* mips-linux-tdep.c: Update N32/N64 signal frame comments.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
31 #include "regcache.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39 #include "objfiles.h"
40 #include "dwarf2-frame.h"
41 #include "gdbtypes.h"
42 #include "prologue-value.h"
43 #include "target-descriptions.h"
44 #include "user-regs.h"
45
46 #include "arm-tdep.h"
47 #include "gdb/sim-arm.h"
48
49 #include "elf-bfd.h"
50 #include "coff/internal.h"
51 #include "elf/arm.h"
52
53 #include "gdb_assert.h"
54
55 static int arm_debug;
56
57 /* Macros for setting and testing a bit in a minimal symbol that marks
58 it as Thumb function. The MSB of the minimal symbol's "info" field
59 is used for this purpose.
60
61 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
62 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
63
64 #define MSYMBOL_SET_SPECIAL(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x80000000)
67
68 #define MSYMBOL_IS_SPECIAL(msym) \
69 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
70
71 /* The list of available "set arm ..." and "show arm ..." commands. */
72 static struct cmd_list_element *setarmcmdlist = NULL;
73 static struct cmd_list_element *showarmcmdlist = NULL;
74
75 /* The type of floating-point to use. Keep this in sync with enum
76 arm_float_model, and the help string in _initialize_arm_tdep. */
77 static const char *fp_model_strings[] =
78 {
79 "auto",
80 "softfpa",
81 "fpa",
82 "softvfp",
83 "vfp",
84 NULL
85 };
86
87 /* A variable that can be configured by the user. */
88 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
89 static const char *current_fp_model = "auto";
90
91 /* The ABI to use. Keep this in sync with arm_abi_kind. */
92 static const char *arm_abi_strings[] =
93 {
94 "auto",
95 "APCS",
96 "AAPCS",
97 NULL
98 };
99
100 /* A variable that can be configured by the user. */
101 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
102 static const char *arm_abi_string = "auto";
103
104 /* Number of different reg name sets (options). */
105 static int num_disassembly_options;
106
107 /* The standard register names, and all the valid aliases for them. */
108 static const struct
109 {
110 const char *name;
111 int regnum;
112 } arm_register_aliases[] = {
113 /* Basic register numbers. */
114 { "r0", 0 },
115 { "r1", 1 },
116 { "r2", 2 },
117 { "r3", 3 },
118 { "r4", 4 },
119 { "r5", 5 },
120 { "r6", 6 },
121 { "r7", 7 },
122 { "r8", 8 },
123 { "r9", 9 },
124 { "r10", 10 },
125 { "r11", 11 },
126 { "r12", 12 },
127 { "r13", 13 },
128 { "r14", 14 },
129 { "r15", 15 },
130 /* Synonyms (argument and variable registers). */
131 { "a1", 0 },
132 { "a2", 1 },
133 { "a3", 2 },
134 { "a4", 3 },
135 { "v1", 4 },
136 { "v2", 5 },
137 { "v3", 6 },
138 { "v4", 7 },
139 { "v5", 8 },
140 { "v6", 9 },
141 { "v7", 10 },
142 { "v8", 11 },
143 /* Other platform-specific names for r9. */
144 { "sb", 9 },
145 { "tr", 9 },
146 /* Special names. */
147 { "ip", 12 },
148 { "sp", 13 },
149 { "lr", 14 },
150 { "pc", 15 },
151 /* Names used by GCC (not listed in the ARM EABI). */
152 { "sl", 10 },
153 { "fp", 11 },
154 /* A special name from the older ATPCS. */
155 { "wr", 7 },
156 };
157
158 static const char *const arm_register_names[] =
159 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
160 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
161 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
162 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
163 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
164 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
165 "fps", "cpsr" }; /* 24 25 */
166
167 /* Valid register name styles. */
168 static const char **valid_disassembly_styles;
169
170 /* Disassembly style to use. Default to "std" register names. */
171 static const char *disassembly_style;
172
173 /* This is used to keep the bfd arch_info in sync with the disassembly
174 style. */
175 static void set_disassembly_style_sfunc(char *, int,
176 struct cmd_list_element *);
177 static void set_disassembly_style (void);
178
179 static void convert_from_extended (const struct floatformat *, const void *,
180 void *, int);
181 static void convert_to_extended (const struct floatformat *, void *,
182 const void *, int);
183
184 struct arm_prologue_cache
185 {
186 /* The stack pointer at the time this frame was created; i.e. the
187 caller's stack pointer when this function was called. It is used
188 to identify this frame. */
189 CORE_ADDR prev_sp;
190
191 /* The frame base for this frame is just prev_sp - frame size.
192 FRAMESIZE is the distance from the frame pointer to the
193 initial stack pointer. */
194
195 int framesize;
196
197 /* The register used to hold the frame pointer for this frame. */
198 int framereg;
199
200 /* Saved register offsets. */
201 struct trad_frame_saved_reg *saved_regs;
202 };
203
204 /* Addresses for calling Thumb functions have the bit 0 set.
205 Here are some macros to test, set, or clear bit 0 of addresses. */
206 #define IS_THUMB_ADDR(addr) ((addr) & 1)
207 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
208 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
209
210 /* Set to true if the 32-bit mode is in use. */
211
212 int arm_apcs_32 = 1;
213
214 /* Determine if the program counter specified in MEMADDR is in a Thumb
215 function. */
216
217 static int
218 arm_pc_is_thumb (CORE_ADDR memaddr)
219 {
220 struct minimal_symbol *sym;
221
222 /* If bit 0 of the address is set, assume this is a Thumb address. */
223 if (IS_THUMB_ADDR (memaddr))
224 return 1;
225
226 /* Thumb functions have a "special" bit set in minimal symbols. */
227 sym = lookup_minimal_symbol_by_pc (memaddr);
228 if (sym)
229 {
230 return (MSYMBOL_IS_SPECIAL (sym));
231 }
232 else
233 {
234 return 0;
235 }
236 }
237
238 /* Remove useless bits from addresses in a running program. */
239 static CORE_ADDR
240 arm_addr_bits_remove (CORE_ADDR val)
241 {
242 if (arm_apcs_32)
243 return UNMAKE_THUMB_ADDR (val);
244 else
245 return (val & 0x03fffffc);
246 }
247
248 /* When reading symbols, we need to zap the low bit of the address,
249 which may be set to 1 for Thumb functions. */
250 static CORE_ADDR
251 arm_smash_text_address (CORE_ADDR val)
252 {
253 return val & ~1;
254 }
255
256 /* Analyze a Thumb prologue, looking for a recognizable stack frame
257 and frame pointer. Scan until we encounter a store that could
258 clobber the stack frame unexpectedly, or an unknown instruction. */
259
260 static CORE_ADDR
261 thumb_analyze_prologue (struct gdbarch *gdbarch,
262 CORE_ADDR start, CORE_ADDR limit,
263 struct arm_prologue_cache *cache)
264 {
265 int i;
266 pv_t regs[16];
267 struct pv_area *stack;
268 struct cleanup *back_to;
269 CORE_ADDR offset;
270
271 for (i = 0; i < 16; i++)
272 regs[i] = pv_register (i, 0);
273 stack = make_pv_area (ARM_SP_REGNUM);
274 back_to = make_cleanup_free_pv_area (stack);
275
276 /* The call instruction saved PC in LR, and the current PC is not
277 interesting. Due to this file's conventions, we want the value
278 of LR at this function's entry, not at the call site, so we do
279 not record the save of the PC - when the ARM prologue analyzer
280 has also been converted to the pv mechanism, we could record the
281 save here and remove the hack in prev_register. */
282 regs[ARM_PC_REGNUM] = pv_unknown ();
283
284 while (start < limit)
285 {
286 unsigned short insn;
287
288 insn = read_memory_unsigned_integer (start, 2);
289
290 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
291 {
292 int regno;
293 int mask;
294
295 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
296 break;
297
298 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
299 whether to save LR (R14). */
300 mask = (insn & 0xff) | ((insn & 0x100) << 6);
301
302 /* Calculate offsets of saved R0-R7 and LR. */
303 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
304 if (mask & (1 << regno))
305 {
306 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
307 -4);
308 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
309 }
310 }
311 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
312 sub sp, #simm */
313 {
314 offset = (insn & 0x7f) << 2; /* get scaled offset */
315 if (insn & 0x80) /* Check for SUB. */
316 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
317 -offset);
318 else
319 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
320 offset);
321 }
322 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
323 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
324 (insn & 0xff) << 2);
325 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
326 {
327 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
328 int src_reg = (insn & 0x78) >> 3;
329 regs[dst_reg] = regs[src_reg];
330 }
331 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
332 {
333 /* Handle stores to the stack. Normally pushes are used,
334 but with GCC -mtpcs-frame, there may be other stores
335 in the prologue to create the frame. */
336 int regno = (insn >> 8) & 0x7;
337 pv_t addr;
338
339 offset = (insn & 0xff) << 2;
340 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
341
342 if (pv_area_store_would_trash (stack, addr))
343 break;
344
345 pv_area_store (stack, addr, 4, regs[regno]);
346 }
347 else
348 {
349 /* We don't know what this instruction is. We're finished
350 scanning. NOTE: Recognizing more safe-to-ignore
351 instructions here will improve support for optimized
352 code. */
353 break;
354 }
355
356 start += 2;
357 }
358
359 if (cache == NULL)
360 {
361 do_cleanups (back_to);
362 return start;
363 }
364
365 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
366 {
367 /* Frame pointer is fp. Frame size is constant. */
368 cache->framereg = ARM_FP_REGNUM;
369 cache->framesize = -regs[ARM_FP_REGNUM].k;
370 }
371 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
372 {
373 /* Frame pointer is r7. Frame size is constant. */
374 cache->framereg = THUMB_FP_REGNUM;
375 cache->framesize = -regs[THUMB_FP_REGNUM].k;
376 }
377 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
378 {
379 /* Try the stack pointer... this is a bit desperate. */
380 cache->framereg = ARM_SP_REGNUM;
381 cache->framesize = -regs[ARM_SP_REGNUM].k;
382 }
383 else
384 {
385 /* We're just out of luck. We don't know where the frame is. */
386 cache->framereg = -1;
387 cache->framesize = 0;
388 }
389
390 for (i = 0; i < 16; i++)
391 if (pv_area_find_reg (stack, gdbarch, i, &offset))
392 cache->saved_regs[i].addr = offset;
393
394 do_cleanups (back_to);
395 return start;
396 }
397
398 /* Advance the PC across any function entry prologue instructions to
399 reach some "real" code.
400
401 The APCS (ARM Procedure Call Standard) defines the following
402 prologue:
403
404 mov ip, sp
405 [stmfd sp!, {a1,a2,a3,a4}]
406 stmfd sp!, {...,fp,ip,lr,pc}
407 [stfe f7, [sp, #-12]!]
408 [stfe f6, [sp, #-12]!]
409 [stfe f5, [sp, #-12]!]
410 [stfe f4, [sp, #-12]!]
411 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
412
413 static CORE_ADDR
414 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
415 {
416 unsigned long inst;
417 CORE_ADDR skip_pc;
418 CORE_ADDR func_addr, func_end = 0;
419 char *func_name;
420 struct symtab_and_line sal;
421
422 /* If we're in a dummy frame, don't even try to skip the prologue. */
423 if (deprecated_pc_in_call_dummy (pc))
424 return pc;
425
426 /* See what the symbol table says. */
427
428 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
429 {
430 struct symbol *sym;
431
432 /* Found a function. */
433 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
434 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
435 {
436 /* Don't use this trick for assembly source files. */
437 sal = find_pc_line (func_addr, 0);
438 if ((sal.line != 0) && (sal.end < func_end))
439 return sal.end;
440 }
441 }
442
443 /* Can't find the prologue end in the symbol table, try it the hard way
444 by disassembling the instructions. */
445
446 /* Like arm_scan_prologue, stop no later than pc + 64. */
447 if (func_end == 0 || func_end > pc + 64)
448 func_end = pc + 64;
449
450 /* Check if this is Thumb code. */
451 if (arm_pc_is_thumb (pc))
452 return thumb_analyze_prologue (gdbarch, pc, func_end, NULL);
453
454 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
455 {
456 inst = read_memory_unsigned_integer (skip_pc, 4);
457
458 /* "mov ip, sp" is no longer a required part of the prologue. */
459 if (inst == 0xe1a0c00d) /* mov ip, sp */
460 continue;
461
462 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
463 continue;
464
465 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
466 continue;
467
468 /* Some prologues begin with "str lr, [sp, #-4]!". */
469 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
470 continue;
471
472 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
473 continue;
474
475 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
476 continue;
477
478 /* Any insns after this point may float into the code, if it makes
479 for better instruction scheduling, so we skip them only if we
480 find them, but still consider the function to be frame-ful. */
481
482 /* We may have either one sfmfd instruction here, or several stfe
483 insns, depending on the version of floating point code we
484 support. */
485 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
486 continue;
487
488 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
489 continue;
490
491 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
492 continue;
493
494 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
495 continue;
496
497 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
498 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
499 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
500 continue;
501
502 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
503 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
504 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
505 continue;
506
507 /* Un-recognized instruction; stop scanning. */
508 break;
509 }
510
511 return skip_pc; /* End of prologue */
512 }
513
514 /* *INDENT-OFF* */
515 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
516 This function decodes a Thumb function prologue to determine:
517 1) the size of the stack frame
518 2) which registers are saved on it
519 3) the offsets of saved regs
520 4) the offset from the stack pointer to the frame pointer
521
522 A typical Thumb function prologue would create this stack frame
523 (offsets relative to FP)
524 old SP -> 24 stack parameters
525 20 LR
526 16 R7
527 R7 -> 0 local variables (16 bytes)
528 SP -> -12 additional stack space (12 bytes)
529 The frame size would thus be 36 bytes, and the frame offset would be
530 12 bytes. The frame register is R7.
531
532 The comments for thumb_skip_prolog() describe the algorithm we use
533 to detect the end of the prolog. */
534 /* *INDENT-ON* */
535
536 static void
537 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
538 struct arm_prologue_cache *cache)
539 {
540 CORE_ADDR prologue_start;
541 CORE_ADDR prologue_end;
542 CORE_ADDR current_pc;
543 /* Which register has been copied to register n? */
544 int saved_reg[16];
545 /* findmask:
546 bit 0 - push { rlist }
547 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
548 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
549 */
550 int findmask = 0;
551 int i;
552
553 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
554 {
555 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
556
557 if (sal.line == 0) /* no line info, use current PC */
558 prologue_end = prev_pc;
559 else if (sal.end < prologue_end) /* next line begins after fn end */
560 prologue_end = sal.end; /* (probably means no prologue) */
561 }
562 else
563 /* We're in the boondocks: we have no idea where the start of the
564 function is. */
565 return;
566
567 prologue_end = min (prologue_end, prev_pc);
568
569 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
570 }
571
572 /* This function decodes an ARM function prologue to determine:
573 1) the size of the stack frame
574 2) which registers are saved on it
575 3) the offsets of saved regs
576 4) the offset from the stack pointer to the frame pointer
577 This information is stored in the "extra" fields of the frame_info.
578
579 There are two basic forms for the ARM prologue. The fixed argument
580 function call will look like:
581
582 mov ip, sp
583 stmfd sp!, {fp, ip, lr, pc}
584 sub fp, ip, #4
585 [sub sp, sp, #4]
586
587 Which would create this stack frame (offsets relative to FP):
588 IP -> 4 (caller's stack)
589 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
590 -4 LR (return address in caller)
591 -8 IP (copy of caller's SP)
592 -12 FP (caller's FP)
593 SP -> -28 Local variables
594
595 The frame size would thus be 32 bytes, and the frame offset would be
596 28 bytes. The stmfd call can also save any of the vN registers it
597 plans to use, which increases the frame size accordingly.
598
599 Note: The stored PC is 8 off of the STMFD instruction that stored it
600 because the ARM Store instructions always store PC + 8 when you read
601 the PC register.
602
603 A variable argument function call will look like:
604
605 mov ip, sp
606 stmfd sp!, {a1, a2, a3, a4}
607 stmfd sp!, {fp, ip, lr, pc}
608 sub fp, ip, #20
609
610 Which would create this stack frame (offsets relative to FP):
611 IP -> 20 (caller's stack)
612 16 A4
613 12 A3
614 8 A2
615 4 A1
616 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
617 -4 LR (return address in caller)
618 -8 IP (copy of caller's SP)
619 -12 FP (caller's FP)
620 SP -> -28 Local variables
621
622 The frame size would thus be 48 bytes, and the frame offset would be
623 28 bytes.
624
625 There is another potential complication, which is that the optimizer
626 will try to separate the store of fp in the "stmfd" instruction from
627 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
628 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
629
630 Also, note, the original version of the ARM toolchain claimed that there
631 should be an
632
633 instruction at the end of the prologue. I have never seen GCC produce
634 this, and the ARM docs don't mention it. We still test for it below in
635 case it happens...
636
637 */
638
639 static void
640 arm_scan_prologue (struct frame_info *next_frame,
641 struct arm_prologue_cache *cache)
642 {
643 struct gdbarch *gdbarch = get_frame_arch (next_frame);
644 int regno;
645 CORE_ADDR prologue_start, prologue_end, current_pc;
646 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
647 pv_t regs[ARM_FPS_REGNUM];
648 struct pv_area *stack;
649 struct cleanup *back_to;
650 CORE_ADDR offset;
651
652 /* Assume there is no frame until proven otherwise. */
653 cache->framereg = ARM_SP_REGNUM;
654 cache->framesize = 0;
655
656 /* Check for Thumb prologue. */
657 if (arm_pc_is_thumb (prev_pc))
658 {
659 thumb_scan_prologue (gdbarch, prev_pc, cache);
660 return;
661 }
662
663 /* Find the function prologue. If we can't find the function in
664 the symbol table, peek in the stack frame to find the PC. */
665 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
666 {
667 /* One way to find the end of the prologue (which works well
668 for unoptimized code) is to do the following:
669
670 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
671
672 if (sal.line == 0)
673 prologue_end = prev_pc;
674 else if (sal.end < prologue_end)
675 prologue_end = sal.end;
676
677 This mechanism is very accurate so long as the optimizer
678 doesn't move any instructions from the function body into the
679 prologue. If this happens, sal.end will be the last
680 instruction in the first hunk of prologue code just before
681 the first instruction that the scheduler has moved from
682 the body to the prologue.
683
684 In order to make sure that we scan all of the prologue
685 instructions, we use a slightly less accurate mechanism which
686 may scan more than necessary. To help compensate for this
687 lack of accuracy, the prologue scanning loop below contains
688 several clauses which'll cause the loop to terminate early if
689 an implausible prologue instruction is encountered.
690
691 The expression
692
693 prologue_start + 64
694
695 is a suitable endpoint since it accounts for the largest
696 possible prologue plus up to five instructions inserted by
697 the scheduler. */
698
699 if (prologue_end > prologue_start + 64)
700 {
701 prologue_end = prologue_start + 64; /* See above. */
702 }
703 }
704 else
705 {
706 /* We have no symbol information. Our only option is to assume this
707 function has a standard stack frame and the normal frame register.
708 Then, we can find the value of our frame pointer on entrance to
709 the callee (or at the present moment if this is the innermost frame).
710 The value stored there should be the address of the stmfd + 8. */
711 CORE_ADDR frame_loc;
712 LONGEST return_value;
713
714 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
715 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
716 return;
717 else
718 {
719 prologue_start = gdbarch_addr_bits_remove
720 (gdbarch, return_value) - 8;
721 prologue_end = prologue_start + 64; /* See above. */
722 }
723 }
724
725 if (prev_pc < prologue_end)
726 prologue_end = prev_pc;
727
728 /* Now search the prologue looking for instructions that set up the
729 frame pointer, adjust the stack pointer, and save registers.
730
731 Be careful, however, and if it doesn't look like a prologue,
732 don't try to scan it. If, for instance, a frameless function
733 begins with stmfd sp!, then we will tell ourselves there is
734 a frame, which will confuse stack traceback, as well as "finish"
735 and other operations that rely on a knowledge of the stack
736 traceback.
737
738 In the APCS, the prologue should start with "mov ip, sp" so
739 if we don't see this as the first insn, we will stop.
740
741 [Note: This doesn't seem to be true any longer, so it's now an
742 optional part of the prologue. - Kevin Buettner, 2001-11-20]
743
744 [Note further: The "mov ip,sp" only seems to be missing in
745 frameless functions at optimization level "-O2" or above,
746 in which case it is often (but not always) replaced by
747 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
748
749 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
750 regs[regno] = pv_register (regno, 0);
751 stack = make_pv_area (ARM_SP_REGNUM);
752 back_to = make_cleanup_free_pv_area (stack);
753
754 regs[ARM_PC_REGNUM] = pv_unknown ();
755
756 for (current_pc = prologue_start;
757 current_pc < prologue_end;
758 current_pc += 4)
759 {
760 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
761
762 if (insn == 0xe1a0c00d) /* mov ip, sp */
763 {
764 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
765 continue;
766 }
767 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
768 {
769 unsigned imm = insn & 0xff; /* immediate value */
770 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
771 imm = (imm >> rot) | (imm << (32 - rot));
772 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm);
773 continue;
774 }
775 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
776 {
777 unsigned imm = insn & 0xff; /* immediate value */
778 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
779 imm = (imm >> rot) | (imm << (32 - rot));
780 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
781 continue;
782 }
783 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
784 {
785 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
786 break;
787 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
788 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]);
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
795 {
796 int mask = insn & 0xffff;
797
798 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
799 break;
800
801 /* Calculate offsets of saved registers. */
802 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
803 if (mask & (1 << regno))
804 {
805 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
806 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
807 }
808 }
809 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
810 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
811 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
812 {
813 /* No need to add this to saved_regs -- it's just an arg reg. */
814 continue;
815 }
816 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
817 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
818 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
819 {
820 /* No need to add this to saved_regs -- it's just an arg reg. */
821 continue;
822 }
823 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
824 {
825 unsigned imm = insn & 0xff; /* immediate value */
826 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
827 imm = (imm >> rot) | (imm << (32 - rot));
828 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
829 }
830 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
831 {
832 unsigned imm = insn & 0xff; /* immediate value */
833 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
834 imm = (imm >> rot) | (imm << (32 - rot));
835 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
836 }
837 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
838 && gdbarch_tdep (gdbarch)->have_fpa_registers)
839 {
840 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
841 break;
842
843 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
844 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
845 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
846 }
847 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
848 && gdbarch_tdep (gdbarch)->have_fpa_registers)
849 {
850 int n_saved_fp_regs;
851 unsigned int fp_start_reg, fp_bound_reg;
852
853 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
854 break;
855
856 if ((insn & 0x800) == 0x800) /* N0 is set */
857 {
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 3;
860 else
861 n_saved_fp_regs = 1;
862 }
863 else
864 {
865 if ((insn & 0x40000) == 0x40000) /* N1 is set */
866 n_saved_fp_regs = 2;
867 else
868 n_saved_fp_regs = 4;
869 }
870
871 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
872 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
873 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
874 {
875 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
876 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
877 regs[fp_start_reg++]);
878 }
879 }
880 else if ((insn & 0xf0000000) != 0xe0000000)
881 break; /* Condition not true, exit early */
882 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
883 break; /* Don't scan past a block load */
884 else
885 /* The optimizer might shove anything into the prologue,
886 so we just skip what we don't recognize. */
887 continue;
888 }
889
890 /* The frame size is just the distance from the frame register
891 to the original stack pointer. */
892 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
893 {
894 /* Frame pointer is fp. */
895 cache->framereg = ARM_FP_REGNUM;
896 cache->framesize = -regs[ARM_FP_REGNUM].k;
897 }
898 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
899 {
900 /* Try the stack pointer... this is a bit desperate. */
901 cache->framereg = ARM_SP_REGNUM;
902 cache->framesize = -regs[ARM_SP_REGNUM].k;
903 }
904 else
905 {
906 /* We're just out of luck. We don't know where the frame is. */
907 cache->framereg = -1;
908 cache->framesize = 0;
909 }
910
911 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
912 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
913 cache->saved_regs[regno].addr = offset;
914
915 do_cleanups (back_to);
916 }
917
918 static struct arm_prologue_cache *
919 arm_make_prologue_cache (struct frame_info *next_frame)
920 {
921 int reg;
922 struct arm_prologue_cache *cache;
923 CORE_ADDR unwound_fp;
924
925 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
926 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
927
928 arm_scan_prologue (next_frame, cache);
929
930 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
931 if (unwound_fp == 0)
932 return cache;
933
934 cache->prev_sp = unwound_fp + cache->framesize;
935
936 /* Calculate actual addresses of saved registers using offsets
937 determined by arm_scan_prologue. */
938 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (next_frame)); reg++)
939 if (trad_frame_addr_p (cache->saved_regs, reg))
940 cache->saved_regs[reg].addr += cache->prev_sp;
941
942 return cache;
943 }
944
945 /* Our frame ID for a normal frame is the current function's starting PC
946 and the caller's SP when we were called. */
947
948 static void
949 arm_prologue_this_id (struct frame_info *next_frame,
950 void **this_cache,
951 struct frame_id *this_id)
952 {
953 struct arm_prologue_cache *cache;
954 struct frame_id id;
955 CORE_ADDR func;
956
957 if (*this_cache == NULL)
958 *this_cache = arm_make_prologue_cache (next_frame);
959 cache = *this_cache;
960
961 func = frame_func_unwind (next_frame, NORMAL_FRAME);
962
963 /* This is meant to halt the backtrace at "_start". Make sure we
964 don't halt it at a generic dummy frame. */
965 if (func <= gdbarch_tdep (get_frame_arch (next_frame))->lowest_pc)
966 return;
967
968 /* If we've hit a wall, stop. */
969 if (cache->prev_sp == 0)
970 return;
971
972 id = frame_id_build (cache->prev_sp, func);
973 *this_id = id;
974 }
975
976 static void
977 arm_prologue_prev_register (struct frame_info *next_frame,
978 void **this_cache,
979 int prev_regnum,
980 int *optimized,
981 enum lval_type *lvalp,
982 CORE_ADDR *addrp,
983 int *realnump,
984 gdb_byte *valuep)
985 {
986 struct arm_prologue_cache *cache;
987
988 if (*this_cache == NULL)
989 *this_cache = arm_make_prologue_cache (next_frame);
990 cache = *this_cache;
991
992 /* If we are asked to unwind the PC, then we need to return the LR
993 instead. The saved value of PC points into this frame's
994 prologue, not the next frame's resume location. */
995 if (prev_regnum == ARM_PC_REGNUM)
996 prev_regnum = ARM_LR_REGNUM;
997
998 /* SP is generally not saved to the stack, but this frame is
999 identified by NEXT_FRAME's stack pointer at the time of the call.
1000 The value was already reconstructed into PREV_SP. */
1001 if (prev_regnum == ARM_SP_REGNUM)
1002 {
1003 *lvalp = not_lval;
1004 if (valuep)
1005 store_unsigned_integer (valuep, 4, cache->prev_sp);
1006 return;
1007 }
1008
1009 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1010 optimized, lvalp, addrp, realnump, valuep);
1011 }
1012
1013 struct frame_unwind arm_prologue_unwind = {
1014 NORMAL_FRAME,
1015 arm_prologue_this_id,
1016 arm_prologue_prev_register
1017 };
1018
1019 static const struct frame_unwind *
1020 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1021 {
1022 return &arm_prologue_unwind;
1023 }
1024
1025 static struct arm_prologue_cache *
1026 arm_make_stub_cache (struct frame_info *next_frame)
1027 {
1028 int reg;
1029 struct arm_prologue_cache *cache;
1030 CORE_ADDR unwound_fp;
1031
1032 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1033 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1034
1035 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1036
1037 return cache;
1038 }
1039
1040 /* Our frame ID for a stub frame is the current SP and LR. */
1041
1042 static void
1043 arm_stub_this_id (struct frame_info *next_frame,
1044 void **this_cache,
1045 struct frame_id *this_id)
1046 {
1047 struct arm_prologue_cache *cache;
1048
1049 if (*this_cache == NULL)
1050 *this_cache = arm_make_stub_cache (next_frame);
1051 cache = *this_cache;
1052
1053 *this_id = frame_id_build (cache->prev_sp,
1054 frame_pc_unwind (next_frame));
1055 }
1056
1057 struct frame_unwind arm_stub_unwind = {
1058 NORMAL_FRAME,
1059 arm_stub_this_id,
1060 arm_prologue_prev_register
1061 };
1062
1063 static const struct frame_unwind *
1064 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1065 {
1066 CORE_ADDR addr_in_block;
1067 char dummy[4];
1068
1069 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1070 if (in_plt_section (addr_in_block, NULL)
1071 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1072 return &arm_stub_unwind;
1073
1074 return NULL;
1075 }
1076
1077 static CORE_ADDR
1078 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1079 {
1080 struct arm_prologue_cache *cache;
1081
1082 if (*this_cache == NULL)
1083 *this_cache = arm_make_prologue_cache (next_frame);
1084 cache = *this_cache;
1085
1086 return cache->prev_sp - cache->framesize;
1087 }
1088
1089 struct frame_base arm_normal_base = {
1090 &arm_prologue_unwind,
1091 arm_normal_frame_base,
1092 arm_normal_frame_base,
1093 arm_normal_frame_base
1094 };
1095
1096 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1097 dummy frame. The frame ID's base needs to match the TOS value
1098 saved by save_dummy_frame_tos() and returned from
1099 arm_push_dummy_call, and the PC needs to match the dummy frame's
1100 breakpoint. */
1101
1102 static struct frame_id
1103 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1104 {
1105 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1106 frame_pc_unwind (next_frame));
1107 }
1108
1109 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1110 be used to construct the previous frame's ID, after looking up the
1111 containing function). */
1112
1113 static CORE_ADDR
1114 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1115 {
1116 CORE_ADDR pc;
1117 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1118 return arm_addr_bits_remove (pc);
1119 }
1120
1121 static CORE_ADDR
1122 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1123 {
1124 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1125 }
1126
1127 /* When arguments must be pushed onto the stack, they go on in reverse
1128 order. The code below implements a FILO (stack) to do this. */
1129
1130 struct stack_item
1131 {
1132 int len;
1133 struct stack_item *prev;
1134 void *data;
1135 };
1136
1137 static struct stack_item *
1138 push_stack_item (struct stack_item *prev, void *contents, int len)
1139 {
1140 struct stack_item *si;
1141 si = xmalloc (sizeof (struct stack_item));
1142 si->data = xmalloc (len);
1143 si->len = len;
1144 si->prev = prev;
1145 memcpy (si->data, contents, len);
1146 return si;
1147 }
1148
1149 static struct stack_item *
1150 pop_stack_item (struct stack_item *si)
1151 {
1152 struct stack_item *dead = si;
1153 si = si->prev;
1154 xfree (dead->data);
1155 xfree (dead);
1156 return si;
1157 }
1158
1159
1160 /* Return the alignment (in bytes) of the given type. */
1161
1162 static int
1163 arm_type_align (struct type *t)
1164 {
1165 int n;
1166 int align;
1167 int falign;
1168
1169 t = check_typedef (t);
1170 switch (TYPE_CODE (t))
1171 {
1172 default:
1173 /* Should never happen. */
1174 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1175 return 4;
1176
1177 case TYPE_CODE_PTR:
1178 case TYPE_CODE_ENUM:
1179 case TYPE_CODE_INT:
1180 case TYPE_CODE_FLT:
1181 case TYPE_CODE_SET:
1182 case TYPE_CODE_RANGE:
1183 case TYPE_CODE_BITSTRING:
1184 case TYPE_CODE_REF:
1185 case TYPE_CODE_CHAR:
1186 case TYPE_CODE_BOOL:
1187 return TYPE_LENGTH (t);
1188
1189 case TYPE_CODE_ARRAY:
1190 case TYPE_CODE_COMPLEX:
1191 /* TODO: What about vector types? */
1192 return arm_type_align (TYPE_TARGET_TYPE (t));
1193
1194 case TYPE_CODE_STRUCT:
1195 case TYPE_CODE_UNION:
1196 align = 1;
1197 for (n = 0; n < TYPE_NFIELDS (t); n++)
1198 {
1199 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1200 if (falign > align)
1201 align = falign;
1202 }
1203 return align;
1204 }
1205 }
1206
1207 /* We currently only support passing parameters in integer registers. This
1208 conforms with GCC's default model. Several other variants exist and
1209 we should probably support some of them based on the selected ABI. */
1210
1211 static CORE_ADDR
1212 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1213 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1214 struct value **args, CORE_ADDR sp, int struct_return,
1215 CORE_ADDR struct_addr)
1216 {
1217 int argnum;
1218 int argreg;
1219 int nstack;
1220 struct stack_item *si = NULL;
1221
1222 /* Set the return address. For the ARM, the return breakpoint is
1223 always at BP_ADDR. */
1224 /* XXX Fix for Thumb. */
1225 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1226
1227 /* Walk through the list of args and determine how large a temporary
1228 stack is required. Need to take care here as structs may be
1229 passed on the stack, and we have to to push them. */
1230 nstack = 0;
1231
1232 argreg = ARM_A1_REGNUM;
1233 nstack = 0;
1234
1235 /* The struct_return pointer occupies the first parameter
1236 passing register. */
1237 if (struct_return)
1238 {
1239 if (arm_debug)
1240 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1241 gdbarch_register_name (gdbarch, argreg),
1242 paddr (struct_addr));
1243 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1244 argreg++;
1245 }
1246
1247 for (argnum = 0; argnum < nargs; argnum++)
1248 {
1249 int len;
1250 struct type *arg_type;
1251 struct type *target_type;
1252 enum type_code typecode;
1253 bfd_byte *val;
1254 int align;
1255
1256 arg_type = check_typedef (value_type (args[argnum]));
1257 len = TYPE_LENGTH (arg_type);
1258 target_type = TYPE_TARGET_TYPE (arg_type);
1259 typecode = TYPE_CODE (arg_type);
1260 val = value_contents_writeable (args[argnum]);
1261
1262 align = arm_type_align (arg_type);
1263 /* Round alignment up to a whole number of words. */
1264 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1265 /* Different ABIs have different maximum alignments. */
1266 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1267 {
1268 /* The APCS ABI only requires word alignment. */
1269 align = INT_REGISTER_SIZE;
1270 }
1271 else
1272 {
1273 /* The AAPCS requires at most doubleword alignment. */
1274 if (align > INT_REGISTER_SIZE * 2)
1275 align = INT_REGISTER_SIZE * 2;
1276 }
1277
1278 /* Push stack padding for dowubleword alignment. */
1279 if (nstack & (align - 1))
1280 {
1281 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1282 nstack += INT_REGISTER_SIZE;
1283 }
1284
1285 /* Doubleword aligned quantities must go in even register pairs. */
1286 if (argreg <= ARM_LAST_ARG_REGNUM
1287 && align > INT_REGISTER_SIZE
1288 && argreg & 1)
1289 argreg++;
1290
1291 /* If the argument is a pointer to a function, and it is a
1292 Thumb function, create a LOCAL copy of the value and set
1293 the THUMB bit in it. */
1294 if (TYPE_CODE_PTR == typecode
1295 && target_type != NULL
1296 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1297 {
1298 CORE_ADDR regval = extract_unsigned_integer (val, len);
1299 if (arm_pc_is_thumb (regval))
1300 {
1301 val = alloca (len);
1302 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1303 }
1304 }
1305
1306 /* Copy the argument to general registers or the stack in
1307 register-sized pieces. Large arguments are split between
1308 registers and stack. */
1309 while (len > 0)
1310 {
1311 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
1312
1313 if (argreg <= ARM_LAST_ARG_REGNUM)
1314 {
1315 /* The argument is being passed in a general purpose
1316 register. */
1317 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1318 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1319 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
1320 if (arm_debug)
1321 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1322 argnum,
1323 gdbarch_register_name
1324 (gdbarch, argreg),
1325 phex (regval, INT_REGISTER_SIZE));
1326 regcache_cooked_write_unsigned (regcache, argreg, regval);
1327 argreg++;
1328 }
1329 else
1330 {
1331 /* Push the arguments onto the stack. */
1332 if (arm_debug)
1333 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1334 argnum, nstack);
1335 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1336 nstack += INT_REGISTER_SIZE;
1337 }
1338
1339 len -= partial_len;
1340 val += partial_len;
1341 }
1342 }
1343 /* If we have an odd number of words to push, then decrement the stack
1344 by one word now, so first stack argument will be dword aligned. */
1345 if (nstack & 4)
1346 sp -= 4;
1347
1348 while (si)
1349 {
1350 sp -= si->len;
1351 write_memory (sp, si->data, si->len);
1352 si = pop_stack_item (si);
1353 }
1354
1355 /* Finally, update teh SP register. */
1356 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1357
1358 return sp;
1359 }
1360
1361
1362 /* Always align the frame to an 8-byte boundary. This is required on
1363 some platforms and harmless on the rest. */
1364
1365 static CORE_ADDR
1366 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1367 {
1368 /* Align the stack to eight bytes. */
1369 return sp & ~ (CORE_ADDR) 7;
1370 }
1371
1372 static void
1373 print_fpu_flags (int flags)
1374 {
1375 if (flags & (1 << 0))
1376 fputs ("IVO ", stdout);
1377 if (flags & (1 << 1))
1378 fputs ("DVZ ", stdout);
1379 if (flags & (1 << 2))
1380 fputs ("OFL ", stdout);
1381 if (flags & (1 << 3))
1382 fputs ("UFL ", stdout);
1383 if (flags & (1 << 4))
1384 fputs ("INX ", stdout);
1385 putchar ('\n');
1386 }
1387
1388 /* Print interesting information about the floating point processor
1389 (if present) or emulator. */
1390 static void
1391 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1392 struct frame_info *frame, const char *args)
1393 {
1394 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
1395 int type;
1396
1397 type = (status >> 24) & 127;
1398 if (status & (1 << 31))
1399 printf (_("Hardware FPU type %d\n"), type);
1400 else
1401 printf (_("Software FPU type %d\n"), type);
1402 /* i18n: [floating point unit] mask */
1403 fputs (_("mask: "), stdout);
1404 print_fpu_flags (status >> 16);
1405 /* i18n: [floating point unit] flags */
1406 fputs (_("flags: "), stdout);
1407 print_fpu_flags (status);
1408 }
1409
1410 /* Return the GDB type object for the "standard" data type of data in
1411 register N. */
1412
1413 static struct type *
1414 arm_register_type (struct gdbarch *gdbarch, int regnum)
1415 {
1416 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1417 return builtin_type_arm_ext;
1418 else if (regnum == ARM_SP_REGNUM)
1419 return builtin_type_void_data_ptr;
1420 else if (regnum == ARM_PC_REGNUM)
1421 return builtin_type_void_func_ptr;
1422 else if (regnum >= ARRAY_SIZE (arm_register_names))
1423 /* These registers are only supported on targets which supply
1424 an XML description. */
1425 return builtin_type_int0;
1426 else
1427 return builtin_type_uint32;
1428 }
1429
1430 /* Map a DWARF register REGNUM onto the appropriate GDB register
1431 number. */
1432
1433 static int
1434 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1435 {
1436 /* Core integer regs. */
1437 if (reg >= 0 && reg <= 15)
1438 return reg;
1439
1440 /* Legacy FPA encoding. These were once used in a way which
1441 overlapped with VFP register numbering, so their use is
1442 discouraged, but GDB doesn't support the ARM toolchain
1443 which used them for VFP. */
1444 if (reg >= 16 && reg <= 23)
1445 return ARM_F0_REGNUM + reg - 16;
1446
1447 /* New assignments for the FPA registers. */
1448 if (reg >= 96 && reg <= 103)
1449 return ARM_F0_REGNUM + reg - 96;
1450
1451 /* WMMX register assignments. */
1452 if (reg >= 104 && reg <= 111)
1453 return ARM_WCGR0_REGNUM + reg - 104;
1454
1455 if (reg >= 112 && reg <= 127)
1456 return ARM_WR0_REGNUM + reg - 112;
1457
1458 if (reg >= 192 && reg <= 199)
1459 return ARM_WC0_REGNUM + reg - 192;
1460
1461 return -1;
1462 }
1463
1464 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1465 static int
1466 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1467 {
1468 int reg = regnum;
1469 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
1470
1471 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1472 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1473
1474 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1475 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1476
1477 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1478 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1479
1480 if (reg < NUM_GREGS)
1481 return SIM_ARM_R0_REGNUM + reg;
1482 reg -= NUM_GREGS;
1483
1484 if (reg < NUM_FREGS)
1485 return SIM_ARM_FP0_REGNUM + reg;
1486 reg -= NUM_FREGS;
1487
1488 if (reg < NUM_SREGS)
1489 return SIM_ARM_FPS_REGNUM + reg;
1490 reg -= NUM_SREGS;
1491
1492 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1493 }
1494
1495 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1496 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1497 It is thought that this is is the floating-point register format on
1498 little-endian systems. */
1499
1500 static void
1501 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1502 void *dbl, int endianess)
1503 {
1504 DOUBLEST d;
1505
1506 if (endianess == BFD_ENDIAN_BIG)
1507 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1508 else
1509 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1510 ptr, &d);
1511 floatformat_from_doublest (fmt, &d, dbl);
1512 }
1513
1514 static void
1515 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
1516 int endianess)
1517 {
1518 DOUBLEST d;
1519
1520 floatformat_to_doublest (fmt, ptr, &d);
1521 if (endianess == BFD_ENDIAN_BIG)
1522 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1523 else
1524 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1525 &d, dbl);
1526 }
1527
1528 static int
1529 condition_true (unsigned long cond, unsigned long status_reg)
1530 {
1531 if (cond == INST_AL || cond == INST_NV)
1532 return 1;
1533
1534 switch (cond)
1535 {
1536 case INST_EQ:
1537 return ((status_reg & FLAG_Z) != 0);
1538 case INST_NE:
1539 return ((status_reg & FLAG_Z) == 0);
1540 case INST_CS:
1541 return ((status_reg & FLAG_C) != 0);
1542 case INST_CC:
1543 return ((status_reg & FLAG_C) == 0);
1544 case INST_MI:
1545 return ((status_reg & FLAG_N) != 0);
1546 case INST_PL:
1547 return ((status_reg & FLAG_N) == 0);
1548 case INST_VS:
1549 return ((status_reg & FLAG_V) != 0);
1550 case INST_VC:
1551 return ((status_reg & FLAG_V) == 0);
1552 case INST_HI:
1553 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1554 case INST_LS:
1555 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1556 case INST_GE:
1557 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1558 case INST_LT:
1559 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1560 case INST_GT:
1561 return (((status_reg & FLAG_Z) == 0) &&
1562 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1563 case INST_LE:
1564 return (((status_reg & FLAG_Z) != 0) ||
1565 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1566 }
1567 return 1;
1568 }
1569
1570 /* Support routines for single stepping. Calculate the next PC value. */
1571 #define submask(x) ((1L << ((x) + 1)) - 1)
1572 #define bit(obj,st) (((obj) >> (st)) & 1)
1573 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1574 #define sbits(obj,st,fn) \
1575 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1576 #define BranchDest(addr,instr) \
1577 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1578 #define ARM_PC_32 1
1579
1580 static unsigned long
1581 shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1582 unsigned long pc_val, unsigned long status_reg)
1583 {
1584 unsigned long res, shift;
1585 int rm = bits (inst, 0, 3);
1586 unsigned long shifttype = bits (inst, 5, 6);
1587
1588 if (bit (inst, 4))
1589 {
1590 int rs = bits (inst, 8, 11);
1591 shift = (rs == 15 ? pc_val + 8
1592 : get_frame_register_unsigned (frame, rs)) & 0xFF;
1593 }
1594 else
1595 shift = bits (inst, 7, 11);
1596
1597 res = (rm == 15
1598 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1599 + (bit (inst, 4) ? 12 : 8))
1600 : get_frame_register_unsigned (frame, rm));
1601
1602 switch (shifttype)
1603 {
1604 case 0: /* LSL */
1605 res = shift >= 32 ? 0 : res << shift;
1606 break;
1607
1608 case 1: /* LSR */
1609 res = shift >= 32 ? 0 : res >> shift;
1610 break;
1611
1612 case 2: /* ASR */
1613 if (shift >= 32)
1614 shift = 31;
1615 res = ((res & 0x80000000L)
1616 ? ~((~res) >> shift) : res >> shift);
1617 break;
1618
1619 case 3: /* ROR/RRX */
1620 shift &= 31;
1621 if (shift == 0)
1622 res = (res >> 1) | (carry ? 0x80000000L : 0);
1623 else
1624 res = (res >> shift) | (res << (32 - shift));
1625 break;
1626 }
1627
1628 return res & 0xffffffff;
1629 }
1630
1631 /* Return number of 1-bits in VAL. */
1632
1633 static int
1634 bitcount (unsigned long val)
1635 {
1636 int nbits;
1637 for (nbits = 0; val != 0; nbits++)
1638 val &= val - 1; /* delete rightmost 1-bit in val */
1639 return nbits;
1640 }
1641
1642 static CORE_ADDR
1643 thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1644 {
1645 struct gdbarch *gdbarch = get_frame_arch (frame);
1646 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1647 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1648 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1649 unsigned long offset;
1650
1651 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1652 {
1653 CORE_ADDR sp;
1654
1655 /* Fetch the saved PC from the stack. It's stored above
1656 all of the other registers. */
1657 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
1658 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1659 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1660 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1661 if (nextpc == pc)
1662 error (_("Infinite loop detected"));
1663 }
1664 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1665 {
1666 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1667 unsigned long cond = bits (inst1, 8, 11);
1668 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1669 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1670 }
1671 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1672 {
1673 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1674 }
1675 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1676 {
1677 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1678 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1679 nextpc = pc_val + offset;
1680 /* For BLX make sure to clear the low bits. */
1681 if (bits (inst2, 11, 12) == 1)
1682 nextpc = nextpc & 0xfffffffc;
1683 }
1684 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1685 {
1686 if (bits (inst1, 3, 6) == 0x0f)
1687 nextpc = pc_val;
1688 else
1689 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
1690
1691 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1692 if (nextpc == pc)
1693 error (_("Infinite loop detected"));
1694 }
1695
1696 return nextpc;
1697 }
1698
1699 CORE_ADDR
1700 arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1701 {
1702 struct gdbarch *gdbarch = get_frame_arch (frame);
1703 unsigned long pc_val;
1704 unsigned long this_instr;
1705 unsigned long status;
1706 CORE_ADDR nextpc;
1707
1708 if (arm_pc_is_thumb (pc))
1709 return thumb_get_next_pc (frame, pc);
1710
1711 pc_val = (unsigned long) pc;
1712 this_instr = read_memory_unsigned_integer (pc, 4);
1713 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1714 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1715
1716 if (bits (this_instr, 28, 31) == INST_NV)
1717 switch (bits (this_instr, 24, 27))
1718 {
1719 case 0xa:
1720 case 0xb:
1721 {
1722 /* Branch with Link and change to Thumb. */
1723 nextpc = BranchDest (pc, this_instr);
1724 nextpc |= bit (this_instr, 24) << 1;
1725
1726 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1727 if (nextpc == pc)
1728 error (_("Infinite loop detected"));
1729 break;
1730 }
1731 case 0xc:
1732 case 0xd:
1733 case 0xe:
1734 /* Coprocessor register transfer. */
1735 if (bits (this_instr, 12, 15) == 15)
1736 error (_("Invalid update to pc in instruction"));
1737 break;
1738 }
1739 else if (condition_true (bits (this_instr, 28, 31), status))
1740 {
1741 switch (bits (this_instr, 24, 27))
1742 {
1743 case 0x0:
1744 case 0x1: /* data processing */
1745 case 0x2:
1746 case 0x3:
1747 {
1748 unsigned long operand1, operand2, result = 0;
1749 unsigned long rn;
1750 int c;
1751
1752 if (bits (this_instr, 12, 15) != 15)
1753 break;
1754
1755 if (bits (this_instr, 22, 25) == 0
1756 && bits (this_instr, 4, 7) == 9) /* multiply */
1757 error (_("Invalid update to pc in instruction"));
1758
1759 /* BX <reg>, BLX <reg> */
1760 if (bits (this_instr, 4, 27) == 0x12fff1
1761 || bits (this_instr, 4, 27) == 0x12fff3)
1762 {
1763 rn = bits (this_instr, 0, 3);
1764 result = (rn == 15) ? pc_val + 8
1765 : get_frame_register_unsigned (frame, rn);
1766 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1767 (gdbarch, result);
1768
1769 if (nextpc == pc)
1770 error (_("Infinite loop detected"));
1771
1772 return nextpc;
1773 }
1774
1775 /* Multiply into PC */
1776 c = (status & FLAG_C) ? 1 : 0;
1777 rn = bits (this_instr, 16, 19);
1778 operand1 = (rn == 15) ? pc_val + 8
1779 : get_frame_register_unsigned (frame, rn);
1780
1781 if (bit (this_instr, 25))
1782 {
1783 unsigned long immval = bits (this_instr, 0, 7);
1784 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1785 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1786 & 0xffffffff;
1787 }
1788 else /* operand 2 is a shifted register */
1789 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
1790
1791 switch (bits (this_instr, 21, 24))
1792 {
1793 case 0x0: /*and */
1794 result = operand1 & operand2;
1795 break;
1796
1797 case 0x1: /*eor */
1798 result = operand1 ^ operand2;
1799 break;
1800
1801 case 0x2: /*sub */
1802 result = operand1 - operand2;
1803 break;
1804
1805 case 0x3: /*rsb */
1806 result = operand2 - operand1;
1807 break;
1808
1809 case 0x4: /*add */
1810 result = operand1 + operand2;
1811 break;
1812
1813 case 0x5: /*adc */
1814 result = operand1 + operand2 + c;
1815 break;
1816
1817 case 0x6: /*sbc */
1818 result = operand1 - operand2 + c;
1819 break;
1820
1821 case 0x7: /*rsc */
1822 result = operand2 - operand1 + c;
1823 break;
1824
1825 case 0x8:
1826 case 0x9:
1827 case 0xa:
1828 case 0xb: /* tst, teq, cmp, cmn */
1829 result = (unsigned long) nextpc;
1830 break;
1831
1832 case 0xc: /*orr */
1833 result = operand1 | operand2;
1834 break;
1835
1836 case 0xd: /*mov */
1837 /* Always step into a function. */
1838 result = operand2;
1839 break;
1840
1841 case 0xe: /*bic */
1842 result = operand1 & ~operand2;
1843 break;
1844
1845 case 0xf: /*mvn */
1846 result = ~operand2;
1847 break;
1848 }
1849 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1850 (gdbarch, result);
1851
1852 if (nextpc == pc)
1853 error (_("Infinite loop detected"));
1854 break;
1855 }
1856
1857 case 0x4:
1858 case 0x5: /* data transfer */
1859 case 0x6:
1860 case 0x7:
1861 if (bit (this_instr, 20))
1862 {
1863 /* load */
1864 if (bits (this_instr, 12, 15) == 15)
1865 {
1866 /* rd == pc */
1867 unsigned long rn;
1868 unsigned long base;
1869
1870 if (bit (this_instr, 22))
1871 error (_("Invalid update to pc in instruction"));
1872
1873 /* byte write to PC */
1874 rn = bits (this_instr, 16, 19);
1875 base = (rn == 15) ? pc_val + 8
1876 : get_frame_register_unsigned (frame, rn);
1877 if (bit (this_instr, 24))
1878 {
1879 /* pre-indexed */
1880 int c = (status & FLAG_C) ? 1 : 0;
1881 unsigned long offset =
1882 (bit (this_instr, 25)
1883 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
1884 : bits (this_instr, 0, 11));
1885
1886 if (bit (this_instr, 23))
1887 base += offset;
1888 else
1889 base -= offset;
1890 }
1891 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1892 4);
1893
1894 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1895
1896 if (nextpc == pc)
1897 error (_("Infinite loop detected"));
1898 }
1899 }
1900 break;
1901
1902 case 0x8:
1903 case 0x9: /* block transfer */
1904 if (bit (this_instr, 20))
1905 {
1906 /* LDM */
1907 if (bit (this_instr, 15))
1908 {
1909 /* loading pc */
1910 int offset = 0;
1911
1912 if (bit (this_instr, 23))
1913 {
1914 /* up */
1915 unsigned long reglist = bits (this_instr, 0, 14);
1916 offset = bitcount (reglist) * 4;
1917 if (bit (this_instr, 24)) /* pre */
1918 offset += 4;
1919 }
1920 else if (bit (this_instr, 24))
1921 offset = -4;
1922
1923 {
1924 unsigned long rn_val =
1925 get_frame_register_unsigned (frame,
1926 bits (this_instr, 16, 19));
1927 nextpc =
1928 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1929 + offset),
1930 4);
1931 }
1932 nextpc = gdbarch_addr_bits_remove
1933 (gdbarch, nextpc);
1934 if (nextpc == pc)
1935 error (_("Infinite loop detected"));
1936 }
1937 }
1938 break;
1939
1940 case 0xb: /* branch & link */
1941 case 0xa: /* branch */
1942 {
1943 nextpc = BranchDest (pc, this_instr);
1944
1945 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1946 if (nextpc == pc)
1947 error (_("Infinite loop detected"));
1948 break;
1949 }
1950
1951 case 0xc:
1952 case 0xd:
1953 case 0xe: /* coproc ops */
1954 case 0xf: /* SWI */
1955 break;
1956
1957 default:
1958 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1959 return (pc);
1960 }
1961 }
1962
1963 return nextpc;
1964 }
1965
1966 /* single_step() is called just before we want to resume the inferior,
1967 if we want to single-step it but there is no hardware or kernel
1968 single-step support. We find the target of the coming instruction
1969 and breakpoint it. */
1970
1971 int
1972 arm_software_single_step (struct frame_info *frame)
1973 {
1974 /* NOTE: This may insert the wrong breakpoint instruction when
1975 single-stepping over a mode-changing instruction, if the
1976 CPSR heuristics are used. */
1977
1978 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
1979 insert_single_step_breakpoint (next_pc);
1980
1981 return 1;
1982 }
1983
1984 #include "bfd-in2.h"
1985 #include "libcoff.h"
1986
1987 static int
1988 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1989 {
1990 if (arm_pc_is_thumb (memaddr))
1991 {
1992 static asymbol *asym;
1993 static combined_entry_type ce;
1994 static struct coff_symbol_struct csym;
1995 static struct bfd fake_bfd;
1996 static bfd_target fake_target;
1997
1998 if (csym.native == NULL)
1999 {
2000 /* Create a fake symbol vector containing a Thumb symbol.
2001 This is solely so that the code in print_insn_little_arm()
2002 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2003 the presence of a Thumb symbol and switch to decoding
2004 Thumb instructions. */
2005
2006 fake_target.flavour = bfd_target_coff_flavour;
2007 fake_bfd.xvec = &fake_target;
2008 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2009 csym.native = &ce;
2010 csym.symbol.the_bfd = &fake_bfd;
2011 csym.symbol.name = "fake";
2012 asym = (asymbol *) & csym;
2013 }
2014
2015 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2016 info->symbols = &asym;
2017 }
2018 else
2019 info->symbols = NULL;
2020
2021 if (info->endian == BFD_ENDIAN_BIG)
2022 return print_insn_big_arm (memaddr, info);
2023 else
2024 return print_insn_little_arm (memaddr, info);
2025 }
2026
2027 /* The following define instruction sequences that will cause ARM
2028 cpu's to take an undefined instruction trap. These are used to
2029 signal a breakpoint to GDB.
2030
2031 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2032 modes. A different instruction is required for each mode. The ARM
2033 cpu's can also be big or little endian. Thus four different
2034 instructions are needed to support all cases.
2035
2036 Note: ARMv4 defines several new instructions that will take the
2037 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2038 not in fact add the new instructions. The new undefined
2039 instructions in ARMv4 are all instructions that had no defined
2040 behaviour in earlier chips. There is no guarantee that they will
2041 raise an exception, but may be treated as NOP's. In practice, it
2042 may only safe to rely on instructions matching:
2043
2044 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2045 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2046 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2047
2048 Even this may only true if the condition predicate is true. The
2049 following use a condition predicate of ALWAYS so it is always TRUE.
2050
2051 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2052 and NetBSD all use a software interrupt rather than an undefined
2053 instruction to force a trap. This can be handled by by the
2054 abi-specific code during establishment of the gdbarch vector. */
2055
2056 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2057 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2058 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2059 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2060
2061 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2062 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2063 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2064 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2065
2066 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2067 the program counter value to determine whether a 16-bit or 32-bit
2068 breakpoint should be used. It returns a pointer to a string of
2069 bytes that encode a breakpoint instruction, stores the length of
2070 the string to *lenptr, and adjusts the program counter (if
2071 necessary) to point to the actual memory location where the
2072 breakpoint should be inserted. */
2073
2074 static const unsigned char *
2075 arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
2076 {
2077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2078
2079 if (arm_pc_is_thumb (*pcptr))
2080 {
2081 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2082 *lenptr = tdep->thumb_breakpoint_size;
2083 return tdep->thumb_breakpoint;
2084 }
2085 else
2086 {
2087 *lenptr = tdep->arm_breakpoint_size;
2088 return tdep->arm_breakpoint;
2089 }
2090 }
2091
2092 /* Extract from an array REGBUF containing the (raw) register state a
2093 function return value of type TYPE, and copy that, in virtual
2094 format, into VALBUF. */
2095
2096 static void
2097 arm_extract_return_value (struct type *type, struct regcache *regs,
2098 gdb_byte *valbuf)
2099 {
2100 struct gdbarch *gdbarch = get_regcache_arch (regs);
2101
2102 if (TYPE_CODE_FLT == TYPE_CODE (type))
2103 {
2104 switch (gdbarch_tdep (gdbarch)->fp_model)
2105 {
2106 case ARM_FLOAT_FPA:
2107 {
2108 /* The value is in register F0 in internal format. We need to
2109 extract the raw value and then convert it to the desired
2110 internal type. */
2111 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2112
2113 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2114 convert_from_extended (floatformat_from_type (type), tmpbuf,
2115 valbuf, gdbarch_byte_order (gdbarch));
2116 }
2117 break;
2118
2119 case ARM_FLOAT_SOFT_FPA:
2120 case ARM_FLOAT_SOFT_VFP:
2121 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2122 if (TYPE_LENGTH (type) > 4)
2123 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2124 valbuf + INT_REGISTER_SIZE);
2125 break;
2126
2127 default:
2128 internal_error
2129 (__FILE__, __LINE__,
2130 _("arm_extract_return_value: Floating point model not supported"));
2131 break;
2132 }
2133 }
2134 else if (TYPE_CODE (type) == TYPE_CODE_INT
2135 || TYPE_CODE (type) == TYPE_CODE_CHAR
2136 || TYPE_CODE (type) == TYPE_CODE_BOOL
2137 || TYPE_CODE (type) == TYPE_CODE_PTR
2138 || TYPE_CODE (type) == TYPE_CODE_REF
2139 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2140 {
2141 /* If the the type is a plain integer, then the access is
2142 straight-forward. Otherwise we have to play around a bit more. */
2143 int len = TYPE_LENGTH (type);
2144 int regno = ARM_A1_REGNUM;
2145 ULONGEST tmp;
2146
2147 while (len > 0)
2148 {
2149 /* By using store_unsigned_integer we avoid having to do
2150 anything special for small big-endian values. */
2151 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2152 store_unsigned_integer (valbuf,
2153 (len > INT_REGISTER_SIZE
2154 ? INT_REGISTER_SIZE : len),
2155 tmp);
2156 len -= INT_REGISTER_SIZE;
2157 valbuf += INT_REGISTER_SIZE;
2158 }
2159 }
2160 else
2161 {
2162 /* For a structure or union the behaviour is as if the value had
2163 been stored to word-aligned memory and then loaded into
2164 registers with 32-bit load instruction(s). */
2165 int len = TYPE_LENGTH (type);
2166 int regno = ARM_A1_REGNUM;
2167 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2168
2169 while (len > 0)
2170 {
2171 regcache_cooked_read (regs, regno++, tmpbuf);
2172 memcpy (valbuf, tmpbuf,
2173 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2174 len -= INT_REGISTER_SIZE;
2175 valbuf += INT_REGISTER_SIZE;
2176 }
2177 }
2178 }
2179
2180
2181 /* Will a function return an aggregate type in memory or in a
2182 register? Return 0 if an aggregate type can be returned in a
2183 register, 1 if it must be returned in memory. */
2184
2185 static int
2186 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2187 {
2188 int nRc;
2189 enum type_code code;
2190
2191 CHECK_TYPEDEF (type);
2192
2193 /* In the ARM ABI, "integer" like aggregate types are returned in
2194 registers. For an aggregate type to be integer like, its size
2195 must be less than or equal to INT_REGISTER_SIZE and the
2196 offset of each addressable subfield must be zero. Note that bit
2197 fields are not addressable, and all addressable subfields of
2198 unions always start at offset zero.
2199
2200 This function is based on the behaviour of GCC 2.95.1.
2201 See: gcc/arm.c: arm_return_in_memory() for details.
2202
2203 Note: All versions of GCC before GCC 2.95.2 do not set up the
2204 parameters correctly for a function returning the following
2205 structure: struct { float f;}; This should be returned in memory,
2206 not a register. Richard Earnshaw sent me a patch, but I do not
2207 know of any way to detect if a function like the above has been
2208 compiled with the correct calling convention. */
2209
2210 /* All aggregate types that won't fit in a register must be returned
2211 in memory. */
2212 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
2213 {
2214 return 1;
2215 }
2216
2217 /* The AAPCS says all aggregates not larger than a word are returned
2218 in a register. */
2219 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2220 return 0;
2221
2222 /* The only aggregate types that can be returned in a register are
2223 structs and unions. Arrays must be returned in memory. */
2224 code = TYPE_CODE (type);
2225 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2226 {
2227 return 1;
2228 }
2229
2230 /* Assume all other aggregate types can be returned in a register.
2231 Run a check for structures, unions and arrays. */
2232 nRc = 0;
2233
2234 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2235 {
2236 int i;
2237 /* Need to check if this struct/union is "integer" like. For
2238 this to be true, its size must be less than or equal to
2239 INT_REGISTER_SIZE and the offset of each addressable
2240 subfield must be zero. Note that bit fields are not
2241 addressable, and unions always start at offset zero. If any
2242 of the subfields is a floating point type, the struct/union
2243 cannot be an integer type. */
2244
2245 /* For each field in the object, check:
2246 1) Is it FP? --> yes, nRc = 1;
2247 2) Is it addressable (bitpos != 0) and
2248 not packed (bitsize == 0)?
2249 --> yes, nRc = 1
2250 */
2251
2252 for (i = 0; i < TYPE_NFIELDS (type); i++)
2253 {
2254 enum type_code field_type_code;
2255 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2256
2257 /* Is it a floating point type field? */
2258 if (field_type_code == TYPE_CODE_FLT)
2259 {
2260 nRc = 1;
2261 break;
2262 }
2263
2264 /* If bitpos != 0, then we have to care about it. */
2265 if (TYPE_FIELD_BITPOS (type, i) != 0)
2266 {
2267 /* Bitfields are not addressable. If the field bitsize is
2268 zero, then the field is not packed. Hence it cannot be
2269 a bitfield or any other packed type. */
2270 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2271 {
2272 nRc = 1;
2273 break;
2274 }
2275 }
2276 }
2277 }
2278
2279 return nRc;
2280 }
2281
2282 /* Write into appropriate registers a function return value of type
2283 TYPE, given in virtual format. */
2284
2285 static void
2286 arm_store_return_value (struct type *type, struct regcache *regs,
2287 const gdb_byte *valbuf)
2288 {
2289 struct gdbarch *gdbarch = get_regcache_arch (regs);
2290
2291 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2292 {
2293 char buf[MAX_REGISTER_SIZE];
2294
2295 switch (gdbarch_tdep (gdbarch)->fp_model)
2296 {
2297 case ARM_FLOAT_FPA:
2298
2299 convert_to_extended (floatformat_from_type (type), buf, valbuf,
2300 gdbarch_byte_order (gdbarch));
2301 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2302 break;
2303
2304 case ARM_FLOAT_SOFT_FPA:
2305 case ARM_FLOAT_SOFT_VFP:
2306 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2307 if (TYPE_LENGTH (type) > 4)
2308 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2309 valbuf + INT_REGISTER_SIZE);
2310 break;
2311
2312 default:
2313 internal_error
2314 (__FILE__, __LINE__,
2315 _("arm_store_return_value: Floating point model not supported"));
2316 break;
2317 }
2318 }
2319 else if (TYPE_CODE (type) == TYPE_CODE_INT
2320 || TYPE_CODE (type) == TYPE_CODE_CHAR
2321 || TYPE_CODE (type) == TYPE_CODE_BOOL
2322 || TYPE_CODE (type) == TYPE_CODE_PTR
2323 || TYPE_CODE (type) == TYPE_CODE_REF
2324 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2325 {
2326 if (TYPE_LENGTH (type) <= 4)
2327 {
2328 /* Values of one word or less are zero/sign-extended and
2329 returned in r0. */
2330 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2331 LONGEST val = unpack_long (type, valbuf);
2332
2333 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2334 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2335 }
2336 else
2337 {
2338 /* Integral values greater than one word are stored in consecutive
2339 registers starting with r0. This will always be a multiple of
2340 the regiser size. */
2341 int len = TYPE_LENGTH (type);
2342 int regno = ARM_A1_REGNUM;
2343
2344 while (len > 0)
2345 {
2346 regcache_cooked_write (regs, regno++, valbuf);
2347 len -= INT_REGISTER_SIZE;
2348 valbuf += INT_REGISTER_SIZE;
2349 }
2350 }
2351 }
2352 else
2353 {
2354 /* For a structure or union the behaviour is as if the value had
2355 been stored to word-aligned memory and then loaded into
2356 registers with 32-bit load instruction(s). */
2357 int len = TYPE_LENGTH (type);
2358 int regno = ARM_A1_REGNUM;
2359 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2360
2361 while (len > 0)
2362 {
2363 memcpy (tmpbuf, valbuf,
2364 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2365 regcache_cooked_write (regs, regno++, tmpbuf);
2366 len -= INT_REGISTER_SIZE;
2367 valbuf += INT_REGISTER_SIZE;
2368 }
2369 }
2370 }
2371
2372
2373 /* Handle function return values. */
2374
2375 static enum return_value_convention
2376 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2377 struct regcache *regcache, gdb_byte *readbuf,
2378 const gdb_byte *writebuf)
2379 {
2380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2381
2382 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2383 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2384 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2385 {
2386 if (tdep->struct_return == pcc_struct_return
2387 || arm_return_in_memory (gdbarch, valtype))
2388 return RETURN_VALUE_STRUCT_CONVENTION;
2389 }
2390
2391 if (writebuf)
2392 arm_store_return_value (valtype, regcache, writebuf);
2393
2394 if (readbuf)
2395 arm_extract_return_value (valtype, regcache, readbuf);
2396
2397 return RETURN_VALUE_REGISTER_CONVENTION;
2398 }
2399
2400
2401 static int
2402 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2403 {
2404 CORE_ADDR jb_addr;
2405 char buf[INT_REGISTER_SIZE];
2406 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
2407
2408 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
2409
2410 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2411 INT_REGISTER_SIZE))
2412 return 0;
2413
2414 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2415 return 1;
2416 }
2417
2418 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2419 return the target PC. Otherwise return 0. */
2420
2421 CORE_ADDR
2422 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
2423 {
2424 char *name;
2425 int namelen;
2426 CORE_ADDR start_addr;
2427
2428 /* Find the starting address and name of the function containing the PC. */
2429 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2430 return 0;
2431
2432 /* If PC is in a Thumb call or return stub, return the address of the
2433 target PC, which is in a register. The thunk functions are called
2434 _call_via_xx, where x is the register name. The possible names
2435 are r0-r9, sl, fp, ip, sp, and lr. */
2436 if (strncmp (name, "_call_via_", 10) == 0)
2437 {
2438 /* Use the name suffix to determine which register contains the
2439 target PC. */
2440 static char *table[15] =
2441 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2442 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2443 };
2444 int regno;
2445 int offset = strlen (name) - 2;
2446
2447 for (regno = 0; regno <= 14; regno++)
2448 if (strcmp (&name[offset], table[regno]) == 0)
2449 return get_frame_register_unsigned (frame, regno);
2450 }
2451
2452 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2453 non-interworking calls to foo. We could decode the stubs
2454 to find the target but it's easier to use the symbol table. */
2455 namelen = strlen (name);
2456 if (name[0] == '_' && name[1] == '_'
2457 && ((namelen > 2 + strlen ("_from_thumb")
2458 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2459 strlen ("_from_thumb")) == 0)
2460 || (namelen > 2 + strlen ("_from_arm")
2461 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2462 strlen ("_from_arm")) == 0)))
2463 {
2464 char *target_name;
2465 int target_len = namelen - 2;
2466 struct minimal_symbol *minsym;
2467 struct objfile *objfile;
2468 struct obj_section *sec;
2469
2470 if (name[namelen - 1] == 'b')
2471 target_len -= strlen ("_from_thumb");
2472 else
2473 target_len -= strlen ("_from_arm");
2474
2475 target_name = alloca (target_len + 1);
2476 memcpy (target_name, name + 2, target_len);
2477 target_name[target_len] = '\0';
2478
2479 sec = find_pc_section (pc);
2480 objfile = (sec == NULL) ? NULL : sec->objfile;
2481 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2482 if (minsym != NULL)
2483 return SYMBOL_VALUE_ADDRESS (minsym);
2484 else
2485 return 0;
2486 }
2487
2488 return 0; /* not a stub */
2489 }
2490
2491 static void
2492 set_arm_command (char *args, int from_tty)
2493 {
2494 printf_unfiltered (_("\
2495 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2496 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2497 }
2498
2499 static void
2500 show_arm_command (char *args, int from_tty)
2501 {
2502 cmd_show_list (showarmcmdlist, from_tty, "");
2503 }
2504
2505 static void
2506 arm_update_current_architecture (void)
2507 {
2508 struct gdbarch_info info;
2509
2510 /* If the current architecture is not ARM, we have nothing to do. */
2511 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2512 return;
2513
2514 /* Update the architecture. */
2515 gdbarch_info_init (&info);
2516
2517 if (!gdbarch_update_p (info))
2518 internal_error (__FILE__, __LINE__, "could not update architecture");
2519 }
2520
2521 static void
2522 set_fp_model_sfunc (char *args, int from_tty,
2523 struct cmd_list_element *c)
2524 {
2525 enum arm_float_model fp_model;
2526
2527 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2528 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2529 {
2530 arm_fp_model = fp_model;
2531 break;
2532 }
2533
2534 if (fp_model == ARM_FLOAT_LAST)
2535 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2536 current_fp_model);
2537
2538 arm_update_current_architecture ();
2539 }
2540
2541 static void
2542 show_fp_model (struct ui_file *file, int from_tty,
2543 struct cmd_list_element *c, const char *value)
2544 {
2545 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2546
2547 if (arm_fp_model == ARM_FLOAT_AUTO
2548 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2549 fprintf_filtered (file, _("\
2550 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2551 fp_model_strings[tdep->fp_model]);
2552 else
2553 fprintf_filtered (file, _("\
2554 The current ARM floating point model is \"%s\".\n"),
2555 fp_model_strings[arm_fp_model]);
2556 }
2557
2558 static void
2559 arm_set_abi (char *args, int from_tty,
2560 struct cmd_list_element *c)
2561 {
2562 enum arm_abi_kind arm_abi;
2563
2564 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2565 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2566 {
2567 arm_abi_global = arm_abi;
2568 break;
2569 }
2570
2571 if (arm_abi == ARM_ABI_LAST)
2572 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2573 arm_abi_string);
2574
2575 arm_update_current_architecture ();
2576 }
2577
2578 static void
2579 arm_show_abi (struct ui_file *file, int from_tty,
2580 struct cmd_list_element *c, const char *value)
2581 {
2582 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2583
2584 if (arm_abi_global == ARM_ABI_AUTO
2585 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2586 fprintf_filtered (file, _("\
2587 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2588 arm_abi_strings[tdep->arm_abi]);
2589 else
2590 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2591 arm_abi_string);
2592 }
2593
2594 /* If the user changes the register disassembly style used for info
2595 register and other commands, we have to also switch the style used
2596 in opcodes for disassembly output. This function is run in the "set
2597 arm disassembly" command, and does that. */
2598
2599 static void
2600 set_disassembly_style_sfunc (char *args, int from_tty,
2601 struct cmd_list_element *c)
2602 {
2603 set_disassembly_style ();
2604 }
2605 \f
2606 /* Return the ARM register name corresponding to register I. */
2607 static const char *
2608 arm_register_name (struct gdbarch *gdbarch, int i)
2609 {
2610 if (i >= ARRAY_SIZE (arm_register_names))
2611 /* These registers are only supported on targets which supply
2612 an XML description. */
2613 return "";
2614
2615 return arm_register_names[i];
2616 }
2617
2618 static void
2619 set_disassembly_style (void)
2620 {
2621 int current;
2622
2623 /* Find the style that the user wants. */
2624 for (current = 0; current < num_disassembly_options; current++)
2625 if (disassembly_style == valid_disassembly_styles[current])
2626 break;
2627 gdb_assert (current < num_disassembly_options);
2628
2629 /* Synchronize the disassembler. */
2630 set_arm_regname_option (current);
2631 }
2632
2633 /* Test whether the coff symbol specific value corresponds to a Thumb
2634 function. */
2635
2636 static int
2637 coff_sym_is_thumb (int val)
2638 {
2639 return (val == C_THUMBEXT ||
2640 val == C_THUMBSTAT ||
2641 val == C_THUMBEXTFUNC ||
2642 val == C_THUMBSTATFUNC ||
2643 val == C_THUMBLABEL);
2644 }
2645
2646 /* arm_coff_make_msymbol_special()
2647 arm_elf_make_msymbol_special()
2648
2649 These functions test whether the COFF or ELF symbol corresponds to
2650 an address in thumb code, and set a "special" bit in a minimal
2651 symbol to indicate that it does. */
2652
2653 static void
2654 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2655 {
2656 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2657 STT_ARM_TFUNC). */
2658 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2659 == STT_LOPROC)
2660 MSYMBOL_SET_SPECIAL (msym);
2661 }
2662
2663 static void
2664 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2665 {
2666 if (coff_sym_is_thumb (val))
2667 MSYMBOL_SET_SPECIAL (msym);
2668 }
2669
2670 static void
2671 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
2672 {
2673 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
2674
2675 /* If necessary, set the T bit. */
2676 if (arm_apcs_32)
2677 {
2678 ULONGEST val;
2679 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
2680 if (arm_pc_is_thumb (pc))
2681 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
2682 else
2683 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2684 val & ~(ULONGEST) 0x20);
2685 }
2686 }
2687
2688 static struct value *
2689 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2690 {
2691 const int *reg_p = baton;
2692 return value_of_register (*reg_p, frame);
2693 }
2694 \f
2695 static enum gdb_osabi
2696 arm_elf_osabi_sniffer (bfd *abfd)
2697 {
2698 unsigned int elfosabi;
2699 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2700
2701 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2702
2703 if (elfosabi == ELFOSABI_ARM)
2704 /* GNU tools use this value. Check note sections in this case,
2705 as well. */
2706 bfd_map_over_sections (abfd,
2707 generic_elf_osabi_sniff_abi_tag_sections,
2708 &osabi);
2709
2710 /* Anything else will be handled by the generic ELF sniffer. */
2711 return osabi;
2712 }
2713
2714 \f
2715 /* Initialize the current architecture based on INFO. If possible,
2716 re-use an architecture from ARCHES, which is a list of
2717 architectures already created during this debugging session.
2718
2719 Called e.g. at program startup, when reading a core file, and when
2720 reading a binary file. */
2721
2722 static struct gdbarch *
2723 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2724 {
2725 struct gdbarch_tdep *tdep;
2726 struct gdbarch *gdbarch;
2727 struct gdbarch_list *best_arch;
2728 enum arm_abi_kind arm_abi = arm_abi_global;
2729 enum arm_float_model fp_model = arm_fp_model;
2730 struct tdesc_arch_data *tdesc_data = NULL;
2731 int i;
2732 int have_fpa_registers = 1;
2733
2734 /* Check any target description for validity. */
2735 if (tdesc_has_registers (info.target_desc))
2736 {
2737 /* For most registers we require GDB's default names; but also allow
2738 the numeric names for sp / lr / pc, as a convenience. */
2739 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2740 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2741 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2742
2743 const struct tdesc_feature *feature;
2744 int i, valid_p;
2745
2746 feature = tdesc_find_feature (info.target_desc,
2747 "org.gnu.gdb.arm.core");
2748 if (feature == NULL)
2749 return NULL;
2750
2751 tdesc_data = tdesc_data_alloc ();
2752
2753 valid_p = 1;
2754 for (i = 0; i < ARM_SP_REGNUM; i++)
2755 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2756 arm_register_names[i]);
2757 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2758 ARM_SP_REGNUM,
2759 arm_sp_names);
2760 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2761 ARM_LR_REGNUM,
2762 arm_lr_names);
2763 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2764 ARM_PC_REGNUM,
2765 arm_pc_names);
2766 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2767 ARM_PS_REGNUM, "cpsr");
2768
2769 if (!valid_p)
2770 {
2771 tdesc_data_cleanup (tdesc_data);
2772 return NULL;
2773 }
2774
2775 feature = tdesc_find_feature (info.target_desc,
2776 "org.gnu.gdb.arm.fpa");
2777 if (feature != NULL)
2778 {
2779 valid_p = 1;
2780 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2781 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2782 arm_register_names[i]);
2783 if (!valid_p)
2784 {
2785 tdesc_data_cleanup (tdesc_data);
2786 return NULL;
2787 }
2788 }
2789 else
2790 have_fpa_registers = 0;
2791
2792 feature = tdesc_find_feature (info.target_desc,
2793 "org.gnu.gdb.xscale.iwmmxt");
2794 if (feature != NULL)
2795 {
2796 static const char *const iwmmxt_names[] = {
2797 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2798 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2799 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2800 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2801 };
2802
2803 valid_p = 1;
2804 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2805 valid_p
2806 &= tdesc_numbered_register (feature, tdesc_data, i,
2807 iwmmxt_names[i - ARM_WR0_REGNUM]);
2808
2809 /* Check for the control registers, but do not fail if they
2810 are missing. */
2811 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2812 tdesc_numbered_register (feature, tdesc_data, i,
2813 iwmmxt_names[i - ARM_WR0_REGNUM]);
2814
2815 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2816 valid_p
2817 &= tdesc_numbered_register (feature, tdesc_data, i,
2818 iwmmxt_names[i - ARM_WR0_REGNUM]);
2819
2820 if (!valid_p)
2821 {
2822 tdesc_data_cleanup (tdesc_data);
2823 return NULL;
2824 }
2825 }
2826 }
2827
2828 /* If we have an object to base this architecture on, try to determine
2829 its ABI. */
2830
2831 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2832 {
2833 int ei_osabi, e_flags;
2834
2835 switch (bfd_get_flavour (info.abfd))
2836 {
2837 case bfd_target_aout_flavour:
2838 /* Assume it's an old APCS-style ABI. */
2839 arm_abi = ARM_ABI_APCS;
2840 break;
2841
2842 case bfd_target_coff_flavour:
2843 /* Assume it's an old APCS-style ABI. */
2844 /* XXX WinCE? */
2845 arm_abi = ARM_ABI_APCS;
2846 break;
2847
2848 case bfd_target_elf_flavour:
2849 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2850 e_flags = elf_elfheader (info.abfd)->e_flags;
2851
2852 if (ei_osabi == ELFOSABI_ARM)
2853 {
2854 /* GNU tools used to use this value, but do not for EABI
2855 objects. There's nowhere to tag an EABI version
2856 anyway, so assume APCS. */
2857 arm_abi = ARM_ABI_APCS;
2858 }
2859 else if (ei_osabi == ELFOSABI_NONE)
2860 {
2861 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2862
2863 switch (eabi_ver)
2864 {
2865 case EF_ARM_EABI_UNKNOWN:
2866 /* Assume GNU tools. */
2867 arm_abi = ARM_ABI_APCS;
2868 break;
2869
2870 case EF_ARM_EABI_VER4:
2871 case EF_ARM_EABI_VER5:
2872 arm_abi = ARM_ABI_AAPCS;
2873 /* EABI binaries default to VFP float ordering. */
2874 if (fp_model == ARM_FLOAT_AUTO)
2875 fp_model = ARM_FLOAT_SOFT_VFP;
2876 break;
2877
2878 default:
2879 /* Leave it as "auto". */
2880 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2881 break;
2882 }
2883 }
2884
2885 if (fp_model == ARM_FLOAT_AUTO)
2886 {
2887 int e_flags = elf_elfheader (info.abfd)->e_flags;
2888
2889 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2890 {
2891 case 0:
2892 /* Leave it as "auto". Strictly speaking this case
2893 means FPA, but almost nobody uses that now, and
2894 many toolchains fail to set the appropriate bits
2895 for the floating-point model they use. */
2896 break;
2897 case EF_ARM_SOFT_FLOAT:
2898 fp_model = ARM_FLOAT_SOFT_FPA;
2899 break;
2900 case EF_ARM_VFP_FLOAT:
2901 fp_model = ARM_FLOAT_VFP;
2902 break;
2903 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2904 fp_model = ARM_FLOAT_SOFT_VFP;
2905 break;
2906 }
2907 }
2908 break;
2909
2910 default:
2911 /* Leave it as "auto". */
2912 break;
2913 }
2914 }
2915
2916 /* If there is already a candidate, use it. */
2917 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2918 best_arch != NULL;
2919 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2920 {
2921 if (arm_abi != ARM_ABI_AUTO
2922 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2923 continue;
2924
2925 if (fp_model != ARM_FLOAT_AUTO
2926 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2927 continue;
2928
2929 /* Found a match. */
2930 break;
2931 }
2932
2933 if (best_arch != NULL)
2934 {
2935 if (tdesc_data != NULL)
2936 tdesc_data_cleanup (tdesc_data);
2937 return best_arch->gdbarch;
2938 }
2939
2940 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2941 gdbarch = gdbarch_alloc (&info, tdep);
2942
2943 /* Record additional information about the architecture we are defining.
2944 These are gdbarch discriminators, like the OSABI. */
2945 tdep->arm_abi = arm_abi;
2946 tdep->fp_model = fp_model;
2947 tdep->have_fpa_registers = have_fpa_registers;
2948
2949 /* Breakpoints. */
2950 switch (info.byte_order)
2951 {
2952 case BFD_ENDIAN_BIG:
2953 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2954 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2955 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2956 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2957
2958 break;
2959
2960 case BFD_ENDIAN_LITTLE:
2961 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2962 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2963 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2964 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2965
2966 break;
2967
2968 default:
2969 internal_error (__FILE__, __LINE__,
2970 _("arm_gdbarch_init: bad byte order for float format"));
2971 }
2972
2973 /* On ARM targets char defaults to unsigned. */
2974 set_gdbarch_char_signed (gdbarch, 0);
2975
2976 /* This should be low enough for everything. */
2977 tdep->lowest_pc = 0x20;
2978 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2979
2980 /* The default, for both APCS and AAPCS, is to return small
2981 structures in registers. */
2982 tdep->struct_return = reg_struct_return;
2983
2984 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2985 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2986
2987 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2988
2989 /* Frame handling. */
2990 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2991 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2992 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2993
2994 frame_base_set_default (gdbarch, &arm_normal_base);
2995
2996 /* Address manipulation. */
2997 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2998 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2999
3000 /* Advance PC across function entry code. */
3001 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
3002
3003 /* Skip trampolines. */
3004 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
3005
3006 /* The stack grows downward. */
3007 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3008
3009 /* Breakpoint manipulation. */
3010 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
3011
3012 /* Information about registers, etc. */
3013 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
3014 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
3015 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
3016 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
3017 set_gdbarch_register_type (gdbarch, arm_register_type);
3018
3019 /* This "info float" is FPA-specific. Use the generic version if we
3020 do not have FPA. */
3021 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
3022 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
3023
3024 /* Internal <-> external register number maps. */
3025 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
3026 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
3027 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
3028
3029 set_gdbarch_register_name (gdbarch, arm_register_name);
3030
3031 /* Returning results. */
3032 set_gdbarch_return_value (gdbarch, arm_return_value);
3033
3034 /* Disassembly. */
3035 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3036
3037 /* Minsymbol frobbing. */
3038 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3039 set_gdbarch_coff_make_msymbol_special (gdbarch,
3040 arm_coff_make_msymbol_special);
3041
3042 /* Virtual tables. */
3043 set_gdbarch_vbit_in_delta (gdbarch, 1);
3044
3045 /* Hook in the ABI-specific overrides, if they have been registered. */
3046 gdbarch_init_osabi (info, gdbarch);
3047
3048 /* Add some default predicates. */
3049 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
3050 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3051 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3052
3053 /* Now we have tuned the configuration, set a few final things,
3054 based on what the OS ABI has told us. */
3055
3056 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3057 binaries are always marked. */
3058 if (tdep->arm_abi == ARM_ABI_AUTO)
3059 tdep->arm_abi = ARM_ABI_APCS;
3060
3061 /* We used to default to FPA for generic ARM, but almost nobody
3062 uses that now, and we now provide a way for the user to force
3063 the model. So default to the most useful variant. */
3064 if (tdep->fp_model == ARM_FLOAT_AUTO)
3065 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3066
3067 if (tdep->jb_pc >= 0)
3068 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3069
3070 /* Floating point sizes and format. */
3071 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3072 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
3073 {
3074 set_gdbarch_double_format
3075 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3076 set_gdbarch_long_double_format
3077 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3078 }
3079 else
3080 {
3081 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3082 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3083 }
3084
3085 if (tdesc_data)
3086 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
3087
3088 /* Add standard register aliases. We add aliases even for those
3089 nanes which are used by the current architecture - it's simpler,
3090 and does no harm, since nothing ever lists user registers. */
3091 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3092 user_reg_add (gdbarch, arm_register_aliases[i].name,
3093 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3094
3095 return gdbarch;
3096 }
3097
3098 static void
3099 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3100 {
3101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3102
3103 if (tdep == NULL)
3104 return;
3105
3106 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3107 (unsigned long) tdep->lowest_pc);
3108 }
3109
3110 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3111
3112 void
3113 _initialize_arm_tdep (void)
3114 {
3115 struct ui_file *stb;
3116 long length;
3117 struct cmd_list_element *new_set, *new_show;
3118 const char *setname;
3119 const char *setdesc;
3120 const char *const *regnames;
3121 int numregs, i, j;
3122 static char *helptext;
3123 char regdesc[1024], *rdptr = regdesc;
3124 size_t rest = sizeof (regdesc);
3125
3126 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3127
3128 /* Register an ELF OS ABI sniffer for ARM binaries. */
3129 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3130 bfd_target_elf_flavour,
3131 arm_elf_osabi_sniffer);
3132
3133 /* Get the number of possible sets of register names defined in opcodes. */
3134 num_disassembly_options = get_arm_regname_num_options ();
3135
3136 /* Add root prefix command for all "set arm"/"show arm" commands. */
3137 add_prefix_cmd ("arm", no_class, set_arm_command,
3138 _("Various ARM-specific commands."),
3139 &setarmcmdlist, "set arm ", 0, &setlist);
3140
3141 add_prefix_cmd ("arm", no_class, show_arm_command,
3142 _("Various ARM-specific commands."),
3143 &showarmcmdlist, "show arm ", 0, &showlist);
3144
3145 /* Sync the opcode insn printer with our register viewer. */
3146 parse_arm_disassembler_option ("reg-names-std");
3147
3148 /* Initialize the array that will be passed to
3149 add_setshow_enum_cmd(). */
3150 valid_disassembly_styles
3151 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3152 for (i = 0; i < num_disassembly_options; i++)
3153 {
3154 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3155 valid_disassembly_styles[i] = setname;
3156 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3157 rdptr += length;
3158 rest -= length;
3159 /* When we find the default names, tell the disassembler to use
3160 them. */
3161 if (!strcmp (setname, "std"))
3162 {
3163 disassembly_style = setname;
3164 set_arm_regname_option (i);
3165 }
3166 }
3167 /* Mark the end of valid options. */
3168 valid_disassembly_styles[num_disassembly_options] = NULL;
3169
3170 /* Create the help text. */
3171 stb = mem_fileopen ();
3172 fprintf_unfiltered (stb, "%s%s%s",
3173 _("The valid values are:\n"),
3174 regdesc,
3175 _("The default is \"std\"."));
3176 helptext = ui_file_xstrdup (stb, &length);
3177 ui_file_delete (stb);
3178
3179 add_setshow_enum_cmd("disassembler", no_class,
3180 valid_disassembly_styles, &disassembly_style,
3181 _("Set the disassembly style."),
3182 _("Show the disassembly style."),
3183 helptext,
3184 set_disassembly_style_sfunc,
3185 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3186 &setarmcmdlist, &showarmcmdlist);
3187
3188 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3189 _("Set usage of ARM 32-bit mode."),
3190 _("Show usage of ARM 32-bit mode."),
3191 _("When off, a 26-bit PC will be used."),
3192 NULL,
3193 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3194 &setarmcmdlist, &showarmcmdlist);
3195
3196 /* Add a command to allow the user to force the FPU model. */
3197 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3198 _("Set the floating point type."),
3199 _("Show the floating point type."),
3200 _("auto - Determine the FP typefrom the OS-ABI.\n\
3201 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3202 fpa - FPA co-processor (GCC compiled).\n\
3203 softvfp - Software FP with pure-endian doubles.\n\
3204 vfp - VFP co-processor."),
3205 set_fp_model_sfunc, show_fp_model,
3206 &setarmcmdlist, &showarmcmdlist);
3207
3208 /* Add a command to allow the user to force the ABI. */
3209 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3210 _("Set the ABI."),
3211 _("Show the ABI."),
3212 NULL, arm_set_abi, arm_show_abi,
3213 &setarmcmdlist, &showarmcmdlist);
3214
3215 /* Debugging flag. */
3216 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3217 _("Set ARM debugging."),
3218 _("Show ARM debugging."),
3219 _("When on, arm-specific debugging is enabled."),
3220 NULL,
3221 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3222 &setdebuglist, &showdebuglist);
3223 }
This page took 0.139832 seconds and 4 git commands to generate.