3ca6dbebe21cfcd7e3d6cf2dd990d3c9a6f5167a
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "symfile.h"
28 #include "gdb_string.h"
29 #include "coff/internal.h" /* Internal format of COFF symbols in BFD */
30 #include "dis-asm.h" /* For register flavors. */
31 #include <ctype.h> /* for isupper () */
32
33 /* Each OS has a different mechanism for accessing the various
34 registers stored in the sigcontext structure.
35
36 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
37 function pointer) which may be used to determine the addresses
38 of the various saved registers in the sigcontext structure.
39
40 For the ARM target, there are three parameters to this function.
41 The first is the pc value of the frame under consideration, the
42 second the stack pointer of this frame, and the last is the
43 register number to fetch.
44
45 If the tm.h file does not define this macro, then it's assumed that
46 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
47 be 0.
48
49 When it comes time to multi-arching this code, see the identically
50 named machinery in ia64-tdep.c for an example of how it could be
51 done. It should not be necessary to modify the code below where
52 this macro is used. */
53
54 #ifdef SIGCONTEXT_REGISTER_ADDRESS
55 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
56 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
57 #endif
58 #else
59 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
60 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
61 #endif
62
63 extern void _initialize_arm_tdep (void);
64
65 /* Number of different reg name sets (options). */
66 static int num_flavor_options;
67
68 /* We have more registers than the disassembler as gdb can print the value
69 of special registers as well.
70 The general register names are overwritten by whatever is being used by
71 the disassembler at the moment. We also adjust the case of cpsr and fps. */
72
73 /* Initial value: Register names used in ARM's ISA documentation. */
74 static char * arm_register_name_strings[] =
75 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
76 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
77 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
78 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
79 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
80 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
81 "fps", "cpsr" }; /* 24 25 */
82 char **arm_register_names = arm_register_name_strings;
83
84 /* Valid register name flavors. */
85 static const char **valid_flavors;
86
87 /* Disassembly flavor to use. Default to "std" register names. */
88 static const char *disassembly_flavor;
89 static int current_option; /* Index to that option in the opcodes table. */
90
91 /* This is used to keep the bfd arch_info in sync with the disassembly
92 flavor. */
93 static void set_disassembly_flavor_sfunc(char *, int,
94 struct cmd_list_element *);
95 static void set_disassembly_flavor (void);
96
97 static void convert_from_extended (void *ptr, void *dbl);
98
99 /* Define other aspects of the stack frame. We keep the offsets of
100 all saved registers, 'cause we need 'em a lot! We also keep the
101 current size of the stack frame, and the offset of the frame
102 pointer from the stack pointer (for frameless functions, and when
103 we're still in the prologue of a function with a frame) */
104
105 struct frame_extra_info
106 {
107 struct frame_saved_regs fsr;
108 int framesize;
109 int frameoffset;
110 int framereg;
111 };
112
113 /* Addresses for calling Thumb functions have the bit 0 set.
114 Here are some macros to test, set, or clear bit 0 of addresses. */
115 #define IS_THUMB_ADDR(addr) ((addr) & 1)
116 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
117 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
118
119 #define SWAP_TARGET_AND_HOST(buffer,len) \
120 do \
121 { \
122 if (TARGET_BYTE_ORDER != HOST_BYTE_ORDER) \
123 { \
124 char tmp; \
125 char *p = (char *)(buffer); \
126 char *q = ((char *)(buffer)) + len - 1; \
127 for (; p < q; p++, q--) \
128 { \
129 tmp = *q; \
130 *q = *p; \
131 *p = tmp; \
132 } \
133 } \
134 } \
135 while (0)
136
137 /* Will a function return an aggregate type in memory or in a
138 register? Return 0 if an aggregate type can be returned in a
139 register, 1 if it must be returned in memory. */
140
141 int
142 arm_use_struct_convention (int gcc_p, struct type *type)
143 {
144 int nRc;
145 register enum type_code code;
146
147 /* In the ARM ABI, "integer" like aggregate types are returned in
148 registers. For an aggregate type to be integer like, its size
149 must be less than or equal to REGISTER_SIZE and the offset of
150 each addressable subfield must be zero. Note that bit fields are
151 not addressable, and all addressable subfields of unions always
152 start at offset zero.
153
154 This function is based on the behaviour of GCC 2.95.1.
155 See: gcc/arm.c: arm_return_in_memory() for details.
156
157 Note: All versions of GCC before GCC 2.95.2 do not set up the
158 parameters correctly for a function returning the following
159 structure: struct { float f;}; This should be returned in memory,
160 not a register. Richard Earnshaw sent me a patch, but I do not
161 know of any way to detect if a function like the above has been
162 compiled with the correct calling convention. */
163
164 /* All aggregate types that won't fit in a register must be returned
165 in memory. */
166 if (TYPE_LENGTH (type) > REGISTER_SIZE)
167 {
168 return 1;
169 }
170
171 /* The only aggregate types that can be returned in a register are
172 structs and unions. Arrays must be returned in memory. */
173 code = TYPE_CODE (type);
174 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
175 {
176 return 1;
177 }
178
179 /* Assume all other aggregate types can be returned in a register.
180 Run a check for structures, unions and arrays. */
181 nRc = 0;
182
183 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
184 {
185 int i;
186 /* Need to check if this struct/union is "integer" like. For
187 this to be true, its size must be less than or equal to
188 REGISTER_SIZE and the offset of each addressable subfield
189 must be zero. Note that bit fields are not addressable, and
190 unions always start at offset zero. If any of the subfields
191 is a floating point type, the struct/union cannot be an
192 integer type. */
193
194 /* For each field in the object, check:
195 1) Is it FP? --> yes, nRc = 1;
196 2) Is it addressable (bitpos != 0) and
197 not packed (bitsize == 0)?
198 --> yes, nRc = 1
199 */
200
201 for (i = 0; i < TYPE_NFIELDS (type); i++)
202 {
203 enum type_code field_type_code;
204 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
205
206 /* Is it a floating point type field? */
207 if (field_type_code == TYPE_CODE_FLT)
208 {
209 nRc = 1;
210 break;
211 }
212
213 /* If bitpos != 0, then we have to care about it. */
214 if (TYPE_FIELD_BITPOS (type, i) != 0)
215 {
216 /* Bitfields are not addressable. If the field bitsize is
217 zero, then the field is not packed. Hence it cannot be
218 a bitfield or any other packed type. */
219 if (TYPE_FIELD_BITSIZE (type, i) == 0)
220 {
221 nRc = 1;
222 break;
223 }
224 }
225 }
226 }
227
228 return nRc;
229 }
230
231 int
232 arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
233 {
234 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
235 }
236
237 /* Set to true if the 32-bit mode is in use. */
238
239 int arm_apcs_32 = 1;
240
241 /* Flag set by arm_fix_call_dummy that tells whether the target
242 function is a Thumb function. This flag is checked by
243 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
244 its use in valops.c) to pass the function address as an additional
245 parameter. */
246
247 static int target_is_thumb;
248
249 /* Flag set by arm_fix_call_dummy that tells whether the calling
250 function is a Thumb function. This flag is checked by
251 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
252
253 static int caller_is_thumb;
254
255 /* Determine if the program counter specified in MEMADDR is in a Thumb
256 function. */
257
258 int
259 arm_pc_is_thumb (CORE_ADDR memaddr)
260 {
261 struct minimal_symbol *sym;
262
263 /* If bit 0 of the address is set, assume this is a Thumb address. */
264 if (IS_THUMB_ADDR (memaddr))
265 return 1;
266
267 /* Thumb functions have a "special" bit set in minimal symbols. */
268 sym = lookup_minimal_symbol_by_pc (memaddr);
269 if (sym)
270 {
271 return (MSYMBOL_IS_SPECIAL (sym));
272 }
273 else
274 {
275 return 0;
276 }
277 }
278
279 /* Determine if the program counter specified in MEMADDR is in a call
280 dummy being called from a Thumb function. */
281
282 int
283 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
284 {
285 CORE_ADDR sp = read_sp ();
286
287 /* FIXME: Until we switch for the new call dummy macros, this heuristic
288 is the best we can do. We are trying to determine if the pc is on
289 the stack, which (hopefully) will only happen in a call dummy.
290 We hope the current stack pointer is not so far alway from the dummy
291 frame location (true if we have not pushed large data structures or
292 gone too many levels deep) and that our 1024 is not enough to consider
293 code regions as part of the stack (true for most practical purposes) */
294 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
295 return caller_is_thumb;
296 else
297 return 0;
298 }
299
300 CORE_ADDR
301 arm_addr_bits_remove (CORE_ADDR val)
302 {
303 if (arm_pc_is_thumb (val))
304 return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
305 else
306 return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
307 }
308
309 CORE_ADDR
310 arm_saved_pc_after_call (struct frame_info *frame)
311 {
312 return ADDR_BITS_REMOVE (read_register (LR_REGNUM));
313 }
314
315 int
316 arm_frameless_function_invocation (struct frame_info *fi)
317 {
318 CORE_ADDR func_start, after_prologue;
319 int frameless;
320
321 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
322 after_prologue = SKIP_PROLOGUE (func_start);
323
324 /* There are some frameless functions whose first two instructions
325 follow the standard APCS form, in which case after_prologue will
326 be func_start + 8. */
327
328 frameless = (after_prologue < func_start + 12);
329 return frameless;
330 }
331
332 /* A typical Thumb prologue looks like this:
333 push {r7, lr}
334 add sp, sp, #-28
335 add r7, sp, #12
336 Sometimes the latter instruction may be replaced by:
337 mov r7, sp
338
339 or like this:
340 push {r7, lr}
341 mov r7, sp
342 sub sp, #12
343
344 or, on tpcs, like this:
345 sub sp,#16
346 push {r7, lr}
347 (many instructions)
348 mov r7, sp
349 sub sp, #12
350
351 There is always one instruction of three classes:
352 1 - push
353 2 - setting of r7
354 3 - adjusting of sp
355
356 When we have found at least one of each class we are done with the prolog.
357 Note that the "sub sp, #NN" before the push does not count.
358 */
359
360 static CORE_ADDR
361 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
362 {
363 CORE_ADDR current_pc;
364 int findmask = 0; /* findmask:
365 bit 0 - push { rlist }
366 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
367 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
368 */
369
370 for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2)
371 {
372 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
373
374 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
375 {
376 findmask |= 1; /* push found */
377 }
378 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
379 {
380 if ((findmask & 1) == 0) /* before push ? */
381 continue;
382 else
383 findmask |= 4; /* add/sub sp found */
384 }
385 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
386 {
387 findmask |= 2; /* setting of r7 found */
388 }
389 else if (insn == 0x466f) /* mov r7, sp */
390 {
391 findmask |= 2; /* setting of r7 found */
392 }
393 else
394 continue; /* something in the prolog that we don't care about or some
395 instruction from outside the prolog scheduled here for optimization */
396 }
397
398 return current_pc;
399 }
400
401 /* The APCS (ARM Procedure Call Standard) defines the following
402 prologue:
403
404 mov ip, sp
405 [stmfd sp!, {a1,a2,a3,a4}]
406 stmfd sp!, {...,fp,ip,lr,pc}
407 [stfe f7, [sp, #-12]!]
408 [stfe f6, [sp, #-12]!]
409 [stfe f5, [sp, #-12]!]
410 [stfe f4, [sp, #-12]!]
411 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
412
413 CORE_ADDR
414 arm_skip_prologue (CORE_ADDR pc)
415 {
416 unsigned long inst;
417 CORE_ADDR skip_pc;
418 CORE_ADDR func_addr, func_end;
419 struct symtab_and_line sal;
420
421 /* See what the symbol table says. */
422
423 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
424 {
425 sal = find_pc_line (func_addr, 0);
426 if ((sal.line != 0) && (sal.end < func_end))
427 return sal.end;
428 }
429
430 /* Check if this is Thumb code. */
431 if (arm_pc_is_thumb (pc))
432 return thumb_skip_prologue (pc, func_end);
433
434 /* Can't find the prologue end in the symbol table, try it the hard way
435 by disassembling the instructions. */
436 skip_pc = pc;
437 inst = read_memory_integer (skip_pc, 4);
438 if (inst != 0xe1a0c00d) /* mov ip, sp */
439 return pc;
440
441 skip_pc += 4;
442 inst = read_memory_integer (skip_pc, 4);
443 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
444 {
445 skip_pc += 4;
446 inst = read_memory_integer (skip_pc, 4);
447 }
448
449 if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
450 return pc;
451
452 skip_pc += 4;
453 inst = read_memory_integer (skip_pc, 4);
454
455 /* Any insns after this point may float into the code, if it makes
456 for better instruction scheduling, so we skip them only if we
457 find them, but still consdier the function to be frame-ful. */
458
459 /* We may have either one sfmfd instruction here, or several stfe
460 insns, depending on the version of floating point code we
461 support. */
462 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
463 {
464 skip_pc += 4;
465 inst = read_memory_integer (skip_pc, 4);
466 }
467 else
468 {
469 while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
470 {
471 skip_pc += 4;
472 inst = read_memory_integer (skip_pc, 4);
473 }
474 }
475
476 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
477 skip_pc += 4;
478
479 return skip_pc;
480 }
481 /* *INDENT-OFF* */
482 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
483 This function decodes a Thumb function prologue to determine:
484 1) the size of the stack frame
485 2) which registers are saved on it
486 3) the offsets of saved regs
487 4) the offset from the stack pointer to the frame pointer
488 This information is stored in the "extra" fields of the frame_info.
489
490 A typical Thumb function prologue would create this stack frame
491 (offsets relative to FP)
492 old SP -> 24 stack parameters
493 20 LR
494 16 R7
495 R7 -> 0 local variables (16 bytes)
496 SP -> -12 additional stack space (12 bytes)
497 The frame size would thus be 36 bytes, and the frame offset would be
498 12 bytes. The frame register is R7.
499
500 The comments for thumb_skip_prolog() describe the algorithm we use to detect
501 the end of the prolog */
502 /* *INDENT-ON* */
503
504 static void
505 thumb_scan_prologue (struct frame_info *fi)
506 {
507 CORE_ADDR prologue_start;
508 CORE_ADDR prologue_end;
509 CORE_ADDR current_pc;
510 int saved_reg[16]; /* which register has been copied to register n? */
511 int findmask = 0; /* findmask:
512 bit 0 - push { rlist }
513 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
514 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
515 */
516 int i;
517
518 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
519 {
520 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
521
522 if (sal.line == 0) /* no line info, use current PC */
523 prologue_end = fi->pc;
524 else if (sal.end < prologue_end) /* next line begins after fn end */
525 prologue_end = sal.end; /* (probably means no prologue) */
526 }
527 else
528 prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
529 /* 16 pushes, an add, and "mv fp,sp" */
530
531 prologue_end = min (prologue_end, fi->pc);
532
533 /* Initialize the saved register map. When register H is copied to
534 register L, we will put H in saved_reg[L]. */
535 for (i = 0; i < 16; i++)
536 saved_reg[i] = i;
537
538 /* Search the prologue looking for instructions that set up the
539 frame pointer, adjust the stack pointer, and save registers.
540 Do this until all basic prolog instructions are found. */
541
542 fi->framesize = 0;
543 for (current_pc = prologue_start;
544 (current_pc < prologue_end) && ((findmask & 7) != 7);
545 current_pc += 2)
546 {
547 unsigned short insn;
548 int regno;
549 int offset;
550
551 insn = read_memory_unsigned_integer (current_pc, 2);
552
553 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
554 {
555 int mask;
556 findmask |= 1; /* push found */
557 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
558 whether to save LR (R14). */
559 mask = (insn & 0xff) | ((insn & 0x100) << 6);
560
561 /* Calculate offsets of saved R0-R7 and LR. */
562 for (regno = LR_REGNUM; regno >= 0; regno--)
563 if (mask & (1 << regno))
564 {
565 fi->framesize += 4;
566 fi->fsr.regs[saved_reg[regno]] = -(fi->framesize);
567 saved_reg[regno] = regno; /* reset saved register map */
568 }
569 }
570 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
571 {
572 if ((findmask & 1) == 0) /* before push ? */
573 continue;
574 else
575 findmask |= 4; /* add/sub sp found */
576
577 offset = (insn & 0x7f) << 2; /* get scaled offset */
578 if (insn & 0x80) /* is it signed? (==subtracting) */
579 {
580 fi->frameoffset += offset;
581 offset = -offset;
582 }
583 fi->framesize -= offset;
584 }
585 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
586 {
587 findmask |= 2; /* setting of r7 found */
588 fi->framereg = THUMB_FP_REGNUM;
589 fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */
590 }
591 else if (insn == 0x466f) /* mov r7, sp */
592 {
593 findmask |= 2; /* setting of r7 found */
594 fi->framereg = THUMB_FP_REGNUM;
595 fi->frameoffset = 0;
596 saved_reg[THUMB_FP_REGNUM] = SP_REGNUM;
597 }
598 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
599 {
600 int lo_reg = insn & 7; /* dest. register (r0-r7) */
601 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
602 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
603 }
604 else
605 continue; /* something in the prolog that we don't care about or some
606 instruction from outside the prolog scheduled here for optimization */
607 }
608 }
609
610 /* Check if prologue for this frame's PC has already been scanned. If
611 it has, copy the relevant information about that prologue and
612 return non-zero. Otherwise do not copy anything and return zero.
613
614 The information saved in the cache includes:
615 * the frame register number;
616 * the size of the stack frame;
617 * the offsets of saved regs (relative to the old SP); and
618 * the offset from the stack pointer to the frame pointer
619
620 The cache contains only one entry, since this is adequate for the
621 typical sequence of prologue scan requests we get. When performing
622 a backtrace, GDB will usually ask to scan the same function twice
623 in a row (once to get the frame chain, and once to fill in the
624 extra frame information). */
625
626 static struct frame_info prologue_cache;
627
628 static int
629 check_prologue_cache (struct frame_info *fi)
630 {
631 int i;
632
633 if (fi->pc == prologue_cache.pc)
634 {
635 fi->framereg = prologue_cache.framereg;
636 fi->framesize = prologue_cache.framesize;
637 fi->frameoffset = prologue_cache.frameoffset;
638 for (i = 0; i < NUM_REGS; i++)
639 fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
640 return 1;
641 }
642 else
643 return 0;
644 }
645
646
647 /* Copy the prologue information from fi to the prologue cache. */
648
649 static void
650 save_prologue_cache (struct frame_info *fi)
651 {
652 int i;
653
654 prologue_cache.pc = fi->pc;
655 prologue_cache.framereg = fi->framereg;
656 prologue_cache.framesize = fi->framesize;
657 prologue_cache.frameoffset = fi->frameoffset;
658
659 for (i = 0; i < NUM_REGS; i++)
660 prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
661 }
662
663
664 /* This function decodes an ARM function prologue to determine:
665 1) the size of the stack frame
666 2) which registers are saved on it
667 3) the offsets of saved regs
668 4) the offset from the stack pointer to the frame pointer
669 This information is stored in the "extra" fields of the frame_info.
670
671 There are two basic forms for the ARM prologue. The fixed argument
672 function call will look like:
673
674 mov ip, sp
675 stmfd sp!, {fp, ip, lr, pc}
676 sub fp, ip, #4
677 [sub sp, sp, #4]
678
679 Which would create this stack frame (offsets relative to FP):
680 IP -> 4 (caller's stack)
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
686
687 The frame size would thus be 32 bytes, and the frame offset would be
688 28 bytes. The stmfd call can also save any of the vN registers it
689 plans to use, which increases the frame size accordingly.
690
691 Note: The stored PC is 8 off of the STMFD instruction that stored it
692 because the ARM Store instructions always store PC + 8 when you read
693 the PC register.
694
695 A variable argument function call will look like:
696
697 mov ip, sp
698 stmfd sp!, {a1, a2, a3, a4}
699 stmfd sp!, {fp, ip, lr, pc}
700 sub fp, ip, #20
701
702 Which would create this stack frame (offsets relative to FP):
703 IP -> 20 (caller's stack)
704 16 A4
705 12 A3
706 8 A2
707 4 A1
708 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
709 -4 LR (return address in caller)
710 -8 IP (copy of caller's SP)
711 -12 FP (caller's FP)
712 SP -> -28 Local variables
713
714 The frame size would thus be 48 bytes, and the frame offset would be
715 28 bytes.
716
717 There is another potential complication, which is that the optimizer
718 will try to separate the store of fp in the "stmfd" instruction from
719 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
720 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
721
722 Also, note, the original version of the ARM toolchain claimed that there
723 should be an
724
725 instruction at the end of the prologue. I have never seen GCC produce
726 this, and the ARM docs don't mention it. We still test for it below in
727 case it happens...
728
729 */
730
731 static void
732 arm_scan_prologue (struct frame_info *fi)
733 {
734 int regno, sp_offset, fp_offset;
735 CORE_ADDR prologue_start, prologue_end, current_pc;
736
737 /* Check if this function is already in the cache of frame information. */
738 if (check_prologue_cache (fi))
739 return;
740
741 /* Assume there is no frame until proven otherwise. */
742 fi->framereg = SP_REGNUM;
743 fi->framesize = 0;
744 fi->frameoffset = 0;
745
746 /* Check for Thumb prologue. */
747 if (arm_pc_is_thumb (fi->pc))
748 {
749 thumb_scan_prologue (fi);
750 save_prologue_cache (fi);
751 return;
752 }
753
754 /* Find the function prologue. If we can't find the function in
755 the symbol table, peek in the stack frame to find the PC. */
756 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
757 {
758 /* One way to find the end of the prologue (which works well
759 for unoptimized code) is to do the following:
760
761 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
762
763 if (sal.line == 0)
764 prologue_end = fi->pc;
765 else if (sal.end < prologue_end)
766 prologue_end = sal.end;
767
768 This mechanism is very accurate so long as the optimizer
769 doesn't move any instructions from the function body into the
770 prologue. If this happens, sal.end will be the last
771 instruction in the first hunk of prologue code just before
772 the first instruction that the scheduler has moved from
773 the body to the prologue.
774
775 In order to make sure that we scan all of the prologue
776 instructions, we use a slightly less accurate mechanism which
777 may scan more than necessary. To help compensate for this
778 lack of accuracy, the prologue scanning loop below contains
779 several clauses which'll cause the loop to terminate early if
780 an implausible prologue instruction is encountered.
781
782 The expression
783
784 prologue_start + 64
785
786 is a suitable endpoint since it accounts for the largest
787 possible prologue plus up to five instructions inserted by
788 the scheduler. */
789
790 if (prologue_end > prologue_start + 64)
791 {
792 prologue_end = prologue_start + 64; /* See above. */
793 }
794 }
795 else
796 {
797 /* Get address of the stmfd in the prologue of the callee; the saved
798 PC is the address of the stmfd + 8. */
799 prologue_start = ADDR_BITS_REMOVE (read_memory_integer (fi->frame, 4))
800 - 8;
801 prologue_end = prologue_start + 64; /* See above. */
802 }
803
804 /* Now search the prologue looking for instructions that set up the
805 frame pointer, adjust the stack pointer, and save registers.
806
807 Be careful, however, and if it doesn't look like a prologue,
808 don't try to scan it. If, for instance, a frameless function
809 begins with stmfd sp!, then we will tell ourselves there is
810 a frame, which will confuse stack traceback, as well ad"finish"
811 and other operations that rely on a knowledge of the stack
812 traceback.
813
814 In the APCS, the prologue should start with "mov ip, sp" so
815 if we don't see this as the first insn, we will stop. */
816
817 sp_offset = fp_offset = 0;
818
819 if (read_memory_unsigned_integer (prologue_start, 4)
820 == 0xe1a0c00d) /* mov ip, sp */
821 {
822 for (current_pc = prologue_start + 4; current_pc < prologue_end;
823 current_pc += 4)
824 {
825 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
826
827 if ((insn & 0xffff0000) == 0xe92d0000)
828 /* stmfd sp!, {..., fp, ip, lr, pc}
829 or
830 stmfd sp!, {a1, a2, a3, a4} */
831 {
832 int mask = insn & 0xffff;
833
834 /* Calculate offsets of saved registers. */
835 for (regno = PC_REGNUM; regno >= 0; regno--)
836 if (mask & (1 << regno))
837 {
838 sp_offset -= 4;
839 fi->fsr.regs[regno] = sp_offset;
840 }
841 }
842 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
843 {
844 unsigned imm = insn & 0xff; /* immediate value */
845 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
846 imm = (imm >> rot) | (imm << (32 - rot));
847 fp_offset = -imm;
848 fi->framereg = FP_REGNUM;
849 }
850 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
851 {
852 unsigned imm = insn & 0xff; /* immediate value */
853 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
854 imm = (imm >> rot) | (imm << (32 - rot));
855 sp_offset -= imm;
856 }
857 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
858 {
859 sp_offset -= 12;
860 regno = F0_REGNUM + ((insn >> 12) & 0x07);
861 fi->fsr.regs[regno] = sp_offset;
862 }
863 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
864 {
865 int n_saved_fp_regs;
866 unsigned int fp_start_reg, fp_bound_reg;
867
868 if ((insn & 0x800) == 0x800) /* N0 is set */
869 {
870 if ((insn & 0x40000) == 0x40000) /* N1 is set */
871 n_saved_fp_regs = 3;
872 else
873 n_saved_fp_regs = 1;
874 }
875 else
876 {
877 if ((insn & 0x40000) == 0x40000) /* N1 is set */
878 n_saved_fp_regs = 2;
879 else
880 n_saved_fp_regs = 4;
881 }
882
883 fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7);
884 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
885 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
886 {
887 sp_offset -= 12;
888 fi->fsr.regs[fp_start_reg++] = sp_offset;
889 }
890 }
891 else if ((insn & 0xf0000000) != 0xe0000000)
892 break; /* Condition not true, exit early */
893 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
894 break; /* Don't scan past a block load */
895 else
896 /* The optimizer might shove anything into the prologue,
897 so we just skip what we don't recognize. */
898 continue;
899 }
900 }
901
902 /* The frame size is just the negative of the offset (from the original SP)
903 of the last thing thing we pushed on the stack. The frame offset is
904 [new FP] - [new SP]. */
905 fi->framesize = -sp_offset;
906 fi->frameoffset = fp_offset - sp_offset;
907
908 save_prologue_cache (fi);
909 }
910
911 /* Find REGNUM on the stack. Otherwise, it's in an active register.
912 One thing we might want to do here is to check REGNUM against the
913 clobber mask, and somehow flag it as invalid if it isn't saved on
914 the stack somewhere. This would provide a graceful failure mode
915 when trying to get the value of caller-saves registers for an inner
916 frame. */
917
918 static CORE_ADDR
919 arm_find_callers_reg (struct frame_info *fi, int regnum)
920 {
921 for (; fi; fi = fi->next)
922
923 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
924 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
925 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
926 else
927 #endif
928 if (fi->fsr.regs[regnum] != 0)
929 return read_memory_integer (fi->fsr.regs[regnum],
930 REGISTER_RAW_SIZE (regnum));
931 return read_register (regnum);
932 }
933 /* *INDENT-OFF* */
934 /* Function: frame_chain
935 Given a GDB frame, determine the address of the calling function's frame.
936 This will be used to create a new GDB frame struct, and then
937 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
938 For ARM, we save the frame size when we initialize the frame_info.
939
940 The original definition of this function was a macro in tm-arm.h:
941 { In the case of the ARM, the frame's nominal address is the FP value,
942 and 12 bytes before comes the saved previous FP value as a 4-byte word. }
943
944 #define FRAME_CHAIN(thisframe) \
945 ((thisframe)->pc >= LOWEST_PC ? \
946 read_memory_integer ((thisframe)->frame - 12, 4) :\
947 0)
948 */
949 /* *INDENT-ON* */
950
951 CORE_ADDR
952 arm_frame_chain (struct frame_info *fi)
953 {
954 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
955 CORE_ADDR fn_start, callers_pc, fp;
956
957 /* is this a dummy frame? */
958 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
959 return fi->frame; /* dummy frame same as caller's frame */
960
961 /* is caller-of-this a dummy frame? */
962 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
963 fp = arm_find_callers_reg (fi, FP_REGNUM);
964 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
965 return fp; /* dummy frame's frame may bear no relation to ours */
966
967 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
968 if (fn_start == entry_point_address ())
969 return 0; /* in _start fn, don't chain further */
970 #endif
971 CORE_ADDR caller_pc, fn_start;
972 struct frame_info caller_fi;
973 int framereg = fi->framereg;
974
975 if (fi->pc < LOWEST_PC)
976 return 0;
977
978 /* If the caller is the startup code, we're at the end of the chain. */
979 caller_pc = FRAME_SAVED_PC (fi);
980 if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
981 if (fn_start == entry_point_address ())
982 return 0;
983
984 /* If the caller is Thumb and the caller is ARM, or vice versa,
985 the frame register of the caller is different from ours.
986 So we must scan the prologue of the caller to determine its
987 frame register number. */
988 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
989 {
990 memset (&caller_fi, 0, sizeof (caller_fi));
991 caller_fi.pc = caller_pc;
992 arm_scan_prologue (&caller_fi);
993 framereg = caller_fi.framereg;
994 }
995
996 /* If the caller used a frame register, return its value.
997 Otherwise, return the caller's stack pointer. */
998 if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM)
999 return arm_find_callers_reg (fi, framereg);
1000 else
1001 return fi->frame + fi->framesize;
1002 }
1003
1004 /* This function actually figures out the frame address for a given pc
1005 and sp. This is tricky because we sometimes don't use an explicit
1006 frame pointer, and the previous stack pointer isn't necessarily
1007 recorded on the stack. The only reliable way to get this info is
1008 to examine the prologue. FROMLEAF is a little confusing, it means
1009 this is the next frame up the chain AFTER a frameless function. If
1010 this is true, then the frame value for this frame is still in the
1011 fp register. */
1012
1013 void
1014 arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1015 {
1016 int reg;
1017
1018 if (fi->next)
1019 fi->pc = FRAME_SAVED_PC (fi->next);
1020
1021 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
1022
1023 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1024 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1025 {
1026 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
1027 by assuming it's always FP. */
1028 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
1029 fi->framesize = 0;
1030 fi->frameoffset = 0;
1031 return;
1032 }
1033 else
1034 #endif
1035
1036 /* Determine whether or not we're in a sigtramp frame.
1037 Unfortunately, it isn't sufficient to test
1038 fi->signal_handler_caller because this value is sometimes set
1039 after invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1040 fi->signal_handler_caller and IN_SIGTRAMP to determine if we need
1041 to use the sigcontext addresses for the saved registers.
1042
1043 Note: If an ARM IN_SIGTRAMP method ever needs to compare against
1044 the name of the function, the code below will have to be changed
1045 to first fetch the name of the function and then pass this name
1046 to IN_SIGTRAMP. */
1047
1048 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1049 && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, 0)))
1050 {
1051 CORE_ADDR sp;
1052
1053 if (!fi->next)
1054 sp = read_sp();
1055 else
1056 sp = fi->next->frame - fi->next->frameoffset + fi->next->framesize;
1057
1058 for (reg = 0; reg < NUM_REGS; reg++)
1059 fi->fsr.regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
1060
1061 /* FIXME: What about thumb mode? */
1062 fi->framereg = SP_REGNUM;
1063 fi->frame = read_memory_integer (fi->fsr.regs[fi->framereg], 4);
1064 fi->framesize = 0;
1065 fi->frameoffset = 0;
1066
1067 }
1068 else
1069 {
1070 arm_scan_prologue (fi);
1071
1072 if (!fi->next)
1073 /* this is the innermost frame? */
1074 fi->frame = read_register (fi->framereg);
1075 else if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM)
1076 {
1077 /* not the innermost frame */
1078 /* If we have an FP, the callee saved it. */
1079 if (fi->next->fsr.regs[fi->framereg] != 0)
1080 fi->frame =
1081 read_memory_integer (fi->next->fsr.regs[fi->framereg], 4);
1082 else if (fromleaf)
1083 /* If we were called by a frameless fn. then our frame is
1084 still in the frame pointer register on the board... */
1085 fi->frame = read_fp ();
1086 }
1087
1088 /* Calculate actual addresses of saved registers using offsets
1089 determined by arm_scan_prologue. */
1090 for (reg = 0; reg < NUM_REGS; reg++)
1091 if (fi->fsr.regs[reg] != 0)
1092 fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
1093 }
1094 }
1095
1096
1097 /* Find the caller of this frame. We do this by seeing if LR_REGNUM
1098 is saved in the stack anywhere, otherwise we get it from the
1099 registers.
1100
1101 The old definition of this function was a macro:
1102 #define FRAME_SAVED_PC(FRAME) \
1103 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
1104
1105 CORE_ADDR
1106 arm_frame_saved_pc (struct frame_info *fi)
1107 {
1108 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1109 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1110 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1111 else
1112 #endif
1113 {
1114 CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM);
1115 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1116 }
1117 }
1118
1119 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1120 Examine the Program Status Register to decide which state we're in. */
1121
1122 CORE_ADDR
1123 arm_target_read_fp (void)
1124 {
1125 if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
1126 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1127 else
1128 return read_register (FP_REGNUM); /* R11 if ARM */
1129 }
1130
1131 /* Calculate the frame offsets of the saved registers (ARM version). */
1132
1133 void
1134 arm_frame_find_saved_regs (struct frame_info *fi,
1135 struct frame_saved_regs *regaddr)
1136 {
1137 memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
1138 }
1139
1140 void
1141 arm_push_dummy_frame (void)
1142 {
1143 CORE_ADDR old_sp = read_register (SP_REGNUM);
1144 CORE_ADDR sp = old_sp;
1145 CORE_ADDR fp, prologue_start;
1146 int regnum;
1147
1148 /* Push the two dummy prologue instructions in reverse order,
1149 so that they'll be in the correct low-to-high order in memory. */
1150 /* sub fp, ip, #4 */
1151 sp = push_word (sp, 0xe24cb004);
1152 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1153 prologue_start = sp = push_word (sp, 0xe92ddfff);
1154
1155 /* Push a pointer to the dummy prologue + 12, because when stm
1156 instruction stores the PC, it stores the address of the stm
1157 instruction itself plus 12. */
1158 fp = sp = push_word (sp, prologue_start + 12);
1159 sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */
1160 sp = push_word (sp, old_sp);
1161 sp = push_word (sp, read_register (FP_REGNUM));
1162
1163 for (regnum = 10; regnum >= 0; regnum--)
1164 sp = push_word (sp, read_register (regnum));
1165
1166 write_register (FP_REGNUM, fp);
1167 write_register (THUMB_FP_REGNUM, fp);
1168 write_register (SP_REGNUM, sp);
1169 }
1170
1171 /* Fix up the call dummy, based on whether the processor is currently
1172 in Thumb or ARM mode, and whether the target function is Thumb or
1173 ARM. There are three different situations requiring three
1174 different dummies:
1175
1176 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
1177 been copied into the dummy parameter to this function.
1178 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
1179 "mov pc,r4" instruction patched to be a "bx r4" instead.
1180 * Thumb calling anything: uses the Thumb dummy defined below, which
1181 works for calling both ARM and Thumb functions.
1182
1183 All three call dummies expect to receive the target function
1184 address in R4, with the low bit set if it's a Thumb function. */
1185
1186 void
1187 arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1188 value_ptr *args, struct type *type, int gcc_p)
1189 {
1190 static short thumb_dummy[4] =
1191 {
1192 0xf000, 0xf801, /* bl label */
1193 0xdf18, /* swi 24 */
1194 0x4720, /* label: bx r4 */
1195 };
1196 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1197
1198 /* Set flag indicating whether the current PC is in a Thumb function. */
1199 caller_is_thumb = arm_pc_is_thumb (read_pc ());
1200
1201 /* If the target function is Thumb, set the low bit of the function
1202 address. And if the CPU is currently in ARM mode, patch the
1203 second instruction of call dummy to use a BX instruction to
1204 switch to Thumb mode. */
1205 target_is_thumb = arm_pc_is_thumb (fun);
1206 if (target_is_thumb)
1207 {
1208 fun |= 1;
1209 if (!caller_is_thumb)
1210 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1211 }
1212
1213 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1214 instead of the ARM one that's already been copied. This will
1215 work for both Thumb and ARM target functions. */
1216 if (caller_is_thumb)
1217 {
1218 int i;
1219 char *p = dummy;
1220 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1221
1222 for (i = 0; i < len; i++)
1223 {
1224 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1225 p += sizeof (thumb_dummy[0]);
1226 }
1227 }
1228
1229 /* Put the target address in r4; the call dummy will copy this to
1230 the PC. */
1231 write_register (4, fun);
1232 }
1233
1234 /* Return the offset in the call dummy of the instruction that needs
1235 to have a breakpoint placed on it. This is the offset of the 'swi
1236 24' instruction, which is no longer actually used, but simply acts
1237 as a place-holder now.
1238
1239 This implements the CALL_DUMMY_BREAK_OFFSET macro. */
1240
1241 int
1242 arm_call_dummy_breakpoint_offset (void)
1243 {
1244 if (caller_is_thumb)
1245 return 4;
1246 else
1247 return 8;
1248 }
1249
1250 /* Note: ScottB
1251
1252 This function does not support passing parameters using the FPA
1253 variant of the APCS. It passes any floating point arguments in the
1254 general registers and/or on the stack. */
1255
1256 CORE_ADDR
1257 arm_push_arguments (int nargs, value_ptr * args, CORE_ADDR sp,
1258 int struct_return, CORE_ADDR struct_addr)
1259 {
1260 char *fp;
1261 int argnum, argreg, nstack_size;
1262
1263 /* Walk through the list of args and determine how large a temporary
1264 stack is required. Need to take care here as structs may be
1265 passed on the stack, and we have to to push them. */
1266 nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */
1267 if (struct_return) /* The struct address goes in A1. */
1268 nstack_size += REGISTER_SIZE;
1269
1270 /* Walk through the arguments and add their size to nstack_size. */
1271 for (argnum = 0; argnum < nargs; argnum++)
1272 {
1273 int len;
1274 struct type *arg_type;
1275
1276 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1277 len = TYPE_LENGTH (arg_type);
1278
1279 /* ANSI C code passes float arguments as integers, K&R code
1280 passes float arguments as doubles. Correct for this here. */
1281 if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len)
1282 nstack_size += FP_REGISTER_VIRTUAL_SIZE;
1283 else
1284 nstack_size += len;
1285 }
1286
1287 /* Allocate room on the stack, and initialize our stack frame
1288 pointer. */
1289 fp = NULL;
1290 if (nstack_size > 0)
1291 {
1292 sp -= nstack_size;
1293 fp = (char *) sp;
1294 }
1295
1296 /* Initialize the integer argument register pointer. */
1297 argreg = A1_REGNUM;
1298
1299 /* The struct_return pointer occupies the first parameter passing
1300 register. */
1301 if (struct_return)
1302 write_register (argreg++, struct_addr);
1303
1304 /* Process arguments from left to right. Store as many as allowed
1305 in the parameter passing registers (A1-A4), and save the rest on
1306 the temporary stack. */
1307 for (argnum = 0; argnum < nargs; argnum++)
1308 {
1309 int len;
1310 char *val;
1311 double dbl_arg;
1312 CORE_ADDR regval;
1313 enum type_code typecode;
1314 struct type *arg_type, *target_type;
1315
1316 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1317 target_type = TYPE_TARGET_TYPE (arg_type);
1318 len = TYPE_LENGTH (arg_type);
1319 typecode = TYPE_CODE (arg_type);
1320 val = (char *) VALUE_CONTENTS (args[argnum]);
1321
1322 /* ANSI C code passes float arguments as integers, K&R code
1323 passes float arguments as doubles. The .stabs record for
1324 for ANSI prototype floating point arguments records the
1325 type as FP_INTEGER, while a K&R style (no prototype)
1326 .stabs records the type as FP_FLOAT. In this latter case
1327 the compiler converts the float arguments to double before
1328 calling the function. */
1329 if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len)
1330 {
1331 float f;
1332 double d;
1333 char * bufo = (char *) &d;
1334 char * bufd = (char *) &dbl_arg;
1335
1336 len = sizeof (double);
1337 f = *(float *) val;
1338 SWAP_TARGET_AND_HOST (&f, sizeof (float)); /* adjust endianess */
1339 d = f;
1340 /* We must revert the longwords so they get loaded into the
1341 the right registers. */
1342 memcpy (bufd, bufo + len / 2, len / 2);
1343 SWAP_TARGET_AND_HOST (bufd, len / 2); /* adjust endianess */
1344 memcpy (bufd + len / 2, bufo, len / 2);
1345 SWAP_TARGET_AND_HOST (bufd + len / 2, len / 2); /* adjust endianess */
1346 val = (char *) &dbl_arg;
1347 }
1348 #if 1
1349 /* I don't know why this code was disable. The only logical use
1350 for a function pointer is to call that function, so setting
1351 the mode bit is perfectly fine. FN */
1352 /* If the argument is a pointer to a function, and it is a Thumb
1353 function, set the low bit of the pointer. */
1354 if (TYPE_CODE_PTR == typecode
1355 && NULL != target_type
1356 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1357 {
1358 CORE_ADDR regval = extract_address (val, len);
1359 if (arm_pc_is_thumb (regval))
1360 store_address (val, len, MAKE_THUMB_ADDR (regval));
1361 }
1362 #endif
1363 /* Copy the argument to general registers or the stack in
1364 register-sized pieces. Large arguments are split between
1365 registers and stack. */
1366 while (len > 0)
1367 {
1368 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1369
1370 if (argreg <= ARM_LAST_ARG_REGNUM)
1371 {
1372 /* It's an argument being passed in a general register. */
1373 regval = extract_address (val, partial_len);
1374 write_register (argreg++, regval);
1375 }
1376 else
1377 {
1378 /* Push the arguments onto the stack. */
1379 write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
1380 fp += REGISTER_SIZE;
1381 }
1382
1383 len -= partial_len;
1384 val += partial_len;
1385 }
1386 }
1387
1388 /* Return adjusted stack pointer. */
1389 return sp;
1390 }
1391
1392 void
1393 arm_pop_frame (void)
1394 {
1395 int regnum;
1396 struct frame_info *frame = get_current_frame ();
1397
1398 if (!PC_IN_CALL_DUMMY(frame->pc, frame->frame, read_fp()))
1399 {
1400 CORE_ADDR old_SP;
1401
1402 old_SP = read_register (frame->framereg);
1403 for (regnum = 0; regnum < NUM_REGS; regnum++)
1404 if (frame->fsr.regs[regnum] != 0)
1405 write_register (regnum,
1406 read_memory_integer (frame->fsr.regs[regnum], 4));
1407
1408 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1409 write_register (SP_REGNUM, old_SP);
1410 }
1411 else
1412 {
1413 CORE_ADDR sp;
1414
1415 sp = read_register (FP_REGNUM);
1416 sp -= sizeof(CORE_ADDR); /* we don't care about this first word */
1417
1418 write_register (PC_REGNUM, read_memory_integer (sp, 4));
1419 sp -= sizeof(CORE_ADDR);
1420 write_register (SP_REGNUM, read_memory_integer (sp, 4));
1421 sp -= sizeof(CORE_ADDR);
1422 write_register (FP_REGNUM, read_memory_integer (sp, 4));
1423 sp -= sizeof(CORE_ADDR);
1424
1425 for (regnum = 10; regnum >= 0; regnum--)
1426 {
1427 write_register (regnum, read_memory_integer (sp, 4));
1428 sp -= sizeof(CORE_ADDR);
1429 }
1430 }
1431
1432 flush_cached_frames ();
1433 }
1434
1435 static void
1436 print_fpu_flags (int flags)
1437 {
1438 if (flags & (1 << 0))
1439 fputs ("IVO ", stdout);
1440 if (flags & (1 << 1))
1441 fputs ("DVZ ", stdout);
1442 if (flags & (1 << 2))
1443 fputs ("OFL ", stdout);
1444 if (flags & (1 << 3))
1445 fputs ("UFL ", stdout);
1446 if (flags & (1 << 4))
1447 fputs ("INX ", stdout);
1448 putchar ('\n');
1449 }
1450
1451 void
1452 arm_float_info (void)
1453 {
1454 register unsigned long status = read_register (FPS_REGNUM);
1455 int type;
1456
1457 type = (status >> 24) & 127;
1458 printf ("%s FPU type %d\n",
1459 (status & (1 << 31)) ? "Hardware" : "Software",
1460 type);
1461 fputs ("mask: ", stdout);
1462 print_fpu_flags (status >> 16);
1463 fputs ("flags: ", stdout);
1464 print_fpu_flags (status);
1465 }
1466
1467 #if 0
1468 /* FIXME: The generated assembler works but sucks. Instead of using
1469 r0, r1 it pushes them on the stack, then loads them into r3, r4 and
1470 uses those registers. I must be missing something. ScottB */
1471
1472 void
1473 convert_from_extended (void *ptr, void *dbl)
1474 {
1475 __asm__ ("
1476 ldfe f0,[%0]
1477 stfd f0,[%1] "
1478 : /* no output */
1479 : "r" (ptr), "r" (dbl));
1480 }
1481
1482 void
1483 convert_to_extended (void *dbl, void *ptr)
1484 {
1485 __asm__ ("
1486 ldfd f0,[%0]
1487 stfe f0,[%1] "
1488 : /* no output */
1489 : "r" (dbl), "r" (ptr));
1490 }
1491 #else
1492 static void
1493 convert_from_extended (void *ptr, void *dbl)
1494 {
1495 *(double *) dbl = *(double *) ptr;
1496 }
1497
1498 void
1499 convert_to_extended (void *dbl, void *ptr)
1500 {
1501 *(double *) ptr = *(double *) dbl;
1502 }
1503 #endif
1504
1505 /* Nonzero if register N requires conversion from raw format to
1506 virtual format. */
1507
1508 int
1509 arm_register_convertible (unsigned int regnum)
1510 {
1511 return ((regnum - F0_REGNUM) < 8);
1512 }
1513
1514 /* Convert data from raw format for register REGNUM in buffer FROM to
1515 virtual format with type TYPE in buffer TO. */
1516
1517 void
1518 arm_register_convert_to_virtual (unsigned int regnum, struct type *type,
1519 void *from, void *to)
1520 {
1521 double val;
1522
1523 convert_from_extended (from, &val);
1524 store_floating (to, TYPE_LENGTH (type), val);
1525 }
1526
1527 /* Convert data from virtual format with type TYPE in buffer FROM to
1528 raw format for register REGNUM in buffer TO. */
1529
1530 void
1531 arm_register_convert_to_raw (unsigned int regnum, struct type *type,
1532 void *from, void *to)
1533 {
1534 double val = extract_floating (from, TYPE_LENGTH (type));
1535
1536 convert_to_extended (&val, to);
1537 }
1538
1539 static int
1540 condition_true (unsigned long cond, unsigned long status_reg)
1541 {
1542 if (cond == INST_AL || cond == INST_NV)
1543 return 1;
1544
1545 switch (cond)
1546 {
1547 case INST_EQ:
1548 return ((status_reg & FLAG_Z) != 0);
1549 case INST_NE:
1550 return ((status_reg & FLAG_Z) == 0);
1551 case INST_CS:
1552 return ((status_reg & FLAG_C) != 0);
1553 case INST_CC:
1554 return ((status_reg & FLAG_C) == 0);
1555 case INST_MI:
1556 return ((status_reg & FLAG_N) != 0);
1557 case INST_PL:
1558 return ((status_reg & FLAG_N) == 0);
1559 case INST_VS:
1560 return ((status_reg & FLAG_V) != 0);
1561 case INST_VC:
1562 return ((status_reg & FLAG_V) == 0);
1563 case INST_HI:
1564 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1565 case INST_LS:
1566 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1567 case INST_GE:
1568 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1569 case INST_LT:
1570 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1571 case INST_GT:
1572 return (((status_reg & FLAG_Z) == 0) &&
1573 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1574 case INST_LE:
1575 return (((status_reg & FLAG_Z) != 0) ||
1576 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1577 }
1578 return 1;
1579 }
1580
1581 #define submask(x) ((1L << ((x) + 1)) - 1)
1582 #define bit(obj,st) (((obj) >> (st)) & 1)
1583 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1584 #define sbits(obj,st,fn) \
1585 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1586 #define BranchDest(addr,instr) \
1587 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1588 #define ARM_PC_32 1
1589
1590 static unsigned long
1591 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1592 unsigned long status_reg)
1593 {
1594 unsigned long res, shift;
1595 int rm = bits (inst, 0, 3);
1596 unsigned long shifttype = bits (inst, 5, 6);
1597
1598 if (bit (inst, 4))
1599 {
1600 int rs = bits (inst, 8, 11);
1601 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1602 }
1603 else
1604 shift = bits (inst, 7, 11);
1605
1606 res = (rm == 15
1607 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1608 + (bit (inst, 4) ? 12 : 8))
1609 : read_register (rm));
1610
1611 switch (shifttype)
1612 {
1613 case 0: /* LSL */
1614 res = shift >= 32 ? 0 : res << shift;
1615 break;
1616
1617 case 1: /* LSR */
1618 res = shift >= 32 ? 0 : res >> shift;
1619 break;
1620
1621 case 2: /* ASR */
1622 if (shift >= 32)
1623 shift = 31;
1624 res = ((res & 0x80000000L)
1625 ? ~((~res) >> shift) : res >> shift);
1626 break;
1627
1628 case 3: /* ROR/RRX */
1629 shift &= 31;
1630 if (shift == 0)
1631 res = (res >> 1) | (carry ? 0x80000000L : 0);
1632 else
1633 res = (res >> shift) | (res << (32 - shift));
1634 break;
1635 }
1636
1637 return res & 0xffffffff;
1638 }
1639
1640 /* Return number of 1-bits in VAL. */
1641
1642 static int
1643 bitcount (unsigned long val)
1644 {
1645 int nbits;
1646 for (nbits = 0; val != 0; nbits++)
1647 val &= val - 1; /* delete rightmost 1-bit in val */
1648 return nbits;
1649 }
1650
1651 static CORE_ADDR
1652 thumb_get_next_pc (CORE_ADDR pc)
1653 {
1654 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1655 unsigned short inst1 = read_memory_integer (pc, 2);
1656 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1657 unsigned long offset;
1658
1659 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1660 {
1661 CORE_ADDR sp;
1662
1663 /* Fetch the saved PC from the stack. It's stored above
1664 all of the other registers. */
1665 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
1666 sp = read_register (SP_REGNUM);
1667 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1668 nextpc = ADDR_BITS_REMOVE (nextpc);
1669 if (nextpc == pc)
1670 error ("Infinite loop detected");
1671 }
1672 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1673 {
1674 unsigned long status = read_register (PS_REGNUM);
1675 unsigned long cond = bits (inst1, 8, 11);
1676 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1677 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1678 }
1679 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1680 {
1681 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1682 }
1683 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1684 {
1685 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1686 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1687 nextpc = pc_val + offset;
1688 }
1689
1690 return nextpc;
1691 }
1692
1693 CORE_ADDR
1694 arm_get_next_pc (CORE_ADDR pc)
1695 {
1696 unsigned long pc_val;
1697 unsigned long this_instr;
1698 unsigned long status;
1699 CORE_ADDR nextpc;
1700
1701 if (arm_pc_is_thumb (pc))
1702 return thumb_get_next_pc (pc);
1703
1704 pc_val = (unsigned long) pc;
1705 this_instr = read_memory_integer (pc, 4);
1706 status = read_register (PS_REGNUM);
1707 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1708
1709 if (condition_true (bits (this_instr, 28, 31), status))
1710 {
1711 switch (bits (this_instr, 24, 27))
1712 {
1713 case 0x0:
1714 case 0x1: /* data processing */
1715 case 0x2:
1716 case 0x3:
1717 {
1718 unsigned long operand1, operand2, result = 0;
1719 unsigned long rn;
1720 int c;
1721
1722 if (bits (this_instr, 12, 15) != 15)
1723 break;
1724
1725 if (bits (this_instr, 22, 25) == 0
1726 && bits (this_instr, 4, 7) == 9) /* multiply */
1727 error ("Illegal update to pc in instruction");
1728
1729 /* Multiply into PC */
1730 c = (status & FLAG_C) ? 1 : 0;
1731 rn = bits (this_instr, 16, 19);
1732 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1733
1734 if (bit (this_instr, 25))
1735 {
1736 unsigned long immval = bits (this_instr, 0, 7);
1737 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1738 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1739 & 0xffffffff;
1740 }
1741 else /* operand 2 is a shifted register */
1742 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1743
1744 switch (bits (this_instr, 21, 24))
1745 {
1746 case 0x0: /*and */
1747 result = operand1 & operand2;
1748 break;
1749
1750 case 0x1: /*eor */
1751 result = operand1 ^ operand2;
1752 break;
1753
1754 case 0x2: /*sub */
1755 result = operand1 - operand2;
1756 break;
1757
1758 case 0x3: /*rsb */
1759 result = operand2 - operand1;
1760 break;
1761
1762 case 0x4: /*add */
1763 result = operand1 + operand2;
1764 break;
1765
1766 case 0x5: /*adc */
1767 result = operand1 + operand2 + c;
1768 break;
1769
1770 case 0x6: /*sbc */
1771 result = operand1 - operand2 + c;
1772 break;
1773
1774 case 0x7: /*rsc */
1775 result = operand2 - operand1 + c;
1776 break;
1777
1778 case 0x8:
1779 case 0x9:
1780 case 0xa:
1781 case 0xb: /* tst, teq, cmp, cmn */
1782 result = (unsigned long) nextpc;
1783 break;
1784
1785 case 0xc: /*orr */
1786 result = operand1 | operand2;
1787 break;
1788
1789 case 0xd: /*mov */
1790 /* Always step into a function. */
1791 result = operand2;
1792 break;
1793
1794 case 0xe: /*bic */
1795 result = operand1 & ~operand2;
1796 break;
1797
1798 case 0xf: /*mvn */
1799 result = ~operand2;
1800 break;
1801 }
1802 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1803
1804 if (nextpc == pc)
1805 error ("Infinite loop detected");
1806 break;
1807 }
1808
1809 case 0x4:
1810 case 0x5: /* data transfer */
1811 case 0x6:
1812 case 0x7:
1813 if (bit (this_instr, 20))
1814 {
1815 /* load */
1816 if (bits (this_instr, 12, 15) == 15)
1817 {
1818 /* rd == pc */
1819 unsigned long rn;
1820 unsigned long base;
1821
1822 if (bit (this_instr, 22))
1823 error ("Illegal update to pc in instruction");
1824
1825 /* byte write to PC */
1826 rn = bits (this_instr, 16, 19);
1827 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1828 if (bit (this_instr, 24))
1829 {
1830 /* pre-indexed */
1831 int c = (status & FLAG_C) ? 1 : 0;
1832 unsigned long offset =
1833 (bit (this_instr, 25)
1834 ? shifted_reg_val (this_instr, c, pc_val, status)
1835 : bits (this_instr, 0, 11));
1836
1837 if (bit (this_instr, 23))
1838 base += offset;
1839 else
1840 base -= offset;
1841 }
1842 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1843 4);
1844
1845 nextpc = ADDR_BITS_REMOVE (nextpc);
1846
1847 if (nextpc == pc)
1848 error ("Infinite loop detected");
1849 }
1850 }
1851 break;
1852
1853 case 0x8:
1854 case 0x9: /* block transfer */
1855 if (bit (this_instr, 20))
1856 {
1857 /* LDM */
1858 if (bit (this_instr, 15))
1859 {
1860 /* loading pc */
1861 int offset = 0;
1862
1863 if (bit (this_instr, 23))
1864 {
1865 /* up */
1866 unsigned long reglist = bits (this_instr, 0, 14);
1867 offset = bitcount (reglist) * 4;
1868 if (bit (this_instr, 24)) /* pre */
1869 offset += 4;
1870 }
1871 else if (bit (this_instr, 24))
1872 offset = -4;
1873
1874 {
1875 unsigned long rn_val =
1876 read_register (bits (this_instr, 16, 19));
1877 nextpc =
1878 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1879 + offset),
1880 4);
1881 }
1882 nextpc = ADDR_BITS_REMOVE (nextpc);
1883 if (nextpc == pc)
1884 error ("Infinite loop detected");
1885 }
1886 }
1887 break;
1888
1889 case 0xb: /* branch & link */
1890 case 0xa: /* branch */
1891 {
1892 nextpc = BranchDest (pc, this_instr);
1893
1894 nextpc = ADDR_BITS_REMOVE (nextpc);
1895 if (nextpc == pc)
1896 error ("Infinite loop detected");
1897 break;
1898 }
1899
1900 case 0xc:
1901 case 0xd:
1902 case 0xe: /* coproc ops */
1903 case 0xf: /* SWI */
1904 break;
1905
1906 default:
1907 fprintf (stderr, "Bad bit-field extraction\n");
1908 return (pc);
1909 }
1910 }
1911
1912 return nextpc;
1913 }
1914
1915 #include "bfd-in2.h"
1916 #include "libcoff.h"
1917
1918 static int
1919 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1920 {
1921 if (arm_pc_is_thumb (memaddr))
1922 {
1923 static asymbol *asym;
1924 static combined_entry_type ce;
1925 static struct coff_symbol_struct csym;
1926 static struct _bfd fake_bfd;
1927 static bfd_target fake_target;
1928
1929 if (csym.native == NULL)
1930 {
1931 /* Create a fake symbol vector containing a Thumb symbol. This is
1932 solely so that the code in print_insn_little_arm() and
1933 print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
1934 of a Thumb symbol and switch to decoding Thumb instructions. */
1935
1936 fake_target.flavour = bfd_target_coff_flavour;
1937 fake_bfd.xvec = &fake_target;
1938 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1939 csym.native = &ce;
1940 csym.symbol.the_bfd = &fake_bfd;
1941 csym.symbol.name = "fake";
1942 asym = (asymbol *) & csym;
1943 }
1944
1945 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1946 info->symbols = &asym;
1947 }
1948 else
1949 info->symbols = NULL;
1950
1951 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1952 return print_insn_big_arm (memaddr, info);
1953 else
1954 return print_insn_little_arm (memaddr, info);
1955 }
1956
1957 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the
1958 program counter value to determine whether a 16-bit or 32-bit
1959 breakpoint should be used. It returns a pointer to a string of
1960 bytes that encode a breakpoint instruction, stores the length of
1961 the string to *lenptr, and adjusts the program counter (if
1962 necessary) to point to the actual memory location where the
1963 breakpoint should be inserted. */
1964
1965 unsigned char *
1966 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1967 {
1968 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
1969 {
1970 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1971 {
1972 static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT;
1973 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1974 *lenptr = sizeof (thumb_breakpoint);
1975 return thumb_breakpoint;
1976 }
1977 else
1978 {
1979 static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT;
1980 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1981 *lenptr = sizeof (thumb_breakpoint);
1982 return thumb_breakpoint;
1983 }
1984 }
1985 else
1986 {
1987 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1988 {
1989 static char arm_breakpoint[] = ARM_BE_BREAKPOINT;
1990 *lenptr = sizeof (arm_breakpoint);
1991 return arm_breakpoint;
1992 }
1993 else
1994 {
1995 static char arm_breakpoint[] = ARM_LE_BREAKPOINT;
1996 *lenptr = sizeof (arm_breakpoint);
1997 return arm_breakpoint;
1998 }
1999 }
2000 }
2001
2002 /* Extract from an array REGBUF containing the (raw) register state a
2003 function return value of type TYPE, and copy that, in virtual
2004 format, into VALBUF. */
2005
2006 void
2007 arm_extract_return_value (struct type *type,
2008 char regbuf[REGISTER_BYTES],
2009 char *valbuf)
2010 {
2011 if (TYPE_CODE_FLT == TYPE_CODE (type))
2012 convert_from_extended (&regbuf[REGISTER_BYTE (F0_REGNUM)], valbuf);
2013 else
2014 memcpy (valbuf, &regbuf[REGISTER_BYTE (A1_REGNUM)], TYPE_LENGTH (type));
2015 }
2016
2017 /* Return non-zero if the PC is inside a thumb call thunk. */
2018
2019 int
2020 arm_in_call_stub (CORE_ADDR pc, char *name)
2021 {
2022 CORE_ADDR start_addr;
2023
2024 /* Find the starting address of the function containing the PC. If
2025 the caller didn't give us a name, look it up at the same time. */
2026 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2027 return 0;
2028
2029 return strncmp (name, "_call_via_r", 11) == 0;
2030 }
2031
2032 /* If PC is in a Thumb call or return stub, return the address of the
2033 target PC, which is in a register. The thunk functions are called
2034 _called_via_xx, where x is the register name. The possible names
2035 are r0-r9, sl, fp, ip, sp, and lr. */
2036
2037 CORE_ADDR
2038 arm_skip_stub (CORE_ADDR pc)
2039 {
2040 char *name;
2041 CORE_ADDR start_addr;
2042
2043 /* Find the starting address and name of the function containing the PC. */
2044 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2045 return 0;
2046
2047 /* Call thunks always start with "_call_via_". */
2048 if (strncmp (name, "_call_via_", 10) == 0)
2049 {
2050 /* Use the name suffix to determine which register contains the
2051 target PC. */
2052 static char *table[15] =
2053 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2054 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2055 };
2056 int regno;
2057
2058 for (regno = 0; regno <= 14; regno++)
2059 if (strcmp (&name[10], table[regno]) == 0)
2060 return read_register (regno);
2061 }
2062
2063 return 0; /* not a stub */
2064 }
2065
2066 /* If the user changes the register disassembly flavor used for info register
2067 and other commands, we have to also switch the flavor used in opcodes
2068 for disassembly output.
2069 This function is run in the set disassembly_flavor command, and does that. */
2070
2071 static void
2072 set_disassembly_flavor_sfunc (char *args, int from_tty,
2073 struct cmd_list_element *c)
2074 {
2075 set_disassembly_flavor ();
2076 }
2077 \f
2078 static void
2079 set_disassembly_flavor (void)
2080 {
2081 const char *setname, *setdesc, **regnames;
2082 int numregs, j;
2083
2084 /* Find the flavor that the user wants in the opcodes table. */
2085 int current = 0;
2086 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2087 while ((disassembly_flavor != setname)
2088 && (current < num_flavor_options))
2089 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2090 current_option = current;
2091
2092 /* Fill our copy. */
2093 for (j = 0; j < numregs; j++)
2094 arm_register_names[j] = (char *) regnames[j];
2095
2096 /* Adjust case. */
2097 if (isupper (*regnames[PC_REGNUM]))
2098 {
2099 arm_register_names[FPS_REGNUM] = "FPS";
2100 arm_register_names[PS_REGNUM] = "CPSR";
2101 }
2102 else
2103 {
2104 arm_register_names[FPS_REGNUM] = "fps";
2105 arm_register_names[PS_REGNUM] = "cpsr";
2106 }
2107
2108 /* Synchronize the disassembler. */
2109 set_arm_regname_option (current);
2110 }
2111
2112 /* arm_othernames implements the "othernames" command. This is kind
2113 of hacky, and I prefer the set-show disassembly-flavor which is
2114 also used for the x86 gdb. I will keep this around, however, in
2115 case anyone is actually using it. */
2116
2117 static void
2118 arm_othernames (char *names, int n)
2119 {
2120 /* Circle through the various flavors. */
2121 current_option = (current_option + 1) % num_flavor_options;
2122
2123 disassembly_flavor = valid_flavors[current_option];
2124 set_disassembly_flavor ();
2125 }
2126
2127 void
2128 _initialize_arm_tdep (void)
2129 {
2130 struct ui_file *stb;
2131 long length;
2132 struct cmd_list_element *new_cmd;
2133 const char *setname;
2134 const char *setdesc;
2135 const char **regnames;
2136 int numregs, i, j;
2137 static char *helptext;
2138
2139 tm_print_insn = gdb_print_insn_arm;
2140
2141 /* Get the number of possible sets of register names defined in opcodes. */
2142 num_flavor_options = get_arm_regname_num_options ();
2143
2144 /* Sync the opcode insn printer with our register viewer: */
2145 parse_arm_disassembler_option ("reg-names-std");
2146
2147 /* Begin creating the help text. */
2148 stb = mem_fileopen ();
2149 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
2150 The valid values are:\n");
2151
2152 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2153 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
2154 for (i = 0; i < num_flavor_options; i++)
2155 {
2156 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2157 valid_flavors[i] = setname;
2158 fprintf_unfiltered (stb, "%s - %s\n", setname,
2159 setdesc);
2160 /* Copy the default names (if found) and synchronize disassembler. */
2161 if (!strcmp (setname, "std"))
2162 {
2163 disassembly_flavor = setname;
2164 current_option = i;
2165 for (j = 0; j < numregs; j++)
2166 arm_register_names[j] = (char *) regnames[j];
2167 set_arm_regname_option (i);
2168 }
2169 }
2170 /* Mark the end of valid options. */
2171 valid_flavors[num_flavor_options] = NULL;
2172
2173 /* Finish the creation of the help text. */
2174 fprintf_unfiltered (stb, "The default is \"std\".");
2175 helptext = ui_file_xstrdup (stb, &length);
2176 ui_file_delete (stb);
2177
2178 /* Add the disassembly-flavor command */
2179 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2180 valid_flavors,
2181 &disassembly_flavor,
2182 helptext,
2183 &setlist);
2184 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
2185 add_show_from_set (new_cmd, &showlist);
2186
2187 /* ??? Maybe this should be a boolean. */
2188 add_show_from_set (add_set_cmd ("apcs32", no_class,
2189 var_zinteger, (char *) &arm_apcs_32,
2190 "Set usage of ARM 32-bit mode.\n", &setlist),
2191 &showlist);
2192
2193 /* Add the deprecated "othernames" command */
2194
2195 add_com ("othernames", class_obscure, arm_othernames,
2196 "Switch to the next set of register names.");
2197 }
2198
2199 /* Test whether the coff symbol specific value corresponds to a Thumb
2200 function. */
2201
2202 int
2203 coff_sym_is_thumb (int val)
2204 {
2205 return (val == C_THUMBEXT ||
2206 val == C_THUMBSTAT ||
2207 val == C_THUMBEXTFUNC ||
2208 val == C_THUMBSTATFUNC ||
2209 val == C_THUMBLABEL);
2210 }
This page took 0.09708 seconds and 3 git commands to generate.