
872 {
873 unsigned imm = insn & 0xff; /* immediate value */
874 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
875 imm = (imm >> rot) | (imm << (32 - rot));
876 fp_offset = -imm;
877 get_frame_extra_info (fi)->framereg = ARM_FP_REGNUM;
878 }
879 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
880 {
881 unsigned imm = insn & 0xff; /* immediate value */
882 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
883 imm = (imm >> rot) | (imm << (32 - rot));
884 sp_offset -= imm;
885 }
886 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
887 {
888 sp_offset -= 12;
889 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
890 get_frame_saved_regs (fi)[regno] = sp_offset;
891 }
892 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
893 {
894 int n_saved_fp_regs;
895 unsigned int fp_start_reg, fp_bound_reg;
896
897 if ((insn & 0x800) == 0x800) /* N0 is set */
898 {
899 if ((insn & 0x40000) == 0x40000) /* N1 is set */
900 n_saved_fp_regs = 3;
901 else
902 n_saved_fp_regs = 1;
903 }
904 else
905 {
906 if ((insn & 0x40000) == 0x40000) /* N1 is set */
907 n_saved_fp_regs = 2;
908 else
909 n_saved_fp_regs = 4;
910 }
911
912 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
913 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
914 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
915 {
916 sp_offset -= 12;
917 get_frame_saved_regs (fi)[fp_start_reg++] = sp_offset;
918 }
919 }
920 else if ((insn & 0xf0000000) != 0xe0000000)
921 break; /* Condition not true, exit early */
922 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
923 break; /* Don't scan past a block load */
924 else
925 /* The optimizer might shove anything into the prologue,
926 so we just skip what we don't recognize. */
927 continue;
928 }
929
930 /* The frame size is just the negative of the offset (from the
931 original SP) of the last thing thing we pushed on the stack.
932 The frame offset is [new FP] - [new SP]. */
933 get_frame_extra_info (fi)->framesize = -sp_offset;
934 if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM)
935 get_frame_extra_info (fi)->frameoffset = fp_offset - sp_offset;
936 else
937 get_frame_extra_info (fi)->frameoffset = 0;
938 }
939
940 /* Find REGNUM on the stack. Otherwise, it's in an active register.
941 One thing we might want to do here is to check REGNUM against the
942 clobber mask, and somehow flag it as invalid if it isn't saved on
943 the stack somewhere. This would provide a graceful failure mode
944 when trying to get the value of caller-saves registers for an inner
945 frame. */
946
947 static CORE_ADDR
948 arm_find_callers_reg (struct frame_info *fi, int regnum)
949 {
950 /* NOTE: cagney/2002-05-03: This function really shouldn't be
951 needed. Instead the (still being written) register unwind
952 function could be called directly. */
953 for (; fi; fi = get_next_frame (fi))
954 {
955 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
956 {
957 return deprecated_read_register_dummy (get_frame_pc (fi),
958 get_frame_base (fi), regnum);
959 }
960 else if (get_frame_saved_regs (fi)[regnum] != 0)
961 {
962 /* NOTE: cagney/2002-05-03: This would normally need to
963 handle ARM_SP_REGNUM as a special case as, according to
964 the frame.h comments, saved_regs[SP_REGNUM] contains the
965 SP value not its address. It appears that the ARM isn't
966 doing this though. */
967 return read_memory_integer (get_frame_saved_regs (fi)[regnum],
968 REGISTER_RAW_SIZE (regnum));
969 }
970 }
971 return read_register (regnum);
972 }
973 /* Function: frame_chain Given a GDB frame, determine the address of
974 the calling function's frame. This will be used to create a new
975 GDB frame struct, and then DEPRECATED_INIT_EXTRA_FRAME_INFO and
976 DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
977 ARM, we save the frame size when we initialize the frame_info. */
978
979 static CORE_ADDR
980 arm_frame_chain (struct frame_info *fi)
981 {
982 CORE_ADDR caller_pc;
983 int framereg = get_frame_extra_info (fi)->framereg;
984
985 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
986 /* A generic call dummy's frame is the same as caller's. */
987 return get_frame_base (fi);
988
989 if (get_frame_pc (fi) < LOWEST_PC)
990 return 0;
991
992 /* If the caller is the startup code, we're at the end of the chain. */
993 caller_pc = DEPRECATED_FRAME_SAVED_PC (fi);
994
995 /* If the caller is Thumb and the caller is ARM, or vice versa,
996 the frame register of the caller is different from ours.
997 So we must scan the prologue of the caller to determine its
998 frame register number. */
999 /* XXX Fixme, we should try to do this without creating a temporary
1000 caller_fi. */
1001 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (get_frame_pc (fi)))
1002 {
1003 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1004 struct frame_info *caller_fi =
1005 deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
1006 sizeof (struct frame_extra_info));
1007
1008 /* Now, scan the prologue and obtain the frame register. */
1009 deprecated_update_frame_pc_hack (caller_fi, caller_pc);
1010 arm_scan_prologue (caller_fi);
1011 framereg = get_frame_extra_info (caller_fi)->framereg;
1012
1013 /* Deallocate the storage associated with the temporary frame
1014 created above. */
1015 do_cleanups (old_chain);
1016 }
1017
1018 /* If the caller used a frame register, return its value.
1019 Otherwise, return the caller's stack pointer. */
1020 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
1021 return arm_find_callers_reg (fi, framereg);
1022 else
1023 return get_frame_base (fi) + get_frame_extra_info (fi)->framesize;
1024 }
1025
1026 /* This function actually figures out the frame address for a given pc
1027 and sp. This is tricky because we sometimes don't use an explicit
1028 frame pointer, and the previous stack pointer isn't necessarily
1029 recorded on the stack. The only reliable way to get this info is
1030 to examine the prologue. FROMLEAF is a little confusing, it means
1031 this is the next frame up the chain AFTER a frameless function. If
1032 this is true, then the frame value for this frame is still in the
1033 fp register. */
1034
1035 static void
1036 arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1037 {
1038 int reg;
1039 CORE_ADDR sp;
1040
1041 if (get_frame_saved_regs (fi) == NULL)
1042 frame_saved_regs_zalloc (fi);
1043
1044 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1045
1046 get_frame_extra_info (fi)->framesize = 0;
1047 get_frame_extra_info (fi)->frameoffset = 0;
1048 get_frame_extra_info (fi)->framereg = 0;
1049
1050 if (get_next_frame (fi))
1051 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
1052
1053 memset (get_frame_saved_regs (fi), '\000', sizeof get_frame_saved_regs (fi));
1054
1055 /* Compute stack pointer for this frame. We use this value for both
1056 the sigtramp and call dummy cases. */
1057 if (!get_next_frame (fi))
1058 sp = read_sp();
1059 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1060 /* For generic dummy frames, pull the value direct from the frame.
1061 Having an unwind function to do this would be nice. */
1062 sp = deprecated_read_register_dummy (get_frame_pc (get_next_frame (fi)),
1063 get_frame_base (get_next_frame (fi)),
1064 ARM_SP_REGNUM);
1065 else
1066 sp = (get_frame_base (get_next_frame (fi))
1067 - get_frame_extra_info (get_next_frame (fi))->frameoffset
1068 + get_frame_extra_info (get_next_frame (fi))->framesize);
1069
1070 /* Determine whether or not we're in a sigtramp frame.
1071 Unfortunately, it isn't sufficient to test (get_frame_type (fi)
1072 == SIGTRAMP_FRAME) because this value is sometimes set after
1073 invoking DEPRECATED_INIT_EXTRA_FRAME_INFO. So we test *both*
1074 (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
1075 determine if we need to use the sigcontext addresses for the
1076 saved registers.
1077
1078 Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1079 against the name of the function, the code below will have to be
1080 changed to first fetch the name of the function and then pass
1081 this name to PC_IN_SIGTRAMP. */
1082
1083 /* FIXME: cagney/2002-11-18: This problem will go away once
1084 frame.c:get_prev_frame() is modified to set the frame's type
1085 before calling functions like this. */
1086
1087 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1088 && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (get_frame_pc (fi), (char *)0)))
1089 {
1090 for (reg = 0; reg < NUM_REGS; reg++)
1091 get_frame_saved_regs (fi)[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, get_frame_pc (fi), reg);
1092
1093 /* FIXME: What about thumb mode? */
1094 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
1095 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (fi)[get_frame_extra_info (fi)->framereg], REGISTER_RAW_SIZE (get_frame_extra_info (fi)->framereg)));
1096 get_frame_extra_info (fi)->framesize = 0;
1097 get_frame_extra_info (fi)->frameoffset = 0;
1098
1099 }
1100 else
1101 {
1102 arm_scan_prologue (fi);
1103
1104 if (!get_next_frame (fi))
1105 /* This is the innermost frame? */
1106 deprecated_update_frame_base_hack (fi, read_register (get_frame_extra_info (fi)->framereg));
1107 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1108 /* Next inner most frame is a dummy, just grab its frame.
1109 Dummy frames always have the same FP as their caller. */
1110 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
1111 else if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM
1112 || get_frame_extra_info (fi)->framereg == THUMB_FP_REGNUM)
1113 {
1114 /* not the innermost frame */
1115 /* If we have an FP, the callee saved it. */
1116 if (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg] != 0)
1117 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg], 4));
1118 else if (fromleaf)
1119 /* If we were called by a frameless fn. then our frame is
1120 still in the frame pointer register on the board... */
1121 deprecated_update_frame_base_hack (fi, deprecated_read_fp ());
1122 }
1123
1124 /* Calculate actual addresses of saved registers using offsets
1125 determined by arm_scan_prologue. */
1126 for (reg = 0; reg < NUM_REGS; reg++)
1127 if (get_frame_saved_regs (fi)[reg] != 0)
1128 get_frame_saved_regs (fi)[reg]
1129 += (get_frame_base (fi)
1130 + get_frame_extra_info (fi)->framesize
1131 - get_frame_extra_info (fi)->frameoffset);
1132 }
1133 }
1134
1135
1136 /* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
1137 is saved in the stack anywhere, otherwise we get it from the
1138 registers.
1139
1140 The old definition of this function was a macro:
1141 #define FRAME_SAVED_PC(FRAME) \
1142 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
1143
1144 static CORE_ADDR
1145 arm_frame_saved_pc (struct frame_info *fi)
1146 {
1147 /* If a dummy frame, pull the PC out of the frame's register buffer. */
1148 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
1149 return deprecated_read_register_dummy (get_frame_pc (fi),
1150 get_frame_base (fi), ARM_PC_REGNUM);
1151
1152 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1153 (get_frame_base (fi)
1154 - get_frame_extra_info (fi)->frameoffset),
1155 get_frame_base (fi)))
1156 {
1157 return read_memory_integer (get_frame_saved_regs (fi)[ARM_PC_REGNUM],
1158 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
1159 }
1160 else
1161 {
1162 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
1163 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1164 }
1165 }
1166
1167 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1168 Examine the Program Status Register to decide which state we're in. */
1169
1170 static CORE_ADDR
1171 arm_read_fp (void)
1172 {
1173 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
1174 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1175 else
1176 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
1177 }
1178
1179 /* Store into a struct frame_saved_regs the addresses of the saved
1180 registers of frame described by FRAME_INFO. This includes special
1181 registers such as PC and FP saved in special ways in the stack
1182 frame. SP is even more special: the address we return for it IS
1183 the sp for the next frame. */
1184
1185 static void
1186 arm_frame_init_saved_regs (struct frame_info *fip)
1187 {
1188
1189 if (get_frame_saved_regs (fip))
1190 return;
1191
1192 arm_init_extra_frame_info (0, fip);
1193 }
1194
1195 /* Set the return address for a generic dummy frame. ARM uses the
1196 entry point. */
1197
1198 static CORE_ADDR
1199 arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1200 {
1201 write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1202 return sp;
1203 }
1204
1205 /* Push an empty stack frame, to record the current PC, etc. */
1206
1207 static void
1208 arm_push_dummy_frame (void)
1209 {
1210 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
1211 CORE_ADDR sp = old_sp;
1212 CORE_ADDR fp, prologue_start;
1213 int regnum;
1214
1215 /* Push the two dummy prologue instructions in reverse order,
1216 so that they'll be in the correct low-to-high order in memory. */
1217 /* sub fp, ip, #4 */
1218 sp = push_word (sp, 0xe24cb004);
1219 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1220 prologue_start = sp = push_word (sp, 0xe92ddfff);
1221
1222 /* Push a pointer to the dummy prologue + 12, because when stm
1223 instruction stores the PC, it stores the address of the stm
1224 instruction itself plus 12. */
1225 fp = sp = push_word (sp, prologue_start + 12);
1226
1227 /* Push the processor status. */
1228 sp = push_word (sp, read_register (ARM_PS_REGNUM));
1229
1230 /* Push all 16 registers starting with r15. */
1231 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
1232 sp = push_word (sp, read_register (regnum));
1233
1234 /* Update fp (for both Thumb and ARM) and sp. */
1235 write_register (ARM_FP_REGNUM, fp);
1236 write_register (THUMB_FP_REGNUM, fp);
1237 write_register (ARM_SP_REGNUM, sp);
1238 }
1239
1240 /* DEPRECATED_CALL_DUMMY_WORDS:
1241 This sequence of words is the instructions
1242
1243 mov lr,pc
1244 mov pc,r4
1245 illegal
1246
1247 Note this is 12 bytes. */
1248
1249 static LONGEST arm_call_dummy_words[] =
1250 {
1251 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1252 };
1253
1254 /* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1255 breakpoint to the proper address in the call dummy, so that
1256 `finish' after a stop in a call dummy works.
1257
1258 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1259 optimal solution, but the call to arm_fix_call_dummy is immediately
1260 followed by a call to call_function_by_hand, which is the only
1261 function where call_dummy_breakpoint_offset is actually used. */
1262
1263
1264 static void
1265 arm_set_call_dummy_breakpoint_offset (void)
1266 {
1267 if (caller_is_thumb)
1268 set_gdbarch_deprecated_call_dummy_breakpoint_offset (current_gdbarch, 4);
1269 else
1270 set_gdbarch_deprecated_call_dummy_breakpoint_offset (current_gdbarch, 8);
1271 }
1272
1273 /* Fix up the call dummy, based on whether the processor is currently
1274 in Thumb or ARM mode, and whether the target function is Thumb or
1275 ARM. There are three different situations requiring three
1276 different dummies:
1277
1278 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
1279 been copied into the dummy parameter to this function.
1280 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
1281 "mov pc,r4" instruction patched to be a "bx r4" instead.
1282 * Thumb calling anything: uses the Thumb dummy defined below, which
1283 works for calling both ARM and Thumb functions.
1284
1285 All three call dummies expect to receive the target function
1286 address in R4, with the low bit set if it's a Thumb function. */
1287
1288 static void
1289 arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1290 struct value **args, struct type *type, int gcc_p)
1291 {
1292 static short thumb_dummy[4] =
1293 {
1294 0xf000, 0xf801, /* bl label */
1295 0xdf18, /* swi 24 */
1296 0x4720, /* label: bx r4 */
1297 };
1298 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1299
1300 /* Set flag indicating whether the current PC is in a Thumb function. */
1301 caller_is_thumb = arm_pc_is_thumb (read_pc ());
1302 arm_set_call_dummy_breakpoint_offset ();
1303
1304 /* If the target function is Thumb, set the low bit of the function
1305 address. And if the CPU is currently in ARM mode, patch the
1306 second instruction of call dummy to use a BX instruction to
1307 switch to Thumb mode. */
1308 target_is_thumb = arm_pc_is_thumb (fun);
1309 if (target_is_thumb)
1310 {
1311 fun |= 1;
1312 if (!caller_is_thumb)
1313 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1314 }
1315
1316 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1317 instead of the ARM one that's already been copied. This will
1318 work for both Thumb and ARM target functions. */
1319 if (caller_is_thumb)
1320 {
1321 int i;
1322 char *p = dummy;
1323 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1324
1325 for (i = 0; i < len; i++)
1326 {
1327 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1328 p += sizeof (thumb_dummy[0]);
1329 }
1330 }
1331
1332 /* Put the target address in r4; the call dummy will copy this to
1333 the PC. */
1334 write_register (4, fun);
1335 }
1336
1337 /* Pop the current frame. So long as the frame info has been
1338 initialized properly (see arm_init_extra_frame_info), this code
1339 works for dummy frames as well as regular frames. I.e, there's no
1340 need to have a special case for dummy frames. */
1341 static void
1342 arm_pop_frame (void)
1343 {
1344 int regnum;
1345 struct frame_info *frame = get_current_frame ();
1346 CORE_ADDR old_SP = (get_frame_base (frame)
1347 - get_frame_extra_info (frame)->frameoffset
1348 + get_frame_extra_info (frame)->framesize);
1349
1350 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1351 get_frame_base (frame),
1352 get_frame_base (frame)))
1353 {
1354 generic_pop_dummy_frame ();
1355 flush_cached_frames ();
1356 return;
1357 }
1358
1359 for (regnum = 0; regnum < NUM_REGS; regnum++)
1360 if (get_frame_saved_regs (frame)[regnum] != 0)
1361 write_register (regnum,
1362 read_memory_integer (get_frame_saved_regs (frame)[regnum],
1363 REGISTER_RAW_SIZE (regnum)));
1364
1365 write_register (ARM_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
1366 write_register (ARM_SP_REGNUM, old_SP);
1367
1368 flush_cached_frames ();
1369 }
1370
1371 /* When arguments must be pushed onto the stack, they go on in reverse
1372 order. The code below implements a FILO (stack) to do this. */
1373
1374 struct stack_item
1375 {
1376 int len;
1377 struct stack_item *prev;
1378 void *data;
1379 };
1380
1381 static struct stack_item *
1382 push_stack_item (struct stack_item *prev, void *contents, int len)
1383 {
1384 struct stack_item *si;
1385 si = xmalloc (sizeof (struct stack_item));
1386 si->data = xmalloc (len);
1387 si->len = len;
1388 si->prev = prev;
1389 memcpy (si->data, contents, len);
1390 return si;
1391 }
1392
1393 static struct stack_item *
1394 pop_stack_item (struct stack_item *si)
1395 {
1396 struct stack_item *dead = si;
1397 si = si->prev;
1398 xfree (dead->data);
1399 xfree (dead);
1400 return si;
1401 }
1402
1403 /* We currently only support passing parameters in integer registers. This
1404 conforms with GCC's default model. Several other variants exist and
1405 we should probably support some of them based on the selected ABI. */
1406
1407 static CORE_ADDR
1408 arm_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1409 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1410 struct value **args, CORE_ADDR sp, int struct_return,
1411 CORE_ADDR struct_addr)
1412 {
1413 int argnum;
1414 int argreg;
1415 int nstack;
1416 struct stack_item *si = NULL;
1417
1418 /* Set the return address. For the ARM, the return breakpoint is
1419 always at BP_ADDR. */
1420 /* XXX Fix for Thumb. */
1421 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1422
1423 /* Walk through the list of args and determine how large a temporary
1424 stack is required. Need to take care here as structs may be
1425 passed on the stack, and we have to to push them. */
1426 nstack = 0;
1427
1428 argreg = ARM_A1_REGNUM;
1429 nstack = 0;
1430
1431 /* Some platforms require a double-word aligned stack. Make sure sp
1432 is correctly aligned before we start. We always do this even if
1433 it isn't really needed -- it can never hurt things. */
1434 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1435
1436 /* The struct_return pointer occupies the first parameter
1437 passing register. */
1438 if (struct_return)
1439 {
1440 if (arm_debug)
1441 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1442 REGISTER_NAME (argreg), paddr (struct_addr));
1443 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1444 argreg++;
1445 }
1446
1447 for (argnum = 0; argnum < nargs; argnum++)
1448 {
1449 int len;
1450 struct type *arg_type;
1451 struct type *target_type;
1452 enum type_code typecode;
1453 char *val;
1454
1455 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1456 len = TYPE_LENGTH (arg_type);
1457 target_type = TYPE_TARGET_TYPE (arg_type);
1458 typecode = TYPE_CODE (arg_type);
1459 val = VALUE_CONTENTS (args[argnum]);
1460
1461 /* If the argument is a pointer to a function, and it is a
1462 Thumb function, create a LOCAL copy of the value and set
1463 the THUMB bit in it. */
1464 if (TYPE_CODE_PTR == typecode
1465 && target_type != NULL
1466 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1467 {
1468 CORE_ADDR regval = extract_address (val, len);
1469 if (arm_pc_is_thumb (regval))
1470 {
1471 val = alloca (len);
1472 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1473 }
1474 }
1475
1476 /* Copy the argument to general registers or the stack in
1477 register-sized pieces. Large arguments are split between
1478 registers and stack. */
1479 while (len > 0)
1480 {
1481 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1482
1483 if (argreg <= ARM_LAST_ARG_REGNUM)
1484 {
1485 /* The argument is being passed in a general purpose
1486 register. */
1487 CORE_ADDR regval = extract_address (val, partial_len);
1488 if (arm_debug)
1489 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1490 argnum, REGISTER_NAME (argreg),
1491 phex (regval, DEPRECATED_REGISTER_SIZE));
1492 regcache_cooked_write_unsigned (regcache, argreg, regval);
1493 argreg++;
1494 }
1495 else
1496 {
1497 /* Push the arguments onto the stack. */
1498 if (arm_debug)
1499 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1500 argnum, nstack);
1501 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1502 nstack += DEPRECATED_REGISTER_SIZE;
1503 }
1504
1505 len -= partial_len;
1506 val += partial_len;
1507 }
1508 }
1509 /* If we have an odd number of words to push, then decrement the stack
1510 by one word now, so first stack argument will be dword aligned. */
1511 if (nstack & 4)
1512 sp -= 4;
1513
1514 while (si)
1515 {
1516 sp -= si->len;
1517 write_memory (sp, si->data, si->len);
1518 si = pop_stack_item (si);
1519 }
1520
1521 /* Finally, update teh SP register. */
1522 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1523
1524 return sp;
1525 }
1526
1527 static void
1528 print_fpu_flags (int flags)
1529 {
1530 if (flags & (1 << 0))
1531 fputs ("IVO ", stdout);
1532 if (flags & (1 << 1))
1533 fputs ("DVZ ", stdout);
1534 if (flags & (1 << 2))
1535 fputs ("OFL ", stdout);
1536 if (flags & (1 << 3))
1537 fputs ("UFL ", stdout);
1538 if (flags & (1 << 4))
1539 fputs ("INX ", stdout);
1540 putchar ('\n');
1541 }
1542
1543 /* Print interesting information about the floating point processor
1544 (if present) or emulator. */
1545 static void
1546 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1547 struct frame_info *frame, const char *args)
1548 {
1549 register unsigned long status = read_register (ARM_FPS_REGNUM);
1550 int type;
1551
1552 type = (status >> 24) & 127;
1553 printf ("%s FPU type %d\n",
1554 (status & (1 << 31)) ? "Hardware" : "Software",
1555 type);
1556 fputs ("mask: ", stdout);
1557 print_fpu_flags (status >> 16);
1558 fputs ("flags: ", stdout);
1559 print_fpu_flags (status);
1560 }
1561
1562 /* Return the GDB type object for the "standard" data type of data in
1563 register N. */
1564
1565 static struct type *
1566 arm_register_type (int regnum)
1567 {
1568 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1569 {
1570 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1571 return builtin_type_arm_ext_big;
1572 else
1573 return builtin_type_arm_ext_littlebyte_bigword;
1574 }
1575 else
1576 return builtin_type_int32;
1577 }
1578
1579 /* Index within `registers' of the first byte of the space for
1580 register N. */
1581
1582 static int
1583 arm_register_byte (int regnum)
1584 {
1585 if (regnum < ARM_F0_REGNUM)
1586 return regnum * INT_REGISTER_RAW_SIZE;
1587 else if (regnum < ARM_PS_REGNUM)
1588 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1589 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1590 else
1591 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1592 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1593 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1594 }
1595
1596 /* Number of bytes of storage in the actual machine representation for
1597 register N. All registers are 4 bytes, except fp0 - fp7, which are
1598 12 bytes in length. */
1599
1600 static int
1601 arm_register_raw_size (int regnum)
1602 {
1603 if (regnum < ARM_F0_REGNUM)
1604 return INT_REGISTER_RAW_SIZE;
1605 else if (regnum < ARM_FPS_REGNUM)
1606 return FP_REGISTER_RAW_SIZE;
1607 else
1608 return STATUS_REGISTER_SIZE;
1609 }
1610
1611 /* Number of bytes of storage in a program's representation
1612 for register N. */
1613 static int
1614 arm_register_virtual_size (int regnum)
1615 {
1616 if (regnum < ARM_F0_REGNUM)
1617 return INT_REGISTER_VIRTUAL_SIZE;
1618 else if (regnum < ARM_FPS_REGNUM)
1619 return FP_REGISTER_VIRTUAL_SIZE;
1620 else
1621 return STATUS_REGISTER_SIZE;
1622 }
1623
1624 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1625 static int
1626 arm_register_sim_regno (int regnum)
1627 {
1628 int reg = regnum;
1629 gdb_assert (reg >= 0 && reg < NUM_REGS);
1630
1631 if (reg < NUM_GREGS)
1632 return SIM_ARM_R0_REGNUM + reg;
1633 reg -= NUM_GREGS;
1634
1635 if (reg < NUM_FREGS)
1636 return SIM_ARM_FP0_REGNUM + reg;
1637 reg -= NUM_FREGS;
1638
1639 if (reg < NUM_SREGS)
1640 return SIM_ARM_FPS_REGNUM + reg;
1641 reg -= NUM_SREGS;
1642
1643 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1644 }
1645
1646 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1647 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1648 It is thought that this is is the floating-point register format on
1649 little-endian systems. */
1650
1651 static void
1652 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1653 void *dbl)
1654 {
1655 DOUBLEST d;
1656 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1657 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1658 else
1659 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1660 ptr, &d);
1661 floatformat_from_doublest (fmt, &d, dbl);
1662 }
1663
1664 static void
1665 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1666 {
1667 DOUBLEST d;
1668 floatformat_to_doublest (fmt, ptr, &d);
1669 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1670 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1671 else
1672 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1673 &d, dbl);
1674 }
1675
1676 static int
1677 condition_true (unsigned long cond, unsigned long status_reg)
1678 {
1679 if (cond == INST_AL || cond == INST_NV)
1680 return 1;
1681
1682 switch (cond)
1683 {
1684 case INST_EQ:
1685 return ((status_reg & FLAG_Z) != 0);
1686 case INST_NE:
1687 return ((status_reg & FLAG_Z) == 0);
1688 case INST_CS:
1689 return ((status_reg & FLAG_C) != 0);
1690 case INST_CC:
1691 return ((status_reg & FLAG_C) == 0);
1692 case INST_MI:
1693 return ((status_reg & FLAG_N) != 0);
1694 case INST_PL:
1695 return ((status_reg & FLAG_N) == 0);
1696 case INST_VS:
1697 return ((status_reg & FLAG_V) != 0);
1698 case INST_VC:
1699 return ((status_reg & FLAG_V) == 0);
1700 case INST_HI:
1701 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1702 case INST_LS:
1703 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1704 case INST_GE:
1705 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1706 case INST_LT:
1707 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1708 case INST_GT:
1709 return (((status_reg & FLAG_Z) == 0) &&
1710 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1711 case INST_LE:
1712 return (((status_reg & FLAG_Z) != 0) ||
1713 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1714 }
1715 return 1;
1716 }
1717
1718 /* Support routines for single stepping. Calculate the next PC value. */
1719 #define submask(x) ((1L << ((x) + 1)) - 1)
1720 #define bit(obj,st) (((obj) >> (st)) & 1)
1721 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1722 #define sbits(obj,st,fn) \
1723 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1724 #define BranchDest(addr,instr) \
1725 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1726 #define ARM_PC_32 1
1727
1728 static unsigned long
1729 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1730 unsigned long status_reg)
1731 {
1732 unsigned long res, shift;
1733 int rm = bits (inst, 0, 3);
1734 unsigned long shifttype = bits (inst, 5, 6);
1735
1736 if (bit (inst, 4))
1737 {
1738 int rs = bits (inst, 8, 11);
1739 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1740 }
1741 else
1742 shift = bits (inst, 7, 11);
1743
1744 res = (rm == 15
1745 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1746 + (bit (inst, 4) ? 12 : 8))
1747 : read_register (rm));
1748
1749 switch (shifttype)
1750 {
1751 case 0: /* LSL */
1752 res = shift >= 32 ? 0 : res << shift;
1753 break;
1754
1755 case 1: /* LSR */
1756 res = shift >= 32 ? 0 : res >> shift;
1757 break;
1758
1759 case 2: /* ASR */
1760 if (shift >= 32)
1761 shift = 31;
1762 res = ((res & 0x80000000L)
1763 ? ~((~res) >> shift) : res >> shift);
1764 break;
1765
1766 case 3: /* ROR/RRX */
1767 shift &= 31;
1768 if (shift == 0)
1769 res = (res >> 1) | (carry ? 0x80000000L : 0);
1770 else
1771 res = (res >> shift) | (res << (32 - shift));
1772 break;
1773 }
1774
1775 return res & 0xffffffff;
1776 }
1777
1778 /* Return number of 1-bits in VAL. */
1779
1780 static int
1781 bitcount (unsigned long val)
1782 {
1783 int nbits;
1784 for (nbits = 0; val != 0; nbits++)
1785 val &= val - 1; /* delete rightmost 1-bit in val */
1786 return nbits;
1787 }
1788
1789 CORE_ADDR
1790 thumb_get_next_pc (CORE_ADDR pc)
1791 {
1792 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1793 unsigned short inst1 = read_memory_integer (pc, 2);
1794 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1795 unsigned long offset;
1796
1797 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1798 {
1799 CORE_ADDR sp;
1800
1801 /* Fetch the saved PC from the stack. It's stored above
1802 all of the other registers. */
1803 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1804 sp = read_register (ARM_SP_REGNUM);
1805 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1806 nextpc = ADDR_BITS_REMOVE (nextpc);
1807 if (nextpc == pc)
1808 error ("Infinite loop detected");
1809 }
1810 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1811 {
1812 unsigned long status = read_register (ARM_PS_REGNUM);
1813 unsigned long cond = bits (inst1, 8, 11);
1814 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1815 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1816 }
1817 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1818 {
1819 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1820 }
1821 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1822 {
1823 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1824 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1825 nextpc = pc_val + offset;
1826 }
1827
1828 return nextpc;
1829 }
1830
1831 CORE_ADDR
1832 arm_get_next_pc (CORE_ADDR pc)
1833 {
1834 unsigned long pc_val;
1835 unsigned long this_instr;
1836 unsigned long status;
1837 CORE_ADDR nextpc;
1838
1839 if (arm_pc_is_thumb (pc))
1840 return thumb_get_next_pc (pc);
1841
1842 pc_val = (unsigned long) pc;
1843 this_instr = read_memory_integer (pc, 4);
1844 status = read_register (ARM_PS_REGNUM);
1845 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1846
1847 if (condition_true (bits (this_instr, 28, 31), status))
1848 {
1849 switch (bits (this_instr, 24, 27))
1850 {
1851 case 0x0:
1852 case 0x1: /* data processing */
1853 case 0x2:
1854 case 0x3:
1855 {
1856 unsigned long operand1, operand2, result = 0;
1857 unsigned long rn;
1858 int c;
1859
1860 if (bits (this_instr, 12, 15) != 15)
1861 break;
1862
1863 if (bits (this_instr, 22, 25) == 0
1864 && bits (this_instr, 4, 7) == 9) /* multiply */
1865 error ("Illegal update to pc in instruction");
1866
1867 /* Multiply into PC */
1868 c = (status & FLAG_C) ? 1 : 0;
1869 rn = bits (this_instr, 16, 19);
1870 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1871
1872 if (bit (this_instr, 25))
1873 {
1874 unsigned long immval = bits (this_instr, 0, 7);
1875 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1876 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1877 & 0xffffffff;
1878 }
1879 else /* operand 2 is a shifted register */
1880 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1881
1882 switch (bits (this_instr, 21, 24))
1883 {
1884 case 0x0: /*and */
1885 result = operand1 & operand2;
1886 break;
1887
1888 case 0x1: /*eor */
1889 result = operand1 ^ operand2;
1890 break;
1891
1892 case 0x2: /*sub */
1893 result = operand1 - operand2;
1894 break;
1895
1896 case 0x3: /*rsb */
1897 result = operand2 - operand1;
1898 break;
1899
1900 case 0x4: /*add */
1901 result = operand1 + operand2;
1902 break;
1903
1904 case 0x5: /*adc */
1905 result = operand1 + operand2 + c;
1906 break;
1907
1908 case 0x6: /*sbc */
1909 result = operand1 - operand2 + c;
1910 break;
1911
1912 case 0x7: /*rsc */
1913 result = operand2 - operand1 + c;
1914 break;
1915
1916 case 0x8:
1917 case 0x9:
1918 case 0xa:
1919 case 0xb: /* tst, teq, cmp, cmn */
1920 result = (unsigned long) nextpc;
1921 break;
1922
1923 case 0xc: /*orr */
1924 result = operand1 | operand2;
1925 break;
1926
1927 case 0xd: /*mov */
1928 /* Always step into a function. */
1929 result = operand2;
1930 break;
1931
1932 case 0xe: /*bic */
1933 result = operand1 & ~operand2;
1934 break;
1935
1936 case 0xf: /*mvn */
1937 result = ~operand2;
1938 break;
1939 }
1940 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1941
1942 if (nextpc == pc)
1943 error ("Infinite loop detected");
1944 break;
1945 }
1946
1947 case 0x4:
1948 case 0x5: /* data transfer */
1949 case 0x6:
1950 case 0x7:
1951 if (bit (this_instr, 20))
1952 {
1953 /* load */
1954 if (bits (this_instr, 12, 15) == 15)
1955 {
1956 /* rd == pc */
1957 unsigned long rn;
1958 unsigned long base;
1959
1960 if (bit (this_instr, 22))
1961 error ("Illegal update to pc in instruction");
1962
1963 /* byte write to PC */
1964 rn = bits (this_instr, 16, 19);
1965 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1966 if (bit (this_instr, 24))
1967 {
1968 /* pre-indexed */
1969 int c = (status & FLAG_C) ? 1 : 0;
1970 unsigned long offset =
1971 (bit (this_instr, 25)
1972 ? shifted_reg_val (this_instr, c, pc_val, status)
1973 : bits (this_instr, 0, 11));
1974
1975 if (bit (this_instr, 23))
1976 base += offset;
1977 else
1978 base -= offset;
1979 }
1980 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1981 4);
1982
1983 nextpc = ADDR_BITS_REMOVE (nextpc);
1984
1985 if (nextpc == pc)
1986 error ("Infinite loop detected");
1987 }
1988 }
1989 break;
1990
1991 case 0x8:
1992 case 0x9: /* block transfer */
1993 if (bit (this_instr, 20))
1994 {
1995 /* LDM */
1996 if (bit (this_instr, 15))
1997 {
1998 /* loading pc */
1999 int offset = 0;
2000
2001 if (bit (this_instr, 23))
2002 {
2003 /* up */
2004 unsigned long reglist = bits (this_instr, 0, 14);
2005 offset = bitcount (reglist) * 4;
2006 if (bit (this_instr, 24)) /* pre */
2007 offset += 4;
2008 }
2009 else if (bit (this_instr, 24))
2010 offset = -4;
2011
2012 {
2013 unsigned long rn_val =
2014 read_register (bits (this_instr, 16, 19));
2015 nextpc =
2016 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
2017 + offset),
2018 4);
2019 }
2020 nextpc = ADDR_BITS_REMOVE (nextpc);
2021 if (nextpc == pc)
2022 error ("Infinite loop detected");
2023 }
2024 }
2025 break;
2026
2027 case 0xb: /* branch & link */
2028 case 0xa: /* branch */
2029 {
2030 nextpc = BranchDest (pc, this_instr);
2031
2032 nextpc = ADDR_BITS_REMOVE (nextpc);
2033 if (nextpc == pc)
2034 error ("Infinite loop detected");
2035 break;
2036 }
2037
2038 case 0xc:
2039 case 0xd:
2040 case 0xe: /* coproc ops */
2041 case 0xf: /* SWI */
2042 break;
2043
2044 default:
2045 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
2046 return (pc);
2047 }
2048 }
2049
2050 return nextpc;
2051 }
2052
2053 /* single_step() is called just before we want to resume the inferior,
2054 if we want to single-step it but there is no hardware or kernel
2055 single-step support. We find the target of the coming instruction
2056 and breakpoint it.
2057
2058 single_step() is also called just after the inferior stops. If we
2059 had set up a simulated single-step, we undo our damage. */
2060
2061 static void
2062 arm_software_single_step (enum target_signal sig, int insert_bpt)
2063 {
2064 static int next_pc; /* State between setting and unsetting. */
2065 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2066
2067 if (insert_bpt)
2068 {
2069 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
2070 target_insert_breakpoint (next_pc, break_mem);
2071 }
2072 else
2073 target_remove_breakpoint (next_pc, break_mem);
2074 }
2075
2076 #include "bfd-in2.h"
2077 #include "libcoff.h"
2078
2079 static int
2080 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
2081 {
2082 if (arm_pc_is_thumb (memaddr))
2083 {
2084 static asymbol *asym;
2085 static combined_entry_type ce;
2086 static struct coff_symbol_struct csym;
2087 static struct bfd fake_bfd;
2088 static bfd_target fake_target;
2089
2090 if (csym.native == NULL)
2091 {
2092 /* Create a fake symbol vector containing a Thumb symbol.
2093 This is solely so that the code in print_insn_little_arm()
2094 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2095 the presence of a Thumb symbol and switch to decoding
2096 Thumb instructions. */
2097
2098 fake_target.flavour = bfd_target_coff_flavour;
2099 fake_bfd.xvec = &fake_target;
2100 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2101 csym.native = &ce;
2102 csym.symbol.the_bfd = &fake_bfd;
2103 csym.symbol.name = "fake";
2104 asym = (asymbol *) & csym;
2105 }
2106
2107 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2108 info->symbols = &asym;
2109 }
2110 else
2111 info->symbols = NULL;
2112
2113 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2114 return print_insn_big_arm (memaddr, info);
2115 else
2116 return print_insn_little_arm (memaddr, info);
2117 }
2118
2119 /* The following define instruction sequences that will cause ARM
2120 cpu's to take an undefined instruction trap. These are used to
2121 signal a breakpoint to GDB.
2122
2123 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2124 modes. A different instruction is required for each mode. The ARM
2125 cpu's can also be big or little endian. Thus four different
2126 instructions are needed to support all cases.
2127
2128 Note: ARMv4 defines several new instructions that will take the
2129 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2130 not in fact add the new instructions. The new undefined
2131 instructions in ARMv4 are all instructions that had no defined
2132 behaviour in earlier chips. There is no guarantee that they will
2133 raise an exception, but may be treated as NOP's. In practice, it
2134 may only safe to rely on instructions matching:
2135
2136 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2137 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2138 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2139
2140 Even this may only true if the condition predicate is true. The
2141 following use a condition predicate of ALWAYS so it is always TRUE.
2142
2143 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2144 and NetBSD all use a software interrupt rather than an undefined
2145 instruction to force a trap. This can be handled by by the
2146 abi-specific code during establishment of the gdbarch vector. */
2147
2148
2149 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2150 override these definitions. */
2151 #ifndef ARM_LE_BREAKPOINT
2152 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2153 #endif
2154 #ifndef ARM_BE_BREAKPOINT
2155 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2156 #endif
2157 #ifndef THUMB_LE_BREAKPOINT
2158 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2159 #endif
2160 #ifndef THUMB_BE_BREAKPOINT
2161 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2162 #endif
2163
2164 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2165 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2166 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2167 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2168
2169 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2170 the program counter value to determine whether a 16-bit or 32-bit
2171 breakpoint should be used. It returns a pointer to a string of
2172 bytes that encode a breakpoint instruction, stores the length of
2173 the string to *lenptr, and adjusts the program counter (if
2174 necessary) to point to the actual memory location where the
2175 breakpoint should be inserted. */
2176
2177 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2178 breakpoints and storing their handles instread of what was in
2179 memory. It is nice that this is the same size as a handle -
2180 otherwise remote-rdp will have to change. */
2181
2182 static const unsigned char *
2183 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2184 {
2185 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2186
2187 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2188 {
2189 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2190 *lenptr = tdep->thumb_breakpoint_size;
2191 return tdep->thumb_breakpoint;
2192 }
2193 else
2194 {
2195 *lenptr = tdep->arm_breakpoint_size;
2196 return tdep->arm_breakpoint;
2197 }
2198 }
2199
2200 /* Extract from an array REGBUF containing the (raw) register state a
2201 function return value of type TYPE, and copy that, in virtual
2202 format, into VALBUF. */
2203
2204 static void
2205 arm_extract_return_value (struct type *type,
2206 struct regcache *regs,
2207 void *dst)
2208 {
2209 bfd_byte *valbuf = dst;
2210
2211 if (TYPE_CODE_FLT == TYPE_CODE (type))
2212 {
2213 switch (arm_get_fp_model (current_gdbarch))
2214 {
2215 case ARM_FLOAT_FPA:
2216 {
2217 /* The value is in register F0 in internal format. We need to
2218 extract the raw value and then convert it to the desired
2219 internal type. */
2220 bfd_byte tmpbuf[FP_REGISTER_RAW_SIZE];
2221
2222 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2223 convert_from_extended (floatformat_from_type (type), tmpbuf,
2224 valbuf);
2225 }
2226 break;
2227
2228 case ARM_FLOAT_SOFT_FPA:
2229 case ARM_FLOAT_SOFT_VFP:
2230 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2231 if (TYPE_LENGTH (type) > 4)
2232 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2233 valbuf + INT_REGISTER_RAW_SIZE);
2234 break;
2235
2236 default:
2237 internal_error
2238 (__FILE__, __LINE__,
2239 "arm_extract_return_value: Floating point model not supported");
2240 break;
2241 }
2242 }
2243 else if (TYPE_CODE (type) == TYPE_CODE_INT
2244 || TYPE_CODE (type) == TYPE_CODE_CHAR
2245 || TYPE_CODE (type) == TYPE_CODE_BOOL
2246 || TYPE_CODE (type) == TYPE_CODE_PTR
2247 || TYPE_CODE (type) == TYPE_CODE_REF
2248 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2249 {
2250 /* If the the type is a plain integer, then the access is
2251 straight-forward. Otherwise we have to play around a bit more. */
2252 int len = TYPE_LENGTH (type);
2253 int regno = ARM_A1_REGNUM;
2254 ULONGEST tmp;
2255
2256 while (len > 0)
2257 {
2258 /* By using store_unsigned_integer we avoid having to do
2259 anything special for small big-endian values. */
2260 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2261 store_unsigned_integer (valbuf,
2262 (len > INT_REGISTER_RAW_SIZE
2263 ? INT_REGISTER_RAW_SIZE : len),
2264 tmp);
2265 len -= INT_REGISTER_RAW_SIZE;
2266 valbuf += INT_REGISTER_RAW_SIZE;
2267 }
2268 }
2269 else
2270 {
2271 /* For a structure or union the behaviour is as if the value had
2272 been stored to word-aligned memory and then loaded into
2273 registers with 32-bit load instruction(s). */
2274 int len = TYPE_LENGTH (type);
2275 int regno = ARM_A1_REGNUM;
2276 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2277
2278 while (len > 0)
2279 {
2280 regcache_cooked_read (regs, regno++, tmpbuf);
2281 memcpy (valbuf, tmpbuf,
2282 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2283 len -= INT_REGISTER_RAW_SIZE;
2284 valbuf += INT_REGISTER_RAW_SIZE;
2285 }
2286 }
2287 }
2288
2289 /* Extract from an array REGBUF containing the (raw) register state
2290 the address in which a function should return its structure value. */
2291
2292 static CORE_ADDR
2293 arm_extract_struct_value_address (struct regcache *regcache)
2294 {
2295 ULONGEST ret;
2296
2297 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2298 return ret;
2299 }
2300
2301 /* Will a function return an aggregate type in memory or in a
2302 register? Return 0 if an aggregate type can be returned in a
2303 register, 1 if it must be returned in memory. */
2304
2305 static int
2306 arm_use_struct_convention (int gcc_p, struct type *type)
2307 {
2308 int nRc;
2309 register enum type_code code;
2310
2311 /* In the ARM ABI, "integer" like aggregate types are returned in
2312 registers. For an aggregate type to be integer like, its size
2313 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2314 offset of each addressable subfield must be zero. Note that bit
2315 fields are not addressable, and all addressable subfields of
2316 unions always start at offset zero.
2317
2318 This function is based on the behaviour of GCC 2.95.1.
2319 See: gcc/arm.c: arm_return_in_memory() for details.
2320
2321 Note: All versions of GCC before GCC 2.95.2 do not set up the
2322 parameters correctly for a function returning the following
2323 structure: struct { float f;}; This should be returned in memory,
2324 not a register. Richard Earnshaw sent me a patch, but I do not
2325 know of any way to detect if a function like the above has been
2326 compiled with the correct calling convention. */
2327
2328 /* All aggregate types that won't fit in a register must be returned
2329 in memory. */
2330 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2331 {
2332 return 1;
2333 }
2334
2335 /* The only aggregate types that can be returned in a register are
2336 structs and unions. Arrays must be returned in memory. */
2337 code = TYPE_CODE (type);
2338 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2339 {
2340 return 1;
2341 }
2342
2343 /* Assume all other aggregate types can be returned in a register.
2344 Run a check for structures, unions and arrays. */
2345 nRc = 0;
2346
2347 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2348 {
2349 int i;
2350 /* Need to check if this struct/union is "integer" like. For
2351 this to be true, its size must be less than or equal to
2352 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2353 subfield must be zero. Note that bit fields are not
2354 addressable, and unions always start at offset zero. If any
2355 of the subfields is a floating point type, the struct/union
2356 cannot be an integer type. */
2357
2358 /* For each field in the object, check:
2359 1) Is it FP? --> yes, nRc = 1;
2360 2) Is it addressable (bitpos != 0) and
2361 not packed (bitsize == 0)?
2362 --> yes, nRc = 1
2363 */
2364
2365 for (i = 0; i < TYPE_NFIELDS (type); i++)
2366 {
2367 enum type_code field_type_code;
2368 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2369
2370 /* Is it a floating point type field? */
2371 if (field_type_code == TYPE_CODE_FLT)
2372 {
2373 nRc = 1;
2374 break;
2375 }
2376
2377 /* If bitpos != 0, then we have to care about it. */
2378 if (TYPE_FIELD_BITPOS (type, i) != 0)
2379 {
2380 /* Bitfields are not addressable. If the field bitsize is
2381 zero, then the field is not packed. Hence it cannot be
2382 a bitfield or any other packed type. */
2383 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2384 {
2385 nRc = 1;
2386 break;
2387 }
2388 }
2389 }
2390 }
2391
2392 return nRc;
2393 }
2394
2395 /* Write into appropriate registers a function return value of type
2396 TYPE, given in virtual format. */
2397
2398 static void
2399 arm_store_return_value (struct type *type, struct regcache *regs,
2400 const void *src)
2401 {
2402 const bfd_byte *valbuf = src;
2403
2404 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2405 {
2406 char buf[ARM_MAX_REGISTER_RAW_SIZE];
2407
2408 switch (arm_get_fp_model (current_gdbarch))
2409 {
2410 case ARM_FLOAT_FPA:
2411
2412 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2413 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2414 break;
2415
2416 case ARM_FLOAT_SOFT_FPA:
2417 case ARM_FLOAT_SOFT_VFP:
2418 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2419 if (TYPE_LENGTH (type) > 4)
2420 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2421 valbuf + INT_REGISTER_RAW_SIZE);
2422 break;
2423
2424 default:
2425 internal_error
2426 (__FILE__, __LINE__,
2427 "arm_store_return_value: Floating point model not supported");
2428 break;
2429 }
2430 }
2431 else if (TYPE_CODE (type) == TYPE_CODE_INT
2432 || TYPE_CODE (type) == TYPE_CODE_CHAR
2433 || TYPE_CODE (type) == TYPE_CODE_BOOL
2434 || TYPE_CODE (type) == TYPE_CODE_PTR
2435 || TYPE_CODE (type) == TYPE_CODE_REF
2436 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2437 {
2438 if (TYPE_LENGTH (type) <= 4)
2439 {
2440 /* Values of one word or less are zero/sign-extended and
2441 returned in r0. */
2442 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2443 LONGEST val = unpack_long (type, valbuf);
2444
2445 store_signed_integer (tmpbuf, INT_REGISTER_RAW_SIZE, val);
2446 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2447 }
2448 else
2449 {
2450 /* Integral values greater than one word are stored in consecutive
2451 registers starting with r0. This will always be a multiple of
2452 the regiser size. */
2453 int len = TYPE_LENGTH (type);
2454 int regno = ARM_A1_REGNUM;
2455
2456 while (len > 0)
2457 {
2458 regcache_cooked_write (regs, regno++, valbuf);
2459 len -= INT_REGISTER_RAW_SIZE;
2460 valbuf += INT_REGISTER_RAW_SIZE;
2461 }
2462 }
2463 }
2464 else
2465 {
2466 /* For a structure or union the behaviour is as if the value had
2467 been stored to word-aligned memory and then loaded into
2468 registers with 32-bit load instruction(s). */
2469 int len = TYPE_LENGTH (type);
2470 int regno = ARM_A1_REGNUM;
2471 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2472
2473 while (len > 0)
2474 {
2475 memcpy (tmpbuf, valbuf,
2476 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2477 regcache_cooked_write (regs, regno++, tmpbuf);
2478 len -= INT_REGISTER_RAW_SIZE;
2479 valbuf += INT_REGISTER_RAW_SIZE;
2480 }
2481 }
2482 }
2483
2484 static int
2485 arm_get_longjmp_target (CORE_ADDR *pc)
2486 {
2487 CORE_ADDR jb_addr;
2488 char buf[INT_REGISTER_RAW_SIZE];
2489 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2490
2491 jb_addr = read_register (ARM_A1_REGNUM);
2492
2493 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2494 INT_REGISTER_RAW_SIZE))
2495 return 0;
2496
2497 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2498 return 1;
2499 }
2500
2501 /* Return non-zero if the PC is inside a thumb call thunk. */
2502
2503 int
2504 arm_in_call_stub (CORE_ADDR pc, char *name)
2505 {
2506 CORE_ADDR start_addr;
2507
2508 /* Find the starting address of the function containing the PC. If
2509 the caller didn't give us a name, look it up at the same time. */
2510 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2511 &start_addr, NULL))
2512 return 0;
2513
2514 return strncmp (name, "_call_via_r", 11) == 0;
2515 }
2516
2517 /* If PC is in a Thumb call or return stub, return the address of the
2518 target PC, which is in a register. The thunk functions are called
2519 _called_via_xx, where x is the register name. The possible names
2520 are r0-r9, sl, fp, ip, sp, and lr. */
2521
2522 CORE_ADDR
2523 arm_skip_stub (CORE_ADDR pc)
2524 {
2525 char *name;
2526 CORE_ADDR start_addr;
2527
2528 /* Find the starting address and name of the function containing the PC. */
2529 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2530 return 0;
2531
2532 /* Call thunks always start with "_call_via_". */
2533 if (strncmp (name, "_call_via_", 10) == 0)
2534 {
2535 /* Use the name suffix to determine which register contains the
2536 target PC. */
2537 static char *table[15] =
2538 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2539 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2540 };
2541 int regno;
2542
2543 for (regno = 0; regno <= 14; regno++)
2544 if (strcmp (&name[10], table[regno]) == 0)
2545 return read_register (regno);
2546 }
2547
2548 return 0; /* not a stub */
2549 }
2550
2551 static void
2552 set_arm_command (char *args, int from_tty)
2553 {
2554 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2555 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2556 }
2557
2558 static void
2559 show_arm_command (char *args, int from_tty)
2560 {
2561 cmd_show_list (showarmcmdlist, from_tty, "");
2562 }
2563
2564 enum arm_float_model
2565 arm_get_fp_model (struct gdbarch *gdbarch)
2566 {
2567 if (arm_fp_model == ARM_FLOAT_AUTO)
2568 return gdbarch_tdep (gdbarch)->fp_model;
2569
2570 return arm_fp_model;
2571 }
2572
2573 static void
2574 arm_set_fp (struct gdbarch *gdbarch)
2575 {
2576 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2577
2578 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2579 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2580 {
2581 set_gdbarch_double_format (gdbarch,
2582 &floatformat_ieee_double_littlebyte_bigword);
2583 set_gdbarch_long_double_format
2584 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2585 }
2586 else
2587 {
2588 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2589 set_gdbarch_long_double_format (gdbarch,
2590 &floatformat_ieee_double_little);
2591 }
2592 }
2593
2594 static void
2595 set_fp_model_sfunc (char *args, int from_tty,
2596 struct cmd_list_element *c)
2597 {
2598 enum arm_float_model fp_model;
2599
2600 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2601 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2602 {
2603 arm_fp_model = fp_model;
2604 break;
2605 }
2606
2607 if (fp_model == ARM_FLOAT_LAST)
2608 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2609 current_fp_model);
2610
2611 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2612 arm_set_fp (current_gdbarch);
2613 }
2614
2615 static void
2616 show_fp_model (char *args, int from_tty,
2617 struct cmd_list_element *c)
2618 {
2619 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2620
2621 if (arm_fp_model == ARM_FLOAT_AUTO
2622 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2623 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2624 fp_model_strings[tdep->fp_model]);
2625 }
2626
2627 /* If the user changes the register disassembly style used for info
2628 register and other commands, we have to also switch the style used
2629 in opcodes for disassembly output. This function is run in the "set
2630 arm disassembly" command, and does that. */
2631
2632 static void
2633 set_disassembly_style_sfunc (char *args, int from_tty,
2634 struct cmd_list_element *c)
2635 {
2636 set_disassembly_style ();
2637 }
2638 \f
2639 /* Return the ARM register name corresponding to register I. */
2640 static const char *
2641 arm_register_name (int i)
2642 {
2643 return arm_register_names[i];
2644 }
2645
2646 static void
2647 set_disassembly_style (void)
2648 {
2649 const char *setname, *setdesc, **regnames;
2650 int numregs, j;
2651
2652 /* Find the style that the user wants in the opcodes table. */
2653 int current = 0;
2654 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2655 while ((disassembly_style != setname)
2656 && (current < num_disassembly_options))
2657 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2658 current_option = current;
2659
2660 /* Fill our copy. */
2661 for (j = 0; j < numregs; j++)
2662 arm_register_names[j] = (char *) regnames[j];
2663
2664 /* Adjust case. */
2665 if (isupper (*regnames[ARM_PC_REGNUM]))
2666 {
2667 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2668 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2669 }
2670 else
2671 {
2672 arm_register_names[ARM_FPS_REGNUM] = "fps";
2673 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2674 }
2675
2676 /* Synchronize the disassembler. */
2677 set_arm_regname_option (current);
2678 }
2679
2680 /* arm_othernames implements the "othernames" command. This is deprecated
2681 by the "set arm disassembly" command. */
2682
2683 static void
2684 arm_othernames (char *names, int n)
2685 {
2686 /* Circle through the various flavors. */
2687 current_option = (current_option + 1) % num_disassembly_options;
2688
2689 disassembly_style = valid_disassembly_styles[current_option];
2690 set_disassembly_style ();
2691 }
2692
2693 /* Fetch, and possibly build, an appropriate link_map_offsets structure
2694 for ARM linux targets using the struct offsets defined in <link.h>.
2695 Note, however, that link.h is not actually referred to in this file.
2696 Instead, the relevant structs offsets were obtained from examining
2697 link.h. (We can't refer to link.h from this file because the host
2698 system won't necessarily have it, or if it does, the structs which
2699 it defines will refer to the host system, not the target). */
2700
2701 struct link_map_offsets *
2702 arm_linux_svr4_fetch_link_map_offsets (void)
2703 {
2704 static struct link_map_offsets lmo;
2705 static struct link_map_offsets *lmp = 0;
2706
2707 if (lmp == 0)
2708 {
2709 lmp = &lmo;
2710
2711 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2712 need. */
2713
2714 lmo.r_map_offset = 4;
2715 lmo.r_map_size = 4;
2716
2717 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2718 need. */
2719
2720 lmo.l_addr_offset = 0;
2721 lmo.l_addr_size = 4;
2722
2723 lmo.l_name_offset = 4;
2724 lmo.l_name_size = 4;
2725
2726 lmo.l_next_offset = 12;
2727 lmo.l_next_size = 4;
2728
2729 lmo.l_prev_offset = 16;
2730 lmo.l_prev_size = 4;
2731 }
2732
2733 return lmp;
2734 }
2735
2736 /* Test whether the coff symbol specific value corresponds to a Thumb
2737 function. */
2738
2739 static int
2740 coff_sym_is_thumb (int val)
2741 {
2742 return (val == C_THUMBEXT ||
2743 val == C_THUMBSTAT ||
2744 val == C_THUMBEXTFUNC ||
2745 val == C_THUMBSTATFUNC ||
2746 val == C_THUMBLABEL);
2747 }
2748
2749 /* arm_coff_make_msymbol_special()
2750 arm_elf_make_msymbol_special()
2751
2752 These functions test whether the COFF or ELF symbol corresponds to
2753 an address in thumb code, and set a "special" bit in a minimal
2754 symbol to indicate that it does. */
2755
2756 static void
2757 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2758 {
2759 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2760 STT_ARM_TFUNC). */
2761 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2762 == STT_LOPROC)
2763 MSYMBOL_SET_SPECIAL (msym);
2764 }
2765
2766 static void
2767 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2768 {
2769 if (coff_sym_is_thumb (val))
2770 MSYMBOL_SET_SPECIAL (msym);
2771 }
2772
2773 \f
2774 static enum gdb_osabi
2775 arm_elf_osabi_sniffer (bfd *abfd)
2776 {
2777 unsigned int elfosabi, eflags;
2778 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2779
2780 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2781
2782 switch (elfosabi)
2783 {
2784 case ELFOSABI_NONE:
2785 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2786 file are conforming to the base specification for that machine
2787 (there are no OS-specific extensions). In order to determine the
2788 real OS in use we must look for OS notes that have been added. */
2789 bfd_map_over_sections (abfd,
2790 generic_elf_osabi_sniff_abi_tag_sections,
2791 &osabi);
2792 if (osabi == GDB_OSABI_UNKNOWN)
2793 {
2794 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2795 field for more information. */
2796 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2797 switch (eflags)
2798 {
2799 case EF_ARM_EABI_VER1:
2800 osabi = GDB_OSABI_ARM_EABI_V1;
2801 break;
2802
2803 case EF_ARM_EABI_VER2:
2804 osabi = GDB_OSABI_ARM_EABI_V2;
2805 break;
2806
2807 case EF_ARM_EABI_UNKNOWN:
2808 /* Assume GNU tools. */
2809 osabi = GDB_OSABI_ARM_APCS;
2810 break;
2811
2812 default:
2813 internal_error (__FILE__, __LINE__,
2814 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2815 "version 0x%x", eflags);
2816 }
2817 }
2818 break;
2819
2820 case ELFOSABI_ARM:
2821 /* GNU tools use this value. Check note sections in this case,
2822 as well. */
2823 bfd_map_over_sections (abfd,
2824 generic_elf_osabi_sniff_abi_tag_sections,
2825 &osabi);
2826 if (osabi == GDB_OSABI_UNKNOWN)
2827 {
2828 /* Assume APCS ABI. */
2829 osabi = GDB_OSABI_ARM_APCS;
2830 }
2831 break;
2832
2833 case ELFOSABI_FREEBSD:
2834 osabi = GDB_OSABI_FREEBSD_ELF;
2835 break;
2836
2837 case ELFOSABI_NETBSD:
2838 osabi = GDB_OSABI_NETBSD_ELF;
2839 break;
2840
2841 case ELFOSABI_LINUX:
2842 osabi = GDB_OSABI_LINUX;
2843 break;
2844 }
2845
2846 return osabi;
2847 }
2848
2849 \f
2850 /* Initialize the current architecture based on INFO. If possible,
2851 re-use an architecture from ARCHES, which is a list of
2852 architectures already created during this debugging session.
2853
2854 Called e.g. at program startup, when reading a core file, and when
2855 reading a binary file. */
2856
2857 static struct gdbarch *
2858 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2859 {
2860 struct gdbarch_tdep *tdep;
2861 struct gdbarch *gdbarch;
2862
2863 /* Try to deterimine the ABI of the object we are loading. */
2864
2865 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2866 {
2867 switch (bfd_get_flavour (info.abfd))
2868 {
2869 case bfd_target_aout_flavour:
2870 /* Assume it's an old APCS-style ABI. */
2871 info.osabi = GDB_OSABI_ARM_APCS;
2872 break;
2873
2874 case bfd_target_coff_flavour:
2875 /* Assume it's an old APCS-style ABI. */
2876 /* XXX WinCE? */
2877 info.osabi = GDB_OSABI_ARM_APCS;
2878 break;
2879
2880 default:
2881 /* Leave it as "unknown". */
2882 break;
2883 }
2884 }
2885
2886 /* If there is already a candidate, use it. */
2887 arches = gdbarch_list_lookup_by_info (arches, &info);
2888 if (arches != NULL)
2889 return arches->gdbarch;
2890
2891 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2892 gdbarch = gdbarch_alloc (&info, tdep);
2893
2894 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2895 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2896 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
2897
2898 /* We used to default to FPA for generic ARM, but almost nobody uses that
2899 now, and we now provide a way for the user to force the model. So
2900 default to the most useful variant. */
2901 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
2902
2903 /* Breakpoints. */
2904 switch (info.byte_order)
2905 {
2906 case BFD_ENDIAN_BIG:
2907 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2908 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2909 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2910 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2911
2912 break;
2913
2914 case BFD_ENDIAN_LITTLE:
2915 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2916 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2917 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2918 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2919
2920 break;
2921
2922 default:
2923 internal_error (__FILE__, __LINE__,
2924 "arm_gdbarch_init: bad byte order for float format");
2925 }
2926
2927 /* On ARM targets char defaults to unsigned. */
2928 set_gdbarch_char_signed (gdbarch, 0);
2929
2930 /* This should be low enough for everything. */
2931 tdep->lowest_pc = 0x20;
2932 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2933
2934 set_gdbarch_deprecated_call_dummy_words (gdbarch, arm_call_dummy_words);
2935 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
2936
2937 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2938
2939 /* Frame handling. */
2940 set_gdbarch_deprecated_frame_chain_valid (gdbarch, arm_frame_chain_valid);
2941 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2942 set_gdbarch_deprecated_target_read_fp (gdbarch, arm_read_fp);
2943 set_gdbarch_deprecated_frame_chain (gdbarch, arm_frame_chain);
2944 set_gdbarch_frameless_function_invocation
2945 (gdbarch, arm_frameless_function_invocation);
2946 set_gdbarch_deprecated_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2947 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2948 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2949 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2950 set_gdbarch_frame_args_skip (gdbarch, 0);
2951 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
2952 set_gdbarch_deprecated_pop_frame (gdbarch, arm_pop_frame);
2953
2954 /* Address manipulation. */
2955 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2956 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2957
2958 /* Offset from address of function to start of its code. */
2959 set_gdbarch_function_start_offset (gdbarch, 0);
2960
2961 /* Advance PC across function entry code. */
2962 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2963
2964 /* Get the PC when a frame might not be available. */
2965 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2966
2967 /* The stack grows downward. */
2968 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2969
2970 /* Breakpoint manipulation. */
2971 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2972 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2973
2974 /* Information about registers, etc. */
2975 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2976 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2977 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2978 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2979 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2980 set_gdbarch_deprecated_register_bytes (gdbarch,
2981 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2982 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2983 + NUM_SREGS * STATUS_REGISTER_SIZE));
2984 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2985 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2986 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2987 set_gdbarch_deprecated_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2988 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2989 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2990
2991 /* Internal <-> external register number maps. */
2992 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2993
2994 /* Integer registers are 4 bytes. */
2995 set_gdbarch_deprecated_register_size (gdbarch, 4);
2996 set_gdbarch_register_name (gdbarch, arm_register_name);
2997
2998 /* Returning results. */
2999 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
3000 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
3001 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
3002 set_gdbarch_extract_struct_value_address (gdbarch,
3003 arm_extract_struct_value_address);
3004
3005 /* Single stepping. */
3006 /* XXX For an RDI target we should ask the target if it can single-step. */
3007 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
3008
3009 /* Disassembly. */
3010 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3011
3012 /* Minsymbol frobbing. */
3013 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3014 set_gdbarch_coff_make_msymbol_special (gdbarch,
3015 arm_coff_make_msymbol_special);
3016
3017 /* Hook in the ABI-specific overrides, if they have been registered. */
3018 gdbarch_init_osabi (info, gdbarch);
3019
3020 /* Now we have tuned the configuration, set a few final things,
3021 based on what the OS ABI has told us. */
3022
3023 if (tdep->jb_pc >= 0)
3024 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3025
3026 /* Floating point sizes and format. */
3027 switch (info.byte_order)
3028 {
3029 case BFD_ENDIAN_BIG:
3030 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
3031 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
3032 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
3033
3034 break;
3035
3036 case BFD_ENDIAN_LITTLE:
3037 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
3038 arm_set_fp (gdbarch);
3039 break;
3040
3041 default:
3042 internal_error (__FILE__, __LINE__,
3043 "arm_gdbarch_init: bad byte order for float format");
3044 }
3045
3046 return gdbarch;
3047 }
3048
3049 static void
3050 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3051 {
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3053
3054 if (tdep == NULL)
3055 return;
3056
3057 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
3058 (unsigned long) tdep->lowest_pc);
3059 }
3060
3061 static void
3062 arm_init_abi_eabi_v1 (struct gdbarch_info info,
3063 struct gdbarch *gdbarch)
3064 {
3065 /* Place-holder. */
3066 }
3067
3068 static void
3069 arm_init_abi_eabi_v2 (struct gdbarch_info info,
3070 struct gdbarch *gdbarch)
3071 {
3072 /* Place-holder. */
3073 }
3074
3075 static void
3076 arm_init_abi_apcs (struct gdbarch_info info,
3077 struct gdbarch *gdbarch)
3078 {
3079 /* Place-holder. */
3080 }
3081
3082 void
3083 _initialize_arm_tdep (void)
3084 {
3085 struct ui_file *stb;
3086 long length;
3087 struct cmd_list_element *new_set, *new_show;
3088 const char *setname;
3089 const char *setdesc;
3090 const char **regnames;
3091 int numregs, i, j;
3092 static char *helptext;
3093
3094 if (GDB_MULTI_ARCH)
3095 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3096
3097 /* Register an ELF OS ABI sniffer for ARM binaries. */
3098 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3099 bfd_target_elf_flavour,
3100 arm_elf_osabi_sniffer);
3101
3102 /* Register some ABI variants for embedded systems. */
3103 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
3104 arm_init_abi_eabi_v1);
3105 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
3106 arm_init_abi_eabi_v2);
3107 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
3108 arm_init_abi_apcs);
3109
3110 /* Get the number of possible sets of register names defined in opcodes. */
3111 num_disassembly_options = get_arm_regname_num_options ();
3112
3113 /* Add root prefix command for all "set arm"/"show arm" commands. */
3114 add_prefix_cmd ("arm", no_class, set_arm_command,
3115 "Various ARM-specific commands.",
3116 &setarmcmdlist, "set arm ", 0, &setlist);
3117
3118 add_prefix_cmd ("arm", no_class, show_arm_command,
3119 "Various ARM-specific commands.",
3120 &showarmcmdlist, "show arm ", 0, &showlist);
3121
3122 /* Sync the opcode insn printer with our register viewer. */
3123 parse_arm_disassembler_option ("reg-names-std");
3124
3125 /* Begin creating the help text. */
3126 stb = mem_fileopen ();
3127 fprintf_unfiltered (stb, "Set the disassembly style.\n"
3128 "The valid values are:\n");
3129
3130 /* Initialize the array that will be passed to add_set_enum_cmd(). */
3131 valid_disassembly_styles
3132 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3133 for (i = 0; i < num_disassembly_options; i++)
3134 {
3135 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3136 valid_disassembly_styles[i] = setname;
3137 fprintf_unfiltered (stb, "%s - %s\n", setname,
3138 setdesc);
3139 /* Copy the default names (if found) and synchronize disassembler. */
3140 if (!strcmp (setname, "std"))
3141 {
3142 disassembly_style = setname;
3143 current_option = i;
3144 for (j = 0; j < numregs; j++)
3145 arm_register_names[j] = (char *) regnames[j];
3146 set_arm_regname_option (i);
3147 }
3148 }
3149 /* Mark the end of valid options. */
3150 valid_disassembly_styles[num_disassembly_options] = NULL;
3151
3152 /* Finish the creation of the help text. */
3153 fprintf_unfiltered (stb, "The default is \"std\".");
3154 helptext = ui_file_xstrdup (stb, &length);
3155 ui_file_delete (stb);
3156
3157 /* Add the deprecated disassembly-flavor command. */
3158 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
3159 valid_disassembly_styles,
3160 &disassembly_style,
3161 helptext,
3162 &setlist);
3163 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
3164 deprecate_cmd (new_set, "set arm disassembly");
3165 deprecate_cmd (add_show_from_set (new_set, &showlist),
3166 "show arm disassembly");
3167
3168 /* And now add the new interface. */
3169 new_set = add_set_enum_cmd ("disassembler", no_class,
3170 valid_disassembly_styles, &disassembly_style,
3171 helptext, &setarmcmdlist);
3172
3173 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
3174 add_show_from_set (new_set, &showarmcmdlist);
3175
3176 add_setshow_cmd_full ("apcs32", no_class,
3177 var_boolean, (char *) &arm_apcs_32,
3178 "Set usage of ARM 32-bit mode.",
3179 "Show usage of ARM 32-bit mode.",
3180 NULL, NULL,
3181 &setlist, &showlist, &new_set, &new_show);
3182 deprecate_cmd (new_set, "set arm apcs32");
3183 deprecate_cmd (new_show, "show arm apcs32");
3184
3185 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3186 "Set usage of ARM 32-bit mode. "
3187 "When off, a 26-bit PC will be used.",
3188 "Show usage of ARM 32-bit mode. "
3189 "When off, a 26-bit PC will be used.",
3190 NULL, NULL,
3191 &setarmcmdlist, &showarmcmdlist);
3192
3193 /* Add a command to allow the user to force the FPU model. */
3194 new_set = add_set_enum_cmd
3195 ("fpu", no_class, fp_model_strings, &current_fp_model,
3196 "Set the floating point type.\n"
3197 "auto - Determine the FP typefrom the OS-ABI.\n"
3198 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
3199 "fpa - FPA co-processor (GCC compiled).\n"
3200 "softvfp - Software FP with pure-endian doubles.\n"
3201 "vfp - VFP co-processor.",
3202 &setarmcmdlist);
3203 set_cmd_sfunc (new_set, set_fp_model_sfunc);
3204 set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
3205
3206 /* Add the deprecated "othernames" command. */
3207 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
3208 "Switch to the next set of register names."),
3209 "set arm disassembly");
3210
3211 /* Debugging flag. */
3212 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3213 "Set ARM debugging. "
3214 "When on, arm-specific debugging is enabled.",
3215 "Show ARM debugging. "
3216 "When on, arm-specific debugging is enabled.",
3217 NULL, NULL,
3218 &setdebuglist, &showdebuglist);
3219 }
This page took 0.109257 seconds and 3 git commands to generate.