325bd80df7ffd5a8f094dcf1e9b39137f3e0dff0
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <ctype.h> /* XXX for isupper () */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "gdb_string.h"
29 #include "dis-asm.h" /* For register styles. */
30 #include "regcache.h"
31 #include "doublest.h"
32 #include "value.h"
33 #include "arch-utils.h"
34 #include "osabi.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
37 #include "trad-frame.h"
38 #include "objfiles.h"
39 #include "dwarf2-frame.h"
40 #include "gdbtypes.h"
41 #include "prologue-value.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
44
45 #include "arm-tdep.h"
46 #include "gdb/sim-arm.h"
47
48 #include "elf-bfd.h"
49 #include "coff/internal.h"
50 #include "elf/arm.h"
51
52 #include "gdb_assert.h"
53
54 static int arm_debug;
55
56 /* Macros for setting and testing a bit in a minimal symbol that marks
57 it as Thumb function. The MSB of the minimal symbol's "info" field
58 is used for this purpose.
59
60 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
61 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
62
63 #define MSYMBOL_SET_SPECIAL(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67 #define MSYMBOL_IS_SPECIAL(msym) \
68 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
69
70 /* The list of available "set arm ..." and "show arm ..." commands. */
71 static struct cmd_list_element *setarmcmdlist = NULL;
72 static struct cmd_list_element *showarmcmdlist = NULL;
73
74 /* The type of floating-point to use. Keep this in sync with enum
75 arm_float_model, and the help string in _initialize_arm_tdep. */
76 static const char *fp_model_strings[] =
77 {
78 "auto",
79 "softfpa",
80 "fpa",
81 "softvfp",
82 "vfp",
83 NULL
84 };
85
86 /* A variable that can be configured by the user. */
87 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
88 static const char *current_fp_model = "auto";
89
90 /* The ABI to use. Keep this in sync with arm_abi_kind. */
91 static const char *arm_abi_strings[] =
92 {
93 "auto",
94 "APCS",
95 "AAPCS",
96 NULL
97 };
98
99 /* A variable that can be configured by the user. */
100 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
101 static const char *arm_abi_string = "auto";
102
103 /* Number of different reg name sets (options). */
104 static int num_disassembly_options;
105
106 /* The standard register names, and all the valid aliases for them. */
107 static const struct
108 {
109 const char *name;
110 int regnum;
111 } arm_register_aliases[] = {
112 /* Basic register numbers. */
113 { "r0", 0 },
114 { "r1", 1 },
115 { "r2", 2 },
116 { "r3", 3 },
117 { "r4", 4 },
118 { "r5", 5 },
119 { "r6", 6 },
120 { "r7", 7 },
121 { "r8", 8 },
122 { "r9", 9 },
123 { "r10", 10 },
124 { "r11", 11 },
125 { "r12", 12 },
126 { "r13", 13 },
127 { "r14", 14 },
128 { "r15", 15 },
129 /* Synonyms (argument and variable registers). */
130 { "a1", 0 },
131 { "a2", 1 },
132 { "a3", 2 },
133 { "a4", 3 },
134 { "v1", 4 },
135 { "v2", 5 },
136 { "v3", 6 },
137 { "v4", 7 },
138 { "v5", 8 },
139 { "v6", 9 },
140 { "v7", 10 },
141 { "v8", 11 },
142 /* Other platform-specific names for r9. */
143 { "sb", 9 },
144 { "tr", 9 },
145 /* Special names. */
146 { "ip", 12 },
147 { "sp", 13 },
148 { "lr", 14 },
149 { "pc", 15 },
150 /* Names used by GCC (not listed in the ARM EABI). */
151 { "sl", 10 },
152 { "fp", 11 },
153 /* A special name from the older ATPCS. */
154 { "wr", 7 },
155 };
156
157 static const char *const arm_register_names[] =
158 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
159 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
160 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
161 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
162 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
163 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
164 "fps", "cpsr" }; /* 24 25 */
165
166 /* Valid register name styles. */
167 static const char **valid_disassembly_styles;
168
169 /* Disassembly style to use. Default to "std" register names. */
170 static const char *disassembly_style;
171
172 /* This is used to keep the bfd arch_info in sync with the disassembly
173 style. */
174 static void set_disassembly_style_sfunc(char *, int,
175 struct cmd_list_element *);
176 static void set_disassembly_style (void);
177
178 static void convert_from_extended (const struct floatformat *, const void *,
179 void *);
180 static void convert_to_extended (const struct floatformat *, void *,
181 const void *);
182
183 struct arm_prologue_cache
184 {
185 /* The stack pointer at the time this frame was created; i.e. the
186 caller's stack pointer when this function was called. It is used
187 to identify this frame. */
188 CORE_ADDR prev_sp;
189
190 /* The frame base for this frame is just prev_sp + frame offset -
191 frame size. FRAMESIZE is the size of this stack frame, and
192 FRAMEOFFSET if the initial offset from the stack pointer (this
193 frame's stack pointer, not PREV_SP) to the frame base. */
194
195 int framesize;
196 int frameoffset;
197
198 /* The register used to hold the frame pointer for this frame. */
199 int framereg;
200
201 /* Saved register offsets. */
202 struct trad_frame_saved_reg *saved_regs;
203 };
204
205 /* Addresses for calling Thumb functions have the bit 0 set.
206 Here are some macros to test, set, or clear bit 0 of addresses. */
207 #define IS_THUMB_ADDR(addr) ((addr) & 1)
208 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
209 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
210
211 /* Set to true if the 32-bit mode is in use. */
212
213 int arm_apcs_32 = 1;
214
215 /* Determine if the program counter specified in MEMADDR is in a Thumb
216 function. */
217
218 static int
219 arm_pc_is_thumb (CORE_ADDR memaddr)
220 {
221 struct minimal_symbol *sym;
222
223 /* If bit 0 of the address is set, assume this is a Thumb address. */
224 if (IS_THUMB_ADDR (memaddr))
225 return 1;
226
227 /* Thumb functions have a "special" bit set in minimal symbols. */
228 sym = lookup_minimal_symbol_by_pc (memaddr);
229 if (sym)
230 {
231 return (MSYMBOL_IS_SPECIAL (sym));
232 }
233 else
234 {
235 return 0;
236 }
237 }
238
239 /* Remove useless bits from addresses in a running program. */
240 static CORE_ADDR
241 arm_addr_bits_remove (CORE_ADDR val)
242 {
243 if (arm_apcs_32)
244 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
245 else
246 return (val & 0x03fffffc);
247 }
248
249 /* When reading symbols, we need to zap the low bit of the address,
250 which may be set to 1 for Thumb functions. */
251 static CORE_ADDR
252 arm_smash_text_address (CORE_ADDR val)
253 {
254 return val & ~1;
255 }
256
257 /* Analyze a Thumb prologue, looking for a recognizable stack frame
258 and frame pointer. Scan until we encounter a store that could
259 clobber the stack frame unexpectedly, or an unknown instruction. */
260
261 static CORE_ADDR
262 thumb_analyze_prologue (struct gdbarch *gdbarch,
263 CORE_ADDR start, CORE_ADDR limit,
264 struct arm_prologue_cache *cache)
265 {
266 int i;
267 pv_t regs[16];
268 struct pv_area *stack;
269 struct cleanup *back_to;
270 CORE_ADDR offset;
271
272 for (i = 0; i < 16; i++)
273 regs[i] = pv_register (i, 0);
274 stack = make_pv_area (ARM_SP_REGNUM);
275 back_to = make_cleanup_free_pv_area (stack);
276
277 /* The call instruction saved PC in LR, and the current PC is not
278 interesting. Due to this file's conventions, we want the value
279 of LR at this function's entry, not at the call site, so we do
280 not record the save of the PC - when the ARM prologue analyzer
281 has also been converted to the pv mechanism, we could record the
282 save here and remove the hack in prev_register. */
283 regs[ARM_PC_REGNUM] = pv_unknown ();
284
285 while (start < limit)
286 {
287 unsigned short insn;
288
289 insn = read_memory_unsigned_integer (start, 2);
290
291 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
292 {
293 int regno;
294 int mask;
295 int stop = 0;
296
297 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
298 whether to save LR (R14). */
299 mask = (insn & 0xff) | ((insn & 0x100) << 6);
300
301 /* Calculate offsets of saved R0-R7 and LR. */
302 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
303 if (mask & (1 << regno))
304 {
305 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
306 {
307 stop = 1;
308 break;
309 }
310
311 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
312 -4);
313 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
314 }
315
316 if (stop)
317 break;
318 }
319 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
320 sub sp, #simm */
321 {
322 offset = (insn & 0x7f) << 2; /* get scaled offset */
323 if (insn & 0x80) /* Check for SUB. */
324 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
325 -offset);
326 else
327 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
328 offset);
329 }
330 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
331 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
332 (insn & 0xff) << 2);
333 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
334 {
335 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
336 int src_reg = (insn & 0x78) >> 3;
337 regs[dst_reg] = regs[src_reg];
338 }
339 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
340 {
341 /* Handle stores to the stack. Normally pushes are used,
342 but with GCC -mtpcs-frame, there may be other stores
343 in the prologue to create the frame. */
344 int regno = (insn >> 8) & 0x7;
345 pv_t addr;
346
347 offset = (insn & 0xff) << 2;
348 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
349
350 if (pv_area_store_would_trash (stack, addr))
351 break;
352
353 pv_area_store (stack, addr, 4, regs[regno]);
354 }
355 else
356 {
357 /* We don't know what this instruction is. We're finished
358 scanning. NOTE: Recognizing more safe-to-ignore
359 instructions here will improve support for optimized
360 code. */
361 break;
362 }
363
364 start += 2;
365 }
366
367 if (cache == NULL)
368 {
369 do_cleanups (back_to);
370 return start;
371 }
372
373 /* frameoffset is unused for this unwinder. */
374 cache->frameoffset = 0;
375
376 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
377 {
378 /* Frame pointer is fp. Frame size is constant. */
379 cache->framereg = ARM_FP_REGNUM;
380 cache->framesize = -regs[ARM_FP_REGNUM].k;
381 }
382 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
383 {
384 /* Frame pointer is r7. Frame size is constant. */
385 cache->framereg = THUMB_FP_REGNUM;
386 cache->framesize = -regs[THUMB_FP_REGNUM].k;
387 }
388 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
389 {
390 /* Try the stack pointer... this is a bit desperate. */
391 cache->framereg = ARM_SP_REGNUM;
392 cache->framesize = -regs[ARM_SP_REGNUM].k;
393 }
394 else
395 {
396 /* We're just out of luck. We don't know where the frame is. */
397 cache->framereg = -1;
398 cache->framesize = 0;
399 }
400
401 for (i = 0; i < 16; i++)
402 if (pv_area_find_reg (stack, gdbarch, i, &offset))
403 cache->saved_regs[i].addr = offset;
404
405 do_cleanups (back_to);
406 return start;
407 }
408
409 /* Advance the PC across any function entry prologue instructions to
410 reach some "real" code.
411
412 The APCS (ARM Procedure Call Standard) defines the following
413 prologue:
414
415 mov ip, sp
416 [stmfd sp!, {a1,a2,a3,a4}]
417 stmfd sp!, {...,fp,ip,lr,pc}
418 [stfe f7, [sp, #-12]!]
419 [stfe f6, [sp, #-12]!]
420 [stfe f5, [sp, #-12]!]
421 [stfe f4, [sp, #-12]!]
422 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
423
424 static CORE_ADDR
425 arm_skip_prologue (CORE_ADDR pc)
426 {
427 unsigned long inst;
428 CORE_ADDR skip_pc;
429 CORE_ADDR func_addr, func_end = 0;
430 char *func_name;
431 struct symtab_and_line sal;
432
433 /* If we're in a dummy frame, don't even try to skip the prologue. */
434 if (deprecated_pc_in_call_dummy (pc))
435 return pc;
436
437 /* See what the symbol table says. */
438
439 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
440 {
441 struct symbol *sym;
442
443 /* Found a function. */
444 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
445 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
446 {
447 /* Don't use this trick for assembly source files. */
448 sal = find_pc_line (func_addr, 0);
449 if ((sal.line != 0) && (sal.end < func_end))
450 return sal.end;
451 }
452 }
453
454 /* Can't find the prologue end in the symbol table, try it the hard way
455 by disassembling the instructions. */
456
457 /* Like arm_scan_prologue, stop no later than pc + 64. */
458 if (func_end == 0 || func_end > pc + 64)
459 func_end = pc + 64;
460
461 /* Check if this is Thumb code. */
462 if (arm_pc_is_thumb (pc))
463 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
464
465 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
466 {
467 inst = read_memory_unsigned_integer (skip_pc, 4);
468
469 /* "mov ip, sp" is no longer a required part of the prologue. */
470 if (inst == 0xe1a0c00d) /* mov ip, sp */
471 continue;
472
473 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
474 continue;
475
476 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
477 continue;
478
479 /* Some prologues begin with "str lr, [sp, #-4]!". */
480 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
481 continue;
482
483 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
484 continue;
485
486 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
487 continue;
488
489 /* Any insns after this point may float into the code, if it makes
490 for better instruction scheduling, so we skip them only if we
491 find them, but still consider the function to be frame-ful. */
492
493 /* We may have either one sfmfd instruction here, or several stfe
494 insns, depending on the version of floating point code we
495 support. */
496 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
497 continue;
498
499 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
500 continue;
501
502 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
503 continue;
504
505 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
506 continue;
507
508 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
509 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
510 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
511 continue;
512
513 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
514 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
515 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
516 continue;
517
518 /* Un-recognized instruction; stop scanning. */
519 break;
520 }
521
522 return skip_pc; /* End of prologue */
523 }
524
525 /* *INDENT-OFF* */
526 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
527 This function decodes a Thumb function prologue to determine:
528 1) the size of the stack frame
529 2) which registers are saved on it
530 3) the offsets of saved regs
531 4) the offset from the stack pointer to the frame pointer
532
533 A typical Thumb function prologue would create this stack frame
534 (offsets relative to FP)
535 old SP -> 24 stack parameters
536 20 LR
537 16 R7
538 R7 -> 0 local variables (16 bytes)
539 SP -> -12 additional stack space (12 bytes)
540 The frame size would thus be 36 bytes, and the frame offset would be
541 12 bytes. The frame register is R7.
542
543 The comments for thumb_skip_prolog() describe the algorithm we use
544 to detect the end of the prolog. */
545 /* *INDENT-ON* */
546
547 static void
548 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
549 {
550 CORE_ADDR prologue_start;
551 CORE_ADDR prologue_end;
552 CORE_ADDR current_pc;
553 /* Which register has been copied to register n? */
554 int saved_reg[16];
555 /* findmask:
556 bit 0 - push { rlist }
557 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
558 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
559 */
560 int findmask = 0;
561 int i;
562
563 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
564 {
565 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
566
567 if (sal.line == 0) /* no line info, use current PC */
568 prologue_end = prev_pc;
569 else if (sal.end < prologue_end) /* next line begins after fn end */
570 prologue_end = sal.end; /* (probably means no prologue) */
571 }
572 else
573 /* We're in the boondocks: we have no idea where the start of the
574 function is. */
575 return;
576
577 prologue_end = min (prologue_end, prev_pc);
578
579 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
580 cache);
581 }
582
583 /* This function decodes an ARM function prologue to determine:
584 1) the size of the stack frame
585 2) which registers are saved on it
586 3) the offsets of saved regs
587 4) the offset from the stack pointer to the frame pointer
588 This information is stored in the "extra" fields of the frame_info.
589
590 There are two basic forms for the ARM prologue. The fixed argument
591 function call will look like:
592
593 mov ip, sp
594 stmfd sp!, {fp, ip, lr, pc}
595 sub fp, ip, #4
596 [sub sp, sp, #4]
597
598 Which would create this stack frame (offsets relative to FP):
599 IP -> 4 (caller's stack)
600 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
601 -4 LR (return address in caller)
602 -8 IP (copy of caller's SP)
603 -12 FP (caller's FP)
604 SP -> -28 Local variables
605
606 The frame size would thus be 32 bytes, and the frame offset would be
607 28 bytes. The stmfd call can also save any of the vN registers it
608 plans to use, which increases the frame size accordingly.
609
610 Note: The stored PC is 8 off of the STMFD instruction that stored it
611 because the ARM Store instructions always store PC + 8 when you read
612 the PC register.
613
614 A variable argument function call will look like:
615
616 mov ip, sp
617 stmfd sp!, {a1, a2, a3, a4}
618 stmfd sp!, {fp, ip, lr, pc}
619 sub fp, ip, #20
620
621 Which would create this stack frame (offsets relative to FP):
622 IP -> 20 (caller's stack)
623 16 A4
624 12 A3
625 8 A2
626 4 A1
627 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
628 -4 LR (return address in caller)
629 -8 IP (copy of caller's SP)
630 -12 FP (caller's FP)
631 SP -> -28 Local variables
632
633 The frame size would thus be 48 bytes, and the frame offset would be
634 28 bytes.
635
636 There is another potential complication, which is that the optimizer
637 will try to separate the store of fp in the "stmfd" instruction from
638 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
639 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
640
641 Also, note, the original version of the ARM toolchain claimed that there
642 should be an
643
644 instruction at the end of the prologue. I have never seen GCC produce
645 this, and the ARM docs don't mention it. We still test for it below in
646 case it happens...
647
648 */
649
650 static void
651 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
652 {
653 int regno, sp_offset, fp_offset, ip_offset;
654 CORE_ADDR prologue_start, prologue_end, current_pc;
655 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
656
657 /* Assume there is no frame until proven otherwise. */
658 cache->framereg = ARM_SP_REGNUM;
659 cache->framesize = 0;
660 cache->frameoffset = 0;
661
662 /* Check for Thumb prologue. */
663 if (arm_pc_is_thumb (prev_pc))
664 {
665 thumb_scan_prologue (prev_pc, cache);
666 return;
667 }
668
669 /* Find the function prologue. If we can't find the function in
670 the symbol table, peek in the stack frame to find the PC. */
671 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
672 {
673 /* One way to find the end of the prologue (which works well
674 for unoptimized code) is to do the following:
675
676 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
677
678 if (sal.line == 0)
679 prologue_end = prev_pc;
680 else if (sal.end < prologue_end)
681 prologue_end = sal.end;
682
683 This mechanism is very accurate so long as the optimizer
684 doesn't move any instructions from the function body into the
685 prologue. If this happens, sal.end will be the last
686 instruction in the first hunk of prologue code just before
687 the first instruction that the scheduler has moved from
688 the body to the prologue.
689
690 In order to make sure that we scan all of the prologue
691 instructions, we use a slightly less accurate mechanism which
692 may scan more than necessary. To help compensate for this
693 lack of accuracy, the prologue scanning loop below contains
694 several clauses which'll cause the loop to terminate early if
695 an implausible prologue instruction is encountered.
696
697 The expression
698
699 prologue_start + 64
700
701 is a suitable endpoint since it accounts for the largest
702 possible prologue plus up to five instructions inserted by
703 the scheduler. */
704
705 if (prologue_end > prologue_start + 64)
706 {
707 prologue_end = prologue_start + 64; /* See above. */
708 }
709 }
710 else
711 {
712 /* We have no symbol information. Our only option is to assume this
713 function has a standard stack frame and the normal frame register.
714 Then, we can find the value of our frame pointer on entrance to
715 the callee (or at the present moment if this is the innermost frame).
716 The value stored there should be the address of the stmfd + 8. */
717 CORE_ADDR frame_loc;
718 LONGEST return_value;
719
720 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
721 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
722 return;
723 else
724 {
725 prologue_start = gdbarch_addr_bits_remove
726 (current_gdbarch, return_value) - 8;
727 prologue_end = prologue_start + 64; /* See above. */
728 }
729 }
730
731 if (prev_pc < prologue_end)
732 prologue_end = prev_pc;
733
734 /* Now search the prologue looking for instructions that set up the
735 frame pointer, adjust the stack pointer, and save registers.
736
737 Be careful, however, and if it doesn't look like a prologue,
738 don't try to scan it. If, for instance, a frameless function
739 begins with stmfd sp!, then we will tell ourselves there is
740 a frame, which will confuse stack traceback, as well as "finish"
741 and other operations that rely on a knowledge of the stack
742 traceback.
743
744 In the APCS, the prologue should start with "mov ip, sp" so
745 if we don't see this as the first insn, we will stop.
746
747 [Note: This doesn't seem to be true any longer, so it's now an
748 optional part of the prologue. - Kevin Buettner, 2001-11-20]
749
750 [Note further: The "mov ip,sp" only seems to be missing in
751 frameless functions at optimization level "-O2" or above,
752 in which case it is often (but not always) replaced by
753 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
754
755 sp_offset = fp_offset = ip_offset = 0;
756
757 for (current_pc = prologue_start;
758 current_pc < prologue_end;
759 current_pc += 4)
760 {
761 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
762
763 if (insn == 0xe1a0c00d) /* mov ip, sp */
764 {
765 ip_offset = 0;
766 continue;
767 }
768 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
769 {
770 unsigned imm = insn & 0xff; /* immediate value */
771 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
772 imm = (imm >> rot) | (imm << (32 - rot));
773 ip_offset = imm;
774 continue;
775 }
776 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
777 {
778 unsigned imm = insn & 0xff; /* immediate value */
779 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
780 imm = (imm >> rot) | (imm << (32 - rot));
781 ip_offset = -imm;
782 continue;
783 }
784 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
785 {
786 sp_offset -= 4;
787 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
788 continue;
789 }
790 else if ((insn & 0xffff0000) == 0xe92d0000)
791 /* stmfd sp!, {..., fp, ip, lr, pc}
792 or
793 stmfd sp!, {a1, a2, a3, a4} */
794 {
795 int mask = insn & 0xffff;
796
797 /* Calculate offsets of saved registers. */
798 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
799 if (mask & (1 << regno))
800 {
801 sp_offset -= 4;
802 cache->saved_regs[regno].addr = sp_offset;
803 }
804 }
805 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
806 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
807 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
808 {
809 /* No need to add this to saved_regs -- it's just an arg reg. */
810 continue;
811 }
812 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
813 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
814 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
815 {
816 /* No need to add this to saved_regs -- it's just an arg reg. */
817 continue;
818 }
819 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
820 {
821 unsigned imm = insn & 0xff; /* immediate value */
822 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
823 imm = (imm >> rot) | (imm << (32 - rot));
824 fp_offset = -imm + ip_offset;
825 cache->framereg = ARM_FP_REGNUM;
826 }
827 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
828 {
829 unsigned imm = insn & 0xff; /* immediate value */
830 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
831 imm = (imm >> rot) | (imm << (32 - rot));
832 sp_offset -= imm;
833 }
834 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
835 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
836 {
837 sp_offset -= 12;
838 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
839 cache->saved_regs[regno].addr = sp_offset;
840 }
841 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
842 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
843 {
844 int n_saved_fp_regs;
845 unsigned int fp_start_reg, fp_bound_reg;
846
847 if ((insn & 0x800) == 0x800) /* N0 is set */
848 {
849 if ((insn & 0x40000) == 0x40000) /* N1 is set */
850 n_saved_fp_regs = 3;
851 else
852 n_saved_fp_regs = 1;
853 }
854 else
855 {
856 if ((insn & 0x40000) == 0x40000) /* N1 is set */
857 n_saved_fp_regs = 2;
858 else
859 n_saved_fp_regs = 4;
860 }
861
862 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
863 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
864 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
865 {
866 sp_offset -= 12;
867 cache->saved_regs[fp_start_reg++].addr = sp_offset;
868 }
869 }
870 else if ((insn & 0xf0000000) != 0xe0000000)
871 break; /* Condition not true, exit early */
872 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
873 break; /* Don't scan past a block load */
874 else
875 /* The optimizer might shove anything into the prologue,
876 so we just skip what we don't recognize. */
877 continue;
878 }
879
880 /* The frame size is just the negative of the offset (from the
881 original SP) of the last thing thing we pushed on the stack.
882 The frame offset is [new FP] - [new SP]. */
883 cache->framesize = -sp_offset;
884 if (cache->framereg == ARM_FP_REGNUM)
885 cache->frameoffset = fp_offset - sp_offset;
886 else
887 cache->frameoffset = 0;
888 }
889
890 static struct arm_prologue_cache *
891 arm_make_prologue_cache (struct frame_info *next_frame)
892 {
893 int reg;
894 struct arm_prologue_cache *cache;
895 CORE_ADDR unwound_fp;
896
897 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
898 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
899
900 arm_scan_prologue (next_frame, cache);
901
902 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
903 if (unwound_fp == 0)
904 return cache;
905
906 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
907
908 /* Calculate actual addresses of saved registers using offsets
909 determined by arm_scan_prologue. */
910 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
911 if (trad_frame_addr_p (cache->saved_regs, reg))
912 cache->saved_regs[reg].addr += cache->prev_sp;
913
914 return cache;
915 }
916
917 /* Our frame ID for a normal frame is the current function's starting PC
918 and the caller's SP when we were called. */
919
920 static void
921 arm_prologue_this_id (struct frame_info *next_frame,
922 void **this_cache,
923 struct frame_id *this_id)
924 {
925 struct arm_prologue_cache *cache;
926 struct frame_id id;
927 CORE_ADDR func;
928
929 if (*this_cache == NULL)
930 *this_cache = arm_make_prologue_cache (next_frame);
931 cache = *this_cache;
932
933 func = frame_func_unwind (next_frame, NORMAL_FRAME);
934
935 /* This is meant to halt the backtrace at "_start". Make sure we
936 don't halt it at a generic dummy frame. */
937 if (func <= LOWEST_PC)
938 return;
939
940 /* If we've hit a wall, stop. */
941 if (cache->prev_sp == 0)
942 return;
943
944 id = frame_id_build (cache->prev_sp, func);
945 *this_id = id;
946 }
947
948 static void
949 arm_prologue_prev_register (struct frame_info *next_frame,
950 void **this_cache,
951 int prev_regnum,
952 int *optimized,
953 enum lval_type *lvalp,
954 CORE_ADDR *addrp,
955 int *realnump,
956 gdb_byte *valuep)
957 {
958 struct arm_prologue_cache *cache;
959
960 if (*this_cache == NULL)
961 *this_cache = arm_make_prologue_cache (next_frame);
962 cache = *this_cache;
963
964 /* If we are asked to unwind the PC, then we need to return the LR
965 instead. The saved value of PC points into this frame's
966 prologue, not the next frame's resume location. */
967 if (prev_regnum == ARM_PC_REGNUM)
968 prev_regnum = ARM_LR_REGNUM;
969
970 /* SP is generally not saved to the stack, but this frame is
971 identified by NEXT_FRAME's stack pointer at the time of the call.
972 The value was already reconstructed into PREV_SP. */
973 if (prev_regnum == ARM_SP_REGNUM)
974 {
975 *lvalp = not_lval;
976 if (valuep)
977 store_unsigned_integer (valuep, 4, cache->prev_sp);
978 return;
979 }
980
981 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
982 optimized, lvalp, addrp, realnump, valuep);
983 }
984
985 struct frame_unwind arm_prologue_unwind = {
986 NORMAL_FRAME,
987 arm_prologue_this_id,
988 arm_prologue_prev_register
989 };
990
991 static const struct frame_unwind *
992 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
993 {
994 return &arm_prologue_unwind;
995 }
996
997 static struct arm_prologue_cache *
998 arm_make_stub_cache (struct frame_info *next_frame)
999 {
1000 int reg;
1001 struct arm_prologue_cache *cache;
1002 CORE_ADDR unwound_fp;
1003
1004 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1005 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1006
1007 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1008
1009 return cache;
1010 }
1011
1012 /* Our frame ID for a stub frame is the current SP and LR. */
1013
1014 static void
1015 arm_stub_this_id (struct frame_info *next_frame,
1016 void **this_cache,
1017 struct frame_id *this_id)
1018 {
1019 struct arm_prologue_cache *cache;
1020
1021 if (*this_cache == NULL)
1022 *this_cache = arm_make_stub_cache (next_frame);
1023 cache = *this_cache;
1024
1025 *this_id = frame_id_build (cache->prev_sp,
1026 frame_pc_unwind (next_frame));
1027 }
1028
1029 struct frame_unwind arm_stub_unwind = {
1030 NORMAL_FRAME,
1031 arm_stub_this_id,
1032 arm_prologue_prev_register
1033 };
1034
1035 static const struct frame_unwind *
1036 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1037 {
1038 CORE_ADDR addr_in_block;
1039 char dummy[4];
1040
1041 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1042 if (in_plt_section (addr_in_block, NULL)
1043 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1044 return &arm_stub_unwind;
1045
1046 return NULL;
1047 }
1048
1049 static CORE_ADDR
1050 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1051 {
1052 struct arm_prologue_cache *cache;
1053
1054 if (*this_cache == NULL)
1055 *this_cache = arm_make_prologue_cache (next_frame);
1056 cache = *this_cache;
1057
1058 return cache->prev_sp + cache->frameoffset - cache->framesize;
1059 }
1060
1061 struct frame_base arm_normal_base = {
1062 &arm_prologue_unwind,
1063 arm_normal_frame_base,
1064 arm_normal_frame_base,
1065 arm_normal_frame_base
1066 };
1067
1068 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1069 dummy frame. The frame ID's base needs to match the TOS value
1070 saved by save_dummy_frame_tos() and returned from
1071 arm_push_dummy_call, and the PC needs to match the dummy frame's
1072 breakpoint. */
1073
1074 static struct frame_id
1075 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1076 {
1077 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1078 frame_pc_unwind (next_frame));
1079 }
1080
1081 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1082 be used to construct the previous frame's ID, after looking up the
1083 containing function). */
1084
1085 static CORE_ADDR
1086 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1087 {
1088 CORE_ADDR pc;
1089 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1090 return arm_addr_bits_remove (pc);
1091 }
1092
1093 static CORE_ADDR
1094 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1095 {
1096 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1097 }
1098
1099 /* When arguments must be pushed onto the stack, they go on in reverse
1100 order. The code below implements a FILO (stack) to do this. */
1101
1102 struct stack_item
1103 {
1104 int len;
1105 struct stack_item *prev;
1106 void *data;
1107 };
1108
1109 static struct stack_item *
1110 push_stack_item (struct stack_item *prev, void *contents, int len)
1111 {
1112 struct stack_item *si;
1113 si = xmalloc (sizeof (struct stack_item));
1114 si->data = xmalloc (len);
1115 si->len = len;
1116 si->prev = prev;
1117 memcpy (si->data, contents, len);
1118 return si;
1119 }
1120
1121 static struct stack_item *
1122 pop_stack_item (struct stack_item *si)
1123 {
1124 struct stack_item *dead = si;
1125 si = si->prev;
1126 xfree (dead->data);
1127 xfree (dead);
1128 return si;
1129 }
1130
1131
1132 /* Return the alignment (in bytes) of the given type. */
1133
1134 static int
1135 arm_type_align (struct type *t)
1136 {
1137 int n;
1138 int align;
1139 int falign;
1140
1141 t = check_typedef (t);
1142 switch (TYPE_CODE (t))
1143 {
1144 default:
1145 /* Should never happen. */
1146 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1147 return 4;
1148
1149 case TYPE_CODE_PTR:
1150 case TYPE_CODE_ENUM:
1151 case TYPE_CODE_INT:
1152 case TYPE_CODE_FLT:
1153 case TYPE_CODE_SET:
1154 case TYPE_CODE_RANGE:
1155 case TYPE_CODE_BITSTRING:
1156 case TYPE_CODE_REF:
1157 case TYPE_CODE_CHAR:
1158 case TYPE_CODE_BOOL:
1159 return TYPE_LENGTH (t);
1160
1161 case TYPE_CODE_ARRAY:
1162 case TYPE_CODE_COMPLEX:
1163 /* TODO: What about vector types? */
1164 return arm_type_align (TYPE_TARGET_TYPE (t));
1165
1166 case TYPE_CODE_STRUCT:
1167 case TYPE_CODE_UNION:
1168 align = 1;
1169 for (n = 0; n < TYPE_NFIELDS (t); n++)
1170 {
1171 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1172 if (falign > align)
1173 align = falign;
1174 }
1175 return align;
1176 }
1177 }
1178
1179 /* We currently only support passing parameters in integer registers. This
1180 conforms with GCC's default model. Several other variants exist and
1181 we should probably support some of them based on the selected ABI. */
1182
1183 static CORE_ADDR
1184 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1185 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1186 struct value **args, CORE_ADDR sp, int struct_return,
1187 CORE_ADDR struct_addr)
1188 {
1189 int argnum;
1190 int argreg;
1191 int nstack;
1192 struct stack_item *si = NULL;
1193
1194 /* Set the return address. For the ARM, the return breakpoint is
1195 always at BP_ADDR. */
1196 /* XXX Fix for Thumb. */
1197 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1198
1199 /* Walk through the list of args and determine how large a temporary
1200 stack is required. Need to take care here as structs may be
1201 passed on the stack, and we have to to push them. */
1202 nstack = 0;
1203
1204 argreg = ARM_A1_REGNUM;
1205 nstack = 0;
1206
1207 /* The struct_return pointer occupies the first parameter
1208 passing register. */
1209 if (struct_return)
1210 {
1211 if (arm_debug)
1212 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1213 gdbarch_register_name (current_gdbarch, argreg),
1214 paddr (struct_addr));
1215 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1216 argreg++;
1217 }
1218
1219 for (argnum = 0; argnum < nargs; argnum++)
1220 {
1221 int len;
1222 struct type *arg_type;
1223 struct type *target_type;
1224 enum type_code typecode;
1225 bfd_byte *val;
1226 int align;
1227
1228 arg_type = check_typedef (value_type (args[argnum]));
1229 len = TYPE_LENGTH (arg_type);
1230 target_type = TYPE_TARGET_TYPE (arg_type);
1231 typecode = TYPE_CODE (arg_type);
1232 val = value_contents_writeable (args[argnum]);
1233
1234 align = arm_type_align (arg_type);
1235 /* Round alignment up to a whole number of words. */
1236 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1237 /* Different ABIs have different maximum alignments. */
1238 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1239 {
1240 /* The APCS ABI only requires word alignment. */
1241 align = INT_REGISTER_SIZE;
1242 }
1243 else
1244 {
1245 /* The AAPCS requires at most doubleword alignment. */
1246 if (align > INT_REGISTER_SIZE * 2)
1247 align = INT_REGISTER_SIZE * 2;
1248 }
1249
1250 /* Push stack padding for dowubleword alignment. */
1251 if (nstack & (align - 1))
1252 {
1253 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1254 nstack += INT_REGISTER_SIZE;
1255 }
1256
1257 /* Doubleword aligned quantities must go in even register pairs. */
1258 if (argreg <= ARM_LAST_ARG_REGNUM
1259 && align > INT_REGISTER_SIZE
1260 && argreg & 1)
1261 argreg++;
1262
1263 /* If the argument is a pointer to a function, and it is a
1264 Thumb function, create a LOCAL copy of the value and set
1265 the THUMB bit in it. */
1266 if (TYPE_CODE_PTR == typecode
1267 && target_type != NULL
1268 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1269 {
1270 CORE_ADDR regval = extract_unsigned_integer (val, len);
1271 if (arm_pc_is_thumb (regval))
1272 {
1273 val = alloca (len);
1274 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1275 }
1276 }
1277
1278 /* Copy the argument to general registers or the stack in
1279 register-sized pieces. Large arguments are split between
1280 registers and stack. */
1281 while (len > 0)
1282 {
1283 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
1284
1285 if (argreg <= ARM_LAST_ARG_REGNUM)
1286 {
1287 /* The argument is being passed in a general purpose
1288 register. */
1289 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1290 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1291 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
1292 if (arm_debug)
1293 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1294 argnum,
1295 gdbarch_register_name
1296 (current_gdbarch, argreg),
1297 phex (regval, INT_REGISTER_SIZE));
1298 regcache_cooked_write_unsigned (regcache, argreg, regval);
1299 argreg++;
1300 }
1301 else
1302 {
1303 /* Push the arguments onto the stack. */
1304 if (arm_debug)
1305 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1306 argnum, nstack);
1307 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1308 nstack += INT_REGISTER_SIZE;
1309 }
1310
1311 len -= partial_len;
1312 val += partial_len;
1313 }
1314 }
1315 /* If we have an odd number of words to push, then decrement the stack
1316 by one word now, so first stack argument will be dword aligned. */
1317 if (nstack & 4)
1318 sp -= 4;
1319
1320 while (si)
1321 {
1322 sp -= si->len;
1323 write_memory (sp, si->data, si->len);
1324 si = pop_stack_item (si);
1325 }
1326
1327 /* Finally, update teh SP register. */
1328 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1329
1330 return sp;
1331 }
1332
1333
1334 /* Always align the frame to an 8-byte boundary. This is required on
1335 some platforms and harmless on the rest. */
1336
1337 static CORE_ADDR
1338 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1339 {
1340 /* Align the stack to eight bytes. */
1341 return sp & ~ (CORE_ADDR) 7;
1342 }
1343
1344 static void
1345 print_fpu_flags (int flags)
1346 {
1347 if (flags & (1 << 0))
1348 fputs ("IVO ", stdout);
1349 if (flags & (1 << 1))
1350 fputs ("DVZ ", stdout);
1351 if (flags & (1 << 2))
1352 fputs ("OFL ", stdout);
1353 if (flags & (1 << 3))
1354 fputs ("UFL ", stdout);
1355 if (flags & (1 << 4))
1356 fputs ("INX ", stdout);
1357 putchar ('\n');
1358 }
1359
1360 /* Print interesting information about the floating point processor
1361 (if present) or emulator. */
1362 static void
1363 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1364 struct frame_info *frame, const char *args)
1365 {
1366 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
1367 int type;
1368
1369 type = (status >> 24) & 127;
1370 if (status & (1 << 31))
1371 printf (_("Hardware FPU type %d\n"), type);
1372 else
1373 printf (_("Software FPU type %d\n"), type);
1374 /* i18n: [floating point unit] mask */
1375 fputs (_("mask: "), stdout);
1376 print_fpu_flags (status >> 16);
1377 /* i18n: [floating point unit] flags */
1378 fputs (_("flags: "), stdout);
1379 print_fpu_flags (status);
1380 }
1381
1382 /* Return the GDB type object for the "standard" data type of data in
1383 register N. */
1384
1385 static struct type *
1386 arm_register_type (struct gdbarch *gdbarch, int regnum)
1387 {
1388 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1389 return builtin_type_arm_ext;
1390 else if (regnum == ARM_SP_REGNUM)
1391 return builtin_type_void_data_ptr;
1392 else if (regnum == ARM_PC_REGNUM)
1393 return builtin_type_void_func_ptr;
1394 else if (regnum >= ARRAY_SIZE (arm_register_names))
1395 /* These registers are only supported on targets which supply
1396 an XML description. */
1397 return builtin_type_int0;
1398 else
1399 return builtin_type_uint32;
1400 }
1401
1402 /* Map a DWARF register REGNUM onto the appropriate GDB register
1403 number. */
1404
1405 static int
1406 arm_dwarf_reg_to_regnum (int reg)
1407 {
1408 /* Core integer regs. */
1409 if (reg >= 0 && reg <= 15)
1410 return reg;
1411
1412 /* Legacy FPA encoding. These were once used in a way which
1413 overlapped with VFP register numbering, so their use is
1414 discouraged, but GDB doesn't support the ARM toolchain
1415 which used them for VFP. */
1416 if (reg >= 16 && reg <= 23)
1417 return ARM_F0_REGNUM + reg - 16;
1418
1419 /* New assignments for the FPA registers. */
1420 if (reg >= 96 && reg <= 103)
1421 return ARM_F0_REGNUM + reg - 96;
1422
1423 /* WMMX register assignments. */
1424 if (reg >= 104 && reg <= 111)
1425 return ARM_WCGR0_REGNUM + reg - 104;
1426
1427 if (reg >= 112 && reg <= 127)
1428 return ARM_WR0_REGNUM + reg - 112;
1429
1430 if (reg >= 192 && reg <= 199)
1431 return ARM_WC0_REGNUM + reg - 192;
1432
1433 return -1;
1434 }
1435
1436 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1437 static int
1438 arm_register_sim_regno (int regnum)
1439 {
1440 int reg = regnum;
1441 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
1442
1443 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1444 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1445
1446 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1447 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1448
1449 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1450 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1451
1452 if (reg < NUM_GREGS)
1453 return SIM_ARM_R0_REGNUM + reg;
1454 reg -= NUM_GREGS;
1455
1456 if (reg < NUM_FREGS)
1457 return SIM_ARM_FP0_REGNUM + reg;
1458 reg -= NUM_FREGS;
1459
1460 if (reg < NUM_SREGS)
1461 return SIM_ARM_FPS_REGNUM + reg;
1462 reg -= NUM_SREGS;
1463
1464 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1465 }
1466
1467 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1468 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1469 It is thought that this is is the floating-point register format on
1470 little-endian systems. */
1471
1472 static void
1473 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1474 void *dbl)
1475 {
1476 DOUBLEST d;
1477 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1478 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1479 else
1480 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1481 ptr, &d);
1482 floatformat_from_doublest (fmt, &d, dbl);
1483 }
1484
1485 static void
1486 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1487 {
1488 DOUBLEST d;
1489 floatformat_to_doublest (fmt, ptr, &d);
1490 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1491 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1492 else
1493 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1494 &d, dbl);
1495 }
1496
1497 static int
1498 condition_true (unsigned long cond, unsigned long status_reg)
1499 {
1500 if (cond == INST_AL || cond == INST_NV)
1501 return 1;
1502
1503 switch (cond)
1504 {
1505 case INST_EQ:
1506 return ((status_reg & FLAG_Z) != 0);
1507 case INST_NE:
1508 return ((status_reg & FLAG_Z) == 0);
1509 case INST_CS:
1510 return ((status_reg & FLAG_C) != 0);
1511 case INST_CC:
1512 return ((status_reg & FLAG_C) == 0);
1513 case INST_MI:
1514 return ((status_reg & FLAG_N) != 0);
1515 case INST_PL:
1516 return ((status_reg & FLAG_N) == 0);
1517 case INST_VS:
1518 return ((status_reg & FLAG_V) != 0);
1519 case INST_VC:
1520 return ((status_reg & FLAG_V) == 0);
1521 case INST_HI:
1522 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1523 case INST_LS:
1524 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1525 case INST_GE:
1526 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1527 case INST_LT:
1528 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1529 case INST_GT:
1530 return (((status_reg & FLAG_Z) == 0) &&
1531 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1532 case INST_LE:
1533 return (((status_reg & FLAG_Z) != 0) ||
1534 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1535 }
1536 return 1;
1537 }
1538
1539 /* Support routines for single stepping. Calculate the next PC value. */
1540 #define submask(x) ((1L << ((x) + 1)) - 1)
1541 #define bit(obj,st) (((obj) >> (st)) & 1)
1542 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1543 #define sbits(obj,st,fn) \
1544 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1545 #define BranchDest(addr,instr) \
1546 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1547 #define ARM_PC_32 1
1548
1549 static unsigned long
1550 shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1551 unsigned long pc_val, unsigned long status_reg)
1552 {
1553 unsigned long res, shift;
1554 int rm = bits (inst, 0, 3);
1555 unsigned long shifttype = bits (inst, 5, 6);
1556
1557 if (bit (inst, 4))
1558 {
1559 int rs = bits (inst, 8, 11);
1560 shift = (rs == 15 ? pc_val + 8
1561 : get_frame_register_unsigned (frame, rs)) & 0xFF;
1562 }
1563 else
1564 shift = bits (inst, 7, 11);
1565
1566 res = (rm == 15
1567 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1568 + (bit (inst, 4) ? 12 : 8))
1569 : get_frame_register_unsigned (frame, rm));
1570
1571 switch (shifttype)
1572 {
1573 case 0: /* LSL */
1574 res = shift >= 32 ? 0 : res << shift;
1575 break;
1576
1577 case 1: /* LSR */
1578 res = shift >= 32 ? 0 : res >> shift;
1579 break;
1580
1581 case 2: /* ASR */
1582 if (shift >= 32)
1583 shift = 31;
1584 res = ((res & 0x80000000L)
1585 ? ~((~res) >> shift) : res >> shift);
1586 break;
1587
1588 case 3: /* ROR/RRX */
1589 shift &= 31;
1590 if (shift == 0)
1591 res = (res >> 1) | (carry ? 0x80000000L : 0);
1592 else
1593 res = (res >> shift) | (res << (32 - shift));
1594 break;
1595 }
1596
1597 return res & 0xffffffff;
1598 }
1599
1600 /* Return number of 1-bits in VAL. */
1601
1602 static int
1603 bitcount (unsigned long val)
1604 {
1605 int nbits;
1606 for (nbits = 0; val != 0; nbits++)
1607 val &= val - 1; /* delete rightmost 1-bit in val */
1608 return nbits;
1609 }
1610
1611 static CORE_ADDR
1612 thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1613 {
1614 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1615 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1616 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1617 unsigned long offset;
1618
1619 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1620 {
1621 CORE_ADDR sp;
1622
1623 /* Fetch the saved PC from the stack. It's stored above
1624 all of the other registers. */
1625 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
1626 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1627 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1628 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1629 if (nextpc == pc)
1630 error (_("Infinite loop detected"));
1631 }
1632 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1633 {
1634 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1635 unsigned long cond = bits (inst1, 8, 11);
1636 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1637 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1638 }
1639 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1640 {
1641 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1642 }
1643 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1644 {
1645 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1646 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1647 nextpc = pc_val + offset;
1648 /* For BLX make sure to clear the low bits. */
1649 if (bits (inst2, 11, 12) == 1)
1650 nextpc = nextpc & 0xfffffffc;
1651 }
1652 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1653 {
1654 if (bits (inst1, 3, 6) == 0x0f)
1655 nextpc = pc_val;
1656 else
1657 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
1658
1659 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1660 if (nextpc == pc)
1661 error (_("Infinite loop detected"));
1662 }
1663
1664 return nextpc;
1665 }
1666
1667 CORE_ADDR
1668 arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1669 {
1670 unsigned long pc_val;
1671 unsigned long this_instr;
1672 unsigned long status;
1673 CORE_ADDR nextpc;
1674
1675 if (arm_pc_is_thumb (pc))
1676 return thumb_get_next_pc (frame, pc);
1677
1678 pc_val = (unsigned long) pc;
1679 this_instr = read_memory_unsigned_integer (pc, 4);
1680 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1681 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1682
1683 if (bits (this_instr, 28, 31) == INST_NV)
1684 switch (bits (this_instr, 24, 27))
1685 {
1686 case 0xa:
1687 case 0xb:
1688 {
1689 /* Branch with Link and change to Thumb. */
1690 nextpc = BranchDest (pc, this_instr);
1691 nextpc |= bit (this_instr, 24) << 1;
1692
1693 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1694 if (nextpc == pc)
1695 error (_("Infinite loop detected"));
1696 break;
1697 }
1698 case 0xc:
1699 case 0xd:
1700 case 0xe:
1701 /* Coprocessor register transfer. */
1702 if (bits (this_instr, 12, 15) == 15)
1703 error (_("Invalid update to pc in instruction"));
1704 break;
1705 }
1706 else if (condition_true (bits (this_instr, 28, 31), status))
1707 {
1708 switch (bits (this_instr, 24, 27))
1709 {
1710 case 0x0:
1711 case 0x1: /* data processing */
1712 case 0x2:
1713 case 0x3:
1714 {
1715 unsigned long operand1, operand2, result = 0;
1716 unsigned long rn;
1717 int c;
1718
1719 if (bits (this_instr, 12, 15) != 15)
1720 break;
1721
1722 if (bits (this_instr, 22, 25) == 0
1723 && bits (this_instr, 4, 7) == 9) /* multiply */
1724 error (_("Invalid update to pc in instruction"));
1725
1726 /* BX <reg>, BLX <reg> */
1727 if (bits (this_instr, 4, 27) == 0x12fff1
1728 || bits (this_instr, 4, 27) == 0x12fff3)
1729 {
1730 rn = bits (this_instr, 0, 3);
1731 result = (rn == 15) ? pc_val + 8
1732 : get_frame_register_unsigned (frame, rn);
1733 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1734 (current_gdbarch, result);
1735
1736 if (nextpc == pc)
1737 error (_("Infinite loop detected"));
1738
1739 return nextpc;
1740 }
1741
1742 /* Multiply into PC */
1743 c = (status & FLAG_C) ? 1 : 0;
1744 rn = bits (this_instr, 16, 19);
1745 operand1 = (rn == 15) ? pc_val + 8
1746 : get_frame_register_unsigned (frame, rn);
1747
1748 if (bit (this_instr, 25))
1749 {
1750 unsigned long immval = bits (this_instr, 0, 7);
1751 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1752 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1753 & 0xffffffff;
1754 }
1755 else /* operand 2 is a shifted register */
1756 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
1757
1758 switch (bits (this_instr, 21, 24))
1759 {
1760 case 0x0: /*and */
1761 result = operand1 & operand2;
1762 break;
1763
1764 case 0x1: /*eor */
1765 result = operand1 ^ operand2;
1766 break;
1767
1768 case 0x2: /*sub */
1769 result = operand1 - operand2;
1770 break;
1771
1772 case 0x3: /*rsb */
1773 result = operand2 - operand1;
1774 break;
1775
1776 case 0x4: /*add */
1777 result = operand1 + operand2;
1778 break;
1779
1780 case 0x5: /*adc */
1781 result = operand1 + operand2 + c;
1782 break;
1783
1784 case 0x6: /*sbc */
1785 result = operand1 - operand2 + c;
1786 break;
1787
1788 case 0x7: /*rsc */
1789 result = operand2 - operand1 + c;
1790 break;
1791
1792 case 0x8:
1793 case 0x9:
1794 case 0xa:
1795 case 0xb: /* tst, teq, cmp, cmn */
1796 result = (unsigned long) nextpc;
1797 break;
1798
1799 case 0xc: /*orr */
1800 result = operand1 | operand2;
1801 break;
1802
1803 case 0xd: /*mov */
1804 /* Always step into a function. */
1805 result = operand2;
1806 break;
1807
1808 case 0xe: /*bic */
1809 result = operand1 & ~operand2;
1810 break;
1811
1812 case 0xf: /*mvn */
1813 result = ~operand2;
1814 break;
1815 }
1816 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1817 (current_gdbarch, result);
1818
1819 if (nextpc == pc)
1820 error (_("Infinite loop detected"));
1821 break;
1822 }
1823
1824 case 0x4:
1825 case 0x5: /* data transfer */
1826 case 0x6:
1827 case 0x7:
1828 if (bit (this_instr, 20))
1829 {
1830 /* load */
1831 if (bits (this_instr, 12, 15) == 15)
1832 {
1833 /* rd == pc */
1834 unsigned long rn;
1835 unsigned long base;
1836
1837 if (bit (this_instr, 22))
1838 error (_("Invalid update to pc in instruction"));
1839
1840 /* byte write to PC */
1841 rn = bits (this_instr, 16, 19);
1842 base = (rn == 15) ? pc_val + 8
1843 : get_frame_register_unsigned (frame, rn);
1844 if (bit (this_instr, 24))
1845 {
1846 /* pre-indexed */
1847 int c = (status & FLAG_C) ? 1 : 0;
1848 unsigned long offset =
1849 (bit (this_instr, 25)
1850 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
1851 : bits (this_instr, 0, 11));
1852
1853 if (bit (this_instr, 23))
1854 base += offset;
1855 else
1856 base -= offset;
1857 }
1858 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1859 4);
1860
1861 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1862
1863 if (nextpc == pc)
1864 error (_("Infinite loop detected"));
1865 }
1866 }
1867 break;
1868
1869 case 0x8:
1870 case 0x9: /* block transfer */
1871 if (bit (this_instr, 20))
1872 {
1873 /* LDM */
1874 if (bit (this_instr, 15))
1875 {
1876 /* loading pc */
1877 int offset = 0;
1878
1879 if (bit (this_instr, 23))
1880 {
1881 /* up */
1882 unsigned long reglist = bits (this_instr, 0, 14);
1883 offset = bitcount (reglist) * 4;
1884 if (bit (this_instr, 24)) /* pre */
1885 offset += 4;
1886 }
1887 else if (bit (this_instr, 24))
1888 offset = -4;
1889
1890 {
1891 unsigned long rn_val =
1892 get_frame_register_unsigned (frame,
1893 bits (this_instr, 16, 19));
1894 nextpc =
1895 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1896 + offset),
1897 4);
1898 }
1899 nextpc = gdbarch_addr_bits_remove
1900 (current_gdbarch, nextpc);
1901 if (nextpc == pc)
1902 error (_("Infinite loop detected"));
1903 }
1904 }
1905 break;
1906
1907 case 0xb: /* branch & link */
1908 case 0xa: /* branch */
1909 {
1910 nextpc = BranchDest (pc, this_instr);
1911
1912 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1913 if (nextpc == pc)
1914 error (_("Infinite loop detected"));
1915 break;
1916 }
1917
1918 case 0xc:
1919 case 0xd:
1920 case 0xe: /* coproc ops */
1921 case 0xf: /* SWI */
1922 break;
1923
1924 default:
1925 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1926 return (pc);
1927 }
1928 }
1929
1930 return nextpc;
1931 }
1932
1933 /* single_step() is called just before we want to resume the inferior,
1934 if we want to single-step it but there is no hardware or kernel
1935 single-step support. We find the target of the coming instruction
1936 and breakpoint it. */
1937
1938 int
1939 arm_software_single_step (struct frame_info *frame)
1940 {
1941 /* NOTE: This may insert the wrong breakpoint instruction when
1942 single-stepping over a mode-changing instruction, if the
1943 CPSR heuristics are used. */
1944
1945 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
1946 insert_single_step_breakpoint (next_pc);
1947
1948 return 1;
1949 }
1950
1951 #include "bfd-in2.h"
1952 #include "libcoff.h"
1953
1954 static int
1955 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1956 {
1957 if (arm_pc_is_thumb (memaddr))
1958 {
1959 static asymbol *asym;
1960 static combined_entry_type ce;
1961 static struct coff_symbol_struct csym;
1962 static struct bfd fake_bfd;
1963 static bfd_target fake_target;
1964
1965 if (csym.native == NULL)
1966 {
1967 /* Create a fake symbol vector containing a Thumb symbol.
1968 This is solely so that the code in print_insn_little_arm()
1969 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1970 the presence of a Thumb symbol and switch to decoding
1971 Thumb instructions. */
1972
1973 fake_target.flavour = bfd_target_coff_flavour;
1974 fake_bfd.xvec = &fake_target;
1975 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1976 csym.native = &ce;
1977 csym.symbol.the_bfd = &fake_bfd;
1978 csym.symbol.name = "fake";
1979 asym = (asymbol *) & csym;
1980 }
1981
1982 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1983 info->symbols = &asym;
1984 }
1985 else
1986 info->symbols = NULL;
1987
1988 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1989 return print_insn_big_arm (memaddr, info);
1990 else
1991 return print_insn_little_arm (memaddr, info);
1992 }
1993
1994 /* The following define instruction sequences that will cause ARM
1995 cpu's to take an undefined instruction trap. These are used to
1996 signal a breakpoint to GDB.
1997
1998 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1999 modes. A different instruction is required for each mode. The ARM
2000 cpu's can also be big or little endian. Thus four different
2001 instructions are needed to support all cases.
2002
2003 Note: ARMv4 defines several new instructions that will take the
2004 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2005 not in fact add the new instructions. The new undefined
2006 instructions in ARMv4 are all instructions that had no defined
2007 behaviour in earlier chips. There is no guarantee that they will
2008 raise an exception, but may be treated as NOP's. In practice, it
2009 may only safe to rely on instructions matching:
2010
2011 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2012 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2013 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2014
2015 Even this may only true if the condition predicate is true. The
2016 following use a condition predicate of ALWAYS so it is always TRUE.
2017
2018 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2019 and NetBSD all use a software interrupt rather than an undefined
2020 instruction to force a trap. This can be handled by by the
2021 abi-specific code during establishment of the gdbarch vector. */
2022
2023 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2024 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2025 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2026 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2027
2028 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2029 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2030 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2031 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2032
2033 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2034 the program counter value to determine whether a 16-bit or 32-bit
2035 breakpoint should be used. It returns a pointer to a string of
2036 bytes that encode a breakpoint instruction, stores the length of
2037 the string to *lenptr, and adjusts the program counter (if
2038 necessary) to point to the actual memory location where the
2039 breakpoint should be inserted. */
2040
2041 static const unsigned char *
2042 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2043 {
2044 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2045
2046 if (arm_pc_is_thumb (*pcptr))
2047 {
2048 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2049 *lenptr = tdep->thumb_breakpoint_size;
2050 return tdep->thumb_breakpoint;
2051 }
2052 else
2053 {
2054 *lenptr = tdep->arm_breakpoint_size;
2055 return tdep->arm_breakpoint;
2056 }
2057 }
2058
2059 /* Extract from an array REGBUF containing the (raw) register state a
2060 function return value of type TYPE, and copy that, in virtual
2061 format, into VALBUF. */
2062
2063 static void
2064 arm_extract_return_value (struct type *type, struct regcache *regs,
2065 gdb_byte *valbuf)
2066 {
2067 if (TYPE_CODE_FLT == TYPE_CODE (type))
2068 {
2069 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2070 {
2071 case ARM_FLOAT_FPA:
2072 {
2073 /* The value is in register F0 in internal format. We need to
2074 extract the raw value and then convert it to the desired
2075 internal type. */
2076 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2077
2078 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2079 convert_from_extended (floatformat_from_type (type), tmpbuf,
2080 valbuf);
2081 }
2082 break;
2083
2084 case ARM_FLOAT_SOFT_FPA:
2085 case ARM_FLOAT_SOFT_VFP:
2086 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2087 if (TYPE_LENGTH (type) > 4)
2088 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2089 valbuf + INT_REGISTER_SIZE);
2090 break;
2091
2092 default:
2093 internal_error
2094 (__FILE__, __LINE__,
2095 _("arm_extract_return_value: Floating point model not supported"));
2096 break;
2097 }
2098 }
2099 else if (TYPE_CODE (type) == TYPE_CODE_INT
2100 || TYPE_CODE (type) == TYPE_CODE_CHAR
2101 || TYPE_CODE (type) == TYPE_CODE_BOOL
2102 || TYPE_CODE (type) == TYPE_CODE_PTR
2103 || TYPE_CODE (type) == TYPE_CODE_REF
2104 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2105 {
2106 /* If the the type is a plain integer, then the access is
2107 straight-forward. Otherwise we have to play around a bit more. */
2108 int len = TYPE_LENGTH (type);
2109 int regno = ARM_A1_REGNUM;
2110 ULONGEST tmp;
2111
2112 while (len > 0)
2113 {
2114 /* By using store_unsigned_integer we avoid having to do
2115 anything special for small big-endian values. */
2116 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2117 store_unsigned_integer (valbuf,
2118 (len > INT_REGISTER_SIZE
2119 ? INT_REGISTER_SIZE : len),
2120 tmp);
2121 len -= INT_REGISTER_SIZE;
2122 valbuf += INT_REGISTER_SIZE;
2123 }
2124 }
2125 else
2126 {
2127 /* For a structure or union the behaviour is as if the value had
2128 been stored to word-aligned memory and then loaded into
2129 registers with 32-bit load instruction(s). */
2130 int len = TYPE_LENGTH (type);
2131 int regno = ARM_A1_REGNUM;
2132 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2133
2134 while (len > 0)
2135 {
2136 regcache_cooked_read (regs, regno++, tmpbuf);
2137 memcpy (valbuf, tmpbuf,
2138 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2139 len -= INT_REGISTER_SIZE;
2140 valbuf += INT_REGISTER_SIZE;
2141 }
2142 }
2143 }
2144
2145
2146 /* Will a function return an aggregate type in memory or in a
2147 register? Return 0 if an aggregate type can be returned in a
2148 register, 1 if it must be returned in memory. */
2149
2150 static int
2151 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2152 {
2153 int nRc;
2154 enum type_code code;
2155
2156 CHECK_TYPEDEF (type);
2157
2158 /* In the ARM ABI, "integer" like aggregate types are returned in
2159 registers. For an aggregate type to be integer like, its size
2160 must be less than or equal to INT_REGISTER_SIZE and the
2161 offset of each addressable subfield must be zero. Note that bit
2162 fields are not addressable, and all addressable subfields of
2163 unions always start at offset zero.
2164
2165 This function is based on the behaviour of GCC 2.95.1.
2166 See: gcc/arm.c: arm_return_in_memory() for details.
2167
2168 Note: All versions of GCC before GCC 2.95.2 do not set up the
2169 parameters correctly for a function returning the following
2170 structure: struct { float f;}; This should be returned in memory,
2171 not a register. Richard Earnshaw sent me a patch, but I do not
2172 know of any way to detect if a function like the above has been
2173 compiled with the correct calling convention. */
2174
2175 /* All aggregate types that won't fit in a register must be returned
2176 in memory. */
2177 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
2178 {
2179 return 1;
2180 }
2181
2182 /* The AAPCS says all aggregates not larger than a word are returned
2183 in a register. */
2184 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2185 return 0;
2186
2187 /* The only aggregate types that can be returned in a register are
2188 structs and unions. Arrays must be returned in memory. */
2189 code = TYPE_CODE (type);
2190 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2191 {
2192 return 1;
2193 }
2194
2195 /* Assume all other aggregate types can be returned in a register.
2196 Run a check for structures, unions and arrays. */
2197 nRc = 0;
2198
2199 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2200 {
2201 int i;
2202 /* Need to check if this struct/union is "integer" like. For
2203 this to be true, its size must be less than or equal to
2204 INT_REGISTER_SIZE and the offset of each addressable
2205 subfield must be zero. Note that bit fields are not
2206 addressable, and unions always start at offset zero. If any
2207 of the subfields is a floating point type, the struct/union
2208 cannot be an integer type. */
2209
2210 /* For each field in the object, check:
2211 1) Is it FP? --> yes, nRc = 1;
2212 2) Is it addressable (bitpos != 0) and
2213 not packed (bitsize == 0)?
2214 --> yes, nRc = 1
2215 */
2216
2217 for (i = 0; i < TYPE_NFIELDS (type); i++)
2218 {
2219 enum type_code field_type_code;
2220 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2221
2222 /* Is it a floating point type field? */
2223 if (field_type_code == TYPE_CODE_FLT)
2224 {
2225 nRc = 1;
2226 break;
2227 }
2228
2229 /* If bitpos != 0, then we have to care about it. */
2230 if (TYPE_FIELD_BITPOS (type, i) != 0)
2231 {
2232 /* Bitfields are not addressable. If the field bitsize is
2233 zero, then the field is not packed. Hence it cannot be
2234 a bitfield or any other packed type. */
2235 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2236 {
2237 nRc = 1;
2238 break;
2239 }
2240 }
2241 }
2242 }
2243
2244 return nRc;
2245 }
2246
2247 /* Write into appropriate registers a function return value of type
2248 TYPE, given in virtual format. */
2249
2250 static void
2251 arm_store_return_value (struct type *type, struct regcache *regs,
2252 const gdb_byte *valbuf)
2253 {
2254 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2255 {
2256 char buf[MAX_REGISTER_SIZE];
2257
2258 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2259 {
2260 case ARM_FLOAT_FPA:
2261
2262 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2263 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2264 break;
2265
2266 case ARM_FLOAT_SOFT_FPA:
2267 case ARM_FLOAT_SOFT_VFP:
2268 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2269 if (TYPE_LENGTH (type) > 4)
2270 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2271 valbuf + INT_REGISTER_SIZE);
2272 break;
2273
2274 default:
2275 internal_error
2276 (__FILE__, __LINE__,
2277 _("arm_store_return_value: Floating point model not supported"));
2278 break;
2279 }
2280 }
2281 else if (TYPE_CODE (type) == TYPE_CODE_INT
2282 || TYPE_CODE (type) == TYPE_CODE_CHAR
2283 || TYPE_CODE (type) == TYPE_CODE_BOOL
2284 || TYPE_CODE (type) == TYPE_CODE_PTR
2285 || TYPE_CODE (type) == TYPE_CODE_REF
2286 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2287 {
2288 if (TYPE_LENGTH (type) <= 4)
2289 {
2290 /* Values of one word or less are zero/sign-extended and
2291 returned in r0. */
2292 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2293 LONGEST val = unpack_long (type, valbuf);
2294
2295 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2296 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2297 }
2298 else
2299 {
2300 /* Integral values greater than one word are stored in consecutive
2301 registers starting with r0. This will always be a multiple of
2302 the regiser size. */
2303 int len = TYPE_LENGTH (type);
2304 int regno = ARM_A1_REGNUM;
2305
2306 while (len > 0)
2307 {
2308 regcache_cooked_write (regs, regno++, valbuf);
2309 len -= INT_REGISTER_SIZE;
2310 valbuf += INT_REGISTER_SIZE;
2311 }
2312 }
2313 }
2314 else
2315 {
2316 /* For a structure or union the behaviour is as if the value had
2317 been stored to word-aligned memory and then loaded into
2318 registers with 32-bit load instruction(s). */
2319 int len = TYPE_LENGTH (type);
2320 int regno = ARM_A1_REGNUM;
2321 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2322
2323 while (len > 0)
2324 {
2325 memcpy (tmpbuf, valbuf,
2326 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2327 regcache_cooked_write (regs, regno++, tmpbuf);
2328 len -= INT_REGISTER_SIZE;
2329 valbuf += INT_REGISTER_SIZE;
2330 }
2331 }
2332 }
2333
2334
2335 /* Handle function return values. */
2336
2337 static enum return_value_convention
2338 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2339 struct regcache *regcache, gdb_byte *readbuf,
2340 const gdb_byte *writebuf)
2341 {
2342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2343
2344 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2345 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2346 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2347 {
2348 if (tdep->struct_return == pcc_struct_return
2349 || arm_return_in_memory (gdbarch, valtype))
2350 return RETURN_VALUE_STRUCT_CONVENTION;
2351 }
2352
2353 if (writebuf)
2354 arm_store_return_value (valtype, regcache, writebuf);
2355
2356 if (readbuf)
2357 arm_extract_return_value (valtype, regcache, readbuf);
2358
2359 return RETURN_VALUE_REGISTER_CONVENTION;
2360 }
2361
2362
2363 static int
2364 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2365 {
2366 CORE_ADDR jb_addr;
2367 char buf[INT_REGISTER_SIZE];
2368 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
2369
2370 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
2371
2372 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2373 INT_REGISTER_SIZE))
2374 return 0;
2375
2376 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2377 return 1;
2378 }
2379
2380 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2381 return the target PC. Otherwise return 0. */
2382
2383 CORE_ADDR
2384 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
2385 {
2386 char *name;
2387 int namelen;
2388 CORE_ADDR start_addr;
2389
2390 /* Find the starting address and name of the function containing the PC. */
2391 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2392 return 0;
2393
2394 /* If PC is in a Thumb call or return stub, return the address of the
2395 target PC, which is in a register. The thunk functions are called
2396 _call_via_xx, where x is the register name. The possible names
2397 are r0-r9, sl, fp, ip, sp, and lr. */
2398 if (strncmp (name, "_call_via_", 10) == 0)
2399 {
2400 /* Use the name suffix to determine which register contains the
2401 target PC. */
2402 static char *table[15] =
2403 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2404 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2405 };
2406 int regno;
2407 int offset = strlen (name) - 2;
2408
2409 for (regno = 0; regno <= 14; regno++)
2410 if (strcmp (&name[offset], table[regno]) == 0)
2411 return get_frame_register_unsigned (frame, regno);
2412 }
2413
2414 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2415 non-interworking calls to foo. We could decode the stubs
2416 to find the target but it's easier to use the symbol table. */
2417 namelen = strlen (name);
2418 if (name[0] == '_' && name[1] == '_'
2419 && ((namelen > 2 + strlen ("_from_thumb")
2420 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2421 strlen ("_from_thumb")) == 0)
2422 || (namelen > 2 + strlen ("_from_arm")
2423 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2424 strlen ("_from_arm")) == 0)))
2425 {
2426 char *target_name;
2427 int target_len = namelen - 2;
2428 struct minimal_symbol *minsym;
2429 struct objfile *objfile;
2430 struct obj_section *sec;
2431
2432 if (name[namelen - 1] == 'b')
2433 target_len -= strlen ("_from_thumb");
2434 else
2435 target_len -= strlen ("_from_arm");
2436
2437 target_name = alloca (target_len + 1);
2438 memcpy (target_name, name + 2, target_len);
2439 target_name[target_len] = '\0';
2440
2441 sec = find_pc_section (pc);
2442 objfile = (sec == NULL) ? NULL : sec->objfile;
2443 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2444 if (minsym != NULL)
2445 return SYMBOL_VALUE_ADDRESS (minsym);
2446 else
2447 return 0;
2448 }
2449
2450 return 0; /* not a stub */
2451 }
2452
2453 static void
2454 set_arm_command (char *args, int from_tty)
2455 {
2456 printf_unfiltered (_("\
2457 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2458 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2459 }
2460
2461 static void
2462 show_arm_command (char *args, int from_tty)
2463 {
2464 cmd_show_list (showarmcmdlist, from_tty, "");
2465 }
2466
2467 static void
2468 arm_update_current_architecture (void)
2469 {
2470 struct gdbarch_info info;
2471
2472 /* If the current architecture is not ARM, we have nothing to do. */
2473 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2474 return;
2475
2476 /* Update the architecture. */
2477 gdbarch_info_init (&info);
2478
2479 if (!gdbarch_update_p (info))
2480 internal_error (__FILE__, __LINE__, "could not update architecture");
2481 }
2482
2483 static void
2484 set_fp_model_sfunc (char *args, int from_tty,
2485 struct cmd_list_element *c)
2486 {
2487 enum arm_float_model fp_model;
2488
2489 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2490 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2491 {
2492 arm_fp_model = fp_model;
2493 break;
2494 }
2495
2496 if (fp_model == ARM_FLOAT_LAST)
2497 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2498 current_fp_model);
2499
2500 arm_update_current_architecture ();
2501 }
2502
2503 static void
2504 show_fp_model (struct ui_file *file, int from_tty,
2505 struct cmd_list_element *c, const char *value)
2506 {
2507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2508
2509 if (arm_fp_model == ARM_FLOAT_AUTO
2510 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2511 fprintf_filtered (file, _("\
2512 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2513 fp_model_strings[tdep->fp_model]);
2514 else
2515 fprintf_filtered (file, _("\
2516 The current ARM floating point model is \"%s\".\n"),
2517 fp_model_strings[arm_fp_model]);
2518 }
2519
2520 static void
2521 arm_set_abi (char *args, int from_tty,
2522 struct cmd_list_element *c)
2523 {
2524 enum arm_abi_kind arm_abi;
2525
2526 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2527 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2528 {
2529 arm_abi_global = arm_abi;
2530 break;
2531 }
2532
2533 if (arm_abi == ARM_ABI_LAST)
2534 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2535 arm_abi_string);
2536
2537 arm_update_current_architecture ();
2538 }
2539
2540 static void
2541 arm_show_abi (struct ui_file *file, int from_tty,
2542 struct cmd_list_element *c, const char *value)
2543 {
2544 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2545
2546 if (arm_abi_global == ARM_ABI_AUTO
2547 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2548 fprintf_filtered (file, _("\
2549 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2550 arm_abi_strings[tdep->arm_abi]);
2551 else
2552 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2553 arm_abi_string);
2554 }
2555
2556 /* If the user changes the register disassembly style used for info
2557 register and other commands, we have to also switch the style used
2558 in opcodes for disassembly output. This function is run in the "set
2559 arm disassembly" command, and does that. */
2560
2561 static void
2562 set_disassembly_style_sfunc (char *args, int from_tty,
2563 struct cmd_list_element *c)
2564 {
2565 set_disassembly_style ();
2566 }
2567 \f
2568 /* Return the ARM register name corresponding to register I. */
2569 static const char *
2570 arm_register_name (int i)
2571 {
2572 if (i >= ARRAY_SIZE (arm_register_names))
2573 /* These registers are only supported on targets which supply
2574 an XML description. */
2575 return "";
2576
2577 return arm_register_names[i];
2578 }
2579
2580 static void
2581 set_disassembly_style (void)
2582 {
2583 int current;
2584
2585 /* Find the style that the user wants. */
2586 for (current = 0; current < num_disassembly_options; current++)
2587 if (disassembly_style == valid_disassembly_styles[current])
2588 break;
2589 gdb_assert (current < num_disassembly_options);
2590
2591 /* Synchronize the disassembler. */
2592 set_arm_regname_option (current);
2593 }
2594
2595 /* Test whether the coff symbol specific value corresponds to a Thumb
2596 function. */
2597
2598 static int
2599 coff_sym_is_thumb (int val)
2600 {
2601 return (val == C_THUMBEXT ||
2602 val == C_THUMBSTAT ||
2603 val == C_THUMBEXTFUNC ||
2604 val == C_THUMBSTATFUNC ||
2605 val == C_THUMBLABEL);
2606 }
2607
2608 /* arm_coff_make_msymbol_special()
2609 arm_elf_make_msymbol_special()
2610
2611 These functions test whether the COFF or ELF symbol corresponds to
2612 an address in thumb code, and set a "special" bit in a minimal
2613 symbol to indicate that it does. */
2614
2615 static void
2616 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2617 {
2618 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2619 STT_ARM_TFUNC). */
2620 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2621 == STT_LOPROC)
2622 MSYMBOL_SET_SPECIAL (msym);
2623 }
2624
2625 static void
2626 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2627 {
2628 if (coff_sym_is_thumb (val))
2629 MSYMBOL_SET_SPECIAL (msym);
2630 }
2631
2632 static void
2633 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
2634 {
2635 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
2636
2637 /* If necessary, set the T bit. */
2638 if (arm_apcs_32)
2639 {
2640 ULONGEST val;
2641 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
2642 if (arm_pc_is_thumb (pc))
2643 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
2644 else
2645 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2646 val & ~(ULONGEST) 0x20);
2647 }
2648 }
2649
2650 static struct value *
2651 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2652 {
2653 const int *reg_p = baton;
2654 return value_of_register (*reg_p, frame);
2655 }
2656 \f
2657 static enum gdb_osabi
2658 arm_elf_osabi_sniffer (bfd *abfd)
2659 {
2660 unsigned int elfosabi;
2661 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2662
2663 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2664
2665 if (elfosabi == ELFOSABI_ARM)
2666 /* GNU tools use this value. Check note sections in this case,
2667 as well. */
2668 bfd_map_over_sections (abfd,
2669 generic_elf_osabi_sniff_abi_tag_sections,
2670 &osabi);
2671
2672 /* Anything else will be handled by the generic ELF sniffer. */
2673 return osabi;
2674 }
2675
2676 \f
2677 /* Initialize the current architecture based on INFO. If possible,
2678 re-use an architecture from ARCHES, which is a list of
2679 architectures already created during this debugging session.
2680
2681 Called e.g. at program startup, when reading a core file, and when
2682 reading a binary file. */
2683
2684 static struct gdbarch *
2685 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2686 {
2687 struct gdbarch_tdep *tdep;
2688 struct gdbarch *gdbarch;
2689 struct gdbarch_list *best_arch;
2690 enum arm_abi_kind arm_abi = arm_abi_global;
2691 enum arm_float_model fp_model = arm_fp_model;
2692 struct tdesc_arch_data *tdesc_data = NULL;
2693 int i;
2694 int have_fpa_registers = 1;
2695
2696 /* Check any target description for validity. */
2697 if (tdesc_has_registers (info.target_desc))
2698 {
2699 /* For most registers we require GDB's default names; but also allow
2700 the numeric names for sp / lr / pc, as a convenience. */
2701 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2702 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2703 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2704
2705 const struct tdesc_feature *feature;
2706 int i, valid_p;
2707
2708 feature = tdesc_find_feature (info.target_desc,
2709 "org.gnu.gdb.arm.core");
2710 if (feature == NULL)
2711 return NULL;
2712
2713 tdesc_data = tdesc_data_alloc ();
2714
2715 valid_p = 1;
2716 for (i = 0; i < ARM_SP_REGNUM; i++)
2717 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2718 arm_register_names[i]);
2719 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2720 ARM_SP_REGNUM,
2721 arm_sp_names);
2722 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2723 ARM_LR_REGNUM,
2724 arm_lr_names);
2725 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2726 ARM_PC_REGNUM,
2727 arm_pc_names);
2728 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2729 ARM_PS_REGNUM, "cpsr");
2730
2731 if (!valid_p)
2732 {
2733 tdesc_data_cleanup (tdesc_data);
2734 return NULL;
2735 }
2736
2737 feature = tdesc_find_feature (info.target_desc,
2738 "org.gnu.gdb.arm.fpa");
2739 if (feature != NULL)
2740 {
2741 valid_p = 1;
2742 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2743 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2744 arm_register_names[i]);
2745 if (!valid_p)
2746 {
2747 tdesc_data_cleanup (tdesc_data);
2748 return NULL;
2749 }
2750 }
2751 else
2752 have_fpa_registers = 0;
2753
2754 feature = tdesc_find_feature (info.target_desc,
2755 "org.gnu.gdb.xscale.iwmmxt");
2756 if (feature != NULL)
2757 {
2758 static const char *const iwmmxt_names[] = {
2759 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2760 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2761 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2762 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2763 };
2764
2765 valid_p = 1;
2766 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2767 valid_p
2768 &= tdesc_numbered_register (feature, tdesc_data, i,
2769 iwmmxt_names[i - ARM_WR0_REGNUM]);
2770
2771 /* Check for the control registers, but do not fail if they
2772 are missing. */
2773 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2774 tdesc_numbered_register (feature, tdesc_data, i,
2775 iwmmxt_names[i - ARM_WR0_REGNUM]);
2776
2777 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2778 valid_p
2779 &= tdesc_numbered_register (feature, tdesc_data, i,
2780 iwmmxt_names[i - ARM_WR0_REGNUM]);
2781
2782 if (!valid_p)
2783 {
2784 tdesc_data_cleanup (tdesc_data);
2785 return NULL;
2786 }
2787 }
2788 }
2789
2790 /* If we have an object to base this architecture on, try to determine
2791 its ABI. */
2792
2793 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2794 {
2795 int ei_osabi, e_flags;
2796
2797 switch (bfd_get_flavour (info.abfd))
2798 {
2799 case bfd_target_aout_flavour:
2800 /* Assume it's an old APCS-style ABI. */
2801 arm_abi = ARM_ABI_APCS;
2802 break;
2803
2804 case bfd_target_coff_flavour:
2805 /* Assume it's an old APCS-style ABI. */
2806 /* XXX WinCE? */
2807 arm_abi = ARM_ABI_APCS;
2808 break;
2809
2810 case bfd_target_elf_flavour:
2811 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2812 e_flags = elf_elfheader (info.abfd)->e_flags;
2813
2814 if (ei_osabi == ELFOSABI_ARM)
2815 {
2816 /* GNU tools used to use this value, but do not for EABI
2817 objects. There's nowhere to tag an EABI version
2818 anyway, so assume APCS. */
2819 arm_abi = ARM_ABI_APCS;
2820 }
2821 else if (ei_osabi == ELFOSABI_NONE)
2822 {
2823 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2824
2825 switch (eabi_ver)
2826 {
2827 case EF_ARM_EABI_UNKNOWN:
2828 /* Assume GNU tools. */
2829 arm_abi = ARM_ABI_APCS;
2830 break;
2831
2832 case EF_ARM_EABI_VER4:
2833 case EF_ARM_EABI_VER5:
2834 arm_abi = ARM_ABI_AAPCS;
2835 /* EABI binaries default to VFP float ordering. */
2836 if (fp_model == ARM_FLOAT_AUTO)
2837 fp_model = ARM_FLOAT_SOFT_VFP;
2838 break;
2839
2840 default:
2841 /* Leave it as "auto". */
2842 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2843 break;
2844 }
2845 }
2846
2847 if (fp_model == ARM_FLOAT_AUTO)
2848 {
2849 int e_flags = elf_elfheader (info.abfd)->e_flags;
2850
2851 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2852 {
2853 case 0:
2854 /* Leave it as "auto". Strictly speaking this case
2855 means FPA, but almost nobody uses that now, and
2856 many toolchains fail to set the appropriate bits
2857 for the floating-point model they use. */
2858 break;
2859 case EF_ARM_SOFT_FLOAT:
2860 fp_model = ARM_FLOAT_SOFT_FPA;
2861 break;
2862 case EF_ARM_VFP_FLOAT:
2863 fp_model = ARM_FLOAT_VFP;
2864 break;
2865 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2866 fp_model = ARM_FLOAT_SOFT_VFP;
2867 break;
2868 }
2869 }
2870 break;
2871
2872 default:
2873 /* Leave it as "auto". */
2874 break;
2875 }
2876 }
2877
2878 /* If there is already a candidate, use it. */
2879 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2880 best_arch != NULL;
2881 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2882 {
2883 if (arm_abi != ARM_ABI_AUTO
2884 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2885 continue;
2886
2887 if (fp_model != ARM_FLOAT_AUTO
2888 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2889 continue;
2890
2891 /* Found a match. */
2892 break;
2893 }
2894
2895 if (best_arch != NULL)
2896 {
2897 if (tdesc_data != NULL)
2898 tdesc_data_cleanup (tdesc_data);
2899 return best_arch->gdbarch;
2900 }
2901
2902 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2903 gdbarch = gdbarch_alloc (&info, tdep);
2904
2905 /* Record additional information about the architecture we are defining.
2906 These are gdbarch discriminators, like the OSABI. */
2907 tdep->arm_abi = arm_abi;
2908 tdep->fp_model = fp_model;
2909 tdep->have_fpa_registers = have_fpa_registers;
2910
2911 /* Breakpoints. */
2912 switch (info.byte_order)
2913 {
2914 case BFD_ENDIAN_BIG:
2915 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2916 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2917 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2918 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2919
2920 break;
2921
2922 case BFD_ENDIAN_LITTLE:
2923 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2924 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2925 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2926 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2927
2928 break;
2929
2930 default:
2931 internal_error (__FILE__, __LINE__,
2932 _("arm_gdbarch_init: bad byte order for float format"));
2933 }
2934
2935 /* On ARM targets char defaults to unsigned. */
2936 set_gdbarch_char_signed (gdbarch, 0);
2937
2938 /* This should be low enough for everything. */
2939 tdep->lowest_pc = 0x20;
2940 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2941
2942 /* The default, for both APCS and AAPCS, is to return small
2943 structures in registers. */
2944 tdep->struct_return = reg_struct_return;
2945
2946 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2947 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2948
2949 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2950
2951 /* Frame handling. */
2952 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2953 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2954 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2955
2956 frame_base_set_default (gdbarch, &arm_normal_base);
2957
2958 /* Address manipulation. */
2959 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2960 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2961
2962 /* Advance PC across function entry code. */
2963 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2964
2965 /* Skip trampolines. */
2966 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2967
2968 /* The stack grows downward. */
2969 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2970
2971 /* Breakpoint manipulation. */
2972 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2973
2974 /* Information about registers, etc. */
2975 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2976 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2977 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2978 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
2979 set_gdbarch_register_type (gdbarch, arm_register_type);
2980
2981 /* This "info float" is FPA-specific. Use the generic version if we
2982 do not have FPA. */
2983 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2984 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2985
2986 /* Internal <-> external register number maps. */
2987 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2988 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2989 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2990
2991 set_gdbarch_register_name (gdbarch, arm_register_name);
2992
2993 /* Returning results. */
2994 set_gdbarch_return_value (gdbarch, arm_return_value);
2995
2996 /* Disassembly. */
2997 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2998
2999 /* Minsymbol frobbing. */
3000 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3001 set_gdbarch_coff_make_msymbol_special (gdbarch,
3002 arm_coff_make_msymbol_special);
3003
3004 /* Virtual tables. */
3005 set_gdbarch_vbit_in_delta (gdbarch, 1);
3006
3007 /* Hook in the ABI-specific overrides, if they have been registered. */
3008 gdbarch_init_osabi (info, gdbarch);
3009
3010 /* Add some default predicates. */
3011 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
3012 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3013 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3014
3015 /* Now we have tuned the configuration, set a few final things,
3016 based on what the OS ABI has told us. */
3017
3018 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3019 binaries are always marked. */
3020 if (tdep->arm_abi == ARM_ABI_AUTO)
3021 tdep->arm_abi = ARM_ABI_APCS;
3022
3023 /* We used to default to FPA for generic ARM, but almost nobody
3024 uses that now, and we now provide a way for the user to force
3025 the model. So default to the most useful variant. */
3026 if (tdep->fp_model == ARM_FLOAT_AUTO)
3027 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3028
3029 if (tdep->jb_pc >= 0)
3030 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3031
3032 /* Floating point sizes and format. */
3033 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3034 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
3035 {
3036 set_gdbarch_double_format
3037 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3038 set_gdbarch_long_double_format
3039 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3040 }
3041 else
3042 {
3043 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3044 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3045 }
3046
3047 if (tdesc_data)
3048 tdesc_use_registers (gdbarch, tdesc_data);
3049
3050 /* Add standard register aliases. We add aliases even for those
3051 nanes which are used by the current architecture - it's simpler,
3052 and does no harm, since nothing ever lists user registers. */
3053 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3054 user_reg_add (gdbarch, arm_register_aliases[i].name,
3055 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3056
3057 return gdbarch;
3058 }
3059
3060 static void
3061 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3062 {
3063 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3064
3065 if (tdep == NULL)
3066 return;
3067
3068 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3069 (unsigned long) tdep->lowest_pc);
3070 }
3071
3072 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3073
3074 void
3075 _initialize_arm_tdep (void)
3076 {
3077 struct ui_file *stb;
3078 long length;
3079 struct cmd_list_element *new_set, *new_show;
3080 const char *setname;
3081 const char *setdesc;
3082 const char *const *regnames;
3083 int numregs, i, j;
3084 static char *helptext;
3085 char regdesc[1024], *rdptr = regdesc;
3086 size_t rest = sizeof (regdesc);
3087
3088 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3089
3090 /* Register an ELF OS ABI sniffer for ARM binaries. */
3091 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3092 bfd_target_elf_flavour,
3093 arm_elf_osabi_sniffer);
3094
3095 /* Get the number of possible sets of register names defined in opcodes. */
3096 num_disassembly_options = get_arm_regname_num_options ();
3097
3098 /* Add root prefix command for all "set arm"/"show arm" commands. */
3099 add_prefix_cmd ("arm", no_class, set_arm_command,
3100 _("Various ARM-specific commands."),
3101 &setarmcmdlist, "set arm ", 0, &setlist);
3102
3103 add_prefix_cmd ("arm", no_class, show_arm_command,
3104 _("Various ARM-specific commands."),
3105 &showarmcmdlist, "show arm ", 0, &showlist);
3106
3107 /* Sync the opcode insn printer with our register viewer. */
3108 parse_arm_disassembler_option ("reg-names-std");
3109
3110 /* Initialize the array that will be passed to
3111 add_setshow_enum_cmd(). */
3112 valid_disassembly_styles
3113 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3114 for (i = 0; i < num_disassembly_options; i++)
3115 {
3116 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3117 valid_disassembly_styles[i] = setname;
3118 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3119 rdptr += length;
3120 rest -= length;
3121 /* When we find the default names, tell the disassembler to use
3122 them. */
3123 if (!strcmp (setname, "std"))
3124 {
3125 disassembly_style = setname;
3126 set_arm_regname_option (i);
3127 }
3128 }
3129 /* Mark the end of valid options. */
3130 valid_disassembly_styles[num_disassembly_options] = NULL;
3131
3132 /* Create the help text. */
3133 stb = mem_fileopen ();
3134 fprintf_unfiltered (stb, "%s%s%s",
3135 _("The valid values are:\n"),
3136 regdesc,
3137 _("The default is \"std\"."));
3138 helptext = ui_file_xstrdup (stb, &length);
3139 ui_file_delete (stb);
3140
3141 add_setshow_enum_cmd("disassembler", no_class,
3142 valid_disassembly_styles, &disassembly_style,
3143 _("Set the disassembly style."),
3144 _("Show the disassembly style."),
3145 helptext,
3146 set_disassembly_style_sfunc,
3147 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3148 &setarmcmdlist, &showarmcmdlist);
3149
3150 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3151 _("Set usage of ARM 32-bit mode."),
3152 _("Show usage of ARM 32-bit mode."),
3153 _("When off, a 26-bit PC will be used."),
3154 NULL,
3155 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3156 &setarmcmdlist, &showarmcmdlist);
3157
3158 /* Add a command to allow the user to force the FPU model. */
3159 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3160 _("Set the floating point type."),
3161 _("Show the floating point type."),
3162 _("auto - Determine the FP typefrom the OS-ABI.\n\
3163 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3164 fpa - FPA co-processor (GCC compiled).\n\
3165 softvfp - Software FP with pure-endian doubles.\n\
3166 vfp - VFP co-processor."),
3167 set_fp_model_sfunc, show_fp_model,
3168 &setarmcmdlist, &showarmcmdlist);
3169
3170 /* Add a command to allow the user to force the ABI. */
3171 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3172 _("Set the ABI."),
3173 _("Show the ABI."),
3174 NULL, arm_set_abi, arm_show_abi,
3175 &setarmcmdlist, &showarmcmdlist);
3176
3177 /* Debugging flag. */
3178 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3179 _("Set ARM debugging."),
3180 _("Show ARM debugging."),
3181 _("When on, arm-specific debugging is enabled."),
3182 NULL,
3183 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3184 &setdebuglist, &showdebuglist);
3185 }
This page took 0.099109 seconds and 4 git commands to generate.