3f21299bcb357a24cc732a9640ce3ff9fd54a72d
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <ctype.h> /* XXX for isupper (). */
23
24 #include "frame.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h" /* For register styles. */
30 #include "regcache.h"
31 #include "reggroups.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39 #include "objfiles.h"
40 #include "dwarf2-frame.h"
41 #include "gdbtypes.h"
42 #include "prologue-value.h"
43 #include "remote.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
46 #include "observer.h"
47
48 #include "arch/arm.h"
49 #include "arch/arm-get-next-pcs.h"
50 #include "arm-tdep.h"
51 #include "gdb/sim-arm.h"
52
53 #include "elf-bfd.h"
54 #include "coff/internal.h"
55 #include "elf/arm.h"
56
57 #include "vec.h"
58
59 #include "record.h"
60 #include "record-full.h"
61 #include <algorithm>
62
63 #include "features/arm/arm-with-m.c"
64 #include "features/arm/arm-with-m-fpa-layout.c"
65 #include "features/arm/arm-with-m-vfp-d16.c"
66 #include "features/arm/arm-with-iwmmxt.c"
67 #include "features/arm/arm-with-vfpv2.c"
68 #include "features/arm/arm-with-vfpv3.c"
69 #include "features/arm/arm-with-neon.c"
70
71 static int arm_debug;
72
73 /* Macros for setting and testing a bit in a minimal symbol that marks
74 it as Thumb function. The MSB of the minimal symbol's "info" field
75 is used for this purpose.
76
77 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
78 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
79
80 #define MSYMBOL_SET_SPECIAL(msym) \
81 MSYMBOL_TARGET_FLAG_1 (msym) = 1
82
83 #define MSYMBOL_IS_SPECIAL(msym) \
84 MSYMBOL_TARGET_FLAG_1 (msym)
85
86 /* Per-objfile data used for mapping symbols. */
87 static const struct objfile_data *arm_objfile_data_key;
88
89 struct arm_mapping_symbol
90 {
91 bfd_vma value;
92 char type;
93 };
94 typedef struct arm_mapping_symbol arm_mapping_symbol_s;
95 DEF_VEC_O(arm_mapping_symbol_s);
96
97 struct arm_per_objfile
98 {
99 VEC(arm_mapping_symbol_s) **section_maps;
100 };
101
102 /* The list of available "set arm ..." and "show arm ..." commands. */
103 static struct cmd_list_element *setarmcmdlist = NULL;
104 static struct cmd_list_element *showarmcmdlist = NULL;
105
106 /* The type of floating-point to use. Keep this in sync with enum
107 arm_float_model, and the help string in _initialize_arm_tdep. */
108 static const char *const fp_model_strings[] =
109 {
110 "auto",
111 "softfpa",
112 "fpa",
113 "softvfp",
114 "vfp",
115 NULL
116 };
117
118 /* A variable that can be configured by the user. */
119 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
120 static const char *current_fp_model = "auto";
121
122 /* The ABI to use. Keep this in sync with arm_abi_kind. */
123 static const char *const arm_abi_strings[] =
124 {
125 "auto",
126 "APCS",
127 "AAPCS",
128 NULL
129 };
130
131 /* A variable that can be configured by the user. */
132 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
133 static const char *arm_abi_string = "auto";
134
135 /* The execution mode to assume. */
136 static const char *const arm_mode_strings[] =
137 {
138 "auto",
139 "arm",
140 "thumb",
141 NULL
142 };
143
144 static const char *arm_fallback_mode_string = "auto";
145 static const char *arm_force_mode_string = "auto";
146
147 /* Internal override of the execution mode. -1 means no override,
148 0 means override to ARM mode, 1 means override to Thumb mode.
149 The effect is the same as if arm_force_mode has been set by the
150 user (except the internal override has precedence over a user's
151 arm_force_mode override). */
152 static int arm_override_mode = -1;
153
154 /* Number of different reg name sets (options). */
155 static int num_disassembly_options;
156
157 /* The standard register names, and all the valid aliases for them. Note
158 that `fp', `sp' and `pc' are not added in this alias list, because they
159 have been added as builtin user registers in
160 std-regs.c:_initialize_frame_reg. */
161 static const struct
162 {
163 const char *name;
164 int regnum;
165 } arm_register_aliases[] = {
166 /* Basic register numbers. */
167 { "r0", 0 },
168 { "r1", 1 },
169 { "r2", 2 },
170 { "r3", 3 },
171 { "r4", 4 },
172 { "r5", 5 },
173 { "r6", 6 },
174 { "r7", 7 },
175 { "r8", 8 },
176 { "r9", 9 },
177 { "r10", 10 },
178 { "r11", 11 },
179 { "r12", 12 },
180 { "r13", 13 },
181 { "r14", 14 },
182 { "r15", 15 },
183 /* Synonyms (argument and variable registers). */
184 { "a1", 0 },
185 { "a2", 1 },
186 { "a3", 2 },
187 { "a4", 3 },
188 { "v1", 4 },
189 { "v2", 5 },
190 { "v3", 6 },
191 { "v4", 7 },
192 { "v5", 8 },
193 { "v6", 9 },
194 { "v7", 10 },
195 { "v8", 11 },
196 /* Other platform-specific names for r9. */
197 { "sb", 9 },
198 { "tr", 9 },
199 /* Special names. */
200 { "ip", 12 },
201 { "lr", 14 },
202 /* Names used by GCC (not listed in the ARM EABI). */
203 { "sl", 10 },
204 /* A special name from the older ATPCS. */
205 { "wr", 7 },
206 };
207
208 static const char *const arm_register_names[] =
209 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
210 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
211 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
212 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
213 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
214 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
215 "fps", "cpsr" }; /* 24 25 */
216
217 /* Valid register name styles. */
218 static const char **valid_disassembly_styles;
219
220 /* Disassembly style to use. Default to "std" register names. */
221 static const char *disassembly_style;
222
223 /* This is used to keep the bfd arch_info in sync with the disassembly
224 style. */
225 static void set_disassembly_style_sfunc(char *, int,
226 struct cmd_list_element *);
227 static void set_disassembly_style (void);
228
229 static void convert_from_extended (const struct floatformat *, const void *,
230 void *, int);
231 static void convert_to_extended (const struct floatformat *, void *,
232 const void *, int);
233
234 static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
235 struct regcache *regcache,
236 int regnum, gdb_byte *buf);
237 static void arm_neon_quad_write (struct gdbarch *gdbarch,
238 struct regcache *regcache,
239 int regnum, const gdb_byte *buf);
240
241 static CORE_ADDR
242 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
243
244
245 /* get_next_pcs operations. */
246 static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
247 arm_get_next_pcs_read_memory_unsigned_integer,
248 arm_get_next_pcs_syscall_next_pc,
249 arm_get_next_pcs_addr_bits_remove,
250 arm_get_next_pcs_is_thumb,
251 NULL,
252 };
253
254 struct arm_prologue_cache
255 {
256 /* The stack pointer at the time this frame was created; i.e. the
257 caller's stack pointer when this function was called. It is used
258 to identify this frame. */
259 CORE_ADDR prev_sp;
260
261 /* The frame base for this frame is just prev_sp - frame size.
262 FRAMESIZE is the distance from the frame pointer to the
263 initial stack pointer. */
264
265 int framesize;
266
267 /* The register used to hold the frame pointer for this frame. */
268 int framereg;
269
270 /* Saved register offsets. */
271 struct trad_frame_saved_reg *saved_regs;
272 };
273
274 static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
275 CORE_ADDR prologue_start,
276 CORE_ADDR prologue_end,
277 struct arm_prologue_cache *cache);
278
279 /* Architecture version for displaced stepping. This effects the behaviour of
280 certain instructions, and really should not be hard-wired. */
281
282 #define DISPLACED_STEPPING_ARCH_VERSION 5
283
284 /* Set to true if the 32-bit mode is in use. */
285
286 int arm_apcs_32 = 1;
287
288 /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
289
290 int
291 arm_psr_thumb_bit (struct gdbarch *gdbarch)
292 {
293 if (gdbarch_tdep (gdbarch)->is_m)
294 return XPSR_T;
295 else
296 return CPSR_T;
297 }
298
299 /* Determine if the processor is currently executing in Thumb mode. */
300
301 int
302 arm_is_thumb (struct regcache *regcache)
303 {
304 ULONGEST cpsr;
305 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
306
307 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
308
309 return (cpsr & t_bit) != 0;
310 }
311
312 /* Determine if FRAME is executing in Thumb mode. */
313
314 int
315 arm_frame_is_thumb (struct frame_info *frame)
316 {
317 CORE_ADDR cpsr;
318 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
319
320 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
321 directly (from a signal frame or dummy frame) or by interpreting
322 the saved LR (from a prologue or DWARF frame). So consult it and
323 trust the unwinders. */
324 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
325
326 return (cpsr & t_bit) != 0;
327 }
328
329 /* Callback for VEC_lower_bound. */
330
331 static inline int
332 arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
333 const struct arm_mapping_symbol *rhs)
334 {
335 return lhs->value < rhs->value;
336 }
337
338 /* Search for the mapping symbol covering MEMADDR. If one is found,
339 return its type. Otherwise, return 0. If START is non-NULL,
340 set *START to the location of the mapping symbol. */
341
342 static char
343 arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
344 {
345 struct obj_section *sec;
346
347 /* If there are mapping symbols, consult them. */
348 sec = find_pc_section (memaddr);
349 if (sec != NULL)
350 {
351 struct arm_per_objfile *data;
352 VEC(arm_mapping_symbol_s) *map;
353 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
354 0 };
355 unsigned int idx;
356
357 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
358 arm_objfile_data_key);
359 if (data != NULL)
360 {
361 map = data->section_maps[sec->the_bfd_section->index];
362 if (!VEC_empty (arm_mapping_symbol_s, map))
363 {
364 struct arm_mapping_symbol *map_sym;
365
366 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
367 arm_compare_mapping_symbols);
368
369 /* VEC_lower_bound finds the earliest ordered insertion
370 point. If the following symbol starts at this exact
371 address, we use that; otherwise, the preceding
372 mapping symbol covers this address. */
373 if (idx < VEC_length (arm_mapping_symbol_s, map))
374 {
375 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
376 if (map_sym->value == map_key.value)
377 {
378 if (start)
379 *start = map_sym->value + obj_section_addr (sec);
380 return map_sym->type;
381 }
382 }
383
384 if (idx > 0)
385 {
386 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
387 if (start)
388 *start = map_sym->value + obj_section_addr (sec);
389 return map_sym->type;
390 }
391 }
392 }
393 }
394
395 return 0;
396 }
397
398 /* Determine if the program counter specified in MEMADDR is in a Thumb
399 function. This function should be called for addresses unrelated to
400 any executing frame; otherwise, prefer arm_frame_is_thumb. */
401
402 int
403 arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
404 {
405 struct bound_minimal_symbol sym;
406 char type;
407 struct displaced_step_closure* dsc
408 = get_displaced_step_closure_by_addr(memaddr);
409
410 /* If checking the mode of displaced instruction in copy area, the mode
411 should be determined by instruction on the original address. */
412 if (dsc)
413 {
414 if (debug_displaced)
415 fprintf_unfiltered (gdb_stdlog,
416 "displaced: check mode of %.8lx instead of %.8lx\n",
417 (unsigned long) dsc->insn_addr,
418 (unsigned long) memaddr);
419 memaddr = dsc->insn_addr;
420 }
421
422 /* If bit 0 of the address is set, assume this is a Thumb address. */
423 if (IS_THUMB_ADDR (memaddr))
424 return 1;
425
426 /* Respect internal mode override if active. */
427 if (arm_override_mode != -1)
428 return arm_override_mode;
429
430 /* If the user wants to override the symbol table, let him. */
431 if (strcmp (arm_force_mode_string, "arm") == 0)
432 return 0;
433 if (strcmp (arm_force_mode_string, "thumb") == 0)
434 return 1;
435
436 /* ARM v6-M and v7-M are always in Thumb mode. */
437 if (gdbarch_tdep (gdbarch)->is_m)
438 return 1;
439
440 /* If there are mapping symbols, consult them. */
441 type = arm_find_mapping_symbol (memaddr, NULL);
442 if (type)
443 return type == 't';
444
445 /* Thumb functions have a "special" bit set in minimal symbols. */
446 sym = lookup_minimal_symbol_by_pc (memaddr);
447 if (sym.minsym)
448 return (MSYMBOL_IS_SPECIAL (sym.minsym));
449
450 /* If the user wants to override the fallback mode, let them. */
451 if (strcmp (arm_fallback_mode_string, "arm") == 0)
452 return 0;
453 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
454 return 1;
455
456 /* If we couldn't find any symbol, but we're talking to a running
457 target, then trust the current value of $cpsr. This lets
458 "display/i $pc" always show the correct mode (though if there is
459 a symbol table we will not reach here, so it still may not be
460 displayed in the mode it will be executed). */
461 if (target_has_registers)
462 return arm_frame_is_thumb (get_current_frame ());
463
464 /* Otherwise we're out of luck; we assume ARM. */
465 return 0;
466 }
467
468 /* Determine if the address specified equals any of these magic return
469 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
470 architectures.
471
472 From ARMv6-M Reference Manual B1.5.8
473 Table B1-5 Exception return behavior
474
475 EXC_RETURN Return To Return Stack
476 0xFFFFFFF1 Handler mode Main
477 0xFFFFFFF9 Thread mode Main
478 0xFFFFFFFD Thread mode Process
479
480 From ARMv7-M Reference Manual B1.5.8
481 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
482
483 EXC_RETURN Return To Return Stack
484 0xFFFFFFF1 Handler mode Main
485 0xFFFFFFF9 Thread mode Main
486 0xFFFFFFFD Thread mode Process
487
488 Table B1-9 EXC_RETURN definition of exception return behavior, with
489 FP
490
491 EXC_RETURN Return To Return Stack Frame Type
492 0xFFFFFFE1 Handler mode Main Extended
493 0xFFFFFFE9 Thread mode Main Extended
494 0xFFFFFFED Thread mode Process Extended
495 0xFFFFFFF1 Handler mode Main Basic
496 0xFFFFFFF9 Thread mode Main Basic
497 0xFFFFFFFD Thread mode Process Basic
498
499 For more details see "B1.5.8 Exception return behavior"
500 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
501
502 static int
503 arm_m_addr_is_magic (CORE_ADDR addr)
504 {
505 switch (addr)
506 {
507 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
508 the exception return behavior. */
509 case 0xffffffe1:
510 case 0xffffffe9:
511 case 0xffffffed:
512 case 0xfffffff1:
513 case 0xfffffff9:
514 case 0xfffffffd:
515 /* Address is magic. */
516 return 1;
517
518 default:
519 /* Address is not magic. */
520 return 0;
521 }
522 }
523
524 /* Remove useless bits from addresses in a running program. */
525 static CORE_ADDR
526 arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
527 {
528 /* On M-profile devices, do not strip the low bit from EXC_RETURN
529 (the magic exception return address). */
530 if (gdbarch_tdep (gdbarch)->is_m
531 && arm_m_addr_is_magic (val))
532 return val;
533
534 if (arm_apcs_32)
535 return UNMAKE_THUMB_ADDR (val);
536 else
537 return (val & 0x03fffffc);
538 }
539
540 /* Return 1 if PC is the start of a compiler helper function which
541 can be safely ignored during prologue skipping. IS_THUMB is true
542 if the function is known to be a Thumb function due to the way it
543 is being called. */
544 static int
545 skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
546 {
547 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
548 struct bound_minimal_symbol msym;
549
550 msym = lookup_minimal_symbol_by_pc (pc);
551 if (msym.minsym != NULL
552 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
553 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
554 {
555 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
556
557 /* The GNU linker's Thumb call stub to foo is named
558 __foo_from_thumb. */
559 if (strstr (name, "_from_thumb") != NULL)
560 name += 2;
561
562 /* On soft-float targets, __truncdfsf2 is called to convert promoted
563 arguments to their argument types in non-prototyped
564 functions. */
565 if (startswith (name, "__truncdfsf2"))
566 return 1;
567 if (startswith (name, "__aeabi_d2f"))
568 return 1;
569
570 /* Internal functions related to thread-local storage. */
571 if (startswith (name, "__tls_get_addr"))
572 return 1;
573 if (startswith (name, "__aeabi_read_tp"))
574 return 1;
575 }
576 else
577 {
578 /* If we run against a stripped glibc, we may be unable to identify
579 special functions by name. Check for one important case,
580 __aeabi_read_tp, by comparing the *code* against the default
581 implementation (this is hand-written ARM assembler in glibc). */
582
583 if (!is_thumb
584 && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
585 == 0xe3e00a0f /* mov r0, #0xffff0fff */
586 && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
587 == 0xe240f01f) /* sub pc, r0, #31 */
588 return 1;
589 }
590
591 return 0;
592 }
593
594 /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
595 the first 16-bit of instruction, and INSN2 is the second 16-bit of
596 instruction. */
597 #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
598 ((bits ((insn1), 0, 3) << 12) \
599 | (bits ((insn1), 10, 10) << 11) \
600 | (bits ((insn2), 12, 14) << 8) \
601 | bits ((insn2), 0, 7))
602
603 /* Extract the immediate from instruction movw/movt of encoding A. INSN is
604 the 32-bit instruction. */
605 #define EXTRACT_MOVW_MOVT_IMM_A(insn) \
606 ((bits ((insn), 16, 19) << 12) \
607 | bits ((insn), 0, 11))
608
609 /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
610
611 static unsigned int
612 thumb_expand_immediate (unsigned int imm)
613 {
614 unsigned int count = imm >> 7;
615
616 if (count < 8)
617 switch (count / 2)
618 {
619 case 0:
620 return imm & 0xff;
621 case 1:
622 return (imm & 0xff) | ((imm & 0xff) << 16);
623 case 2:
624 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
625 case 3:
626 return (imm & 0xff) | ((imm & 0xff) << 8)
627 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
628 }
629
630 return (0x80 | (imm & 0x7f)) << (32 - count);
631 }
632
633 /* Return 1 if the 16-bit Thumb instruction INSN restores SP in
634 epilogue, 0 otherwise. */
635
636 static int
637 thumb_instruction_restores_sp (unsigned short insn)
638 {
639 return (insn == 0x46bd /* mov sp, r7 */
640 || (insn & 0xff80) == 0xb000 /* add sp, imm */
641 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
642 }
643
644 /* Analyze a Thumb prologue, looking for a recognizable stack frame
645 and frame pointer. Scan until we encounter a store that could
646 clobber the stack frame unexpectedly, or an unknown instruction.
647 Return the last address which is definitely safe to skip for an
648 initial breakpoint. */
649
650 static CORE_ADDR
651 thumb_analyze_prologue (struct gdbarch *gdbarch,
652 CORE_ADDR start, CORE_ADDR limit,
653 struct arm_prologue_cache *cache)
654 {
655 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
656 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
657 int i;
658 pv_t regs[16];
659 struct pv_area *stack;
660 struct cleanup *back_to;
661 CORE_ADDR offset;
662 CORE_ADDR unrecognized_pc = 0;
663
664 for (i = 0; i < 16; i++)
665 regs[i] = pv_register (i, 0);
666 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
667 back_to = make_cleanup_free_pv_area (stack);
668
669 while (start < limit)
670 {
671 unsigned short insn;
672
673 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
674
675 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
676 {
677 int regno;
678 int mask;
679
680 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
681 break;
682
683 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
684 whether to save LR (R14). */
685 mask = (insn & 0xff) | ((insn & 0x100) << 6);
686
687 /* Calculate offsets of saved R0-R7 and LR. */
688 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
689 if (mask & (1 << regno))
690 {
691 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
692 -4);
693 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
694 }
695 }
696 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
697 {
698 offset = (insn & 0x7f) << 2; /* get scaled offset */
699 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
700 -offset);
701 }
702 else if (thumb_instruction_restores_sp (insn))
703 {
704 /* Don't scan past the epilogue. */
705 break;
706 }
707 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
708 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
709 (insn & 0xff) << 2);
710 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
711 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
712 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
713 bits (insn, 6, 8));
714 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
715 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
716 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
717 bits (insn, 0, 7));
718 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
719 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
720 && pv_is_constant (regs[bits (insn, 3, 5)]))
721 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
722 regs[bits (insn, 6, 8)]);
723 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
724 && pv_is_constant (regs[bits (insn, 3, 6)]))
725 {
726 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
727 int rm = bits (insn, 3, 6);
728 regs[rd] = pv_add (regs[rd], regs[rm]);
729 }
730 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
731 {
732 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
733 int src_reg = (insn & 0x78) >> 3;
734 regs[dst_reg] = regs[src_reg];
735 }
736 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
737 {
738 /* Handle stores to the stack. Normally pushes are used,
739 but with GCC -mtpcs-frame, there may be other stores
740 in the prologue to create the frame. */
741 int regno = (insn >> 8) & 0x7;
742 pv_t addr;
743
744 offset = (insn & 0xff) << 2;
745 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
746
747 if (pv_area_store_would_trash (stack, addr))
748 break;
749
750 pv_area_store (stack, addr, 4, regs[regno]);
751 }
752 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
753 {
754 int rd = bits (insn, 0, 2);
755 int rn = bits (insn, 3, 5);
756 pv_t addr;
757
758 offset = bits (insn, 6, 10) << 2;
759 addr = pv_add_constant (regs[rn], offset);
760
761 if (pv_area_store_would_trash (stack, addr))
762 break;
763
764 pv_area_store (stack, addr, 4, regs[rd]);
765 }
766 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
767 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
768 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
769 /* Ignore stores of argument registers to the stack. */
770 ;
771 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
772 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
773 /* Ignore block loads from the stack, potentially copying
774 parameters from memory. */
775 ;
776 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
777 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
778 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
779 /* Similarly ignore single loads from the stack. */
780 ;
781 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
782 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
783 /* Skip register copies, i.e. saves to another register
784 instead of the stack. */
785 ;
786 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
787 /* Recognize constant loads; even with small stacks these are necessary
788 on Thumb. */
789 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
790 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
791 {
792 /* Constant pool loads, for the same reason. */
793 unsigned int constant;
794 CORE_ADDR loc;
795
796 loc = start + 4 + bits (insn, 0, 7) * 4;
797 constant = read_memory_unsigned_integer (loc, 4, byte_order);
798 regs[bits (insn, 8, 10)] = pv_constant (constant);
799 }
800 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
801 {
802 unsigned short inst2;
803
804 inst2 = read_memory_unsigned_integer (start + 2, 2,
805 byte_order_for_code);
806
807 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
808 {
809 /* BL, BLX. Allow some special function calls when
810 skipping the prologue; GCC generates these before
811 storing arguments to the stack. */
812 CORE_ADDR nextpc;
813 int j1, j2, imm1, imm2;
814
815 imm1 = sbits (insn, 0, 10);
816 imm2 = bits (inst2, 0, 10);
817 j1 = bit (inst2, 13);
818 j2 = bit (inst2, 11);
819
820 offset = ((imm1 << 12) + (imm2 << 1));
821 offset ^= ((!j2) << 22) | ((!j1) << 23);
822
823 nextpc = start + 4 + offset;
824 /* For BLX make sure to clear the low bits. */
825 if (bit (inst2, 12) == 0)
826 nextpc = nextpc & 0xfffffffc;
827
828 if (!skip_prologue_function (gdbarch, nextpc,
829 bit (inst2, 12) != 0))
830 break;
831 }
832
833 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
834 { registers } */
835 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
836 {
837 pv_t addr = regs[bits (insn, 0, 3)];
838 int regno;
839
840 if (pv_area_store_would_trash (stack, addr))
841 break;
842
843 /* Calculate offsets of saved registers. */
844 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
845 if (inst2 & (1 << regno))
846 {
847 addr = pv_add_constant (addr, -4);
848 pv_area_store (stack, addr, 4, regs[regno]);
849 }
850
851 if (insn & 0x0020)
852 regs[bits (insn, 0, 3)] = addr;
853 }
854
855 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
856 [Rn, #+/-imm]{!} */
857 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
858 {
859 int regno1 = bits (inst2, 12, 15);
860 int regno2 = bits (inst2, 8, 11);
861 pv_t addr = regs[bits (insn, 0, 3)];
862
863 offset = inst2 & 0xff;
864 if (insn & 0x0080)
865 addr = pv_add_constant (addr, offset);
866 else
867 addr = pv_add_constant (addr, -offset);
868
869 if (pv_area_store_would_trash (stack, addr))
870 break;
871
872 pv_area_store (stack, addr, 4, regs[regno1]);
873 pv_area_store (stack, pv_add_constant (addr, 4),
874 4, regs[regno2]);
875
876 if (insn & 0x0020)
877 regs[bits (insn, 0, 3)] = addr;
878 }
879
880 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
881 && (inst2 & 0x0c00) == 0x0c00
882 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
883 {
884 int regno = bits (inst2, 12, 15);
885 pv_t addr = regs[bits (insn, 0, 3)];
886
887 offset = inst2 & 0xff;
888 if (inst2 & 0x0200)
889 addr = pv_add_constant (addr, offset);
890 else
891 addr = pv_add_constant (addr, -offset);
892
893 if (pv_area_store_would_trash (stack, addr))
894 break;
895
896 pv_area_store (stack, addr, 4, regs[regno]);
897
898 if (inst2 & 0x0100)
899 regs[bits (insn, 0, 3)] = addr;
900 }
901
902 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
903 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
904 {
905 int regno = bits (inst2, 12, 15);
906 pv_t addr;
907
908 offset = inst2 & 0xfff;
909 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
910
911 if (pv_area_store_would_trash (stack, addr))
912 break;
913
914 pv_area_store (stack, addr, 4, regs[regno]);
915 }
916
917 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
918 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
919 /* Ignore stores of argument registers to the stack. */
920 ;
921
922 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
923 && (inst2 & 0x0d00) == 0x0c00
924 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
925 /* Ignore stores of argument registers to the stack. */
926 ;
927
928 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
929 { registers } */
930 && (inst2 & 0x8000) == 0x0000
931 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
932 /* Ignore block loads from the stack, potentially copying
933 parameters from memory. */
934 ;
935
936 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
937 [Rn, #+/-imm] */
938 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
939 /* Similarly ignore dual loads from the stack. */
940 ;
941
942 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
943 && (inst2 & 0x0d00) == 0x0c00
944 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
945 /* Similarly ignore single loads from the stack. */
946 ;
947
948 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
949 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
950 /* Similarly ignore single loads from the stack. */
951 ;
952
953 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
954 && (inst2 & 0x8000) == 0x0000)
955 {
956 unsigned int imm = ((bits (insn, 10, 10) << 11)
957 | (bits (inst2, 12, 14) << 8)
958 | bits (inst2, 0, 7));
959
960 regs[bits (inst2, 8, 11)]
961 = pv_add_constant (regs[bits (insn, 0, 3)],
962 thumb_expand_immediate (imm));
963 }
964
965 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
966 && (inst2 & 0x8000) == 0x0000)
967 {
968 unsigned int imm = ((bits (insn, 10, 10) << 11)
969 | (bits (inst2, 12, 14) << 8)
970 | bits (inst2, 0, 7));
971
972 regs[bits (inst2, 8, 11)]
973 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
974 }
975
976 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
977 && (inst2 & 0x8000) == 0x0000)
978 {
979 unsigned int imm = ((bits (insn, 10, 10) << 11)
980 | (bits (inst2, 12, 14) << 8)
981 | bits (inst2, 0, 7));
982
983 regs[bits (inst2, 8, 11)]
984 = pv_add_constant (regs[bits (insn, 0, 3)],
985 - (CORE_ADDR) thumb_expand_immediate (imm));
986 }
987
988 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
989 && (inst2 & 0x8000) == 0x0000)
990 {
991 unsigned int imm = ((bits (insn, 10, 10) << 11)
992 | (bits (inst2, 12, 14) << 8)
993 | bits (inst2, 0, 7));
994
995 regs[bits (inst2, 8, 11)]
996 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
997 }
998
999 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
1000 {
1001 unsigned int imm = ((bits (insn, 10, 10) << 11)
1002 | (bits (inst2, 12, 14) << 8)
1003 | bits (inst2, 0, 7));
1004
1005 regs[bits (inst2, 8, 11)]
1006 = pv_constant (thumb_expand_immediate (imm));
1007 }
1008
1009 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1010 {
1011 unsigned int imm
1012 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
1013
1014 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1015 }
1016
1017 else if (insn == 0xea5f /* mov.w Rd,Rm */
1018 && (inst2 & 0xf0f0) == 0)
1019 {
1020 int dst_reg = (inst2 & 0x0f00) >> 8;
1021 int src_reg = inst2 & 0xf;
1022 regs[dst_reg] = regs[src_reg];
1023 }
1024
1025 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1026 {
1027 /* Constant pool loads. */
1028 unsigned int constant;
1029 CORE_ADDR loc;
1030
1031 offset = bits (inst2, 0, 11);
1032 if (insn & 0x0080)
1033 loc = start + 4 + offset;
1034 else
1035 loc = start + 4 - offset;
1036
1037 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1038 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1039 }
1040
1041 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1042 {
1043 /* Constant pool loads. */
1044 unsigned int constant;
1045 CORE_ADDR loc;
1046
1047 offset = bits (inst2, 0, 7) << 2;
1048 if (insn & 0x0080)
1049 loc = start + 4 + offset;
1050 else
1051 loc = start + 4 - offset;
1052
1053 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1054 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1055
1056 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1057 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1058 }
1059
1060 else if (thumb2_instruction_changes_pc (insn, inst2))
1061 {
1062 /* Don't scan past anything that might change control flow. */
1063 break;
1064 }
1065 else
1066 {
1067 /* The optimizer might shove anything into the prologue,
1068 so we just skip what we don't recognize. */
1069 unrecognized_pc = start;
1070 }
1071
1072 start += 2;
1073 }
1074 else if (thumb_instruction_changes_pc (insn))
1075 {
1076 /* Don't scan past anything that might change control flow. */
1077 break;
1078 }
1079 else
1080 {
1081 /* The optimizer might shove anything into the prologue,
1082 so we just skip what we don't recognize. */
1083 unrecognized_pc = start;
1084 }
1085
1086 start += 2;
1087 }
1088
1089 if (arm_debug)
1090 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1091 paddress (gdbarch, start));
1092
1093 if (unrecognized_pc == 0)
1094 unrecognized_pc = start;
1095
1096 if (cache == NULL)
1097 {
1098 do_cleanups (back_to);
1099 return unrecognized_pc;
1100 }
1101
1102 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1103 {
1104 /* Frame pointer is fp. Frame size is constant. */
1105 cache->framereg = ARM_FP_REGNUM;
1106 cache->framesize = -regs[ARM_FP_REGNUM].k;
1107 }
1108 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1109 {
1110 /* Frame pointer is r7. Frame size is constant. */
1111 cache->framereg = THUMB_FP_REGNUM;
1112 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1113 }
1114 else
1115 {
1116 /* Try the stack pointer... this is a bit desperate. */
1117 cache->framereg = ARM_SP_REGNUM;
1118 cache->framesize = -regs[ARM_SP_REGNUM].k;
1119 }
1120
1121 for (i = 0; i < 16; i++)
1122 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1123 cache->saved_regs[i].addr = offset;
1124
1125 do_cleanups (back_to);
1126 return unrecognized_pc;
1127 }
1128
1129
1130 /* Try to analyze the instructions starting from PC, which load symbol
1131 __stack_chk_guard. Return the address of instruction after loading this
1132 symbol, set the dest register number to *BASEREG, and set the size of
1133 instructions for loading symbol in OFFSET. Return 0 if instructions are
1134 not recognized. */
1135
1136 static CORE_ADDR
1137 arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1138 unsigned int *destreg, int *offset)
1139 {
1140 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1141 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1142 unsigned int low, high, address;
1143
1144 address = 0;
1145 if (is_thumb)
1146 {
1147 unsigned short insn1
1148 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1149
1150 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1151 {
1152 *destreg = bits (insn1, 8, 10);
1153 *offset = 2;
1154 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1155 address = read_memory_unsigned_integer (address, 4,
1156 byte_order_for_code);
1157 }
1158 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1159 {
1160 unsigned short insn2
1161 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1162
1163 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1164
1165 insn1
1166 = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
1167 insn2
1168 = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
1169
1170 /* movt Rd, #const */
1171 if ((insn1 & 0xfbc0) == 0xf2c0)
1172 {
1173 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1174 *destreg = bits (insn2, 8, 11);
1175 *offset = 8;
1176 address = (high << 16 | low);
1177 }
1178 }
1179 }
1180 else
1181 {
1182 unsigned int insn
1183 = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1184
1185 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
1186 {
1187 address = bits (insn, 0, 11) + pc + 8;
1188 address = read_memory_unsigned_integer (address, 4,
1189 byte_order_for_code);
1190
1191 *destreg = bits (insn, 12, 15);
1192 *offset = 4;
1193 }
1194 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1195 {
1196 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1197
1198 insn
1199 = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
1200
1201 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1202 {
1203 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1204 *destreg = bits (insn, 12, 15);
1205 *offset = 8;
1206 address = (high << 16 | low);
1207 }
1208 }
1209 }
1210
1211 return address;
1212 }
1213
1214 /* Try to skip a sequence of instructions used for stack protector. If PC
1215 points to the first instruction of this sequence, return the address of
1216 first instruction after this sequence, otherwise, return original PC.
1217
1218 On arm, this sequence of instructions is composed of mainly three steps,
1219 Step 1: load symbol __stack_chk_guard,
1220 Step 2: load from address of __stack_chk_guard,
1221 Step 3: store it to somewhere else.
1222
1223 Usually, instructions on step 2 and step 3 are the same on various ARM
1224 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1225 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1226 instructions in step 1 vary from different ARM architectures. On ARMv7,
1227 they are,
1228
1229 movw Rn, #:lower16:__stack_chk_guard
1230 movt Rn, #:upper16:__stack_chk_guard
1231
1232 On ARMv5t, it is,
1233
1234 ldr Rn, .Label
1235 ....
1236 .Lable:
1237 .word __stack_chk_guard
1238
1239 Since ldr/str is a very popular instruction, we can't use them as
1240 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1241 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1242 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1243
1244 static CORE_ADDR
1245 arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1246 {
1247 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1248 unsigned int basereg;
1249 struct bound_minimal_symbol stack_chk_guard;
1250 int offset;
1251 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1252 CORE_ADDR addr;
1253
1254 /* Try to parse the instructions in Step 1. */
1255 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1256 &basereg, &offset);
1257 if (!addr)
1258 return pc;
1259
1260 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1261 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1262 Otherwise, this sequence cannot be for stack protector. */
1263 if (stack_chk_guard.minsym == NULL
1264 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
1265 return pc;
1266
1267 if (is_thumb)
1268 {
1269 unsigned int destreg;
1270 unsigned short insn
1271 = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
1272
1273 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1274 if ((insn & 0xf800) != 0x6800)
1275 return pc;
1276 if (bits (insn, 3, 5) != basereg)
1277 return pc;
1278 destreg = bits (insn, 0, 2);
1279
1280 insn = read_memory_unsigned_integer (pc + offset + 2, 2,
1281 byte_order_for_code);
1282 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1283 if ((insn & 0xf800) != 0x6000)
1284 return pc;
1285 if (destreg != bits (insn, 0, 2))
1286 return pc;
1287 }
1288 else
1289 {
1290 unsigned int destreg;
1291 unsigned int insn
1292 = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
1293
1294 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1295 if ((insn & 0x0e500000) != 0x04100000)
1296 return pc;
1297 if (bits (insn, 16, 19) != basereg)
1298 return pc;
1299 destreg = bits (insn, 12, 15);
1300 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1301 insn = read_memory_unsigned_integer (pc + offset + 4,
1302 4, byte_order_for_code);
1303 if ((insn & 0x0e500000) != 0x04000000)
1304 return pc;
1305 if (bits (insn, 12, 15) != destreg)
1306 return pc;
1307 }
1308 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1309 on arm. */
1310 if (is_thumb)
1311 return pc + offset + 4;
1312 else
1313 return pc + offset + 8;
1314 }
1315
1316 /* Advance the PC across any function entry prologue instructions to
1317 reach some "real" code.
1318
1319 The APCS (ARM Procedure Call Standard) defines the following
1320 prologue:
1321
1322 mov ip, sp
1323 [stmfd sp!, {a1,a2,a3,a4}]
1324 stmfd sp!, {...,fp,ip,lr,pc}
1325 [stfe f7, [sp, #-12]!]
1326 [stfe f6, [sp, #-12]!]
1327 [stfe f5, [sp, #-12]!]
1328 [stfe f4, [sp, #-12]!]
1329 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
1330
1331 static CORE_ADDR
1332 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1333 {
1334 CORE_ADDR func_addr, limit_pc;
1335
1336 /* See if we can determine the end of the prologue via the symbol table.
1337 If so, then return either PC, or the PC after the prologue, whichever
1338 is greater. */
1339 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1340 {
1341 CORE_ADDR post_prologue_pc
1342 = skip_prologue_using_sal (gdbarch, func_addr);
1343 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1344
1345 if (post_prologue_pc)
1346 post_prologue_pc
1347 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1348
1349
1350 /* GCC always emits a line note before the prologue and another
1351 one after, even if the two are at the same address or on the
1352 same line. Take advantage of this so that we do not need to
1353 know every instruction that might appear in the prologue. We
1354 will have producer information for most binaries; if it is
1355 missing (e.g. for -gstabs), assuming the GNU tools. */
1356 if (post_prologue_pc
1357 && (cust == NULL
1358 || COMPUNIT_PRODUCER (cust) == NULL
1359 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1360 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1361 return post_prologue_pc;
1362
1363 if (post_prologue_pc != 0)
1364 {
1365 CORE_ADDR analyzed_limit;
1366
1367 /* For non-GCC compilers, make sure the entire line is an
1368 acceptable prologue; GDB will round this function's
1369 return value up to the end of the following line so we
1370 can not skip just part of a line (and we do not want to).
1371
1372 RealView does not treat the prologue specially, but does
1373 associate prologue code with the opening brace; so this
1374 lets us skip the first line if we think it is the opening
1375 brace. */
1376 if (arm_pc_is_thumb (gdbarch, func_addr))
1377 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1378 post_prologue_pc, NULL);
1379 else
1380 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1381 post_prologue_pc, NULL);
1382
1383 if (analyzed_limit != post_prologue_pc)
1384 return func_addr;
1385
1386 return post_prologue_pc;
1387 }
1388 }
1389
1390 /* Can't determine prologue from the symbol table, need to examine
1391 instructions. */
1392
1393 /* Find an upper limit on the function prologue using the debug
1394 information. If the debug information could not be used to provide
1395 that bound, then use an arbitrary large number as the upper bound. */
1396 /* Like arm_scan_prologue, stop no later than pc + 64. */
1397 limit_pc = skip_prologue_using_sal (gdbarch, pc);
1398 if (limit_pc == 0)
1399 limit_pc = pc + 64; /* Magic. */
1400
1401
1402 /* Check if this is Thumb code. */
1403 if (arm_pc_is_thumb (gdbarch, pc))
1404 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1405 else
1406 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1407 }
1408
1409 /* *INDENT-OFF* */
1410 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1411 This function decodes a Thumb function prologue to determine:
1412 1) the size of the stack frame
1413 2) which registers are saved on it
1414 3) the offsets of saved regs
1415 4) the offset from the stack pointer to the frame pointer
1416
1417 A typical Thumb function prologue would create this stack frame
1418 (offsets relative to FP)
1419 old SP -> 24 stack parameters
1420 20 LR
1421 16 R7
1422 R7 -> 0 local variables (16 bytes)
1423 SP -> -12 additional stack space (12 bytes)
1424 The frame size would thus be 36 bytes, and the frame offset would be
1425 12 bytes. The frame register is R7.
1426
1427 The comments for thumb_skip_prolog() describe the algorithm we use
1428 to detect the end of the prolog. */
1429 /* *INDENT-ON* */
1430
1431 static void
1432 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
1433 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
1434 {
1435 CORE_ADDR prologue_start;
1436 CORE_ADDR prologue_end;
1437
1438 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1439 &prologue_end))
1440 {
1441 /* See comment in arm_scan_prologue for an explanation of
1442 this heuristics. */
1443 if (prologue_end > prologue_start + 64)
1444 {
1445 prologue_end = prologue_start + 64;
1446 }
1447 }
1448 else
1449 /* We're in the boondocks: we have no idea where the start of the
1450 function is. */
1451 return;
1452
1453 prologue_end = std::min (prologue_end, prev_pc);
1454
1455 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1456 }
1457
1458 /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1459 otherwise. */
1460
1461 static int
1462 arm_instruction_restores_sp (unsigned int insn)
1463 {
1464 if (bits (insn, 28, 31) != INST_NV)
1465 {
1466 if ((insn & 0x0df0f000) == 0x0080d000
1467 /* ADD SP (register or immediate). */
1468 || (insn & 0x0df0f000) == 0x0040d000
1469 /* SUB SP (register or immediate). */
1470 || (insn & 0x0ffffff0) == 0x01a0d000
1471 /* MOV SP. */
1472 || (insn & 0x0fff0000) == 0x08bd0000
1473 /* POP (LDMIA). */
1474 || (insn & 0x0fff0000) == 0x049d0000)
1475 /* POP of a single register. */
1476 return 1;
1477 }
1478
1479 return 0;
1480 }
1481
1482 /* Analyze an ARM mode prologue starting at PROLOGUE_START and
1483 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1484 fill it in. Return the first address not recognized as a prologue
1485 instruction.
1486
1487 We recognize all the instructions typically found in ARM prologues,
1488 plus harmless instructions which can be skipped (either for analysis
1489 purposes, or a more restrictive set that can be skipped when finding
1490 the end of the prologue). */
1491
1492 static CORE_ADDR
1493 arm_analyze_prologue (struct gdbarch *gdbarch,
1494 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1495 struct arm_prologue_cache *cache)
1496 {
1497 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1498 int regno;
1499 CORE_ADDR offset, current_pc;
1500 pv_t regs[ARM_FPS_REGNUM];
1501 struct pv_area *stack;
1502 struct cleanup *back_to;
1503 CORE_ADDR unrecognized_pc = 0;
1504
1505 /* Search the prologue looking for instructions that set up the
1506 frame pointer, adjust the stack pointer, and save registers.
1507
1508 Be careful, however, and if it doesn't look like a prologue,
1509 don't try to scan it. If, for instance, a frameless function
1510 begins with stmfd sp!, then we will tell ourselves there is
1511 a frame, which will confuse stack traceback, as well as "finish"
1512 and other operations that rely on a knowledge of the stack
1513 traceback. */
1514
1515 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1516 regs[regno] = pv_register (regno, 0);
1517 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1518 back_to = make_cleanup_free_pv_area (stack);
1519
1520 for (current_pc = prologue_start;
1521 current_pc < prologue_end;
1522 current_pc += 4)
1523 {
1524 unsigned int insn
1525 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
1526
1527 if (insn == 0xe1a0c00d) /* mov ip, sp */
1528 {
1529 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
1530 continue;
1531 }
1532 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1533 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1534 {
1535 unsigned imm = insn & 0xff; /* immediate value */
1536 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1537 int rd = bits (insn, 12, 15);
1538 imm = (imm >> rot) | (imm << (32 - rot));
1539 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
1540 continue;
1541 }
1542 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1543 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1544 {
1545 unsigned imm = insn & 0xff; /* immediate value */
1546 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1547 int rd = bits (insn, 12, 15);
1548 imm = (imm >> rot) | (imm << (32 - rot));
1549 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
1550 continue;
1551 }
1552 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1553 [sp, #-4]! */
1554 {
1555 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1556 break;
1557 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1558 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1559 regs[bits (insn, 12, 15)]);
1560 continue;
1561 }
1562 else if ((insn & 0xffff0000) == 0xe92d0000)
1563 /* stmfd sp!, {..., fp, ip, lr, pc}
1564 or
1565 stmfd sp!, {a1, a2, a3, a4} */
1566 {
1567 int mask = insn & 0xffff;
1568
1569 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1570 break;
1571
1572 /* Calculate offsets of saved registers. */
1573 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
1574 if (mask & (1 << regno))
1575 {
1576 regs[ARM_SP_REGNUM]
1577 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1578 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
1579 }
1580 }
1581 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1582 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
1583 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
1584 {
1585 /* No need to add this to saved_regs -- it's just an arg reg. */
1586 continue;
1587 }
1588 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1589 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
1590 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
1591 {
1592 /* No need to add this to saved_regs -- it's just an arg reg. */
1593 continue;
1594 }
1595 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1596 { registers } */
1597 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1598 {
1599 /* No need to add this to saved_regs -- it's just arg regs. */
1600 continue;
1601 }
1602 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1603 {
1604 unsigned imm = insn & 0xff; /* immediate value */
1605 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1606 imm = (imm >> rot) | (imm << (32 - rot));
1607 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
1608 }
1609 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1610 {
1611 unsigned imm = insn & 0xff; /* immediate value */
1612 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1613 imm = (imm >> rot) | (imm << (32 - rot));
1614 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
1615 }
1616 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1617 [sp, -#c]! */
1618 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1619 {
1620 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1621 break;
1622
1623 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1624 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
1625 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
1626 }
1627 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1628 [sp!] */
1629 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1630 {
1631 int n_saved_fp_regs;
1632 unsigned int fp_start_reg, fp_bound_reg;
1633
1634 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1635 break;
1636
1637 if ((insn & 0x800) == 0x800) /* N0 is set */
1638 {
1639 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1640 n_saved_fp_regs = 3;
1641 else
1642 n_saved_fp_regs = 1;
1643 }
1644 else
1645 {
1646 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1647 n_saved_fp_regs = 2;
1648 else
1649 n_saved_fp_regs = 4;
1650 }
1651
1652 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
1653 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1654 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
1655 {
1656 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1657 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1658 regs[fp_start_reg++]);
1659 }
1660 }
1661 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1662 {
1663 /* Allow some special function calls when skipping the
1664 prologue; GCC generates these before storing arguments to
1665 the stack. */
1666 CORE_ADDR dest = BranchDest (current_pc, insn);
1667
1668 if (skip_prologue_function (gdbarch, dest, 0))
1669 continue;
1670 else
1671 break;
1672 }
1673 else if ((insn & 0xf0000000) != 0xe0000000)
1674 break; /* Condition not true, exit early. */
1675 else if (arm_instruction_changes_pc (insn))
1676 /* Don't scan past anything that might change control flow. */
1677 break;
1678 else if (arm_instruction_restores_sp (insn))
1679 {
1680 /* Don't scan past the epilogue. */
1681 break;
1682 }
1683 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1684 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1685 /* Ignore block loads from the stack, potentially copying
1686 parameters from memory. */
1687 continue;
1688 else if ((insn & 0xfc500000) == 0xe4100000
1689 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1690 /* Similarly ignore single loads from the stack. */
1691 continue;
1692 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1693 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1694 register instead of the stack. */
1695 continue;
1696 else
1697 {
1698 /* The optimizer might shove anything into the prologue, if
1699 we build up cache (cache != NULL) from scanning prologue,
1700 we just skip what we don't recognize and scan further to
1701 make cache as complete as possible. However, if we skip
1702 prologue, we'll stop immediately on unrecognized
1703 instruction. */
1704 unrecognized_pc = current_pc;
1705 if (cache != NULL)
1706 continue;
1707 else
1708 break;
1709 }
1710 }
1711
1712 if (unrecognized_pc == 0)
1713 unrecognized_pc = current_pc;
1714
1715 if (cache)
1716 {
1717 int framereg, framesize;
1718
1719 /* The frame size is just the distance from the frame register
1720 to the original stack pointer. */
1721 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1722 {
1723 /* Frame pointer is fp. */
1724 framereg = ARM_FP_REGNUM;
1725 framesize = -regs[ARM_FP_REGNUM].k;
1726 }
1727 else
1728 {
1729 /* Try the stack pointer... this is a bit desperate. */
1730 framereg = ARM_SP_REGNUM;
1731 framesize = -regs[ARM_SP_REGNUM].k;
1732 }
1733
1734 cache->framereg = framereg;
1735 cache->framesize = framesize;
1736
1737 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1738 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1739 cache->saved_regs[regno].addr = offset;
1740 }
1741
1742 if (arm_debug)
1743 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1744 paddress (gdbarch, unrecognized_pc));
1745
1746 do_cleanups (back_to);
1747 return unrecognized_pc;
1748 }
1749
1750 static void
1751 arm_scan_prologue (struct frame_info *this_frame,
1752 struct arm_prologue_cache *cache)
1753 {
1754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1755 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1756 CORE_ADDR prologue_start, prologue_end;
1757 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1758 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1759
1760 /* Assume there is no frame until proven otherwise. */
1761 cache->framereg = ARM_SP_REGNUM;
1762 cache->framesize = 0;
1763
1764 /* Check for Thumb prologue. */
1765 if (arm_frame_is_thumb (this_frame))
1766 {
1767 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1768 return;
1769 }
1770
1771 /* Find the function prologue. If we can't find the function in
1772 the symbol table, peek in the stack frame to find the PC. */
1773 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1774 &prologue_end))
1775 {
1776 /* One way to find the end of the prologue (which works well
1777 for unoptimized code) is to do the following:
1778
1779 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1780
1781 if (sal.line == 0)
1782 prologue_end = prev_pc;
1783 else if (sal.end < prologue_end)
1784 prologue_end = sal.end;
1785
1786 This mechanism is very accurate so long as the optimizer
1787 doesn't move any instructions from the function body into the
1788 prologue. If this happens, sal.end will be the last
1789 instruction in the first hunk of prologue code just before
1790 the first instruction that the scheduler has moved from
1791 the body to the prologue.
1792
1793 In order to make sure that we scan all of the prologue
1794 instructions, we use a slightly less accurate mechanism which
1795 may scan more than necessary. To help compensate for this
1796 lack of accuracy, the prologue scanning loop below contains
1797 several clauses which'll cause the loop to terminate early if
1798 an implausible prologue instruction is encountered.
1799
1800 The expression
1801
1802 prologue_start + 64
1803
1804 is a suitable endpoint since it accounts for the largest
1805 possible prologue plus up to five instructions inserted by
1806 the scheduler. */
1807
1808 if (prologue_end > prologue_start + 64)
1809 {
1810 prologue_end = prologue_start + 64; /* See above. */
1811 }
1812 }
1813 else
1814 {
1815 /* We have no symbol information. Our only option is to assume this
1816 function has a standard stack frame and the normal frame register.
1817 Then, we can find the value of our frame pointer on entrance to
1818 the callee (or at the present moment if this is the innermost frame).
1819 The value stored there should be the address of the stmfd + 8. */
1820 CORE_ADDR frame_loc;
1821 LONGEST return_value;
1822
1823 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1824 if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
1825 return;
1826 else
1827 {
1828 prologue_start = gdbarch_addr_bits_remove
1829 (gdbarch, return_value) - 8;
1830 prologue_end = prologue_start + 64; /* See above. */
1831 }
1832 }
1833
1834 if (prev_pc < prologue_end)
1835 prologue_end = prev_pc;
1836
1837 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1838 }
1839
1840 static struct arm_prologue_cache *
1841 arm_make_prologue_cache (struct frame_info *this_frame)
1842 {
1843 int reg;
1844 struct arm_prologue_cache *cache;
1845 CORE_ADDR unwound_fp;
1846
1847 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1848 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1849
1850 arm_scan_prologue (this_frame, cache);
1851
1852 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1853 if (unwound_fp == 0)
1854 return cache;
1855
1856 cache->prev_sp = unwound_fp + cache->framesize;
1857
1858 /* Calculate actual addresses of saved registers using offsets
1859 determined by arm_scan_prologue. */
1860 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1861 if (trad_frame_addr_p (cache->saved_regs, reg))
1862 cache->saved_regs[reg].addr += cache->prev_sp;
1863
1864 return cache;
1865 }
1866
1867 /* Implementation of the stop_reason hook for arm_prologue frames. */
1868
1869 static enum unwind_stop_reason
1870 arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1871 void **this_cache)
1872 {
1873 struct arm_prologue_cache *cache;
1874 CORE_ADDR pc;
1875
1876 if (*this_cache == NULL)
1877 *this_cache = arm_make_prologue_cache (this_frame);
1878 cache = (struct arm_prologue_cache *) *this_cache;
1879
1880 /* This is meant to halt the backtrace at "_start". */
1881 pc = get_frame_pc (this_frame);
1882 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1883 return UNWIND_OUTERMOST;
1884
1885 /* If we've hit a wall, stop. */
1886 if (cache->prev_sp == 0)
1887 return UNWIND_OUTERMOST;
1888
1889 return UNWIND_NO_REASON;
1890 }
1891
1892 /* Our frame ID for a normal frame is the current function's starting PC
1893 and the caller's SP when we were called. */
1894
1895 static void
1896 arm_prologue_this_id (struct frame_info *this_frame,
1897 void **this_cache,
1898 struct frame_id *this_id)
1899 {
1900 struct arm_prologue_cache *cache;
1901 struct frame_id id;
1902 CORE_ADDR pc, func;
1903
1904 if (*this_cache == NULL)
1905 *this_cache = arm_make_prologue_cache (this_frame);
1906 cache = (struct arm_prologue_cache *) *this_cache;
1907
1908 /* Use function start address as part of the frame ID. If we cannot
1909 identify the start address (due to missing symbol information),
1910 fall back to just using the current PC. */
1911 pc = get_frame_pc (this_frame);
1912 func = get_frame_func (this_frame);
1913 if (!func)
1914 func = pc;
1915
1916 id = frame_id_build (cache->prev_sp, func);
1917 *this_id = id;
1918 }
1919
1920 static struct value *
1921 arm_prologue_prev_register (struct frame_info *this_frame,
1922 void **this_cache,
1923 int prev_regnum)
1924 {
1925 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1926 struct arm_prologue_cache *cache;
1927
1928 if (*this_cache == NULL)
1929 *this_cache = arm_make_prologue_cache (this_frame);
1930 cache = (struct arm_prologue_cache *) *this_cache;
1931
1932 /* If we are asked to unwind the PC, then we need to return the LR
1933 instead. The prologue may save PC, but it will point into this
1934 frame's prologue, not the next frame's resume location. Also
1935 strip the saved T bit. A valid LR may have the low bit set, but
1936 a valid PC never does. */
1937 if (prev_regnum == ARM_PC_REGNUM)
1938 {
1939 CORE_ADDR lr;
1940
1941 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1942 return frame_unwind_got_constant (this_frame, prev_regnum,
1943 arm_addr_bits_remove (gdbarch, lr));
1944 }
1945
1946 /* SP is generally not saved to the stack, but this frame is
1947 identified by the next frame's stack pointer at the time of the call.
1948 The value was already reconstructed into PREV_SP. */
1949 if (prev_regnum == ARM_SP_REGNUM)
1950 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1951
1952 /* The CPSR may have been changed by the call instruction and by the
1953 called function. The only bit we can reconstruct is the T bit,
1954 by checking the low bit of LR as of the call. This is a reliable
1955 indicator of Thumb-ness except for some ARM v4T pre-interworking
1956 Thumb code, which could get away with a clear low bit as long as
1957 the called function did not use bx. Guess that all other
1958 bits are unchanged; the condition flags are presumably lost,
1959 but the processor status is likely valid. */
1960 if (prev_regnum == ARM_PS_REGNUM)
1961 {
1962 CORE_ADDR lr, cpsr;
1963 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
1964
1965 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1966 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1967 if (IS_THUMB_ADDR (lr))
1968 cpsr |= t_bit;
1969 else
1970 cpsr &= ~t_bit;
1971 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1972 }
1973
1974 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1975 prev_regnum);
1976 }
1977
1978 struct frame_unwind arm_prologue_unwind = {
1979 NORMAL_FRAME,
1980 arm_prologue_unwind_stop_reason,
1981 arm_prologue_this_id,
1982 arm_prologue_prev_register,
1983 NULL,
1984 default_frame_sniffer
1985 };
1986
1987 /* Maintain a list of ARM exception table entries per objfile, similar to the
1988 list of mapping symbols. We only cache entries for standard ARM-defined
1989 personality routines; the cache will contain only the frame unwinding
1990 instructions associated with the entry (not the descriptors). */
1991
1992 static const struct objfile_data *arm_exidx_data_key;
1993
1994 struct arm_exidx_entry
1995 {
1996 bfd_vma addr;
1997 gdb_byte *entry;
1998 };
1999 typedef struct arm_exidx_entry arm_exidx_entry_s;
2000 DEF_VEC_O(arm_exidx_entry_s);
2001
2002 struct arm_exidx_data
2003 {
2004 VEC(arm_exidx_entry_s) **section_maps;
2005 };
2006
2007 static void
2008 arm_exidx_data_free (struct objfile *objfile, void *arg)
2009 {
2010 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
2011 unsigned int i;
2012
2013 for (i = 0; i < objfile->obfd->section_count; i++)
2014 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2015 }
2016
2017 static inline int
2018 arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2019 const struct arm_exidx_entry *rhs)
2020 {
2021 return lhs->addr < rhs->addr;
2022 }
2023
2024 static struct obj_section *
2025 arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2026 {
2027 struct obj_section *osect;
2028
2029 ALL_OBJFILE_OSECTIONS (objfile, osect)
2030 if (bfd_get_section_flags (objfile->obfd,
2031 osect->the_bfd_section) & SEC_ALLOC)
2032 {
2033 bfd_vma start, size;
2034 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2035 size = bfd_get_section_size (osect->the_bfd_section);
2036
2037 if (start <= vma && vma < start + size)
2038 return osect;
2039 }
2040
2041 return NULL;
2042 }
2043
2044 /* Parse contents of exception table and exception index sections
2045 of OBJFILE, and fill in the exception table entry cache.
2046
2047 For each entry that refers to a standard ARM-defined personality
2048 routine, extract the frame unwinding instructions (from either
2049 the index or the table section). The unwinding instructions
2050 are normalized by:
2051 - extracting them from the rest of the table data
2052 - converting to host endianness
2053 - appending the implicit 0xb0 ("Finish") code
2054
2055 The extracted and normalized instructions are stored for later
2056 retrieval by the arm_find_exidx_entry routine. */
2057
2058 static void
2059 arm_exidx_new_objfile (struct objfile *objfile)
2060 {
2061 struct cleanup *cleanups;
2062 struct arm_exidx_data *data;
2063 asection *exidx, *extab;
2064 bfd_vma exidx_vma = 0, extab_vma = 0;
2065 bfd_size_type exidx_size = 0, extab_size = 0;
2066 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2067 LONGEST i;
2068
2069 /* If we've already touched this file, do nothing. */
2070 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2071 return;
2072 cleanups = make_cleanup (null_cleanup, NULL);
2073
2074 /* Read contents of exception table and index. */
2075 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
2076 if (exidx)
2077 {
2078 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2079 exidx_size = bfd_get_section_size (exidx);
2080 exidx_data = (gdb_byte *) xmalloc (exidx_size);
2081 make_cleanup (xfree, exidx_data);
2082
2083 if (!bfd_get_section_contents (objfile->obfd, exidx,
2084 exidx_data, 0, exidx_size))
2085 {
2086 do_cleanups (cleanups);
2087 return;
2088 }
2089 }
2090
2091 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2092 if (extab)
2093 {
2094 extab_vma = bfd_section_vma (objfile->obfd, extab);
2095 extab_size = bfd_get_section_size (extab);
2096 extab_data = (gdb_byte *) xmalloc (extab_size);
2097 make_cleanup (xfree, extab_data);
2098
2099 if (!bfd_get_section_contents (objfile->obfd, extab,
2100 extab_data, 0, extab_size))
2101 {
2102 do_cleanups (cleanups);
2103 return;
2104 }
2105 }
2106
2107 /* Allocate exception table data structure. */
2108 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2109 set_objfile_data (objfile, arm_exidx_data_key, data);
2110 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2111 objfile->obfd->section_count,
2112 VEC(arm_exidx_entry_s) *);
2113
2114 /* Fill in exception table. */
2115 for (i = 0; i < exidx_size / 8; i++)
2116 {
2117 struct arm_exidx_entry new_exidx_entry;
2118 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2119 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2120 bfd_vma addr = 0, word = 0;
2121 int n_bytes = 0, n_words = 0;
2122 struct obj_section *sec;
2123 gdb_byte *entry = NULL;
2124
2125 /* Extract address of start of function. */
2126 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2127 idx += exidx_vma + i * 8;
2128
2129 /* Find section containing function and compute section offset. */
2130 sec = arm_obj_section_from_vma (objfile, idx);
2131 if (sec == NULL)
2132 continue;
2133 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2134
2135 /* Determine address of exception table entry. */
2136 if (val == 1)
2137 {
2138 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2139 }
2140 else if ((val & 0xff000000) == 0x80000000)
2141 {
2142 /* Exception table entry embedded in .ARM.exidx
2143 -- must be short form. */
2144 word = val;
2145 n_bytes = 3;
2146 }
2147 else if (!(val & 0x80000000))
2148 {
2149 /* Exception table entry in .ARM.extab. */
2150 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2151 addr += exidx_vma + i * 8 + 4;
2152
2153 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2154 {
2155 word = bfd_h_get_32 (objfile->obfd,
2156 extab_data + addr - extab_vma);
2157 addr += 4;
2158
2159 if ((word & 0xff000000) == 0x80000000)
2160 {
2161 /* Short form. */
2162 n_bytes = 3;
2163 }
2164 else if ((word & 0xff000000) == 0x81000000
2165 || (word & 0xff000000) == 0x82000000)
2166 {
2167 /* Long form. */
2168 n_bytes = 2;
2169 n_words = ((word >> 16) & 0xff);
2170 }
2171 else if (!(word & 0x80000000))
2172 {
2173 bfd_vma pers;
2174 struct obj_section *pers_sec;
2175 int gnu_personality = 0;
2176
2177 /* Custom personality routine. */
2178 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2179 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2180
2181 /* Check whether we've got one of the variants of the
2182 GNU personality routines. */
2183 pers_sec = arm_obj_section_from_vma (objfile, pers);
2184 if (pers_sec)
2185 {
2186 static const char *personality[] =
2187 {
2188 "__gcc_personality_v0",
2189 "__gxx_personality_v0",
2190 "__gcj_personality_v0",
2191 "__gnu_objc_personality_v0",
2192 NULL
2193 };
2194
2195 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2196 int k;
2197
2198 for (k = 0; personality[k]; k++)
2199 if (lookup_minimal_symbol_by_pc_name
2200 (pc, personality[k], objfile))
2201 {
2202 gnu_personality = 1;
2203 break;
2204 }
2205 }
2206
2207 /* If so, the next word contains a word count in the high
2208 byte, followed by the same unwind instructions as the
2209 pre-defined forms. */
2210 if (gnu_personality
2211 && addr + 4 <= extab_vma + extab_size)
2212 {
2213 word = bfd_h_get_32 (objfile->obfd,
2214 extab_data + addr - extab_vma);
2215 addr += 4;
2216 n_bytes = 3;
2217 n_words = ((word >> 24) & 0xff);
2218 }
2219 }
2220 }
2221 }
2222
2223 /* Sanity check address. */
2224 if (n_words)
2225 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2226 n_words = n_bytes = 0;
2227
2228 /* The unwind instructions reside in WORD (only the N_BYTES least
2229 significant bytes are valid), followed by N_WORDS words in the
2230 extab section starting at ADDR. */
2231 if (n_bytes || n_words)
2232 {
2233 gdb_byte *p = entry
2234 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2235 n_bytes + n_words * 4 + 1);
2236
2237 while (n_bytes--)
2238 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2239
2240 while (n_words--)
2241 {
2242 word = bfd_h_get_32 (objfile->obfd,
2243 extab_data + addr - extab_vma);
2244 addr += 4;
2245
2246 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2247 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2248 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2249 *p++ = (gdb_byte) (word & 0xff);
2250 }
2251
2252 /* Implied "Finish" to terminate the list. */
2253 *p++ = 0xb0;
2254 }
2255
2256 /* Push entry onto vector. They are guaranteed to always
2257 appear in order of increasing addresses. */
2258 new_exidx_entry.addr = idx;
2259 new_exidx_entry.entry = entry;
2260 VEC_safe_push (arm_exidx_entry_s,
2261 data->section_maps[sec->the_bfd_section->index],
2262 &new_exidx_entry);
2263 }
2264
2265 do_cleanups (cleanups);
2266 }
2267
2268 /* Search for the exception table entry covering MEMADDR. If one is found,
2269 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2270 set *START to the start of the region covered by this entry. */
2271
2272 static gdb_byte *
2273 arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2274 {
2275 struct obj_section *sec;
2276
2277 sec = find_pc_section (memaddr);
2278 if (sec != NULL)
2279 {
2280 struct arm_exidx_data *data;
2281 VEC(arm_exidx_entry_s) *map;
2282 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2283 unsigned int idx;
2284
2285 data = ((struct arm_exidx_data *)
2286 objfile_data (sec->objfile, arm_exidx_data_key));
2287 if (data != NULL)
2288 {
2289 map = data->section_maps[sec->the_bfd_section->index];
2290 if (!VEC_empty (arm_exidx_entry_s, map))
2291 {
2292 struct arm_exidx_entry *map_sym;
2293
2294 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2295 arm_compare_exidx_entries);
2296
2297 /* VEC_lower_bound finds the earliest ordered insertion
2298 point. If the following symbol starts at this exact
2299 address, we use that; otherwise, the preceding
2300 exception table entry covers this address. */
2301 if (idx < VEC_length (arm_exidx_entry_s, map))
2302 {
2303 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2304 if (map_sym->addr == map_key.addr)
2305 {
2306 if (start)
2307 *start = map_sym->addr + obj_section_addr (sec);
2308 return map_sym->entry;
2309 }
2310 }
2311
2312 if (idx > 0)
2313 {
2314 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2315 if (start)
2316 *start = map_sym->addr + obj_section_addr (sec);
2317 return map_sym->entry;
2318 }
2319 }
2320 }
2321 }
2322
2323 return NULL;
2324 }
2325
2326 /* Given the current frame THIS_FRAME, and its associated frame unwinding
2327 instruction list from the ARM exception table entry ENTRY, allocate and
2328 return a prologue cache structure describing how to unwind this frame.
2329
2330 Return NULL if the unwinding instruction list contains a "spare",
2331 "reserved" or "refuse to unwind" instruction as defined in section
2332 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2333 for the ARM Architecture" document. */
2334
2335 static struct arm_prologue_cache *
2336 arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2337 {
2338 CORE_ADDR vsp = 0;
2339 int vsp_valid = 0;
2340
2341 struct arm_prologue_cache *cache;
2342 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2343 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2344
2345 for (;;)
2346 {
2347 gdb_byte insn;
2348
2349 /* Whenever we reload SP, we actually have to retrieve its
2350 actual value in the current frame. */
2351 if (!vsp_valid)
2352 {
2353 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2354 {
2355 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2356 vsp = get_frame_register_unsigned (this_frame, reg);
2357 }
2358 else
2359 {
2360 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2361 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2362 }
2363
2364 vsp_valid = 1;
2365 }
2366
2367 /* Decode next unwind instruction. */
2368 insn = *entry++;
2369
2370 if ((insn & 0xc0) == 0)
2371 {
2372 int offset = insn & 0x3f;
2373 vsp += (offset << 2) + 4;
2374 }
2375 else if ((insn & 0xc0) == 0x40)
2376 {
2377 int offset = insn & 0x3f;
2378 vsp -= (offset << 2) + 4;
2379 }
2380 else if ((insn & 0xf0) == 0x80)
2381 {
2382 int mask = ((insn & 0xf) << 8) | *entry++;
2383 int i;
2384
2385 /* The special case of an all-zero mask identifies
2386 "Refuse to unwind". We return NULL to fall back
2387 to the prologue analyzer. */
2388 if (mask == 0)
2389 return NULL;
2390
2391 /* Pop registers r4..r15 under mask. */
2392 for (i = 0; i < 12; i++)
2393 if (mask & (1 << i))
2394 {
2395 cache->saved_regs[4 + i].addr = vsp;
2396 vsp += 4;
2397 }
2398
2399 /* Special-case popping SP -- we need to reload vsp. */
2400 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2401 vsp_valid = 0;
2402 }
2403 else if ((insn & 0xf0) == 0x90)
2404 {
2405 int reg = insn & 0xf;
2406
2407 /* Reserved cases. */
2408 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2409 return NULL;
2410
2411 /* Set SP from another register and mark VSP for reload. */
2412 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2413 vsp_valid = 0;
2414 }
2415 else if ((insn & 0xf0) == 0xa0)
2416 {
2417 int count = insn & 0x7;
2418 int pop_lr = (insn & 0x8) != 0;
2419 int i;
2420
2421 /* Pop r4..r[4+count]. */
2422 for (i = 0; i <= count; i++)
2423 {
2424 cache->saved_regs[4 + i].addr = vsp;
2425 vsp += 4;
2426 }
2427
2428 /* If indicated by flag, pop LR as well. */
2429 if (pop_lr)
2430 {
2431 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2432 vsp += 4;
2433 }
2434 }
2435 else if (insn == 0xb0)
2436 {
2437 /* We could only have updated PC by popping into it; if so, it
2438 will show up as address. Otherwise, copy LR into PC. */
2439 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2440 cache->saved_regs[ARM_PC_REGNUM]
2441 = cache->saved_regs[ARM_LR_REGNUM];
2442
2443 /* We're done. */
2444 break;
2445 }
2446 else if (insn == 0xb1)
2447 {
2448 int mask = *entry++;
2449 int i;
2450
2451 /* All-zero mask and mask >= 16 is "spare". */
2452 if (mask == 0 || mask >= 16)
2453 return NULL;
2454
2455 /* Pop r0..r3 under mask. */
2456 for (i = 0; i < 4; i++)
2457 if (mask & (1 << i))
2458 {
2459 cache->saved_regs[i].addr = vsp;
2460 vsp += 4;
2461 }
2462 }
2463 else if (insn == 0xb2)
2464 {
2465 ULONGEST offset = 0;
2466 unsigned shift = 0;
2467
2468 do
2469 {
2470 offset |= (*entry & 0x7f) << shift;
2471 shift += 7;
2472 }
2473 while (*entry++ & 0x80);
2474
2475 vsp += 0x204 + (offset << 2);
2476 }
2477 else if (insn == 0xb3)
2478 {
2479 int start = *entry >> 4;
2480 int count = (*entry++) & 0xf;
2481 int i;
2482
2483 /* Only registers D0..D15 are valid here. */
2484 if (start + count >= 16)
2485 return NULL;
2486
2487 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2488 for (i = 0; i <= count; i++)
2489 {
2490 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2491 vsp += 8;
2492 }
2493
2494 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2495 vsp += 4;
2496 }
2497 else if ((insn & 0xf8) == 0xb8)
2498 {
2499 int count = insn & 0x7;
2500 int i;
2501
2502 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2503 for (i = 0; i <= count; i++)
2504 {
2505 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2506 vsp += 8;
2507 }
2508
2509 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2510 vsp += 4;
2511 }
2512 else if (insn == 0xc6)
2513 {
2514 int start = *entry >> 4;
2515 int count = (*entry++) & 0xf;
2516 int i;
2517
2518 /* Only registers WR0..WR15 are valid. */
2519 if (start + count >= 16)
2520 return NULL;
2521
2522 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2523 for (i = 0; i <= count; i++)
2524 {
2525 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2526 vsp += 8;
2527 }
2528 }
2529 else if (insn == 0xc7)
2530 {
2531 int mask = *entry++;
2532 int i;
2533
2534 /* All-zero mask and mask >= 16 is "spare". */
2535 if (mask == 0 || mask >= 16)
2536 return NULL;
2537
2538 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2539 for (i = 0; i < 4; i++)
2540 if (mask & (1 << i))
2541 {
2542 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2543 vsp += 4;
2544 }
2545 }
2546 else if ((insn & 0xf8) == 0xc0)
2547 {
2548 int count = insn & 0x7;
2549 int i;
2550
2551 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2552 for (i = 0; i <= count; i++)
2553 {
2554 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2555 vsp += 8;
2556 }
2557 }
2558 else if (insn == 0xc8)
2559 {
2560 int start = *entry >> 4;
2561 int count = (*entry++) & 0xf;
2562 int i;
2563
2564 /* Only registers D0..D31 are valid. */
2565 if (start + count >= 16)
2566 return NULL;
2567
2568 /* Pop VFP double-precision registers
2569 D[16+start]..D[16+start+count]. */
2570 for (i = 0; i <= count; i++)
2571 {
2572 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2573 vsp += 8;
2574 }
2575 }
2576 else if (insn == 0xc9)
2577 {
2578 int start = *entry >> 4;
2579 int count = (*entry++) & 0xf;
2580 int i;
2581
2582 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2583 for (i = 0; i <= count; i++)
2584 {
2585 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2586 vsp += 8;
2587 }
2588 }
2589 else if ((insn & 0xf8) == 0xd0)
2590 {
2591 int count = insn & 0x7;
2592 int i;
2593
2594 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2595 for (i = 0; i <= count; i++)
2596 {
2597 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2598 vsp += 8;
2599 }
2600 }
2601 else
2602 {
2603 /* Everything else is "spare". */
2604 return NULL;
2605 }
2606 }
2607
2608 /* If we restore SP from a register, assume this was the frame register.
2609 Otherwise just fall back to SP as frame register. */
2610 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2611 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2612 else
2613 cache->framereg = ARM_SP_REGNUM;
2614
2615 /* Determine offset to previous frame. */
2616 cache->framesize
2617 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2618
2619 /* We already got the previous SP. */
2620 cache->prev_sp = vsp;
2621
2622 return cache;
2623 }
2624
2625 /* Unwinding via ARM exception table entries. Note that the sniffer
2626 already computes a filled-in prologue cache, which is then used
2627 with the same arm_prologue_this_id and arm_prologue_prev_register
2628 routines also used for prologue-parsing based unwinding. */
2629
2630 static int
2631 arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2632 struct frame_info *this_frame,
2633 void **this_prologue_cache)
2634 {
2635 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2636 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2637 CORE_ADDR addr_in_block, exidx_region, func_start;
2638 struct arm_prologue_cache *cache;
2639 gdb_byte *entry;
2640
2641 /* See if we have an ARM exception table entry covering this address. */
2642 addr_in_block = get_frame_address_in_block (this_frame);
2643 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2644 if (!entry)
2645 return 0;
2646
2647 /* The ARM exception table does not describe unwind information
2648 for arbitrary PC values, but is guaranteed to be correct only
2649 at call sites. We have to decide here whether we want to use
2650 ARM exception table information for this frame, or fall back
2651 to using prologue parsing. (Note that if we have DWARF CFI,
2652 this sniffer isn't even called -- CFI is always preferred.)
2653
2654 Before we make this decision, however, we check whether we
2655 actually have *symbol* information for the current frame.
2656 If not, prologue parsing would not work anyway, so we might
2657 as well use the exception table and hope for the best. */
2658 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2659 {
2660 int exc_valid = 0;
2661
2662 /* If the next frame is "normal", we are at a call site in this
2663 frame, so exception information is guaranteed to be valid. */
2664 if (get_next_frame (this_frame)
2665 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2666 exc_valid = 1;
2667
2668 /* We also assume exception information is valid if we're currently
2669 blocked in a system call. The system library is supposed to
2670 ensure this, so that e.g. pthread cancellation works. */
2671 if (arm_frame_is_thumb (this_frame))
2672 {
2673 LONGEST insn;
2674
2675 if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2,
2676 byte_order_for_code, &insn)
2677 && (insn & 0xff00) == 0xdf00 /* svc */)
2678 exc_valid = 1;
2679 }
2680 else
2681 {
2682 LONGEST insn;
2683
2684 if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
2685 byte_order_for_code, &insn)
2686 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2687 exc_valid = 1;
2688 }
2689
2690 /* Bail out if we don't know that exception information is valid. */
2691 if (!exc_valid)
2692 return 0;
2693
2694 /* The ARM exception index does not mark the *end* of the region
2695 covered by the entry, and some functions will not have any entry.
2696 To correctly recognize the end of the covered region, the linker
2697 should have inserted dummy records with a CANTUNWIND marker.
2698
2699 Unfortunately, current versions of GNU ld do not reliably do
2700 this, and thus we may have found an incorrect entry above.
2701 As a (temporary) sanity check, we only use the entry if it
2702 lies *within* the bounds of the function. Note that this check
2703 might reject perfectly valid entries that just happen to cover
2704 multiple functions; therefore this check ought to be removed
2705 once the linker is fixed. */
2706 if (func_start > exidx_region)
2707 return 0;
2708 }
2709
2710 /* Decode the list of unwinding instructions into a prologue cache.
2711 Note that this may fail due to e.g. a "refuse to unwind" code. */
2712 cache = arm_exidx_fill_cache (this_frame, entry);
2713 if (!cache)
2714 return 0;
2715
2716 *this_prologue_cache = cache;
2717 return 1;
2718 }
2719
2720 struct frame_unwind arm_exidx_unwind = {
2721 NORMAL_FRAME,
2722 default_frame_unwind_stop_reason,
2723 arm_prologue_this_id,
2724 arm_prologue_prev_register,
2725 NULL,
2726 arm_exidx_unwind_sniffer
2727 };
2728
2729 static struct arm_prologue_cache *
2730 arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2731 {
2732 struct arm_prologue_cache *cache;
2733 int reg;
2734
2735 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2736 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2737
2738 /* Still rely on the offset calculated from prologue. */
2739 arm_scan_prologue (this_frame, cache);
2740
2741 /* Since we are in epilogue, the SP has been restored. */
2742 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2743
2744 /* Calculate actual addresses of saved registers using offsets
2745 determined by arm_scan_prologue. */
2746 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2747 if (trad_frame_addr_p (cache->saved_regs, reg))
2748 cache->saved_regs[reg].addr += cache->prev_sp;
2749
2750 return cache;
2751 }
2752
2753 /* Implementation of function hook 'this_id' in
2754 'struct frame_uwnind' for epilogue unwinder. */
2755
2756 static void
2757 arm_epilogue_frame_this_id (struct frame_info *this_frame,
2758 void **this_cache,
2759 struct frame_id *this_id)
2760 {
2761 struct arm_prologue_cache *cache;
2762 CORE_ADDR pc, func;
2763
2764 if (*this_cache == NULL)
2765 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2766 cache = (struct arm_prologue_cache *) *this_cache;
2767
2768 /* Use function start address as part of the frame ID. If we cannot
2769 identify the start address (due to missing symbol information),
2770 fall back to just using the current PC. */
2771 pc = get_frame_pc (this_frame);
2772 func = get_frame_func (this_frame);
2773 if (func == 0)
2774 func = pc;
2775
2776 (*this_id) = frame_id_build (cache->prev_sp, pc);
2777 }
2778
2779 /* Implementation of function hook 'prev_register' in
2780 'struct frame_uwnind' for epilogue unwinder. */
2781
2782 static struct value *
2783 arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2784 void **this_cache, int regnum)
2785 {
2786 if (*this_cache == NULL)
2787 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2788
2789 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2790 }
2791
2792 static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2793 CORE_ADDR pc);
2794 static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2795 CORE_ADDR pc);
2796
2797 /* Implementation of function hook 'sniffer' in
2798 'struct frame_uwnind' for epilogue unwinder. */
2799
2800 static int
2801 arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2802 struct frame_info *this_frame,
2803 void **this_prologue_cache)
2804 {
2805 if (frame_relative_level (this_frame) == 0)
2806 {
2807 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2808 CORE_ADDR pc = get_frame_pc (this_frame);
2809
2810 if (arm_frame_is_thumb (this_frame))
2811 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2812 else
2813 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2814 }
2815 else
2816 return 0;
2817 }
2818
2819 /* Frame unwinder from epilogue. */
2820
2821 static const struct frame_unwind arm_epilogue_frame_unwind =
2822 {
2823 NORMAL_FRAME,
2824 default_frame_unwind_stop_reason,
2825 arm_epilogue_frame_this_id,
2826 arm_epilogue_frame_prev_register,
2827 NULL,
2828 arm_epilogue_frame_sniffer,
2829 };
2830
2831 /* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2832 trampoline, return the target PC. Otherwise return 0.
2833
2834 void call0a (char c, short s, int i, long l) {}
2835
2836 int main (void)
2837 {
2838 (*pointer_to_call0a) (c, s, i, l);
2839 }
2840
2841 Instead of calling a stub library function _call_via_xx (xx is
2842 the register name), GCC may inline the trampoline in the object
2843 file as below (register r2 has the address of call0a).
2844
2845 .global main
2846 .type main, %function
2847 ...
2848 bl .L1
2849 ...
2850 .size main, .-main
2851
2852 .L1:
2853 bx r2
2854
2855 The trampoline 'bx r2' doesn't belong to main. */
2856
2857 static CORE_ADDR
2858 arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2859 {
2860 /* The heuristics of recognizing such trampoline is that FRAME is
2861 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2862 if (arm_frame_is_thumb (frame))
2863 {
2864 gdb_byte buf[2];
2865
2866 if (target_read_memory (pc, buf, 2) == 0)
2867 {
2868 struct gdbarch *gdbarch = get_frame_arch (frame);
2869 enum bfd_endian byte_order_for_code
2870 = gdbarch_byte_order_for_code (gdbarch);
2871 uint16_t insn
2872 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2873
2874 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2875 {
2876 CORE_ADDR dest
2877 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2878
2879 /* Clear the LSB so that gdb core sets step-resume
2880 breakpoint at the right address. */
2881 return UNMAKE_THUMB_ADDR (dest);
2882 }
2883 }
2884 }
2885
2886 return 0;
2887 }
2888
2889 static struct arm_prologue_cache *
2890 arm_make_stub_cache (struct frame_info *this_frame)
2891 {
2892 struct arm_prologue_cache *cache;
2893
2894 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2895 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2896
2897 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2898
2899 return cache;
2900 }
2901
2902 /* Our frame ID for a stub frame is the current SP and LR. */
2903
2904 static void
2905 arm_stub_this_id (struct frame_info *this_frame,
2906 void **this_cache,
2907 struct frame_id *this_id)
2908 {
2909 struct arm_prologue_cache *cache;
2910
2911 if (*this_cache == NULL)
2912 *this_cache = arm_make_stub_cache (this_frame);
2913 cache = (struct arm_prologue_cache *) *this_cache;
2914
2915 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
2916 }
2917
2918 static int
2919 arm_stub_unwind_sniffer (const struct frame_unwind *self,
2920 struct frame_info *this_frame,
2921 void **this_prologue_cache)
2922 {
2923 CORE_ADDR addr_in_block;
2924 gdb_byte dummy[4];
2925 CORE_ADDR pc, start_addr;
2926 const char *name;
2927
2928 addr_in_block = get_frame_address_in_block (this_frame);
2929 pc = get_frame_pc (this_frame);
2930 if (in_plt_section (addr_in_block)
2931 /* We also use the stub winder if the target memory is unreadable
2932 to avoid having the prologue unwinder trying to read it. */
2933 || target_read_memory (pc, dummy, 4) != 0)
2934 return 1;
2935
2936 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2937 && arm_skip_bx_reg (this_frame, pc) != 0)
2938 return 1;
2939
2940 return 0;
2941 }
2942
2943 struct frame_unwind arm_stub_unwind = {
2944 NORMAL_FRAME,
2945 default_frame_unwind_stop_reason,
2946 arm_stub_this_id,
2947 arm_prologue_prev_register,
2948 NULL,
2949 arm_stub_unwind_sniffer
2950 };
2951
2952 /* Put here the code to store, into CACHE->saved_regs, the addresses
2953 of the saved registers of frame described by THIS_FRAME. CACHE is
2954 returned. */
2955
2956 static struct arm_prologue_cache *
2957 arm_m_exception_cache (struct frame_info *this_frame)
2958 {
2959 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2961 struct arm_prologue_cache *cache;
2962 CORE_ADDR unwound_sp;
2963 LONGEST xpsr;
2964
2965 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2966 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2967
2968 unwound_sp = get_frame_register_unsigned (this_frame,
2969 ARM_SP_REGNUM);
2970
2971 /* The hardware saves eight 32-bit words, comprising xPSR,
2972 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2973 "B1.5.6 Exception entry behavior" in
2974 "ARMv7-M Architecture Reference Manual". */
2975 cache->saved_regs[0].addr = unwound_sp;
2976 cache->saved_regs[1].addr = unwound_sp + 4;
2977 cache->saved_regs[2].addr = unwound_sp + 8;
2978 cache->saved_regs[3].addr = unwound_sp + 12;
2979 cache->saved_regs[12].addr = unwound_sp + 16;
2980 cache->saved_regs[14].addr = unwound_sp + 20;
2981 cache->saved_regs[15].addr = unwound_sp + 24;
2982 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2983
2984 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2985 aligner between the top of the 32-byte stack frame and the
2986 previous context's stack pointer. */
2987 cache->prev_sp = unwound_sp + 32;
2988 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2989 && (xpsr & (1 << 9)) != 0)
2990 cache->prev_sp += 4;
2991
2992 return cache;
2993 }
2994
2995 /* Implementation of function hook 'this_id' in
2996 'struct frame_uwnind'. */
2997
2998 static void
2999 arm_m_exception_this_id (struct frame_info *this_frame,
3000 void **this_cache,
3001 struct frame_id *this_id)
3002 {
3003 struct arm_prologue_cache *cache;
3004
3005 if (*this_cache == NULL)
3006 *this_cache = arm_m_exception_cache (this_frame);
3007 cache = (struct arm_prologue_cache *) *this_cache;
3008
3009 /* Our frame ID for a stub frame is the current SP and LR. */
3010 *this_id = frame_id_build (cache->prev_sp,
3011 get_frame_pc (this_frame));
3012 }
3013
3014 /* Implementation of function hook 'prev_register' in
3015 'struct frame_uwnind'. */
3016
3017 static struct value *
3018 arm_m_exception_prev_register (struct frame_info *this_frame,
3019 void **this_cache,
3020 int prev_regnum)
3021 {
3022 struct arm_prologue_cache *cache;
3023
3024 if (*this_cache == NULL)
3025 *this_cache = arm_m_exception_cache (this_frame);
3026 cache = (struct arm_prologue_cache *) *this_cache;
3027
3028 /* The value was already reconstructed into PREV_SP. */
3029 if (prev_regnum == ARM_SP_REGNUM)
3030 return frame_unwind_got_constant (this_frame, prev_regnum,
3031 cache->prev_sp);
3032
3033 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3034 prev_regnum);
3035 }
3036
3037 /* Implementation of function hook 'sniffer' in
3038 'struct frame_uwnind'. */
3039
3040 static int
3041 arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3042 struct frame_info *this_frame,
3043 void **this_prologue_cache)
3044 {
3045 CORE_ADDR this_pc = get_frame_pc (this_frame);
3046
3047 /* No need to check is_m; this sniffer is only registered for
3048 M-profile architectures. */
3049
3050 /* Check if exception frame returns to a magic PC value. */
3051 return arm_m_addr_is_magic (this_pc);
3052 }
3053
3054 /* Frame unwinder for M-profile exceptions. */
3055
3056 struct frame_unwind arm_m_exception_unwind =
3057 {
3058 SIGTRAMP_FRAME,
3059 default_frame_unwind_stop_reason,
3060 arm_m_exception_this_id,
3061 arm_m_exception_prev_register,
3062 NULL,
3063 arm_m_exception_unwind_sniffer
3064 };
3065
3066 static CORE_ADDR
3067 arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
3068 {
3069 struct arm_prologue_cache *cache;
3070
3071 if (*this_cache == NULL)
3072 *this_cache = arm_make_prologue_cache (this_frame);
3073 cache = (struct arm_prologue_cache *) *this_cache;
3074
3075 return cache->prev_sp - cache->framesize;
3076 }
3077
3078 struct frame_base arm_normal_base = {
3079 &arm_prologue_unwind,
3080 arm_normal_frame_base,
3081 arm_normal_frame_base,
3082 arm_normal_frame_base
3083 };
3084
3085 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
3086 dummy frame. The frame ID's base needs to match the TOS value
3087 saved by save_dummy_frame_tos() and returned from
3088 arm_push_dummy_call, and the PC needs to match the dummy frame's
3089 breakpoint. */
3090
3091 static struct frame_id
3092 arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3093 {
3094 return frame_id_build (get_frame_register_unsigned (this_frame,
3095 ARM_SP_REGNUM),
3096 get_frame_pc (this_frame));
3097 }
3098
3099 /* Given THIS_FRAME, find the previous frame's resume PC (which will
3100 be used to construct the previous frame's ID, after looking up the
3101 containing function). */
3102
3103 static CORE_ADDR
3104 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3105 {
3106 CORE_ADDR pc;
3107 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
3108 return arm_addr_bits_remove (gdbarch, pc);
3109 }
3110
3111 static CORE_ADDR
3112 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3113 {
3114 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
3115 }
3116
3117 static struct value *
3118 arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3119 int regnum)
3120 {
3121 struct gdbarch * gdbarch = get_frame_arch (this_frame);
3122 CORE_ADDR lr, cpsr;
3123 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
3124
3125 switch (regnum)
3126 {
3127 case ARM_PC_REGNUM:
3128 /* The PC is normally copied from the return column, which
3129 describes saves of LR. However, that version may have an
3130 extra bit set to indicate Thumb state. The bit is not
3131 part of the PC. */
3132 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3133 return frame_unwind_got_constant (this_frame, regnum,
3134 arm_addr_bits_remove (gdbarch, lr));
3135
3136 case ARM_PS_REGNUM:
3137 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3138 cpsr = get_frame_register_unsigned (this_frame, regnum);
3139 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3140 if (IS_THUMB_ADDR (lr))
3141 cpsr |= t_bit;
3142 else
3143 cpsr &= ~t_bit;
3144 return frame_unwind_got_constant (this_frame, regnum, cpsr);
3145
3146 default:
3147 internal_error (__FILE__, __LINE__,
3148 _("Unexpected register %d"), regnum);
3149 }
3150 }
3151
3152 static void
3153 arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3154 struct dwarf2_frame_state_reg *reg,
3155 struct frame_info *this_frame)
3156 {
3157 switch (regnum)
3158 {
3159 case ARM_PC_REGNUM:
3160 case ARM_PS_REGNUM:
3161 reg->how = DWARF2_FRAME_REG_FN;
3162 reg->loc.fn = arm_dwarf2_prev_register;
3163 break;
3164 case ARM_SP_REGNUM:
3165 reg->how = DWARF2_FRAME_REG_CFA;
3166 break;
3167 }
3168 }
3169
3170 /* Implement the stack_frame_destroyed_p gdbarch method. */
3171
3172 static int
3173 thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3174 {
3175 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3176 unsigned int insn, insn2;
3177 int found_return = 0, found_stack_adjust = 0;
3178 CORE_ADDR func_start, func_end;
3179 CORE_ADDR scan_pc;
3180 gdb_byte buf[4];
3181
3182 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3183 return 0;
3184
3185 /* The epilogue is a sequence of instructions along the following lines:
3186
3187 - add stack frame size to SP or FP
3188 - [if frame pointer used] restore SP from FP
3189 - restore registers from SP [may include PC]
3190 - a return-type instruction [if PC wasn't already restored]
3191
3192 In a first pass, we scan forward from the current PC and verify the
3193 instructions we find as compatible with this sequence, ending in a
3194 return instruction.
3195
3196 However, this is not sufficient to distinguish indirect function calls
3197 within a function from indirect tail calls in the epilogue in some cases.
3198 Therefore, if we didn't already find any SP-changing instruction during
3199 forward scan, we add a backward scanning heuristic to ensure we actually
3200 are in the epilogue. */
3201
3202 scan_pc = pc;
3203 while (scan_pc < func_end && !found_return)
3204 {
3205 if (target_read_memory (scan_pc, buf, 2))
3206 break;
3207
3208 scan_pc += 2;
3209 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3210
3211 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3212 found_return = 1;
3213 else if (insn == 0x46f7) /* mov pc, lr */
3214 found_return = 1;
3215 else if (thumb_instruction_restores_sp (insn))
3216 {
3217 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
3218 found_return = 1;
3219 }
3220 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
3221 {
3222 if (target_read_memory (scan_pc, buf, 2))
3223 break;
3224
3225 scan_pc += 2;
3226 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3227
3228 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3229 {
3230 if (insn2 & 0x8000) /* <registers> include PC. */
3231 found_return = 1;
3232 }
3233 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3234 && (insn2 & 0x0fff) == 0x0b04)
3235 {
3236 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3237 found_return = 1;
3238 }
3239 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3240 && (insn2 & 0x0e00) == 0x0a00)
3241 ;
3242 else
3243 break;
3244 }
3245 else
3246 break;
3247 }
3248
3249 if (!found_return)
3250 return 0;
3251
3252 /* Since any instruction in the epilogue sequence, with the possible
3253 exception of return itself, updates the stack pointer, we need to
3254 scan backwards for at most one instruction. Try either a 16-bit or
3255 a 32-bit instruction. This is just a heuristic, so we do not worry
3256 too much about false positives. */
3257
3258 if (pc - 4 < func_start)
3259 return 0;
3260 if (target_read_memory (pc - 4, buf, 4))
3261 return 0;
3262
3263 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3264 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3265
3266 if (thumb_instruction_restores_sp (insn2))
3267 found_stack_adjust = 1;
3268 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3269 found_stack_adjust = 1;
3270 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3271 && (insn2 & 0x0fff) == 0x0b04)
3272 found_stack_adjust = 1;
3273 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3274 && (insn2 & 0x0e00) == 0x0a00)
3275 found_stack_adjust = 1;
3276
3277 return found_stack_adjust;
3278 }
3279
3280 static int
3281 arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
3282 {
3283 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3284 unsigned int insn;
3285 int found_return;
3286 CORE_ADDR func_start, func_end;
3287
3288 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3289 return 0;
3290
3291 /* We are in the epilogue if the previous instruction was a stack
3292 adjustment and the next instruction is a possible return (bx, mov
3293 pc, or pop). We could have to scan backwards to find the stack
3294 adjustment, or forwards to find the return, but this is a decent
3295 approximation. First scan forwards. */
3296
3297 found_return = 0;
3298 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3299 if (bits (insn, 28, 31) != INST_NV)
3300 {
3301 if ((insn & 0x0ffffff0) == 0x012fff10)
3302 /* BX. */
3303 found_return = 1;
3304 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3305 /* MOV PC. */
3306 found_return = 1;
3307 else if ((insn & 0x0fff0000) == 0x08bd0000
3308 && (insn & 0x0000c000) != 0)
3309 /* POP (LDMIA), including PC or LR. */
3310 found_return = 1;
3311 }
3312
3313 if (!found_return)
3314 return 0;
3315
3316 /* Scan backwards. This is just a heuristic, so do not worry about
3317 false positives from mode changes. */
3318
3319 if (pc < func_start + 4)
3320 return 0;
3321
3322 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3323 if (arm_instruction_restores_sp (insn))
3324 return 1;
3325
3326 return 0;
3327 }
3328
3329 /* Implement the stack_frame_destroyed_p gdbarch method. */
3330
3331 static int
3332 arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3333 {
3334 if (arm_pc_is_thumb (gdbarch, pc))
3335 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3336 else
3337 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3338 }
3339
3340 /* When arguments must be pushed onto the stack, they go on in reverse
3341 order. The code below implements a FILO (stack) to do this. */
3342
3343 struct stack_item
3344 {
3345 int len;
3346 struct stack_item *prev;
3347 gdb_byte *data;
3348 };
3349
3350 static struct stack_item *
3351 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
3352 {
3353 struct stack_item *si;
3354 si = XNEW (struct stack_item);
3355 si->data = (gdb_byte *) xmalloc (len);
3356 si->len = len;
3357 si->prev = prev;
3358 memcpy (si->data, contents, len);
3359 return si;
3360 }
3361
3362 static struct stack_item *
3363 pop_stack_item (struct stack_item *si)
3364 {
3365 struct stack_item *dead = si;
3366 si = si->prev;
3367 xfree (dead->data);
3368 xfree (dead);
3369 return si;
3370 }
3371
3372
3373 /* Return the alignment (in bytes) of the given type. */
3374
3375 static int
3376 arm_type_align (struct type *t)
3377 {
3378 int n;
3379 int align;
3380 int falign;
3381
3382 t = check_typedef (t);
3383 switch (TYPE_CODE (t))
3384 {
3385 default:
3386 /* Should never happen. */
3387 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3388 return 4;
3389
3390 case TYPE_CODE_PTR:
3391 case TYPE_CODE_ENUM:
3392 case TYPE_CODE_INT:
3393 case TYPE_CODE_FLT:
3394 case TYPE_CODE_SET:
3395 case TYPE_CODE_RANGE:
3396 case TYPE_CODE_REF:
3397 case TYPE_CODE_CHAR:
3398 case TYPE_CODE_BOOL:
3399 return TYPE_LENGTH (t);
3400
3401 case TYPE_CODE_ARRAY:
3402 if (TYPE_VECTOR (t))
3403 {
3404 /* Use the natural alignment for vector types (the same for
3405 scalar type), but the maximum alignment is 64-bit. */
3406 if (TYPE_LENGTH (t) > 8)
3407 return 8;
3408 else
3409 return TYPE_LENGTH (t);
3410 }
3411 else
3412 return arm_type_align (TYPE_TARGET_TYPE (t));
3413 case TYPE_CODE_COMPLEX:
3414 return arm_type_align (TYPE_TARGET_TYPE (t));
3415
3416 case TYPE_CODE_STRUCT:
3417 case TYPE_CODE_UNION:
3418 align = 1;
3419 for (n = 0; n < TYPE_NFIELDS (t); n++)
3420 {
3421 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3422 if (falign > align)
3423 align = falign;
3424 }
3425 return align;
3426 }
3427 }
3428
3429 /* Possible base types for a candidate for passing and returning in
3430 VFP registers. */
3431
3432 enum arm_vfp_cprc_base_type
3433 {
3434 VFP_CPRC_UNKNOWN,
3435 VFP_CPRC_SINGLE,
3436 VFP_CPRC_DOUBLE,
3437 VFP_CPRC_VEC64,
3438 VFP_CPRC_VEC128
3439 };
3440
3441 /* The length of one element of base type B. */
3442
3443 static unsigned
3444 arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3445 {
3446 switch (b)
3447 {
3448 case VFP_CPRC_SINGLE:
3449 return 4;
3450 case VFP_CPRC_DOUBLE:
3451 return 8;
3452 case VFP_CPRC_VEC64:
3453 return 8;
3454 case VFP_CPRC_VEC128:
3455 return 16;
3456 default:
3457 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3458 (int) b);
3459 }
3460 }
3461
3462 /* The character ('s', 'd' or 'q') for the type of VFP register used
3463 for passing base type B. */
3464
3465 static int
3466 arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3467 {
3468 switch (b)
3469 {
3470 case VFP_CPRC_SINGLE:
3471 return 's';
3472 case VFP_CPRC_DOUBLE:
3473 return 'd';
3474 case VFP_CPRC_VEC64:
3475 return 'd';
3476 case VFP_CPRC_VEC128:
3477 return 'q';
3478 default:
3479 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3480 (int) b);
3481 }
3482 }
3483
3484 /* Determine whether T may be part of a candidate for passing and
3485 returning in VFP registers, ignoring the limit on the total number
3486 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3487 classification of the first valid component found; if it is not
3488 VFP_CPRC_UNKNOWN, all components must have the same classification
3489 as *BASE_TYPE. If it is found that T contains a type not permitted
3490 for passing and returning in VFP registers, a type differently
3491 classified from *BASE_TYPE, or two types differently classified
3492 from each other, return -1, otherwise return the total number of
3493 base-type elements found (possibly 0 in an empty structure or
3494 array). Vector types are not currently supported, matching the
3495 generic AAPCS support. */
3496
3497 static int
3498 arm_vfp_cprc_sub_candidate (struct type *t,
3499 enum arm_vfp_cprc_base_type *base_type)
3500 {
3501 t = check_typedef (t);
3502 switch (TYPE_CODE (t))
3503 {
3504 case TYPE_CODE_FLT:
3505 switch (TYPE_LENGTH (t))
3506 {
3507 case 4:
3508 if (*base_type == VFP_CPRC_UNKNOWN)
3509 *base_type = VFP_CPRC_SINGLE;
3510 else if (*base_type != VFP_CPRC_SINGLE)
3511 return -1;
3512 return 1;
3513
3514 case 8:
3515 if (*base_type == VFP_CPRC_UNKNOWN)
3516 *base_type = VFP_CPRC_DOUBLE;
3517 else if (*base_type != VFP_CPRC_DOUBLE)
3518 return -1;
3519 return 1;
3520
3521 default:
3522 return -1;
3523 }
3524 break;
3525
3526 case TYPE_CODE_COMPLEX:
3527 /* Arguments of complex T where T is one of the types float or
3528 double get treated as if they are implemented as:
3529
3530 struct complexT
3531 {
3532 T real;
3533 T imag;
3534 };
3535
3536 */
3537 switch (TYPE_LENGTH (t))
3538 {
3539 case 8:
3540 if (*base_type == VFP_CPRC_UNKNOWN)
3541 *base_type = VFP_CPRC_SINGLE;
3542 else if (*base_type != VFP_CPRC_SINGLE)
3543 return -1;
3544 return 2;
3545
3546 case 16:
3547 if (*base_type == VFP_CPRC_UNKNOWN)
3548 *base_type = VFP_CPRC_DOUBLE;
3549 else if (*base_type != VFP_CPRC_DOUBLE)
3550 return -1;
3551 return 2;
3552
3553 default:
3554 return -1;
3555 }
3556 break;
3557
3558 case TYPE_CODE_ARRAY:
3559 {
3560 if (TYPE_VECTOR (t))
3561 {
3562 /* A 64-bit or 128-bit containerized vector type are VFP
3563 CPRCs. */
3564 switch (TYPE_LENGTH (t))
3565 {
3566 case 8:
3567 if (*base_type == VFP_CPRC_UNKNOWN)
3568 *base_type = VFP_CPRC_VEC64;
3569 return 1;
3570 case 16:
3571 if (*base_type == VFP_CPRC_UNKNOWN)
3572 *base_type = VFP_CPRC_VEC128;
3573 return 1;
3574 default:
3575 return -1;
3576 }
3577 }
3578 else
3579 {
3580 int count;
3581 unsigned unitlen;
3582
3583 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3584 base_type);
3585 if (count == -1)
3586 return -1;
3587 if (TYPE_LENGTH (t) == 0)
3588 {
3589 gdb_assert (count == 0);
3590 return 0;
3591 }
3592 else if (count == 0)
3593 return -1;
3594 unitlen = arm_vfp_cprc_unit_length (*base_type);
3595 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3596 return TYPE_LENGTH (t) / unitlen;
3597 }
3598 }
3599 break;
3600
3601 case TYPE_CODE_STRUCT:
3602 {
3603 int count = 0;
3604 unsigned unitlen;
3605 int i;
3606 for (i = 0; i < TYPE_NFIELDS (t); i++)
3607 {
3608 int sub_count = 0;
3609
3610 if (!field_is_static (&TYPE_FIELD (t, i)))
3611 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3612 base_type);
3613 if (sub_count == -1)
3614 return -1;
3615 count += sub_count;
3616 }
3617 if (TYPE_LENGTH (t) == 0)
3618 {
3619 gdb_assert (count == 0);
3620 return 0;
3621 }
3622 else if (count == 0)
3623 return -1;
3624 unitlen = arm_vfp_cprc_unit_length (*base_type);
3625 if (TYPE_LENGTH (t) != unitlen * count)
3626 return -1;
3627 return count;
3628 }
3629
3630 case TYPE_CODE_UNION:
3631 {
3632 int count = 0;
3633 unsigned unitlen;
3634 int i;
3635 for (i = 0; i < TYPE_NFIELDS (t); i++)
3636 {
3637 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3638 base_type);
3639 if (sub_count == -1)
3640 return -1;
3641 count = (count > sub_count ? count : sub_count);
3642 }
3643 if (TYPE_LENGTH (t) == 0)
3644 {
3645 gdb_assert (count == 0);
3646 return 0;
3647 }
3648 else if (count == 0)
3649 return -1;
3650 unitlen = arm_vfp_cprc_unit_length (*base_type);
3651 if (TYPE_LENGTH (t) != unitlen * count)
3652 return -1;
3653 return count;
3654 }
3655
3656 default:
3657 break;
3658 }
3659
3660 return -1;
3661 }
3662
3663 /* Determine whether T is a VFP co-processor register candidate (CPRC)
3664 if passed to or returned from a non-variadic function with the VFP
3665 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3666 *BASE_TYPE to the base type for T and *COUNT to the number of
3667 elements of that base type before returning. */
3668
3669 static int
3670 arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3671 int *count)
3672 {
3673 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3674 int c = arm_vfp_cprc_sub_candidate (t, &b);
3675 if (c <= 0 || c > 4)
3676 return 0;
3677 *base_type = b;
3678 *count = c;
3679 return 1;
3680 }
3681
3682 /* Return 1 if the VFP ABI should be used for passing arguments to and
3683 returning values from a function of type FUNC_TYPE, 0
3684 otherwise. */
3685
3686 static int
3687 arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3688 {
3689 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3690 /* Variadic functions always use the base ABI. Assume that functions
3691 without debug info are not variadic. */
3692 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3693 return 0;
3694 /* The VFP ABI is only supported as a variant of AAPCS. */
3695 if (tdep->arm_abi != ARM_ABI_AAPCS)
3696 return 0;
3697 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3698 }
3699
3700 /* We currently only support passing parameters in integer registers, which
3701 conforms with GCC's default model, and VFP argument passing following
3702 the VFP variant of AAPCS. Several other variants exist and
3703 we should probably support some of them based on the selected ABI. */
3704
3705 static CORE_ADDR
3706 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3707 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3708 struct value **args, CORE_ADDR sp, int struct_return,
3709 CORE_ADDR struct_addr)
3710 {
3711 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3712 int argnum;
3713 int argreg;
3714 int nstack;
3715 struct stack_item *si = NULL;
3716 int use_vfp_abi;
3717 struct type *ftype;
3718 unsigned vfp_regs_free = (1 << 16) - 1;
3719
3720 /* Determine the type of this function and whether the VFP ABI
3721 applies. */
3722 ftype = check_typedef (value_type (function));
3723 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3724 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3725 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
3726
3727 /* Set the return address. For the ARM, the return breakpoint is
3728 always at BP_ADDR. */
3729 if (arm_pc_is_thumb (gdbarch, bp_addr))
3730 bp_addr |= 1;
3731 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
3732
3733 /* Walk through the list of args and determine how large a temporary
3734 stack is required. Need to take care here as structs may be
3735 passed on the stack, and we have to push them. */
3736 nstack = 0;
3737
3738 argreg = ARM_A1_REGNUM;
3739 nstack = 0;
3740
3741 /* The struct_return pointer occupies the first parameter
3742 passing register. */
3743 if (struct_return)
3744 {
3745 if (arm_debug)
3746 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
3747 gdbarch_register_name (gdbarch, argreg),
3748 paddress (gdbarch, struct_addr));
3749 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3750 argreg++;
3751 }
3752
3753 for (argnum = 0; argnum < nargs; argnum++)
3754 {
3755 int len;
3756 struct type *arg_type;
3757 struct type *target_type;
3758 enum type_code typecode;
3759 const bfd_byte *val;
3760 int align;
3761 enum arm_vfp_cprc_base_type vfp_base_type;
3762 int vfp_base_count;
3763 int may_use_core_reg = 1;
3764
3765 arg_type = check_typedef (value_type (args[argnum]));
3766 len = TYPE_LENGTH (arg_type);
3767 target_type = TYPE_TARGET_TYPE (arg_type);
3768 typecode = TYPE_CODE (arg_type);
3769 val = value_contents (args[argnum]);
3770
3771 align = arm_type_align (arg_type);
3772 /* Round alignment up to a whole number of words. */
3773 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3774 /* Different ABIs have different maximum alignments. */
3775 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3776 {
3777 /* The APCS ABI only requires word alignment. */
3778 align = INT_REGISTER_SIZE;
3779 }
3780 else
3781 {
3782 /* The AAPCS requires at most doubleword alignment. */
3783 if (align > INT_REGISTER_SIZE * 2)
3784 align = INT_REGISTER_SIZE * 2;
3785 }
3786
3787 if (use_vfp_abi
3788 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3789 &vfp_base_count))
3790 {
3791 int regno;
3792 int unit_length;
3793 int shift;
3794 unsigned mask;
3795
3796 /* Because this is a CPRC it cannot go in a core register or
3797 cause a core register to be skipped for alignment.
3798 Either it goes in VFP registers and the rest of this loop
3799 iteration is skipped for this argument, or it goes on the
3800 stack (and the stack alignment code is correct for this
3801 case). */
3802 may_use_core_reg = 0;
3803
3804 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3805 shift = unit_length / 4;
3806 mask = (1 << (shift * vfp_base_count)) - 1;
3807 for (regno = 0; regno < 16; regno += shift)
3808 if (((vfp_regs_free >> regno) & mask) == mask)
3809 break;
3810
3811 if (regno < 16)
3812 {
3813 int reg_char;
3814 int reg_scaled;
3815 int i;
3816
3817 vfp_regs_free &= ~(mask << regno);
3818 reg_scaled = regno / shift;
3819 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3820 for (i = 0; i < vfp_base_count; i++)
3821 {
3822 char name_buf[4];
3823 int regnum;
3824 if (reg_char == 'q')
3825 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
3826 val + i * unit_length);
3827 else
3828 {
3829 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3830 reg_char, reg_scaled + i);
3831 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3832 strlen (name_buf));
3833 regcache_cooked_write (regcache, regnum,
3834 val + i * unit_length);
3835 }
3836 }
3837 continue;
3838 }
3839 else
3840 {
3841 /* This CPRC could not go in VFP registers, so all VFP
3842 registers are now marked as used. */
3843 vfp_regs_free = 0;
3844 }
3845 }
3846
3847 /* Push stack padding for dowubleword alignment. */
3848 if (nstack & (align - 1))
3849 {
3850 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3851 nstack += INT_REGISTER_SIZE;
3852 }
3853
3854 /* Doubleword aligned quantities must go in even register pairs. */
3855 if (may_use_core_reg
3856 && argreg <= ARM_LAST_ARG_REGNUM
3857 && align > INT_REGISTER_SIZE
3858 && argreg & 1)
3859 argreg++;
3860
3861 /* If the argument is a pointer to a function, and it is a
3862 Thumb function, create a LOCAL copy of the value and set
3863 the THUMB bit in it. */
3864 if (TYPE_CODE_PTR == typecode
3865 && target_type != NULL
3866 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
3867 {
3868 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
3869 if (arm_pc_is_thumb (gdbarch, regval))
3870 {
3871 bfd_byte *copy = (bfd_byte *) alloca (len);
3872 store_unsigned_integer (copy, len, byte_order,
3873 MAKE_THUMB_ADDR (regval));
3874 val = copy;
3875 }
3876 }
3877
3878 /* Copy the argument to general registers or the stack in
3879 register-sized pieces. Large arguments are split between
3880 registers and stack. */
3881 while (len > 0)
3882 {
3883 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
3884 CORE_ADDR regval
3885 = extract_unsigned_integer (val, partial_len, byte_order);
3886
3887 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
3888 {
3889 /* The argument is being passed in a general purpose
3890 register. */
3891 if (byte_order == BFD_ENDIAN_BIG)
3892 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
3893 if (arm_debug)
3894 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
3895 argnum,
3896 gdbarch_register_name
3897 (gdbarch, argreg),
3898 phex (regval, INT_REGISTER_SIZE));
3899 regcache_cooked_write_unsigned (regcache, argreg, regval);
3900 argreg++;
3901 }
3902 else
3903 {
3904 gdb_byte buf[INT_REGISTER_SIZE];
3905
3906 memset (buf, 0, sizeof (buf));
3907 store_unsigned_integer (buf, partial_len, byte_order, regval);
3908
3909 /* Push the arguments onto the stack. */
3910 if (arm_debug)
3911 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3912 argnum, nstack);
3913 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
3914 nstack += INT_REGISTER_SIZE;
3915 }
3916
3917 len -= partial_len;
3918 val += partial_len;
3919 }
3920 }
3921 /* If we have an odd number of words to push, then decrement the stack
3922 by one word now, so first stack argument will be dword aligned. */
3923 if (nstack & 4)
3924 sp -= 4;
3925
3926 while (si)
3927 {
3928 sp -= si->len;
3929 write_memory (sp, si->data, si->len);
3930 si = pop_stack_item (si);
3931 }
3932
3933 /* Finally, update teh SP register. */
3934 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3935
3936 return sp;
3937 }
3938
3939
3940 /* Always align the frame to an 8-byte boundary. This is required on
3941 some platforms and harmless on the rest. */
3942
3943 static CORE_ADDR
3944 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3945 {
3946 /* Align the stack to eight bytes. */
3947 return sp & ~ (CORE_ADDR) 7;
3948 }
3949
3950 static void
3951 print_fpu_flags (struct ui_file *file, int flags)
3952 {
3953 if (flags & (1 << 0))
3954 fputs_filtered ("IVO ", file);
3955 if (flags & (1 << 1))
3956 fputs_filtered ("DVZ ", file);
3957 if (flags & (1 << 2))
3958 fputs_filtered ("OFL ", file);
3959 if (flags & (1 << 3))
3960 fputs_filtered ("UFL ", file);
3961 if (flags & (1 << 4))
3962 fputs_filtered ("INX ", file);
3963 fputc_filtered ('\n', file);
3964 }
3965
3966 /* Print interesting information about the floating point processor
3967 (if present) or emulator. */
3968 static void
3969 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
3970 struct frame_info *frame, const char *args)
3971 {
3972 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
3973 int type;
3974
3975 type = (status >> 24) & 127;
3976 if (status & (1 << 31))
3977 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
3978 else
3979 fprintf_filtered (file, _("Software FPU type %d\n"), type);
3980 /* i18n: [floating point unit] mask */
3981 fputs_filtered (_("mask: "), file);
3982 print_fpu_flags (file, status >> 16);
3983 /* i18n: [floating point unit] flags */
3984 fputs_filtered (_("flags: "), file);
3985 print_fpu_flags (file, status);
3986 }
3987
3988 /* Construct the ARM extended floating point type. */
3989 static struct type *
3990 arm_ext_type (struct gdbarch *gdbarch)
3991 {
3992 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3993
3994 if (!tdep->arm_ext_type)
3995 tdep->arm_ext_type
3996 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
3997 floatformats_arm_ext);
3998
3999 return tdep->arm_ext_type;
4000 }
4001
4002 static struct type *
4003 arm_neon_double_type (struct gdbarch *gdbarch)
4004 {
4005 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4006
4007 if (tdep->neon_double_type == NULL)
4008 {
4009 struct type *t, *elem;
4010
4011 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4012 TYPE_CODE_UNION);
4013 elem = builtin_type (gdbarch)->builtin_uint8;
4014 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4015 elem = builtin_type (gdbarch)->builtin_uint16;
4016 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4017 elem = builtin_type (gdbarch)->builtin_uint32;
4018 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4019 elem = builtin_type (gdbarch)->builtin_uint64;
4020 append_composite_type_field (t, "u64", elem);
4021 elem = builtin_type (gdbarch)->builtin_float;
4022 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4023 elem = builtin_type (gdbarch)->builtin_double;
4024 append_composite_type_field (t, "f64", elem);
4025
4026 TYPE_VECTOR (t) = 1;
4027 TYPE_NAME (t) = "neon_d";
4028 tdep->neon_double_type = t;
4029 }
4030
4031 return tdep->neon_double_type;
4032 }
4033
4034 /* FIXME: The vector types are not correctly ordered on big-endian
4035 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4036 bits of d0 - regardless of what unit size is being held in d0. So
4037 the offset of the first uint8 in d0 is 7, but the offset of the
4038 first float is 4. This code works as-is for little-endian
4039 targets. */
4040
4041 static struct type *
4042 arm_neon_quad_type (struct gdbarch *gdbarch)
4043 {
4044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4045
4046 if (tdep->neon_quad_type == NULL)
4047 {
4048 struct type *t, *elem;
4049
4050 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4051 TYPE_CODE_UNION);
4052 elem = builtin_type (gdbarch)->builtin_uint8;
4053 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4054 elem = builtin_type (gdbarch)->builtin_uint16;
4055 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4056 elem = builtin_type (gdbarch)->builtin_uint32;
4057 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4058 elem = builtin_type (gdbarch)->builtin_uint64;
4059 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4060 elem = builtin_type (gdbarch)->builtin_float;
4061 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4062 elem = builtin_type (gdbarch)->builtin_double;
4063 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4064
4065 TYPE_VECTOR (t) = 1;
4066 TYPE_NAME (t) = "neon_q";
4067 tdep->neon_quad_type = t;
4068 }
4069
4070 return tdep->neon_quad_type;
4071 }
4072
4073 /* Return the GDB type object for the "standard" data type of data in
4074 register N. */
4075
4076 static struct type *
4077 arm_register_type (struct gdbarch *gdbarch, int regnum)
4078 {
4079 int num_regs = gdbarch_num_regs (gdbarch);
4080
4081 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4082 && regnum >= num_regs && regnum < num_regs + 32)
4083 return builtin_type (gdbarch)->builtin_float;
4084
4085 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4086 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4087 return arm_neon_quad_type (gdbarch);
4088
4089 /* If the target description has register information, we are only
4090 in this function so that we can override the types of
4091 double-precision registers for NEON. */
4092 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4093 {
4094 struct type *t = tdesc_register_type (gdbarch, regnum);
4095
4096 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4097 && TYPE_CODE (t) == TYPE_CODE_FLT
4098 && gdbarch_tdep (gdbarch)->have_neon)
4099 return arm_neon_double_type (gdbarch);
4100 else
4101 return t;
4102 }
4103
4104 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
4105 {
4106 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4107 return builtin_type (gdbarch)->builtin_void;
4108
4109 return arm_ext_type (gdbarch);
4110 }
4111 else if (regnum == ARM_SP_REGNUM)
4112 return builtin_type (gdbarch)->builtin_data_ptr;
4113 else if (regnum == ARM_PC_REGNUM)
4114 return builtin_type (gdbarch)->builtin_func_ptr;
4115 else if (regnum >= ARRAY_SIZE (arm_register_names))
4116 /* These registers are only supported on targets which supply
4117 an XML description. */
4118 return builtin_type (gdbarch)->builtin_int0;
4119 else
4120 return builtin_type (gdbarch)->builtin_uint32;
4121 }
4122
4123 /* Map a DWARF register REGNUM onto the appropriate GDB register
4124 number. */
4125
4126 static int
4127 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
4128 {
4129 /* Core integer regs. */
4130 if (reg >= 0 && reg <= 15)
4131 return reg;
4132
4133 /* Legacy FPA encoding. These were once used in a way which
4134 overlapped with VFP register numbering, so their use is
4135 discouraged, but GDB doesn't support the ARM toolchain
4136 which used them for VFP. */
4137 if (reg >= 16 && reg <= 23)
4138 return ARM_F0_REGNUM + reg - 16;
4139
4140 /* New assignments for the FPA registers. */
4141 if (reg >= 96 && reg <= 103)
4142 return ARM_F0_REGNUM + reg - 96;
4143
4144 /* WMMX register assignments. */
4145 if (reg >= 104 && reg <= 111)
4146 return ARM_WCGR0_REGNUM + reg - 104;
4147
4148 if (reg >= 112 && reg <= 127)
4149 return ARM_WR0_REGNUM + reg - 112;
4150
4151 if (reg >= 192 && reg <= 199)
4152 return ARM_WC0_REGNUM + reg - 192;
4153
4154 /* VFP v2 registers. A double precision value is actually
4155 in d1 rather than s2, but the ABI only defines numbering
4156 for the single precision registers. This will "just work"
4157 in GDB for little endian targets (we'll read eight bytes,
4158 starting in s0 and then progressing to s1), but will be
4159 reversed on big endian targets with VFP. This won't
4160 be a problem for the new Neon quad registers; you're supposed
4161 to use DW_OP_piece for those. */
4162 if (reg >= 64 && reg <= 95)
4163 {
4164 char name_buf[4];
4165
4166 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
4167 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4168 strlen (name_buf));
4169 }
4170
4171 /* VFP v3 / Neon registers. This range is also used for VFP v2
4172 registers, except that it now describes d0 instead of s0. */
4173 if (reg >= 256 && reg <= 287)
4174 {
4175 char name_buf[4];
4176
4177 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
4178 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4179 strlen (name_buf));
4180 }
4181
4182 return -1;
4183 }
4184
4185 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4186 static int
4187 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
4188 {
4189 int reg = regnum;
4190 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
4191
4192 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4193 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4194
4195 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4196 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4197
4198 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4199 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4200
4201 if (reg < NUM_GREGS)
4202 return SIM_ARM_R0_REGNUM + reg;
4203 reg -= NUM_GREGS;
4204
4205 if (reg < NUM_FREGS)
4206 return SIM_ARM_FP0_REGNUM + reg;
4207 reg -= NUM_FREGS;
4208
4209 if (reg < NUM_SREGS)
4210 return SIM_ARM_FPS_REGNUM + reg;
4211 reg -= NUM_SREGS;
4212
4213 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
4214 }
4215
4216 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4217 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4218 It is thought that this is is the floating-point register format on
4219 little-endian systems. */
4220
4221 static void
4222 convert_from_extended (const struct floatformat *fmt, const void *ptr,
4223 void *dbl, int endianess)
4224 {
4225 DOUBLEST d;
4226
4227 if (endianess == BFD_ENDIAN_BIG)
4228 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4229 else
4230 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4231 ptr, &d);
4232 floatformat_from_doublest (fmt, &d, dbl);
4233 }
4234
4235 static void
4236 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4237 int endianess)
4238 {
4239 DOUBLEST d;
4240
4241 floatformat_to_doublest (fmt, ptr, &d);
4242 if (endianess == BFD_ENDIAN_BIG)
4243 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4244 else
4245 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4246 &d, dbl);
4247 }
4248
4249 /* Like insert_single_step_breakpoint, but make sure we use a breakpoint
4250 of the appropriate mode (as encoded in the PC value), even if this
4251 differs from what would be expected according to the symbol tables. */
4252
4253 void
4254 arm_insert_single_step_breakpoint (struct gdbarch *gdbarch,
4255 struct address_space *aspace,
4256 CORE_ADDR pc)
4257 {
4258 scoped_restore save_override_mode
4259 = make_scoped_restore (&arm_override_mode,
4260 (int) IS_THUMB_ADDR (pc));
4261 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4262
4263 insert_single_step_breakpoint (gdbarch, aspace, pc);
4264 }
4265
4266 /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4267 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4268 NULL if an error occurs. BUF is freed. */
4269
4270 static gdb_byte *
4271 extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4272 int old_len, int new_len)
4273 {
4274 gdb_byte *new_buf;
4275 int bytes_to_read = new_len - old_len;
4276
4277 new_buf = (gdb_byte *) xmalloc (new_len);
4278 memcpy (new_buf + bytes_to_read, buf, old_len);
4279 xfree (buf);
4280 if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
4281 {
4282 xfree (new_buf);
4283 return NULL;
4284 }
4285 return new_buf;
4286 }
4287
4288 /* An IT block is at most the 2-byte IT instruction followed by
4289 four 4-byte instructions. The furthest back we must search to
4290 find an IT block that affects the current instruction is thus
4291 2 + 3 * 4 == 14 bytes. */
4292 #define MAX_IT_BLOCK_PREFIX 14
4293
4294 /* Use a quick scan if there are more than this many bytes of
4295 code. */
4296 #define IT_SCAN_THRESHOLD 32
4297
4298 /* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4299 A breakpoint in an IT block may not be hit, depending on the
4300 condition flags. */
4301 static CORE_ADDR
4302 arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4303 {
4304 gdb_byte *buf;
4305 char map_type;
4306 CORE_ADDR boundary, func_start;
4307 int buf_len;
4308 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4309 int i, any, last_it, last_it_count;
4310
4311 /* If we are using BKPT breakpoints, none of this is necessary. */
4312 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4313 return bpaddr;
4314
4315 /* ARM mode does not have this problem. */
4316 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4317 return bpaddr;
4318
4319 /* We are setting a breakpoint in Thumb code that could potentially
4320 contain an IT block. The first step is to find how much Thumb
4321 code there is; we do not need to read outside of known Thumb
4322 sequences. */
4323 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4324 if (map_type == 0)
4325 /* Thumb-2 code must have mapping symbols to have a chance. */
4326 return bpaddr;
4327
4328 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4329
4330 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4331 && func_start > boundary)
4332 boundary = func_start;
4333
4334 /* Search for a candidate IT instruction. We have to do some fancy
4335 footwork to distinguish a real IT instruction from the second
4336 half of a 32-bit instruction, but there is no need for that if
4337 there's no candidate. */
4338 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
4339 if (buf_len == 0)
4340 /* No room for an IT instruction. */
4341 return bpaddr;
4342
4343 buf = (gdb_byte *) xmalloc (buf_len);
4344 if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
4345 return bpaddr;
4346 any = 0;
4347 for (i = 0; i < buf_len; i += 2)
4348 {
4349 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4350 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4351 {
4352 any = 1;
4353 break;
4354 }
4355 }
4356
4357 if (any == 0)
4358 {
4359 xfree (buf);
4360 return bpaddr;
4361 }
4362
4363 /* OK, the code bytes before this instruction contain at least one
4364 halfword which resembles an IT instruction. We know that it's
4365 Thumb code, but there are still two possibilities. Either the
4366 halfword really is an IT instruction, or it is the second half of
4367 a 32-bit Thumb instruction. The only way we can tell is to
4368 scan forwards from a known instruction boundary. */
4369 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4370 {
4371 int definite;
4372
4373 /* There's a lot of code before this instruction. Start with an
4374 optimistic search; it's easy to recognize halfwords that can
4375 not be the start of a 32-bit instruction, and use that to
4376 lock on to the instruction boundaries. */
4377 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4378 if (buf == NULL)
4379 return bpaddr;
4380 buf_len = IT_SCAN_THRESHOLD;
4381
4382 definite = 0;
4383 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4384 {
4385 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4386 if (thumb_insn_size (inst1) == 2)
4387 {
4388 definite = 1;
4389 break;
4390 }
4391 }
4392
4393 /* At this point, if DEFINITE, BUF[I] is the first place we
4394 are sure that we know the instruction boundaries, and it is far
4395 enough from BPADDR that we could not miss an IT instruction
4396 affecting BPADDR. If ! DEFINITE, give up - start from a
4397 known boundary. */
4398 if (! definite)
4399 {
4400 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4401 bpaddr - boundary);
4402 if (buf == NULL)
4403 return bpaddr;
4404 buf_len = bpaddr - boundary;
4405 i = 0;
4406 }
4407 }
4408 else
4409 {
4410 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4411 if (buf == NULL)
4412 return bpaddr;
4413 buf_len = bpaddr - boundary;
4414 i = 0;
4415 }
4416
4417 /* Scan forwards. Find the last IT instruction before BPADDR. */
4418 last_it = -1;
4419 last_it_count = 0;
4420 while (i < buf_len)
4421 {
4422 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4423 last_it_count--;
4424 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4425 {
4426 last_it = i;
4427 if (inst1 & 0x0001)
4428 last_it_count = 4;
4429 else if (inst1 & 0x0002)
4430 last_it_count = 3;
4431 else if (inst1 & 0x0004)
4432 last_it_count = 2;
4433 else
4434 last_it_count = 1;
4435 }
4436 i += thumb_insn_size (inst1);
4437 }
4438
4439 xfree (buf);
4440
4441 if (last_it == -1)
4442 /* There wasn't really an IT instruction after all. */
4443 return bpaddr;
4444
4445 if (last_it_count < 1)
4446 /* It was too far away. */
4447 return bpaddr;
4448
4449 /* This really is a trouble spot. Move the breakpoint to the IT
4450 instruction. */
4451 return bpaddr - buf_len + last_it;
4452 }
4453
4454 /* ARM displaced stepping support.
4455
4456 Generally ARM displaced stepping works as follows:
4457
4458 1. When an instruction is to be single-stepped, it is first decoded by
4459 arm_process_displaced_insn. Depending on the type of instruction, it is
4460 then copied to a scratch location, possibly in a modified form. The
4461 copy_* set of functions performs such modification, as necessary. A
4462 breakpoint is placed after the modified instruction in the scratch space
4463 to return control to GDB. Note in particular that instructions which
4464 modify the PC will no longer do so after modification.
4465
4466 2. The instruction is single-stepped, by setting the PC to the scratch
4467 location address, and resuming. Control returns to GDB when the
4468 breakpoint is hit.
4469
4470 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4471 function used for the current instruction. This function's job is to
4472 put the CPU/memory state back to what it would have been if the
4473 instruction had been executed unmodified in its original location. */
4474
4475 /* NOP instruction (mov r0, r0). */
4476 #define ARM_NOP 0xe1a00000
4477 #define THUMB_NOP 0x4600
4478
4479 /* Helper for register reads for displaced stepping. In particular, this
4480 returns the PC as it would be seen by the instruction at its original
4481 location. */
4482
4483 ULONGEST
4484 displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4485 int regno)
4486 {
4487 ULONGEST ret;
4488 CORE_ADDR from = dsc->insn_addr;
4489
4490 if (regno == ARM_PC_REGNUM)
4491 {
4492 /* Compute pipeline offset:
4493 - When executing an ARM instruction, PC reads as the address of the
4494 current instruction plus 8.
4495 - When executing a Thumb instruction, PC reads as the address of the
4496 current instruction plus 4. */
4497
4498 if (!dsc->is_thumb)
4499 from += 8;
4500 else
4501 from += 4;
4502
4503 if (debug_displaced)
4504 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4505 (unsigned long) from);
4506 return (ULONGEST) from;
4507 }
4508 else
4509 {
4510 regcache_cooked_read_unsigned (regs, regno, &ret);
4511 if (debug_displaced)
4512 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4513 regno, (unsigned long) ret);
4514 return ret;
4515 }
4516 }
4517
4518 static int
4519 displaced_in_arm_mode (struct regcache *regs)
4520 {
4521 ULONGEST ps;
4522 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4523
4524 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4525
4526 return (ps & t_bit) == 0;
4527 }
4528
4529 /* Write to the PC as from a branch instruction. */
4530
4531 static void
4532 branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4533 ULONGEST val)
4534 {
4535 if (!dsc->is_thumb)
4536 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4537 architecture versions < 6. */
4538 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4539 val & ~(ULONGEST) 0x3);
4540 else
4541 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4542 val & ~(ULONGEST) 0x1);
4543 }
4544
4545 /* Write to the PC as from a branch-exchange instruction. */
4546
4547 static void
4548 bx_write_pc (struct regcache *regs, ULONGEST val)
4549 {
4550 ULONGEST ps;
4551 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4552
4553 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4554
4555 if ((val & 1) == 1)
4556 {
4557 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
4558 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4559 }
4560 else if ((val & 2) == 0)
4561 {
4562 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4563 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
4564 }
4565 else
4566 {
4567 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4568 mode, align dest to 4 bytes). */
4569 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
4570 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4571 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
4572 }
4573 }
4574
4575 /* Write to the PC as if from a load instruction. */
4576
4577 static void
4578 load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4579 ULONGEST val)
4580 {
4581 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4582 bx_write_pc (regs, val);
4583 else
4584 branch_write_pc (regs, dsc, val);
4585 }
4586
4587 /* Write to the PC as if from an ALU instruction. */
4588
4589 static void
4590 alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4591 ULONGEST val)
4592 {
4593 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
4594 bx_write_pc (regs, val);
4595 else
4596 branch_write_pc (regs, dsc, val);
4597 }
4598
4599 /* Helper for writing to registers for displaced stepping. Writing to the PC
4600 has a varying effects depending on the instruction which does the write:
4601 this is controlled by the WRITE_PC argument. */
4602
4603 void
4604 displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4605 int regno, ULONGEST val, enum pc_write_style write_pc)
4606 {
4607 if (regno == ARM_PC_REGNUM)
4608 {
4609 if (debug_displaced)
4610 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4611 (unsigned long) val);
4612 switch (write_pc)
4613 {
4614 case BRANCH_WRITE_PC:
4615 branch_write_pc (regs, dsc, val);
4616 break;
4617
4618 case BX_WRITE_PC:
4619 bx_write_pc (regs, val);
4620 break;
4621
4622 case LOAD_WRITE_PC:
4623 load_write_pc (regs, dsc, val);
4624 break;
4625
4626 case ALU_WRITE_PC:
4627 alu_write_pc (regs, dsc, val);
4628 break;
4629
4630 case CANNOT_WRITE_PC:
4631 warning (_("Instruction wrote to PC in an unexpected way when "
4632 "single-stepping"));
4633 break;
4634
4635 default:
4636 internal_error (__FILE__, __LINE__,
4637 _("Invalid argument to displaced_write_reg"));
4638 }
4639
4640 dsc->wrote_to_pc = 1;
4641 }
4642 else
4643 {
4644 if (debug_displaced)
4645 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4646 regno, (unsigned long) val);
4647 regcache_cooked_write_unsigned (regs, regno, val);
4648 }
4649 }
4650
4651 /* This function is used to concisely determine if an instruction INSN
4652 references PC. Register fields of interest in INSN should have the
4653 corresponding fields of BITMASK set to 0b1111. The function
4654 returns return 1 if any of these fields in INSN reference the PC
4655 (also 0b1111, r15), else it returns 0. */
4656
4657 static int
4658 insn_references_pc (uint32_t insn, uint32_t bitmask)
4659 {
4660 uint32_t lowbit = 1;
4661
4662 while (bitmask != 0)
4663 {
4664 uint32_t mask;
4665
4666 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4667 ;
4668
4669 if (!lowbit)
4670 break;
4671
4672 mask = lowbit * 0xf;
4673
4674 if ((insn & mask) == mask)
4675 return 1;
4676
4677 bitmask &= ~mask;
4678 }
4679
4680 return 0;
4681 }
4682
4683 /* The simplest copy function. Many instructions have the same effect no
4684 matter what address they are executed at: in those cases, use this. */
4685
4686 static int
4687 arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4688 const char *iname, struct displaced_step_closure *dsc)
4689 {
4690 if (debug_displaced)
4691 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4692 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4693 iname);
4694
4695 dsc->modinsn[0] = insn;
4696
4697 return 0;
4698 }
4699
4700 static int
4701 thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4702 uint16_t insn2, const char *iname,
4703 struct displaced_step_closure *dsc)
4704 {
4705 if (debug_displaced)
4706 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4707 "opcode/class '%s' unmodified\n", insn1, insn2,
4708 iname);
4709
4710 dsc->modinsn[0] = insn1;
4711 dsc->modinsn[1] = insn2;
4712 dsc->numinsns = 2;
4713
4714 return 0;
4715 }
4716
4717 /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4718 modification. */
4719 static int
4720 thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
4721 const char *iname,
4722 struct displaced_step_closure *dsc)
4723 {
4724 if (debug_displaced)
4725 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4726 "opcode/class '%s' unmodified\n", insn,
4727 iname);
4728
4729 dsc->modinsn[0] = insn;
4730
4731 return 0;
4732 }
4733
4734 /* Preload instructions with immediate offset. */
4735
4736 static void
4737 cleanup_preload (struct gdbarch *gdbarch,
4738 struct regcache *regs, struct displaced_step_closure *dsc)
4739 {
4740 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4741 if (!dsc->u.preload.immed)
4742 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4743 }
4744
4745 static void
4746 install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4747 struct displaced_step_closure *dsc, unsigned int rn)
4748 {
4749 ULONGEST rn_val;
4750 /* Preload instructions:
4751
4752 {pli/pld} [rn, #+/-imm]
4753 ->
4754 {pli/pld} [r0, #+/-imm]. */
4755
4756 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4757 rn_val = displaced_read_reg (regs, dsc, rn);
4758 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4759 dsc->u.preload.immed = 1;
4760
4761 dsc->cleanup = &cleanup_preload;
4762 }
4763
4764 static int
4765 arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
4766 struct displaced_step_closure *dsc)
4767 {
4768 unsigned int rn = bits (insn, 16, 19);
4769
4770 if (!insn_references_pc (insn, 0x000f0000ul))
4771 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
4772
4773 if (debug_displaced)
4774 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4775 (unsigned long) insn);
4776
4777 dsc->modinsn[0] = insn & 0xfff0ffff;
4778
4779 install_preload (gdbarch, regs, dsc, rn);
4780
4781 return 0;
4782 }
4783
4784 static int
4785 thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4786 struct regcache *regs, struct displaced_step_closure *dsc)
4787 {
4788 unsigned int rn = bits (insn1, 0, 3);
4789 unsigned int u_bit = bit (insn1, 7);
4790 int imm12 = bits (insn2, 0, 11);
4791 ULONGEST pc_val;
4792
4793 if (rn != ARM_PC_REGNUM)
4794 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4795
4796 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4797 PLD (literal) Encoding T1. */
4798 if (debug_displaced)
4799 fprintf_unfiltered (gdb_stdlog,
4800 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4801 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4802 imm12);
4803
4804 if (!u_bit)
4805 imm12 = -1 * imm12;
4806
4807 /* Rewrite instruction {pli/pld} PC imm12 into:
4808 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4809
4810 {pli/pld} [r0, r1]
4811
4812 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4813
4814 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4815 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4816
4817 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4818
4819 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4820 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4821 dsc->u.preload.immed = 0;
4822
4823 /* {pli/pld} [r0, r1] */
4824 dsc->modinsn[0] = insn1 & 0xfff0;
4825 dsc->modinsn[1] = 0xf001;
4826 dsc->numinsns = 2;
4827
4828 dsc->cleanup = &cleanup_preload;
4829 return 0;
4830 }
4831
4832 /* Preload instructions with register offset. */
4833
4834 static void
4835 install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4836 struct displaced_step_closure *dsc, unsigned int rn,
4837 unsigned int rm)
4838 {
4839 ULONGEST rn_val, rm_val;
4840
4841 /* Preload register-offset instructions:
4842
4843 {pli/pld} [rn, rm {, shift}]
4844 ->
4845 {pli/pld} [r0, r1 {, shift}]. */
4846
4847 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4848 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4849 rn_val = displaced_read_reg (regs, dsc, rn);
4850 rm_val = displaced_read_reg (regs, dsc, rm);
4851 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4852 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
4853 dsc->u.preload.immed = 0;
4854
4855 dsc->cleanup = &cleanup_preload;
4856 }
4857
4858 static int
4859 arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4860 struct regcache *regs,
4861 struct displaced_step_closure *dsc)
4862 {
4863 unsigned int rn = bits (insn, 16, 19);
4864 unsigned int rm = bits (insn, 0, 3);
4865
4866
4867 if (!insn_references_pc (insn, 0x000f000ful))
4868 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4869
4870 if (debug_displaced)
4871 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4872 (unsigned long) insn);
4873
4874 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
4875
4876 install_preload_reg (gdbarch, regs, dsc, rn, rm);
4877 return 0;
4878 }
4879
4880 /* Copy/cleanup coprocessor load and store instructions. */
4881
4882 static void
4883 cleanup_copro_load_store (struct gdbarch *gdbarch,
4884 struct regcache *regs,
4885 struct displaced_step_closure *dsc)
4886 {
4887 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
4888
4889 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4890
4891 if (dsc->u.ldst.writeback)
4892 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4893 }
4894
4895 static void
4896 install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4897 struct displaced_step_closure *dsc,
4898 int writeback, unsigned int rn)
4899 {
4900 ULONGEST rn_val;
4901
4902 /* Coprocessor load/store instructions:
4903
4904 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4905 ->
4906 {stc/stc2} [r0, #+/-imm].
4907
4908 ldc/ldc2 are handled identically. */
4909
4910 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4911 rn_val = displaced_read_reg (regs, dsc, rn);
4912 /* PC should be 4-byte aligned. */
4913 rn_val = rn_val & 0xfffffffc;
4914 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4915
4916 dsc->u.ldst.writeback = writeback;
4917 dsc->u.ldst.rn = rn;
4918
4919 dsc->cleanup = &cleanup_copro_load_store;
4920 }
4921
4922 static int
4923 arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4924 struct regcache *regs,
4925 struct displaced_step_closure *dsc)
4926 {
4927 unsigned int rn = bits (insn, 16, 19);
4928
4929 if (!insn_references_pc (insn, 0x000f0000ul))
4930 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4931
4932 if (debug_displaced)
4933 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4934 "load/store insn %.8lx\n", (unsigned long) insn);
4935
4936 dsc->modinsn[0] = insn & 0xfff0ffff;
4937
4938 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
4939
4940 return 0;
4941 }
4942
4943 static int
4944 thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4945 uint16_t insn2, struct regcache *regs,
4946 struct displaced_step_closure *dsc)
4947 {
4948 unsigned int rn = bits (insn1, 0, 3);
4949
4950 if (rn != ARM_PC_REGNUM)
4951 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4952 "copro load/store", dsc);
4953
4954 if (debug_displaced)
4955 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4956 "load/store insn %.4x%.4x\n", insn1, insn2);
4957
4958 dsc->modinsn[0] = insn1 & 0xfff0;
4959 dsc->modinsn[1] = insn2;
4960 dsc->numinsns = 2;
4961
4962 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4963 doesn't support writeback, so pass 0. */
4964 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4965
4966 return 0;
4967 }
4968
4969 /* Clean up branch instructions (actually perform the branch, by setting
4970 PC). */
4971
4972 static void
4973 cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
4974 struct displaced_step_closure *dsc)
4975 {
4976 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
4977 int branch_taken = condition_true (dsc->u.branch.cond, status);
4978 enum pc_write_style write_pc = dsc->u.branch.exchange
4979 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4980
4981 if (!branch_taken)
4982 return;
4983
4984 if (dsc->u.branch.link)
4985 {
4986 /* The value of LR should be the next insn of current one. In order
4987 not to confuse logic hanlding later insn `bx lr', if current insn mode
4988 is Thumb, the bit 0 of LR value should be set to 1. */
4989 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4990
4991 if (dsc->is_thumb)
4992 next_insn_addr |= 0x1;
4993
4994 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4995 CANNOT_WRITE_PC);
4996 }
4997
4998 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
4999 }
5000
5001 /* Copy B/BL/BLX instructions with immediate destinations. */
5002
5003 static void
5004 install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
5005 struct displaced_step_closure *dsc,
5006 unsigned int cond, int exchange, int link, long offset)
5007 {
5008 /* Implement "BL<cond> <label>" as:
5009
5010 Preparation: cond <- instruction condition
5011 Insn: mov r0, r0 (nop)
5012 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
5013
5014 B<cond> similar, but don't set r14 in cleanup. */
5015
5016 dsc->u.branch.cond = cond;
5017 dsc->u.branch.link = link;
5018 dsc->u.branch.exchange = exchange;
5019
5020 dsc->u.branch.dest = dsc->insn_addr;
5021 if (link && exchange)
5022 /* For BLX, offset is computed from the Align (PC, 4). */
5023 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
5024
5025 if (dsc->is_thumb)
5026 dsc->u.branch.dest += 4 + offset;
5027 else
5028 dsc->u.branch.dest += 8 + offset;
5029
5030 dsc->cleanup = &cleanup_branch;
5031 }
5032 static int
5033 arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5034 struct regcache *regs, struct displaced_step_closure *dsc)
5035 {
5036 unsigned int cond = bits (insn, 28, 31);
5037 int exchange = (cond == 0xf);
5038 int link = exchange || bit (insn, 24);
5039 long offset;
5040
5041 if (debug_displaced)
5042 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5043 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5044 (unsigned long) insn);
5045 if (exchange)
5046 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5047 then arrange the switch into Thumb mode. */
5048 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5049 else
5050 offset = bits (insn, 0, 23) << 2;
5051
5052 if (bit (offset, 25))
5053 offset = offset | ~0x3ffffff;
5054
5055 dsc->modinsn[0] = ARM_NOP;
5056
5057 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5058 return 0;
5059 }
5060
5061 static int
5062 thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
5063 uint16_t insn2, struct regcache *regs,
5064 struct displaced_step_closure *dsc)
5065 {
5066 int link = bit (insn2, 14);
5067 int exchange = link && !bit (insn2, 12);
5068 int cond = INST_AL;
5069 long offset = 0;
5070 int j1 = bit (insn2, 13);
5071 int j2 = bit (insn2, 11);
5072 int s = sbits (insn1, 10, 10);
5073 int i1 = !(j1 ^ bit (insn1, 10));
5074 int i2 = !(j2 ^ bit (insn1, 10));
5075
5076 if (!link && !exchange) /* B */
5077 {
5078 offset = (bits (insn2, 0, 10) << 1);
5079 if (bit (insn2, 12)) /* Encoding T4 */
5080 {
5081 offset |= (bits (insn1, 0, 9) << 12)
5082 | (i2 << 22)
5083 | (i1 << 23)
5084 | (s << 24);
5085 cond = INST_AL;
5086 }
5087 else /* Encoding T3 */
5088 {
5089 offset |= (bits (insn1, 0, 5) << 12)
5090 | (j1 << 18)
5091 | (j2 << 19)
5092 | (s << 20);
5093 cond = bits (insn1, 6, 9);
5094 }
5095 }
5096 else
5097 {
5098 offset = (bits (insn1, 0, 9) << 12);
5099 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
5100 offset |= exchange ?
5101 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
5102 }
5103
5104 if (debug_displaced)
5105 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5106 "%.4x %.4x with offset %.8lx\n",
5107 link ? (exchange) ? "blx" : "bl" : "b",
5108 insn1, insn2, offset);
5109
5110 dsc->modinsn[0] = THUMB_NOP;
5111
5112 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5113 return 0;
5114 }
5115
5116 /* Copy B Thumb instructions. */
5117 static int
5118 thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
5119 struct displaced_step_closure *dsc)
5120 {
5121 unsigned int cond = 0;
5122 int offset = 0;
5123 unsigned short bit_12_15 = bits (insn, 12, 15);
5124 CORE_ADDR from = dsc->insn_addr;
5125
5126 if (bit_12_15 == 0xd)
5127 {
5128 /* offset = SignExtend (imm8:0, 32) */
5129 offset = sbits ((insn << 1), 0, 8);
5130 cond = bits (insn, 8, 11);
5131 }
5132 else if (bit_12_15 == 0xe) /* Encoding T2 */
5133 {
5134 offset = sbits ((insn << 1), 0, 11);
5135 cond = INST_AL;
5136 }
5137
5138 if (debug_displaced)
5139 fprintf_unfiltered (gdb_stdlog,
5140 "displaced: copying b immediate insn %.4x "
5141 "with offset %d\n", insn, offset);
5142
5143 dsc->u.branch.cond = cond;
5144 dsc->u.branch.link = 0;
5145 dsc->u.branch.exchange = 0;
5146 dsc->u.branch.dest = from + 4 + offset;
5147
5148 dsc->modinsn[0] = THUMB_NOP;
5149
5150 dsc->cleanup = &cleanup_branch;
5151
5152 return 0;
5153 }
5154
5155 /* Copy BX/BLX with register-specified destinations. */
5156
5157 static void
5158 install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5159 struct displaced_step_closure *dsc, int link,
5160 unsigned int cond, unsigned int rm)
5161 {
5162 /* Implement {BX,BLX}<cond> <reg>" as:
5163
5164 Preparation: cond <- instruction condition
5165 Insn: mov r0, r0 (nop)
5166 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5167
5168 Don't set r14 in cleanup for BX. */
5169
5170 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
5171
5172 dsc->u.branch.cond = cond;
5173 dsc->u.branch.link = link;
5174
5175 dsc->u.branch.exchange = 1;
5176
5177 dsc->cleanup = &cleanup_branch;
5178 }
5179
5180 static int
5181 arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5182 struct regcache *regs, struct displaced_step_closure *dsc)
5183 {
5184 unsigned int cond = bits (insn, 28, 31);
5185 /* BX: x12xxx1x
5186 BLX: x12xxx3x. */
5187 int link = bit (insn, 5);
5188 unsigned int rm = bits (insn, 0, 3);
5189
5190 if (debug_displaced)
5191 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5192 (unsigned long) insn);
5193
5194 dsc->modinsn[0] = ARM_NOP;
5195
5196 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
5197 return 0;
5198 }
5199
5200 static int
5201 thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5202 struct regcache *regs,
5203 struct displaced_step_closure *dsc)
5204 {
5205 int link = bit (insn, 7);
5206 unsigned int rm = bits (insn, 3, 6);
5207
5208 if (debug_displaced)
5209 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5210 (unsigned short) insn);
5211
5212 dsc->modinsn[0] = THUMB_NOP;
5213
5214 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5215
5216 return 0;
5217 }
5218
5219
5220 /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
5221
5222 static void
5223 cleanup_alu_imm (struct gdbarch *gdbarch,
5224 struct regcache *regs, struct displaced_step_closure *dsc)
5225 {
5226 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5227 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5228 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5229 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5230 }
5231
5232 static int
5233 arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5234 struct displaced_step_closure *dsc)
5235 {
5236 unsigned int rn = bits (insn, 16, 19);
5237 unsigned int rd = bits (insn, 12, 15);
5238 unsigned int op = bits (insn, 21, 24);
5239 int is_mov = (op == 0xd);
5240 ULONGEST rd_val, rn_val;
5241
5242 if (!insn_references_pc (insn, 0x000ff000ul))
5243 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5244
5245 if (debug_displaced)
5246 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5247 "%.8lx\n", is_mov ? "move" : "ALU",
5248 (unsigned long) insn);
5249
5250 /* Instruction is of form:
5251
5252 <op><cond> rd, [rn,] #imm
5253
5254 Rewrite as:
5255
5256 Preparation: tmp1, tmp2 <- r0, r1;
5257 r0, r1 <- rd, rn
5258 Insn: <op><cond> r0, r1, #imm
5259 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5260 */
5261
5262 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5263 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5264 rn_val = displaced_read_reg (regs, dsc, rn);
5265 rd_val = displaced_read_reg (regs, dsc, rd);
5266 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5267 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5268 dsc->rd = rd;
5269
5270 if (is_mov)
5271 dsc->modinsn[0] = insn & 0xfff00fff;
5272 else
5273 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5274
5275 dsc->cleanup = &cleanup_alu_imm;
5276
5277 return 0;
5278 }
5279
5280 static int
5281 thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5282 uint16_t insn2, struct regcache *regs,
5283 struct displaced_step_closure *dsc)
5284 {
5285 unsigned int op = bits (insn1, 5, 8);
5286 unsigned int rn, rm, rd;
5287 ULONGEST rd_val, rn_val;
5288
5289 rn = bits (insn1, 0, 3); /* Rn */
5290 rm = bits (insn2, 0, 3); /* Rm */
5291 rd = bits (insn2, 8, 11); /* Rd */
5292
5293 /* This routine is only called for instruction MOV. */
5294 gdb_assert (op == 0x2 && rn == 0xf);
5295
5296 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5297 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5298
5299 if (debug_displaced)
5300 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5301 "ALU", insn1, insn2);
5302
5303 /* Instruction is of form:
5304
5305 <op><cond> rd, [rn,] #imm
5306
5307 Rewrite as:
5308
5309 Preparation: tmp1, tmp2 <- r0, r1;
5310 r0, r1 <- rd, rn
5311 Insn: <op><cond> r0, r1, #imm
5312 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5313 */
5314
5315 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5316 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5317 rn_val = displaced_read_reg (regs, dsc, rn);
5318 rd_val = displaced_read_reg (regs, dsc, rd);
5319 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5320 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5321 dsc->rd = rd;
5322
5323 dsc->modinsn[0] = insn1;
5324 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5325 dsc->numinsns = 2;
5326
5327 dsc->cleanup = &cleanup_alu_imm;
5328
5329 return 0;
5330 }
5331
5332 /* Copy/cleanup arithmetic/logic insns with register RHS. */
5333
5334 static void
5335 cleanup_alu_reg (struct gdbarch *gdbarch,
5336 struct regcache *regs, struct displaced_step_closure *dsc)
5337 {
5338 ULONGEST rd_val;
5339 int i;
5340
5341 rd_val = displaced_read_reg (regs, dsc, 0);
5342
5343 for (i = 0; i < 3; i++)
5344 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5345
5346 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5347 }
5348
5349 static void
5350 install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5351 struct displaced_step_closure *dsc,
5352 unsigned int rd, unsigned int rn, unsigned int rm)
5353 {
5354 ULONGEST rd_val, rn_val, rm_val;
5355
5356 /* Instruction is of form:
5357
5358 <op><cond> rd, [rn,] rm [, <shift>]
5359
5360 Rewrite as:
5361
5362 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5363 r0, r1, r2 <- rd, rn, rm
5364 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
5365 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5366 */
5367
5368 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5369 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5370 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5371 rd_val = displaced_read_reg (regs, dsc, rd);
5372 rn_val = displaced_read_reg (regs, dsc, rn);
5373 rm_val = displaced_read_reg (regs, dsc, rm);
5374 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5375 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5376 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5377 dsc->rd = rd;
5378
5379 dsc->cleanup = &cleanup_alu_reg;
5380 }
5381
5382 static int
5383 arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5384 struct displaced_step_closure *dsc)
5385 {
5386 unsigned int op = bits (insn, 21, 24);
5387 int is_mov = (op == 0xd);
5388
5389 if (!insn_references_pc (insn, 0x000ff00ful))
5390 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5391
5392 if (debug_displaced)
5393 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5394 is_mov ? "move" : "ALU", (unsigned long) insn);
5395
5396 if (is_mov)
5397 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5398 else
5399 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5400
5401 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5402 bits (insn, 0, 3));
5403 return 0;
5404 }
5405
5406 static int
5407 thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5408 struct regcache *regs,
5409 struct displaced_step_closure *dsc)
5410 {
5411 unsigned rm, rd;
5412
5413 rm = bits (insn, 3, 6);
5414 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
5415
5416 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
5417 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5418
5419 if (debug_displaced)
5420 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5421 (unsigned short) insn);
5422
5423 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
5424
5425 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
5426
5427 return 0;
5428 }
5429
5430 /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5431
5432 static void
5433 cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
5434 struct regcache *regs,
5435 struct displaced_step_closure *dsc)
5436 {
5437 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5438 int i;
5439
5440 for (i = 0; i < 4; i++)
5441 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5442
5443 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5444 }
5445
5446 static void
5447 install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5448 struct displaced_step_closure *dsc,
5449 unsigned int rd, unsigned int rn, unsigned int rm,
5450 unsigned rs)
5451 {
5452 int i;
5453 ULONGEST rd_val, rn_val, rm_val, rs_val;
5454
5455 /* Instruction is of form:
5456
5457 <op><cond> rd, [rn,] rm, <shift> rs
5458
5459 Rewrite as:
5460
5461 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5462 r0, r1, r2, r3 <- rd, rn, rm, rs
5463 Insn: <op><cond> r0, r1, r2, <shift> r3
5464 Cleanup: tmp5 <- r0
5465 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5466 rd <- tmp5
5467 */
5468
5469 for (i = 0; i < 4; i++)
5470 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
5471
5472 rd_val = displaced_read_reg (regs, dsc, rd);
5473 rn_val = displaced_read_reg (regs, dsc, rn);
5474 rm_val = displaced_read_reg (regs, dsc, rm);
5475 rs_val = displaced_read_reg (regs, dsc, rs);
5476 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5477 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5478 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5479 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5480 dsc->rd = rd;
5481 dsc->cleanup = &cleanup_alu_shifted_reg;
5482 }
5483
5484 static int
5485 arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5486 struct regcache *regs,
5487 struct displaced_step_closure *dsc)
5488 {
5489 unsigned int op = bits (insn, 21, 24);
5490 int is_mov = (op == 0xd);
5491 unsigned int rd, rn, rm, rs;
5492
5493 if (!insn_references_pc (insn, 0x000fff0ful))
5494 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5495
5496 if (debug_displaced)
5497 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5498 "%.8lx\n", is_mov ? "move" : "ALU",
5499 (unsigned long) insn);
5500
5501 rn = bits (insn, 16, 19);
5502 rm = bits (insn, 0, 3);
5503 rs = bits (insn, 8, 11);
5504 rd = bits (insn, 12, 15);
5505
5506 if (is_mov)
5507 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5508 else
5509 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5510
5511 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
5512
5513 return 0;
5514 }
5515
5516 /* Clean up load instructions. */
5517
5518 static void
5519 cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
5520 struct displaced_step_closure *dsc)
5521 {
5522 ULONGEST rt_val, rt_val2 = 0, rn_val;
5523
5524 rt_val = displaced_read_reg (regs, dsc, 0);
5525 if (dsc->u.ldst.xfersize == 8)
5526 rt_val2 = displaced_read_reg (regs, dsc, 1);
5527 rn_val = displaced_read_reg (regs, dsc, 2);
5528
5529 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5530 if (dsc->u.ldst.xfersize > 4)
5531 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5532 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5533 if (!dsc->u.ldst.immed)
5534 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5535
5536 /* Handle register writeback. */
5537 if (dsc->u.ldst.writeback)
5538 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5539 /* Put result in right place. */
5540 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5541 if (dsc->u.ldst.xfersize == 8)
5542 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5543 }
5544
5545 /* Clean up store instructions. */
5546
5547 static void
5548 cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
5549 struct displaced_step_closure *dsc)
5550 {
5551 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
5552
5553 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5554 if (dsc->u.ldst.xfersize > 4)
5555 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5556 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5557 if (!dsc->u.ldst.immed)
5558 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5559 if (!dsc->u.ldst.restore_r4)
5560 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5561
5562 /* Writeback. */
5563 if (dsc->u.ldst.writeback)
5564 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5565 }
5566
5567 /* Copy "extra" load/store instructions. These are halfword/doubleword
5568 transfers, which have a different encoding to byte/word transfers. */
5569
5570 static int
5571 arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
5572 struct regcache *regs, struct displaced_step_closure *dsc)
5573 {
5574 unsigned int op1 = bits (insn, 20, 24);
5575 unsigned int op2 = bits (insn, 5, 6);
5576 unsigned int rt = bits (insn, 12, 15);
5577 unsigned int rn = bits (insn, 16, 19);
5578 unsigned int rm = bits (insn, 0, 3);
5579 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5580 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5581 int immed = (op1 & 0x4) != 0;
5582 int opcode;
5583 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5584
5585 if (!insn_references_pc (insn, 0x000ff00ful))
5586 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5587
5588 if (debug_displaced)
5589 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5590 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
5591 (unsigned long) insn);
5592
5593 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5594
5595 if (opcode < 0)
5596 internal_error (__FILE__, __LINE__,
5597 _("copy_extra_ld_st: instruction decode error"));
5598
5599 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5600 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5601 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5602 if (!immed)
5603 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5604
5605 rt_val = displaced_read_reg (regs, dsc, rt);
5606 if (bytesize[opcode] == 8)
5607 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5608 rn_val = displaced_read_reg (regs, dsc, rn);
5609 if (!immed)
5610 rm_val = displaced_read_reg (regs, dsc, rm);
5611
5612 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5613 if (bytesize[opcode] == 8)
5614 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5615 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5616 if (!immed)
5617 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5618
5619 dsc->rd = rt;
5620 dsc->u.ldst.xfersize = bytesize[opcode];
5621 dsc->u.ldst.rn = rn;
5622 dsc->u.ldst.immed = immed;
5623 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5624 dsc->u.ldst.restore_r4 = 0;
5625
5626 if (immed)
5627 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5628 ->
5629 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5630 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5631 else
5632 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5633 ->
5634 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5635 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5636
5637 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5638
5639 return 0;
5640 }
5641
5642 /* Copy byte/half word/word loads and stores. */
5643
5644 static void
5645 install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5646 struct displaced_step_closure *dsc, int load,
5647 int immed, int writeback, int size, int usermode,
5648 int rt, int rm, int rn)
5649 {
5650 ULONGEST rt_val, rn_val, rm_val = 0;
5651
5652 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5653 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5654 if (!immed)
5655 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5656 if (!load)
5657 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
5658
5659 rt_val = displaced_read_reg (regs, dsc, rt);
5660 rn_val = displaced_read_reg (regs, dsc, rn);
5661 if (!immed)
5662 rm_val = displaced_read_reg (regs, dsc, rm);
5663
5664 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5665 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5666 if (!immed)
5667 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5668 dsc->rd = rt;
5669 dsc->u.ldst.xfersize = size;
5670 dsc->u.ldst.rn = rn;
5671 dsc->u.ldst.immed = immed;
5672 dsc->u.ldst.writeback = writeback;
5673
5674 /* To write PC we can do:
5675
5676 Before this sequence of instructions:
5677 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5678 r2 is the Rn value got from dispalced_read_reg.
5679
5680 Insn1: push {pc} Write address of STR instruction + offset on stack
5681 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5682 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5683 = addr(Insn1) + offset - addr(Insn3) - 8
5684 = offset - 16
5685 Insn4: add r4, r4, #8 r4 = offset - 8
5686 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5687 = from + offset
5688 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
5689
5690 Otherwise we don't know what value to write for PC, since the offset is
5691 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5692 of this can be found in Section "Saving from r15" in
5693 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
5694
5695 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5696 }
5697
5698
5699 static int
5700 thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5701 uint16_t insn2, struct regcache *regs,
5702 struct displaced_step_closure *dsc, int size)
5703 {
5704 unsigned int u_bit = bit (insn1, 7);
5705 unsigned int rt = bits (insn2, 12, 15);
5706 int imm12 = bits (insn2, 0, 11);
5707 ULONGEST pc_val;
5708
5709 if (debug_displaced)
5710 fprintf_unfiltered (gdb_stdlog,
5711 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5712 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5713 imm12);
5714
5715 if (!u_bit)
5716 imm12 = -1 * imm12;
5717
5718 /* Rewrite instruction LDR Rt imm12 into:
5719
5720 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5721
5722 LDR R0, R2, R3,
5723
5724 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5725
5726
5727 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5728 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5729 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5730
5731 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5732
5733 pc_val = pc_val & 0xfffffffc;
5734
5735 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5736 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5737
5738 dsc->rd = rt;
5739
5740 dsc->u.ldst.xfersize = size;
5741 dsc->u.ldst.immed = 0;
5742 dsc->u.ldst.writeback = 0;
5743 dsc->u.ldst.restore_r4 = 0;
5744
5745 /* LDR R0, R2, R3 */
5746 dsc->modinsn[0] = 0xf852;
5747 dsc->modinsn[1] = 0x3;
5748 dsc->numinsns = 2;
5749
5750 dsc->cleanup = &cleanup_load;
5751
5752 return 0;
5753 }
5754
5755 static int
5756 thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5757 uint16_t insn2, struct regcache *regs,
5758 struct displaced_step_closure *dsc,
5759 int writeback, int immed)
5760 {
5761 unsigned int rt = bits (insn2, 12, 15);
5762 unsigned int rn = bits (insn1, 0, 3);
5763 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5764 /* In LDR (register), there is also a register Rm, which is not allowed to
5765 be PC, so we don't have to check it. */
5766
5767 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5768 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5769 dsc);
5770
5771 if (debug_displaced)
5772 fprintf_unfiltered (gdb_stdlog,
5773 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5774 rt, rn, insn1, insn2);
5775
5776 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5777 0, rt, rm, rn);
5778
5779 dsc->u.ldst.restore_r4 = 0;
5780
5781 if (immed)
5782 /* ldr[b]<cond> rt, [rn, #imm], etc.
5783 ->
5784 ldr[b]<cond> r0, [r2, #imm]. */
5785 {
5786 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5787 dsc->modinsn[1] = insn2 & 0x0fff;
5788 }
5789 else
5790 /* ldr[b]<cond> rt, [rn, rm], etc.
5791 ->
5792 ldr[b]<cond> r0, [r2, r3]. */
5793 {
5794 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5795 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5796 }
5797
5798 dsc->numinsns = 2;
5799
5800 return 0;
5801 }
5802
5803
5804 static int
5805 arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5806 struct regcache *regs,
5807 struct displaced_step_closure *dsc,
5808 int load, int size, int usermode)
5809 {
5810 int immed = !bit (insn, 25);
5811 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5812 unsigned int rt = bits (insn, 12, 15);
5813 unsigned int rn = bits (insn, 16, 19);
5814 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5815
5816 if (!insn_references_pc (insn, 0x000ff00ful))
5817 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5818
5819 if (debug_displaced)
5820 fprintf_unfiltered (gdb_stdlog,
5821 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
5822 load ? (size == 1 ? "ldrb" : "ldr")
5823 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
5824 rt, rn,
5825 (unsigned long) insn);
5826
5827 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5828 usermode, rt, rm, rn);
5829
5830 if (load || rt != ARM_PC_REGNUM)
5831 {
5832 dsc->u.ldst.restore_r4 = 0;
5833
5834 if (immed)
5835 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5836 ->
5837 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5838 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5839 else
5840 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5841 ->
5842 {ldr,str}[b]<cond> r0, [r2, r3]. */
5843 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5844 }
5845 else
5846 {
5847 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5848 dsc->u.ldst.restore_r4 = 1;
5849 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5850 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
5851 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5852 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5853 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5854
5855 /* As above. */
5856 if (immed)
5857 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5858 else
5859 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5860
5861 dsc->numinsns = 6;
5862 }
5863
5864 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5865
5866 return 0;
5867 }
5868
5869 /* Cleanup LDM instructions with fully-populated register list. This is an
5870 unfortunate corner case: it's impossible to implement correctly by modifying
5871 the instruction. The issue is as follows: we have an instruction,
5872
5873 ldm rN, {r0-r15}
5874
5875 which we must rewrite to avoid loading PC. A possible solution would be to
5876 do the load in two halves, something like (with suitable cleanup
5877 afterwards):
5878
5879 mov r8, rN
5880 ldm[id][ab] r8!, {r0-r7}
5881 str r7, <temp>
5882 ldm[id][ab] r8, {r7-r14}
5883 <bkpt>
5884
5885 but at present there's no suitable place for <temp>, since the scratch space
5886 is overwritten before the cleanup routine is called. For now, we simply
5887 emulate the instruction. */
5888
5889 static void
5890 cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5891 struct displaced_step_closure *dsc)
5892 {
5893 int inc = dsc->u.block.increment;
5894 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5895 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5896 uint32_t regmask = dsc->u.block.regmask;
5897 int regno = inc ? 0 : 15;
5898 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5899 int exception_return = dsc->u.block.load && dsc->u.block.user
5900 && (regmask & 0x8000) != 0;
5901 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5902 int do_transfer = condition_true (dsc->u.block.cond, status);
5903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5904
5905 if (!do_transfer)
5906 return;
5907
5908 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5909 sensible we can do here. Complain loudly. */
5910 if (exception_return)
5911 error (_("Cannot single-step exception return"));
5912
5913 /* We don't handle any stores here for now. */
5914 gdb_assert (dsc->u.block.load != 0);
5915
5916 if (debug_displaced)
5917 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5918 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5919 dsc->u.block.increment ? "inc" : "dec",
5920 dsc->u.block.before ? "before" : "after");
5921
5922 while (regmask)
5923 {
5924 uint32_t memword;
5925
5926 if (inc)
5927 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
5928 regno++;
5929 else
5930 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5931 regno--;
5932
5933 xfer_addr += bump_before;
5934
5935 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5936 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5937
5938 xfer_addr += bump_after;
5939
5940 regmask &= ~(1 << regno);
5941 }
5942
5943 if (dsc->u.block.writeback)
5944 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5945 CANNOT_WRITE_PC);
5946 }
5947
5948 /* Clean up an STM which included the PC in the register list. */
5949
5950 static void
5951 cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5952 struct displaced_step_closure *dsc)
5953 {
5954 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5955 int store_executed = condition_true (dsc->u.block.cond, status);
5956 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5957 CORE_ADDR stm_insn_addr;
5958 uint32_t pc_val;
5959 long offset;
5960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5961
5962 /* If condition code fails, there's nothing else to do. */
5963 if (!store_executed)
5964 return;
5965
5966 if (dsc->u.block.increment)
5967 {
5968 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5969
5970 if (dsc->u.block.before)
5971 pc_stored_at += 4;
5972 }
5973 else
5974 {
5975 pc_stored_at = dsc->u.block.xfer_addr;
5976
5977 if (dsc->u.block.before)
5978 pc_stored_at -= 4;
5979 }
5980
5981 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5982 stm_insn_addr = dsc->scratch_base;
5983 offset = pc_val - stm_insn_addr;
5984
5985 if (debug_displaced)
5986 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5987 "STM instruction\n", offset);
5988
5989 /* Rewrite the stored PC to the proper value for the non-displaced original
5990 instruction. */
5991 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5992 dsc->insn_addr + offset);
5993 }
5994
5995 /* Clean up an LDM which includes the PC in the register list. We clumped all
5996 the registers in the transferred list into a contiguous range r0...rX (to
5997 avoid loading PC directly and losing control of the debugged program), so we
5998 must undo that here. */
5999
6000 static void
6001 cleanup_block_load_pc (struct gdbarch *gdbarch,
6002 struct regcache *regs,
6003 struct displaced_step_closure *dsc)
6004 {
6005 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
6006 int load_executed = condition_true (dsc->u.block.cond, status);
6007 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
6008 unsigned int regs_loaded = bitcount (mask);
6009 unsigned int num_to_shuffle = regs_loaded, clobbered;
6010
6011 /* The method employed here will fail if the register list is fully populated
6012 (we need to avoid loading PC directly). */
6013 gdb_assert (num_to_shuffle < 16);
6014
6015 if (!load_executed)
6016 return;
6017
6018 clobbered = (1 << num_to_shuffle) - 1;
6019
6020 while (num_to_shuffle > 0)
6021 {
6022 if ((mask & (1 << write_reg)) != 0)
6023 {
6024 unsigned int read_reg = num_to_shuffle - 1;
6025
6026 if (read_reg != write_reg)
6027 {
6028 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
6029 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6030 if (debug_displaced)
6031 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6032 "loaded register r%d to r%d\n"), read_reg,
6033 write_reg);
6034 }
6035 else if (debug_displaced)
6036 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6037 "r%d already in the right place\n"),
6038 write_reg);
6039
6040 clobbered &= ~(1 << write_reg);
6041
6042 num_to_shuffle--;
6043 }
6044
6045 write_reg--;
6046 }
6047
6048 /* Restore any registers we scribbled over. */
6049 for (write_reg = 0; clobbered != 0; write_reg++)
6050 {
6051 if ((clobbered & (1 << write_reg)) != 0)
6052 {
6053 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6054 CANNOT_WRITE_PC);
6055 if (debug_displaced)
6056 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6057 "clobbered register r%d\n"), write_reg);
6058 clobbered &= ~(1 << write_reg);
6059 }
6060 }
6061
6062 /* Perform register writeback manually. */
6063 if (dsc->u.block.writeback)
6064 {
6065 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6066
6067 if (dsc->u.block.increment)
6068 new_rn_val += regs_loaded * 4;
6069 else
6070 new_rn_val -= regs_loaded * 4;
6071
6072 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6073 CANNOT_WRITE_PC);
6074 }
6075 }
6076
6077 /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6078 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6079
6080 static int
6081 arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6082 struct regcache *regs,
6083 struct displaced_step_closure *dsc)
6084 {
6085 int load = bit (insn, 20);
6086 int user = bit (insn, 22);
6087 int increment = bit (insn, 23);
6088 int before = bit (insn, 24);
6089 int writeback = bit (insn, 21);
6090 int rn = bits (insn, 16, 19);
6091
6092 /* Block transfers which don't mention PC can be run directly
6093 out-of-line. */
6094 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
6095 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
6096
6097 if (rn == ARM_PC_REGNUM)
6098 {
6099 warning (_("displaced: Unpredictable LDM or STM with "
6100 "base register r15"));
6101 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
6102 }
6103
6104 if (debug_displaced)
6105 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6106 "%.8lx\n", (unsigned long) insn);
6107
6108 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6109 dsc->u.block.rn = rn;
6110
6111 dsc->u.block.load = load;
6112 dsc->u.block.user = user;
6113 dsc->u.block.increment = increment;
6114 dsc->u.block.before = before;
6115 dsc->u.block.writeback = writeback;
6116 dsc->u.block.cond = bits (insn, 28, 31);
6117
6118 dsc->u.block.regmask = insn & 0xffff;
6119
6120 if (load)
6121 {
6122 if ((insn & 0xffff) == 0xffff)
6123 {
6124 /* LDM with a fully-populated register list. This case is
6125 particularly tricky. Implement for now by fully emulating the
6126 instruction (which might not behave perfectly in all cases, but
6127 these instructions should be rare enough for that not to matter
6128 too much). */
6129 dsc->modinsn[0] = ARM_NOP;
6130
6131 dsc->cleanup = &cleanup_block_load_all;
6132 }
6133 else
6134 {
6135 /* LDM of a list of registers which includes PC. Implement by
6136 rewriting the list of registers to be transferred into a
6137 contiguous chunk r0...rX before doing the transfer, then shuffling
6138 registers into the correct places in the cleanup routine. */
6139 unsigned int regmask = insn & 0xffff;
6140 unsigned int num_in_list = bitcount (regmask), new_regmask;
6141 unsigned int i;
6142
6143 for (i = 0; i < num_in_list; i++)
6144 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6145
6146 /* Writeback makes things complicated. We need to avoid clobbering
6147 the base register with one of the registers in our modified
6148 register list, but just using a different register can't work in
6149 all cases, e.g.:
6150
6151 ldm r14!, {r0-r13,pc}
6152
6153 which would need to be rewritten as:
6154
6155 ldm rN!, {r0-r14}
6156
6157 but that can't work, because there's no free register for N.
6158
6159 Solve this by turning off the writeback bit, and emulating
6160 writeback manually in the cleanup routine. */
6161
6162 if (writeback)
6163 insn &= ~(1 << 21);
6164
6165 new_regmask = (1 << num_in_list) - 1;
6166
6167 if (debug_displaced)
6168 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6169 "{..., pc}: original reg list %.4x, modified "
6170 "list %.4x\n"), rn, writeback ? "!" : "",
6171 (int) insn & 0xffff, new_regmask);
6172
6173 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6174
6175 dsc->cleanup = &cleanup_block_load_pc;
6176 }
6177 }
6178 else
6179 {
6180 /* STM of a list of registers which includes PC. Run the instruction
6181 as-is, but out of line: this will store the wrong value for the PC,
6182 so we must manually fix up the memory in the cleanup routine.
6183 Doing things this way has the advantage that we can auto-detect
6184 the offset of the PC write (which is architecture-dependent) in
6185 the cleanup routine. */
6186 dsc->modinsn[0] = insn;
6187
6188 dsc->cleanup = &cleanup_block_store_pc;
6189 }
6190
6191 return 0;
6192 }
6193
6194 static int
6195 thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6196 struct regcache *regs,
6197 struct displaced_step_closure *dsc)
6198 {
6199 int rn = bits (insn1, 0, 3);
6200 int load = bit (insn1, 4);
6201 int writeback = bit (insn1, 5);
6202
6203 /* Block transfers which don't mention PC can be run directly
6204 out-of-line. */
6205 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6206 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
6207
6208 if (rn == ARM_PC_REGNUM)
6209 {
6210 warning (_("displaced: Unpredictable LDM or STM with "
6211 "base register r15"));
6212 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6213 "unpredictable ldm/stm", dsc);
6214 }
6215
6216 if (debug_displaced)
6217 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6218 "%.4x%.4x\n", insn1, insn2);
6219
6220 /* Clear bit 13, since it should be always zero. */
6221 dsc->u.block.regmask = (insn2 & 0xdfff);
6222 dsc->u.block.rn = rn;
6223
6224 dsc->u.block.load = load;
6225 dsc->u.block.user = 0;
6226 dsc->u.block.increment = bit (insn1, 7);
6227 dsc->u.block.before = bit (insn1, 8);
6228 dsc->u.block.writeback = writeback;
6229 dsc->u.block.cond = INST_AL;
6230 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6231
6232 if (load)
6233 {
6234 if (dsc->u.block.regmask == 0xffff)
6235 {
6236 /* This branch is impossible to happen. */
6237 gdb_assert (0);
6238 }
6239 else
6240 {
6241 unsigned int regmask = dsc->u.block.regmask;
6242 unsigned int num_in_list = bitcount (regmask), new_regmask;
6243 unsigned int i;
6244
6245 for (i = 0; i < num_in_list; i++)
6246 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6247
6248 if (writeback)
6249 insn1 &= ~(1 << 5);
6250
6251 new_regmask = (1 << num_in_list) - 1;
6252
6253 if (debug_displaced)
6254 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6255 "{..., pc}: original reg list %.4x, modified "
6256 "list %.4x\n"), rn, writeback ? "!" : "",
6257 (int) dsc->u.block.regmask, new_regmask);
6258
6259 dsc->modinsn[0] = insn1;
6260 dsc->modinsn[1] = (new_regmask & 0xffff);
6261 dsc->numinsns = 2;
6262
6263 dsc->cleanup = &cleanup_block_load_pc;
6264 }
6265 }
6266 else
6267 {
6268 dsc->modinsn[0] = insn1;
6269 dsc->modinsn[1] = insn2;
6270 dsc->numinsns = 2;
6271 dsc->cleanup = &cleanup_block_store_pc;
6272 }
6273 return 0;
6274 }
6275
6276 /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6277 This is used to avoid a dependency on BFD's bfd_endian enum. */
6278
6279 ULONGEST
6280 arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6281 int byte_order)
6282 {
6283 return read_memory_unsigned_integer (memaddr, len,
6284 (enum bfd_endian) byte_order);
6285 }
6286
6287 /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6288
6289 CORE_ADDR
6290 arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6291 CORE_ADDR val)
6292 {
6293 return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
6294 }
6295
6296 /* Wrapper over syscall_next_pc for use in get_next_pcs. */
6297
6298 static CORE_ADDR
6299 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
6300 {
6301 return 0;
6302 }
6303
6304 /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6305
6306 int
6307 arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6308 {
6309 return arm_is_thumb (self->regcache);
6310 }
6311
6312 /* single_step() is called just before we want to resume the inferior,
6313 if we want to single-step it but there is no hardware or kernel
6314 single-step support. We find the target of the coming instructions
6315 and breakpoint them. */
6316
6317 int
6318 arm_software_single_step (struct frame_info *frame)
6319 {
6320 struct regcache *regcache = get_current_regcache ();
6321 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6322 struct address_space *aspace = get_regcache_aspace (regcache);
6323 struct arm_get_next_pcs next_pcs_ctx;
6324 CORE_ADDR pc;
6325 int i;
6326 VEC (CORE_ADDR) *next_pcs = NULL;
6327 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
6328
6329 arm_get_next_pcs_ctor (&next_pcs_ctx,
6330 &arm_get_next_pcs_ops,
6331 gdbarch_byte_order (gdbarch),
6332 gdbarch_byte_order_for_code (gdbarch),
6333 0,
6334 regcache);
6335
6336 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
6337
6338 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
6339 arm_insert_single_step_breakpoint (gdbarch, aspace, pc);
6340
6341 do_cleanups (old_chain);
6342
6343 return 1;
6344 }
6345
6346 /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6347 for Linux, where some SVC instructions must be treated specially. */
6348
6349 static void
6350 cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6351 struct displaced_step_closure *dsc)
6352 {
6353 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6354
6355 if (debug_displaced)
6356 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6357 "%.8lx\n", (unsigned long) resume_addr);
6358
6359 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6360 }
6361
6362
6363 /* Common copy routine for svc instruciton. */
6364
6365 static int
6366 install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6367 struct displaced_step_closure *dsc)
6368 {
6369 /* Preparation: none.
6370 Insn: unmodified svc.
6371 Cleanup: pc <- insn_addr + insn_size. */
6372
6373 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6374 instruction. */
6375 dsc->wrote_to_pc = 1;
6376
6377 /* Allow OS-specific code to override SVC handling. */
6378 if (dsc->u.svc.copy_svc_os)
6379 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6380 else
6381 {
6382 dsc->cleanup = &cleanup_svc;
6383 return 0;
6384 }
6385 }
6386
6387 static int
6388 arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6389 struct regcache *regs, struct displaced_step_closure *dsc)
6390 {
6391
6392 if (debug_displaced)
6393 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6394 (unsigned long) insn);
6395
6396 dsc->modinsn[0] = insn;
6397
6398 return install_svc (gdbarch, regs, dsc);
6399 }
6400
6401 static int
6402 thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6403 struct regcache *regs, struct displaced_step_closure *dsc)
6404 {
6405
6406 if (debug_displaced)
6407 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6408 insn);
6409
6410 dsc->modinsn[0] = insn;
6411
6412 return install_svc (gdbarch, regs, dsc);
6413 }
6414
6415 /* Copy undefined instructions. */
6416
6417 static int
6418 arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6419 struct displaced_step_closure *dsc)
6420 {
6421 if (debug_displaced)
6422 fprintf_unfiltered (gdb_stdlog,
6423 "displaced: copying undefined insn %.8lx\n",
6424 (unsigned long) insn);
6425
6426 dsc->modinsn[0] = insn;
6427
6428 return 0;
6429 }
6430
6431 static int
6432 thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6433 struct displaced_step_closure *dsc)
6434 {
6435
6436 if (debug_displaced)
6437 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6438 "%.4x %.4x\n", (unsigned short) insn1,
6439 (unsigned short) insn2);
6440
6441 dsc->modinsn[0] = insn1;
6442 dsc->modinsn[1] = insn2;
6443 dsc->numinsns = 2;
6444
6445 return 0;
6446 }
6447
6448 /* Copy unpredictable instructions. */
6449
6450 static int
6451 arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6452 struct displaced_step_closure *dsc)
6453 {
6454 if (debug_displaced)
6455 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6456 "%.8lx\n", (unsigned long) insn);
6457
6458 dsc->modinsn[0] = insn;
6459
6460 return 0;
6461 }
6462
6463 /* The decode_* functions are instruction decoding helpers. They mostly follow
6464 the presentation in the ARM ARM. */
6465
6466 static int
6467 arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6468 struct regcache *regs,
6469 struct displaced_step_closure *dsc)
6470 {
6471 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6472 unsigned int rn = bits (insn, 16, 19);
6473
6474 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
6475 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
6476 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
6477 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
6478 else if ((op1 & 0x60) == 0x20)
6479 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6480 else if ((op1 & 0x71) == 0x40)
6481 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6482 dsc);
6483 else if ((op1 & 0x77) == 0x41)
6484 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6485 else if ((op1 & 0x77) == 0x45)
6486 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6487 else if ((op1 & 0x77) == 0x51)
6488 {
6489 if (rn != 0xf)
6490 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6491 else
6492 return arm_copy_unpred (gdbarch, insn, dsc);
6493 }
6494 else if ((op1 & 0x77) == 0x55)
6495 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6496 else if (op1 == 0x57)
6497 switch (op2)
6498 {
6499 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6500 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6501 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6502 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6503 default: return arm_copy_unpred (gdbarch, insn, dsc);
6504 }
6505 else if ((op1 & 0x63) == 0x43)
6506 return arm_copy_unpred (gdbarch, insn, dsc);
6507 else if ((op2 & 0x1) == 0x0)
6508 switch (op1 & ~0x80)
6509 {
6510 case 0x61:
6511 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6512 case 0x65:
6513 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6514 case 0x71: case 0x75:
6515 /* pld/pldw reg. */
6516 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
6517 case 0x63: case 0x67: case 0x73: case 0x77:
6518 return arm_copy_unpred (gdbarch, insn, dsc);
6519 default:
6520 return arm_copy_undef (gdbarch, insn, dsc);
6521 }
6522 else
6523 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6524 }
6525
6526 static int
6527 arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6528 struct regcache *regs,
6529 struct displaced_step_closure *dsc)
6530 {
6531 if (bit (insn, 27) == 0)
6532 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6533 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6534 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6535 {
6536 case 0x0: case 0x2:
6537 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
6538
6539 case 0x1: case 0x3:
6540 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
6541
6542 case 0x4: case 0x5: case 0x6: case 0x7:
6543 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6544
6545 case 0x8:
6546 switch ((insn & 0xe00000) >> 21)
6547 {
6548 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6549 /* stc/stc2. */
6550 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6551
6552 case 0x2:
6553 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6554
6555 default:
6556 return arm_copy_undef (gdbarch, insn, dsc);
6557 }
6558
6559 case 0x9:
6560 {
6561 int rn_f = (bits (insn, 16, 19) == 0xf);
6562 switch ((insn & 0xe00000) >> 21)
6563 {
6564 case 0x1: case 0x3:
6565 /* ldc/ldc2 imm (undefined for rn == pc). */
6566 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6567 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6568
6569 case 0x2:
6570 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6571
6572 case 0x4: case 0x5: case 0x6: case 0x7:
6573 /* ldc/ldc2 lit (undefined for rn != pc). */
6574 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6575 : arm_copy_undef (gdbarch, insn, dsc);
6576
6577 default:
6578 return arm_copy_undef (gdbarch, insn, dsc);
6579 }
6580 }
6581
6582 case 0xa:
6583 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6584
6585 case 0xb:
6586 if (bits (insn, 16, 19) == 0xf)
6587 /* ldc/ldc2 lit. */
6588 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6589 else
6590 return arm_copy_undef (gdbarch, insn, dsc);
6591
6592 case 0xc:
6593 if (bit (insn, 4))
6594 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6595 else
6596 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6597
6598 case 0xd:
6599 if (bit (insn, 4))
6600 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6601 else
6602 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6603
6604 default:
6605 return arm_copy_undef (gdbarch, insn, dsc);
6606 }
6607 }
6608
6609 /* Decode miscellaneous instructions in dp/misc encoding space. */
6610
6611 static int
6612 arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6613 struct regcache *regs,
6614 struct displaced_step_closure *dsc)
6615 {
6616 unsigned int op2 = bits (insn, 4, 6);
6617 unsigned int op = bits (insn, 21, 22);
6618
6619 switch (op2)
6620 {
6621 case 0x0:
6622 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6623
6624 case 0x1:
6625 if (op == 0x1) /* bx. */
6626 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6627 else if (op == 0x3)
6628 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
6629 else
6630 return arm_copy_undef (gdbarch, insn, dsc);
6631
6632 case 0x2:
6633 if (op == 0x1)
6634 /* Not really supported. */
6635 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
6636 else
6637 return arm_copy_undef (gdbarch, insn, dsc);
6638
6639 case 0x3:
6640 if (op == 0x1)
6641 return arm_copy_bx_blx_reg (gdbarch, insn,
6642 regs, dsc); /* blx register. */
6643 else
6644 return arm_copy_undef (gdbarch, insn, dsc);
6645
6646 case 0x5:
6647 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6648
6649 case 0x7:
6650 if (op == 0x1)
6651 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
6652 else if (op == 0x3)
6653 /* Not really supported. */
6654 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
6655
6656 default:
6657 return arm_copy_undef (gdbarch, insn, dsc);
6658 }
6659 }
6660
6661 static int
6662 arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6663 struct regcache *regs,
6664 struct displaced_step_closure *dsc)
6665 {
6666 if (bit (insn, 25))
6667 switch (bits (insn, 20, 24))
6668 {
6669 case 0x10:
6670 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
6671
6672 case 0x14:
6673 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
6674
6675 case 0x12: case 0x16:
6676 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
6677
6678 default:
6679 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
6680 }
6681 else
6682 {
6683 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6684
6685 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6686 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
6687 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6688 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6689 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6690 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
6691 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6692 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6693 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6694 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6695 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6696 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
6697 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6698 /* 2nd arg means "unprivileged". */
6699 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6700 dsc);
6701 }
6702
6703 /* Should be unreachable. */
6704 return 1;
6705 }
6706
6707 static int
6708 arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6709 struct regcache *regs,
6710 struct displaced_step_closure *dsc)
6711 {
6712 int a = bit (insn, 25), b = bit (insn, 4);
6713 uint32_t op1 = bits (insn, 20, 24);
6714
6715 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6716 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6717 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
6718 else if ((!a && (op1 & 0x17) == 0x02)
6719 || (a && (op1 & 0x17) == 0x02 && !b))
6720 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
6721 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6722 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6723 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
6724 else if ((!a && (op1 & 0x17) == 0x03)
6725 || (a && (op1 & 0x17) == 0x03 && !b))
6726 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
6727 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6728 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6729 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6730 else if ((!a && (op1 & 0x17) == 0x06)
6731 || (a && (op1 & 0x17) == 0x06 && !b))
6732 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6733 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6734 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6735 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6736 else if ((!a && (op1 & 0x17) == 0x07)
6737 || (a && (op1 & 0x17) == 0x07 && !b))
6738 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6739
6740 /* Should be unreachable. */
6741 return 1;
6742 }
6743
6744 static int
6745 arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6746 struct displaced_step_closure *dsc)
6747 {
6748 switch (bits (insn, 20, 24))
6749 {
6750 case 0x00: case 0x01: case 0x02: case 0x03:
6751 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6752
6753 case 0x04: case 0x05: case 0x06: case 0x07:
6754 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6755
6756 case 0x08: case 0x09: case 0x0a: case 0x0b:
6757 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6758 return arm_copy_unmodified (gdbarch, insn,
6759 "decode/pack/unpack/saturate/reverse", dsc);
6760
6761 case 0x18:
6762 if (bits (insn, 5, 7) == 0) /* op2. */
6763 {
6764 if (bits (insn, 12, 15) == 0xf)
6765 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
6766 else
6767 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
6768 }
6769 else
6770 return arm_copy_undef (gdbarch, insn, dsc);
6771
6772 case 0x1a: case 0x1b:
6773 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6774 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
6775 else
6776 return arm_copy_undef (gdbarch, insn, dsc);
6777
6778 case 0x1c: case 0x1d:
6779 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6780 {
6781 if (bits (insn, 0, 3) == 0xf)
6782 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
6783 else
6784 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
6785 }
6786 else
6787 return arm_copy_undef (gdbarch, insn, dsc);
6788
6789 case 0x1e: case 0x1f:
6790 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6791 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
6792 else
6793 return arm_copy_undef (gdbarch, insn, dsc);
6794 }
6795
6796 /* Should be unreachable. */
6797 return 1;
6798 }
6799
6800 static int
6801 arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
6802 struct regcache *regs,
6803 struct displaced_step_closure *dsc)
6804 {
6805 if (bit (insn, 25))
6806 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6807 else
6808 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
6809 }
6810
6811 static int
6812 arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6813 struct regcache *regs,
6814 struct displaced_step_closure *dsc)
6815 {
6816 unsigned int opcode = bits (insn, 20, 24);
6817
6818 switch (opcode)
6819 {
6820 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6821 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6822
6823 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6824 case 0x12: case 0x16:
6825 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6826
6827 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6828 case 0x13: case 0x17:
6829 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6830
6831 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6832 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6833 /* Note: no writeback for these instructions. Bit 25 will always be
6834 zero though (via caller), so the following works OK. */
6835 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6836 }
6837
6838 /* Should be unreachable. */
6839 return 1;
6840 }
6841
6842 /* Decode shifted register instructions. */
6843
6844 static int
6845 thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6846 uint16_t insn2, struct regcache *regs,
6847 struct displaced_step_closure *dsc)
6848 {
6849 /* PC is only allowed to be used in instruction MOV. */
6850
6851 unsigned int op = bits (insn1, 5, 8);
6852 unsigned int rn = bits (insn1, 0, 3);
6853
6854 if (op == 0x2 && rn == 0xf) /* MOV */
6855 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6856 else
6857 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6858 "dp (shift reg)", dsc);
6859 }
6860
6861
6862 /* Decode extension register load/store. Exactly the same as
6863 arm_decode_ext_reg_ld_st. */
6864
6865 static int
6866 thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6867 uint16_t insn2, struct regcache *regs,
6868 struct displaced_step_closure *dsc)
6869 {
6870 unsigned int opcode = bits (insn1, 4, 8);
6871
6872 switch (opcode)
6873 {
6874 case 0x04: case 0x05:
6875 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6876 "vfp/neon vmov", dsc);
6877
6878 case 0x08: case 0x0c: /* 01x00 */
6879 case 0x0a: case 0x0e: /* 01x10 */
6880 case 0x12: case 0x16: /* 10x10 */
6881 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6882 "vfp/neon vstm/vpush", dsc);
6883
6884 case 0x09: case 0x0d: /* 01x01 */
6885 case 0x0b: case 0x0f: /* 01x11 */
6886 case 0x13: case 0x17: /* 10x11 */
6887 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6888 "vfp/neon vldm/vpop", dsc);
6889
6890 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6891 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6892 "vstr", dsc);
6893 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6894 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6895 }
6896
6897 /* Should be unreachable. */
6898 return 1;
6899 }
6900
6901 static int
6902 arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
6903 struct regcache *regs, struct displaced_step_closure *dsc)
6904 {
6905 unsigned int op1 = bits (insn, 20, 25);
6906 int op = bit (insn, 4);
6907 unsigned int coproc = bits (insn, 8, 11);
6908
6909 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6910 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6911 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6912 && (coproc & 0xe) != 0xa)
6913 /* stc/stc2. */
6914 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6915 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6916 && (coproc & 0xe) != 0xa)
6917 /* ldc/ldc2 imm/lit. */
6918 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6919 else if ((op1 & 0x3e) == 0x00)
6920 return arm_copy_undef (gdbarch, insn, dsc);
6921 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6922 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6923 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6924 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6925 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6926 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6927 else if ((op1 & 0x30) == 0x20 && !op)
6928 {
6929 if ((coproc & 0xe) == 0xa)
6930 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6931 else
6932 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6933 }
6934 else if ((op1 & 0x30) == 0x20 && op)
6935 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6936 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6937 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6938 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6939 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6940 else if ((op1 & 0x30) == 0x30)
6941 return arm_copy_svc (gdbarch, insn, regs, dsc);
6942 else
6943 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6944 }
6945
6946 static int
6947 thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6948 uint16_t insn2, struct regcache *regs,
6949 struct displaced_step_closure *dsc)
6950 {
6951 unsigned int coproc = bits (insn2, 8, 11);
6952 unsigned int bit_5_8 = bits (insn1, 5, 8);
6953 unsigned int bit_9 = bit (insn1, 9);
6954 unsigned int bit_4 = bit (insn1, 4);
6955
6956 if (bit_9 == 0)
6957 {
6958 if (bit_5_8 == 2)
6959 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6960 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6961 dsc);
6962 else if (bit_5_8 == 0) /* UNDEFINED. */
6963 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6964 else
6965 {
6966 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6967 if ((coproc & 0xe) == 0xa)
6968 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6969 dsc);
6970 else /* coproc is not 101x. */
6971 {
6972 if (bit_4 == 0) /* STC/STC2. */
6973 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6974 "stc/stc2", dsc);
6975 else /* LDC/LDC2 {literal, immeidate}. */
6976 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6977 regs, dsc);
6978 }
6979 }
6980 }
6981 else
6982 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6983
6984 return 0;
6985 }
6986
6987 static void
6988 install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6989 struct displaced_step_closure *dsc, int rd)
6990 {
6991 /* ADR Rd, #imm
6992
6993 Rewrite as:
6994
6995 Preparation: Rd <- PC
6996 Insn: ADD Rd, #imm
6997 Cleanup: Null.
6998 */
6999
7000 /* Rd <- PC */
7001 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7002 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
7003 }
7004
7005 static int
7006 thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
7007 struct displaced_step_closure *dsc,
7008 int rd, unsigned int imm)
7009 {
7010
7011 /* Encoding T2: ADDS Rd, #imm */
7012 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
7013
7014 install_pc_relative (gdbarch, regs, dsc, rd);
7015
7016 return 0;
7017 }
7018
7019 static int
7020 thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
7021 struct regcache *regs,
7022 struct displaced_step_closure *dsc)
7023 {
7024 unsigned int rd = bits (insn, 8, 10);
7025 unsigned int imm8 = bits (insn, 0, 7);
7026
7027 if (debug_displaced)
7028 fprintf_unfiltered (gdb_stdlog,
7029 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7030 rd, imm8, insn);
7031
7032 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7033 }
7034
7035 static int
7036 thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7037 uint16_t insn2, struct regcache *regs,
7038 struct displaced_step_closure *dsc)
7039 {
7040 unsigned int rd = bits (insn2, 8, 11);
7041 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7042 extract raw immediate encoding rather than computing immediate. When
7043 generating ADD or SUB instruction, we can simply perform OR operation to
7044 set immediate into ADD. */
7045 unsigned int imm_3_8 = insn2 & 0x70ff;
7046 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7047
7048 if (debug_displaced)
7049 fprintf_unfiltered (gdb_stdlog,
7050 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7051 rd, imm_i, imm_3_8, insn1, insn2);
7052
7053 if (bit (insn1, 7)) /* Encoding T2 */
7054 {
7055 /* Encoding T3: SUB Rd, Rd, #imm */
7056 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7057 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7058 }
7059 else /* Encoding T3 */
7060 {
7061 /* Encoding T3: ADD Rd, Rd, #imm */
7062 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7063 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7064 }
7065 dsc->numinsns = 2;
7066
7067 install_pc_relative (gdbarch, regs, dsc, rd);
7068
7069 return 0;
7070 }
7071
7072 static int
7073 thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
7074 struct regcache *regs,
7075 struct displaced_step_closure *dsc)
7076 {
7077 unsigned int rt = bits (insn1, 8, 10);
7078 unsigned int pc;
7079 int imm8 = (bits (insn1, 0, 7) << 2);
7080
7081 /* LDR Rd, #imm8
7082
7083 Rwrite as:
7084
7085 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7086
7087 Insn: LDR R0, [R2, R3];
7088 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
7089
7090 if (debug_displaced)
7091 fprintf_unfiltered (gdb_stdlog,
7092 "displaced: copying thumb ldr r%d [pc #%d]\n"
7093 , rt, imm8);
7094
7095 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
7096 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
7097 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
7098 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7099 /* The assembler calculates the required value of the offset from the
7100 Align(PC,4) value of this instruction to the label. */
7101 pc = pc & 0xfffffffc;
7102
7103 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
7104 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
7105
7106 dsc->rd = rt;
7107 dsc->u.ldst.xfersize = 4;
7108 dsc->u.ldst.rn = 0;
7109 dsc->u.ldst.immed = 0;
7110 dsc->u.ldst.writeback = 0;
7111 dsc->u.ldst.restore_r4 = 0;
7112
7113 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7114
7115 dsc->cleanup = &cleanup_load;
7116
7117 return 0;
7118 }
7119
7120 /* Copy Thumb cbnz/cbz insruction. */
7121
7122 static int
7123 thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7124 struct regcache *regs,
7125 struct displaced_step_closure *dsc)
7126 {
7127 int non_zero = bit (insn1, 11);
7128 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7129 CORE_ADDR from = dsc->insn_addr;
7130 int rn = bits (insn1, 0, 2);
7131 int rn_val = displaced_read_reg (regs, dsc, rn);
7132
7133 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7134 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7135 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7136 condition is false, let it be, cleanup_branch will do nothing. */
7137 if (dsc->u.branch.cond)
7138 {
7139 dsc->u.branch.cond = INST_AL;
7140 dsc->u.branch.dest = from + 4 + imm5;
7141 }
7142 else
7143 dsc->u.branch.dest = from + 2;
7144
7145 dsc->u.branch.link = 0;
7146 dsc->u.branch.exchange = 0;
7147
7148 if (debug_displaced)
7149 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7150 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7151 rn, rn_val, insn1, dsc->u.branch.dest);
7152
7153 dsc->modinsn[0] = THUMB_NOP;
7154
7155 dsc->cleanup = &cleanup_branch;
7156 return 0;
7157 }
7158
7159 /* Copy Table Branch Byte/Halfword */
7160 static int
7161 thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7162 uint16_t insn2, struct regcache *regs,
7163 struct displaced_step_closure *dsc)
7164 {
7165 ULONGEST rn_val, rm_val;
7166 int is_tbh = bit (insn2, 4);
7167 CORE_ADDR halfwords = 0;
7168 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7169
7170 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7171 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7172
7173 if (is_tbh)
7174 {
7175 gdb_byte buf[2];
7176
7177 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7178 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7179 }
7180 else
7181 {
7182 gdb_byte buf[1];
7183
7184 target_read_memory (rn_val + rm_val, buf, 1);
7185 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7186 }
7187
7188 if (debug_displaced)
7189 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7190 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7191 (unsigned int) rn_val, (unsigned int) rm_val,
7192 (unsigned int) halfwords);
7193
7194 dsc->u.branch.cond = INST_AL;
7195 dsc->u.branch.link = 0;
7196 dsc->u.branch.exchange = 0;
7197 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7198
7199 dsc->cleanup = &cleanup_branch;
7200
7201 return 0;
7202 }
7203
7204 static void
7205 cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7206 struct displaced_step_closure *dsc)
7207 {
7208 /* PC <- r7 */
7209 int val = displaced_read_reg (regs, dsc, 7);
7210 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7211
7212 /* r7 <- r8 */
7213 val = displaced_read_reg (regs, dsc, 8);
7214 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7215
7216 /* r8 <- tmp[0] */
7217 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7218
7219 }
7220
7221 static int
7222 thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
7223 struct regcache *regs,
7224 struct displaced_step_closure *dsc)
7225 {
7226 dsc->u.block.regmask = insn1 & 0x00ff;
7227
7228 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7229 to :
7230
7231 (1) register list is full, that is, r0-r7 are used.
7232 Prepare: tmp[0] <- r8
7233
7234 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7235 MOV r8, r7; Move value of r7 to r8;
7236 POP {r7}; Store PC value into r7.
7237
7238 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7239
7240 (2) register list is not full, supposing there are N registers in
7241 register list (except PC, 0 <= N <= 7).
7242 Prepare: for each i, 0 - N, tmp[i] <- ri.
7243
7244 POP {r0, r1, ...., rN};
7245
7246 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7247 from tmp[] properly.
7248 */
7249 if (debug_displaced)
7250 fprintf_unfiltered (gdb_stdlog,
7251 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7252 dsc->u.block.regmask, insn1);
7253
7254 if (dsc->u.block.regmask == 0xff)
7255 {
7256 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7257
7258 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7259 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7260 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7261
7262 dsc->numinsns = 3;
7263 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7264 }
7265 else
7266 {
7267 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
7268 unsigned int i;
7269 unsigned int new_regmask;
7270
7271 for (i = 0; i < num_in_list + 1; i++)
7272 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7273
7274 new_regmask = (1 << (num_in_list + 1)) - 1;
7275
7276 if (debug_displaced)
7277 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7278 "{..., pc}: original reg list %.4x,"
7279 " modified list %.4x\n"),
7280 (int) dsc->u.block.regmask, new_regmask);
7281
7282 dsc->u.block.regmask |= 0x8000;
7283 dsc->u.block.writeback = 0;
7284 dsc->u.block.cond = INST_AL;
7285
7286 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7287
7288 dsc->cleanup = &cleanup_block_load_pc;
7289 }
7290
7291 return 0;
7292 }
7293
7294 static void
7295 thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7296 struct regcache *regs,
7297 struct displaced_step_closure *dsc)
7298 {
7299 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7300 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7301 int err = 0;
7302
7303 /* 16-bit thumb instructions. */
7304 switch (op_bit_12_15)
7305 {
7306 /* Shift (imme), add, subtract, move and compare. */
7307 case 0: case 1: case 2: case 3:
7308 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7309 "shift/add/sub/mov/cmp",
7310 dsc);
7311 break;
7312 case 4:
7313 switch (op_bit_10_11)
7314 {
7315 case 0: /* Data-processing */
7316 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7317 "data-processing",
7318 dsc);
7319 break;
7320 case 1: /* Special data instructions and branch and exchange. */
7321 {
7322 unsigned short op = bits (insn1, 7, 9);
7323 if (op == 6 || op == 7) /* BX or BLX */
7324 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7325 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7326 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7327 else
7328 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7329 dsc);
7330 }
7331 break;
7332 default: /* LDR (literal) */
7333 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7334 }
7335 break;
7336 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7337 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7338 break;
7339 case 10:
7340 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7341 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7342 else /* Generate SP-relative address */
7343 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7344 break;
7345 case 11: /* Misc 16-bit instructions */
7346 {
7347 switch (bits (insn1, 8, 11))
7348 {
7349 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7350 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7351 break;
7352 case 12: case 13: /* POP */
7353 if (bit (insn1, 8)) /* PC is in register list. */
7354 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7355 else
7356 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7357 break;
7358 case 15: /* If-Then, and hints */
7359 if (bits (insn1, 0, 3))
7360 /* If-Then makes up to four following instructions conditional.
7361 IT instruction itself is not conditional, so handle it as a
7362 common unmodified instruction. */
7363 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7364 dsc);
7365 else
7366 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7367 break;
7368 default:
7369 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7370 }
7371 }
7372 break;
7373 case 12:
7374 if (op_bit_10_11 < 2) /* Store multiple registers */
7375 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7376 else /* Load multiple registers */
7377 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7378 break;
7379 case 13: /* Conditional branch and supervisor call */
7380 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7381 err = thumb_copy_b (gdbarch, insn1, dsc);
7382 else
7383 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7384 break;
7385 case 14: /* Unconditional branch */
7386 err = thumb_copy_b (gdbarch, insn1, dsc);
7387 break;
7388 default:
7389 err = 1;
7390 }
7391
7392 if (err)
7393 internal_error (__FILE__, __LINE__,
7394 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7395 }
7396
7397 static int
7398 decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7399 uint16_t insn1, uint16_t insn2,
7400 struct regcache *regs,
7401 struct displaced_step_closure *dsc)
7402 {
7403 int rt = bits (insn2, 12, 15);
7404 int rn = bits (insn1, 0, 3);
7405 int op1 = bits (insn1, 7, 8);
7406
7407 switch (bits (insn1, 5, 6))
7408 {
7409 case 0: /* Load byte and memory hints */
7410 if (rt == 0xf) /* PLD/PLI */
7411 {
7412 if (rn == 0xf)
7413 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7414 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7415 else
7416 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7417 "pli/pld", dsc);
7418 }
7419 else
7420 {
7421 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7422 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7423 1);
7424 else
7425 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7426 "ldrb{reg, immediate}/ldrbt",
7427 dsc);
7428 }
7429
7430 break;
7431 case 1: /* Load halfword and memory hints. */
7432 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7433 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7434 "pld/unalloc memhint", dsc);
7435 else
7436 {
7437 if (rn == 0xf)
7438 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7439 2);
7440 else
7441 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7442 "ldrh/ldrht", dsc);
7443 }
7444 break;
7445 case 2: /* Load word */
7446 {
7447 int insn2_bit_8_11 = bits (insn2, 8, 11);
7448
7449 if (rn == 0xf)
7450 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7451 else if (op1 == 0x1) /* Encoding T3 */
7452 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7453 0, 1);
7454 else /* op1 == 0x0 */
7455 {
7456 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7457 /* LDR (immediate) */
7458 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7459 dsc, bit (insn2, 8), 1);
7460 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7461 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7462 "ldrt", dsc);
7463 else
7464 /* LDR (register) */
7465 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7466 dsc, 0, 0);
7467 }
7468 break;
7469 }
7470 default:
7471 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7472 break;
7473 }
7474 return 0;
7475 }
7476
7477 static void
7478 thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7479 uint16_t insn2, struct regcache *regs,
7480 struct displaced_step_closure *dsc)
7481 {
7482 int err = 0;
7483 unsigned short op = bit (insn2, 15);
7484 unsigned int op1 = bits (insn1, 11, 12);
7485
7486 switch (op1)
7487 {
7488 case 1:
7489 {
7490 switch (bits (insn1, 9, 10))
7491 {
7492 case 0:
7493 if (bit (insn1, 6))
7494 {
7495 /* Load/store {dual, execlusive}, table branch. */
7496 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7497 && bits (insn2, 5, 7) == 0)
7498 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7499 dsc);
7500 else
7501 /* PC is not allowed to use in load/store {dual, exclusive}
7502 instructions. */
7503 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7504 "load/store dual/ex", dsc);
7505 }
7506 else /* load/store multiple */
7507 {
7508 switch (bits (insn1, 7, 8))
7509 {
7510 case 0: case 3: /* SRS, RFE */
7511 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7512 "srs/rfe", dsc);
7513 break;
7514 case 1: case 2: /* LDM/STM/PUSH/POP */
7515 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7516 break;
7517 }
7518 }
7519 break;
7520
7521 case 1:
7522 /* Data-processing (shift register). */
7523 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7524 dsc);
7525 break;
7526 default: /* Coprocessor instructions. */
7527 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7528 break;
7529 }
7530 break;
7531 }
7532 case 2: /* op1 = 2 */
7533 if (op) /* Branch and misc control. */
7534 {
7535 if (bit (insn2, 14) /* BLX/BL */
7536 || bit (insn2, 12) /* Unconditional branch */
7537 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7538 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7539 else
7540 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7541 "misc ctrl", dsc);
7542 }
7543 else
7544 {
7545 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7546 {
7547 int op = bits (insn1, 4, 8);
7548 int rn = bits (insn1, 0, 3);
7549 if ((op == 0 || op == 0xa) && rn == 0xf)
7550 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7551 regs, dsc);
7552 else
7553 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7554 "dp/pb", dsc);
7555 }
7556 else /* Data processing (modified immeidate) */
7557 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7558 "dp/mi", dsc);
7559 }
7560 break;
7561 case 3: /* op1 = 3 */
7562 switch (bits (insn1, 9, 10))
7563 {
7564 case 0:
7565 if (bit (insn1, 4))
7566 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7567 regs, dsc);
7568 else /* NEON Load/Store and Store single data item */
7569 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7570 "neon elt/struct load/store",
7571 dsc);
7572 break;
7573 case 1: /* op1 = 3, bits (9, 10) == 1 */
7574 switch (bits (insn1, 7, 8))
7575 {
7576 case 0: case 1: /* Data processing (register) */
7577 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7578 "dp(reg)", dsc);
7579 break;
7580 case 2: /* Multiply and absolute difference */
7581 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7582 "mul/mua/diff", dsc);
7583 break;
7584 case 3: /* Long multiply and divide */
7585 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7586 "lmul/lmua", dsc);
7587 break;
7588 }
7589 break;
7590 default: /* Coprocessor instructions */
7591 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7592 break;
7593 }
7594 break;
7595 default:
7596 err = 1;
7597 }
7598
7599 if (err)
7600 internal_error (__FILE__, __LINE__,
7601 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7602
7603 }
7604
7605 static void
7606 thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7607 struct regcache *regs,
7608 struct displaced_step_closure *dsc)
7609 {
7610 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7611 uint16_t insn1
7612 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7613
7614 if (debug_displaced)
7615 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7616 "at %.8lx\n", insn1, (unsigned long) from);
7617
7618 dsc->is_thumb = 1;
7619 dsc->insn_size = thumb_insn_size (insn1);
7620 if (thumb_insn_size (insn1) == 4)
7621 {
7622 uint16_t insn2
7623 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7624 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7625 }
7626 else
7627 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
7628 }
7629
7630 void
7631 arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7632 CORE_ADDR to, struct regcache *regs,
7633 struct displaced_step_closure *dsc)
7634 {
7635 int err = 0;
7636 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7637 uint32_t insn;
7638
7639 /* Most displaced instructions use a 1-instruction scratch space, so set this
7640 here and override below if/when necessary. */
7641 dsc->numinsns = 1;
7642 dsc->insn_addr = from;
7643 dsc->scratch_base = to;
7644 dsc->cleanup = NULL;
7645 dsc->wrote_to_pc = 0;
7646
7647 if (!displaced_in_arm_mode (regs))
7648 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
7649
7650 dsc->is_thumb = 0;
7651 dsc->insn_size = 4;
7652 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7653 if (debug_displaced)
7654 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7655 "at %.8lx\n", (unsigned long) insn,
7656 (unsigned long) from);
7657
7658 if ((insn & 0xf0000000) == 0xf0000000)
7659 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
7660 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7661 {
7662 case 0x0: case 0x1: case 0x2: case 0x3:
7663 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
7664 break;
7665
7666 case 0x4: case 0x5: case 0x6:
7667 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
7668 break;
7669
7670 case 0x7:
7671 err = arm_decode_media (gdbarch, insn, dsc);
7672 break;
7673
7674 case 0x8: case 0x9: case 0xa: case 0xb:
7675 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
7676 break;
7677
7678 case 0xc: case 0xd: case 0xe: case 0xf:
7679 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
7680 break;
7681 }
7682
7683 if (err)
7684 internal_error (__FILE__, __LINE__,
7685 _("arm_process_displaced_insn: Instruction decode error"));
7686 }
7687
7688 /* Actually set up the scratch space for a displaced instruction. */
7689
7690 void
7691 arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7692 CORE_ADDR to, struct displaced_step_closure *dsc)
7693 {
7694 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7695 unsigned int i, len, offset;
7696 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7697 int size = dsc->is_thumb? 2 : 4;
7698 const gdb_byte *bkp_insn;
7699
7700 offset = 0;
7701 /* Poke modified instruction(s). */
7702 for (i = 0; i < dsc->numinsns; i++)
7703 {
7704 if (debug_displaced)
7705 {
7706 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7707 if (size == 4)
7708 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7709 dsc->modinsn[i]);
7710 else if (size == 2)
7711 fprintf_unfiltered (gdb_stdlog, "%.4x",
7712 (unsigned short)dsc->modinsn[i]);
7713
7714 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7715 (unsigned long) to + offset);
7716
7717 }
7718 write_memory_unsigned_integer (to + offset, size,
7719 byte_order_for_code,
7720 dsc->modinsn[i]);
7721 offset += size;
7722 }
7723
7724 /* Choose the correct breakpoint instruction. */
7725 if (dsc->is_thumb)
7726 {
7727 bkp_insn = tdep->thumb_breakpoint;
7728 len = tdep->thumb_breakpoint_size;
7729 }
7730 else
7731 {
7732 bkp_insn = tdep->arm_breakpoint;
7733 len = tdep->arm_breakpoint_size;
7734 }
7735
7736 /* Put breakpoint afterwards. */
7737 write_memory (to + offset, bkp_insn, len);
7738
7739 if (debug_displaced)
7740 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7741 paddress (gdbarch, from), paddress (gdbarch, to));
7742 }
7743
7744 /* Entry point for cleaning things up after a displaced instruction has been
7745 single-stepped. */
7746
7747 void
7748 arm_displaced_step_fixup (struct gdbarch *gdbarch,
7749 struct displaced_step_closure *dsc,
7750 CORE_ADDR from, CORE_ADDR to,
7751 struct regcache *regs)
7752 {
7753 if (dsc->cleanup)
7754 dsc->cleanup (gdbarch, regs, dsc);
7755
7756 if (!dsc->wrote_to_pc)
7757 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7758 dsc->insn_addr + dsc->insn_size);
7759
7760 }
7761
7762 #include "bfd-in2.h"
7763 #include "libcoff.h"
7764
7765 static int
7766 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7767 {
7768 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
7769
7770 if (arm_pc_is_thumb (gdbarch, memaddr))
7771 {
7772 static asymbol *asym;
7773 static combined_entry_type ce;
7774 static struct coff_symbol_struct csym;
7775 static struct bfd fake_bfd;
7776 static bfd_target fake_target;
7777
7778 if (csym.native == NULL)
7779 {
7780 /* Create a fake symbol vector containing a Thumb symbol.
7781 This is solely so that the code in print_insn_little_arm()
7782 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7783 the presence of a Thumb symbol and switch to decoding
7784 Thumb instructions. */
7785
7786 fake_target.flavour = bfd_target_coff_flavour;
7787 fake_bfd.xvec = &fake_target;
7788 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7789 csym.native = &ce;
7790 csym.symbol.the_bfd = &fake_bfd;
7791 csym.symbol.name = "fake";
7792 asym = (asymbol *) & csym;
7793 }
7794
7795 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7796 info->symbols = &asym;
7797 }
7798 else
7799 info->symbols = NULL;
7800
7801 if (info->endian == BFD_ENDIAN_BIG)
7802 return print_insn_big_arm (memaddr, info);
7803 else
7804 return print_insn_little_arm (memaddr, info);
7805 }
7806
7807 /* The following define instruction sequences that will cause ARM
7808 cpu's to take an undefined instruction trap. These are used to
7809 signal a breakpoint to GDB.
7810
7811 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7812 modes. A different instruction is required for each mode. The ARM
7813 cpu's can also be big or little endian. Thus four different
7814 instructions are needed to support all cases.
7815
7816 Note: ARMv4 defines several new instructions that will take the
7817 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7818 not in fact add the new instructions. The new undefined
7819 instructions in ARMv4 are all instructions that had no defined
7820 behaviour in earlier chips. There is no guarantee that they will
7821 raise an exception, but may be treated as NOP's. In practice, it
7822 may only safe to rely on instructions matching:
7823
7824 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7825 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7826 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7827
7828 Even this may only true if the condition predicate is true. The
7829 following use a condition predicate of ALWAYS so it is always TRUE.
7830
7831 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7832 and NetBSD all use a software interrupt rather than an undefined
7833 instruction to force a trap. This can be handled by by the
7834 abi-specific code during establishment of the gdbarch vector. */
7835
7836 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7837 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7838 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7839 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7840
7841 static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7842 static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7843 static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7844 static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7845
7846 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7847
7848 static int
7849 arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7850 {
7851 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7852 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7853
7854 if (arm_pc_is_thumb (gdbarch, *pcptr))
7855 {
7856 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
7857
7858 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7859 check whether we are replacing a 32-bit instruction. */
7860 if (tdep->thumb2_breakpoint != NULL)
7861 {
7862 gdb_byte buf[2];
7863
7864 if (target_read_memory (*pcptr, buf, 2) == 0)
7865 {
7866 unsigned short inst1;
7867
7868 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7869 if (thumb_insn_size (inst1) == 4)
7870 return ARM_BP_KIND_THUMB2;
7871 }
7872 }
7873
7874 return ARM_BP_KIND_THUMB;
7875 }
7876 else
7877 return ARM_BP_KIND_ARM;
7878
7879 }
7880
7881 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7882
7883 static const gdb_byte *
7884 arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7885 {
7886 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7887
7888 switch (kind)
7889 {
7890 case ARM_BP_KIND_ARM:
7891 *size = tdep->arm_breakpoint_size;
7892 return tdep->arm_breakpoint;
7893 case ARM_BP_KIND_THUMB:
7894 *size = tdep->thumb_breakpoint_size;
7895 return tdep->thumb_breakpoint;
7896 case ARM_BP_KIND_THUMB2:
7897 *size = tdep->thumb2_breakpoint_size;
7898 return tdep->thumb2_breakpoint;
7899 default:
7900 gdb_assert_not_reached ("unexpected arm breakpoint kind");
7901 }
7902 }
7903
7904 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
7905 the program counter value to determine whether a 16-bit or 32-bit
7906 breakpoint should be used. It returns a pointer to a string of
7907 bytes that encode a breakpoint instruction, stores the length of
7908 the string to *lenptr, and adjusts the program counter (if
7909 necessary) to point to the actual memory location where the
7910 breakpoint should be inserted. */
7911
7912 GDBARCH_BREAKPOINT_FROM_PC (arm)
7913
7914 /* Extract from an array REGBUF containing the (raw) register state a
7915 function return value of type TYPE, and copy that, in virtual
7916 format, into VALBUF. */
7917
7918 static void
7919 arm_extract_return_value (struct type *type, struct regcache *regs,
7920 gdb_byte *valbuf)
7921 {
7922 struct gdbarch *gdbarch = get_regcache_arch (regs);
7923 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7924
7925 if (TYPE_CODE_FLT == TYPE_CODE (type))
7926 {
7927 switch (gdbarch_tdep (gdbarch)->fp_model)
7928 {
7929 case ARM_FLOAT_FPA:
7930 {
7931 /* The value is in register F0 in internal format. We need to
7932 extract the raw value and then convert it to the desired
7933 internal type. */
7934 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7935
7936 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7937 convert_from_extended (floatformat_from_type (type), tmpbuf,
7938 valbuf, gdbarch_byte_order (gdbarch));
7939 }
7940 break;
7941
7942 case ARM_FLOAT_SOFT_FPA:
7943 case ARM_FLOAT_SOFT_VFP:
7944 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7945 not using the VFP ABI code. */
7946 case ARM_FLOAT_VFP:
7947 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7948 if (TYPE_LENGTH (type) > 4)
7949 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7950 valbuf + INT_REGISTER_SIZE);
7951 break;
7952
7953 default:
7954 internal_error (__FILE__, __LINE__,
7955 _("arm_extract_return_value: "
7956 "Floating point model not supported"));
7957 break;
7958 }
7959 }
7960 else if (TYPE_CODE (type) == TYPE_CODE_INT
7961 || TYPE_CODE (type) == TYPE_CODE_CHAR
7962 || TYPE_CODE (type) == TYPE_CODE_BOOL
7963 || TYPE_CODE (type) == TYPE_CODE_PTR
7964 || TYPE_CODE (type) == TYPE_CODE_REF
7965 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7966 {
7967 /* If the type is a plain integer, then the access is
7968 straight-forward. Otherwise we have to play around a bit
7969 more. */
7970 int len = TYPE_LENGTH (type);
7971 int regno = ARM_A1_REGNUM;
7972 ULONGEST tmp;
7973
7974 while (len > 0)
7975 {
7976 /* By using store_unsigned_integer we avoid having to do
7977 anything special for small big-endian values. */
7978 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7979 store_unsigned_integer (valbuf,
7980 (len > INT_REGISTER_SIZE
7981 ? INT_REGISTER_SIZE : len),
7982 byte_order, tmp);
7983 len -= INT_REGISTER_SIZE;
7984 valbuf += INT_REGISTER_SIZE;
7985 }
7986 }
7987 else
7988 {
7989 /* For a structure or union the behaviour is as if the value had
7990 been stored to word-aligned memory and then loaded into
7991 registers with 32-bit load instruction(s). */
7992 int len = TYPE_LENGTH (type);
7993 int regno = ARM_A1_REGNUM;
7994 bfd_byte tmpbuf[INT_REGISTER_SIZE];
7995
7996 while (len > 0)
7997 {
7998 regcache_cooked_read (regs, regno++, tmpbuf);
7999 memcpy (valbuf, tmpbuf,
8000 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8001 len -= INT_REGISTER_SIZE;
8002 valbuf += INT_REGISTER_SIZE;
8003 }
8004 }
8005 }
8006
8007
8008 /* Will a function return an aggregate type in memory or in a
8009 register? Return 0 if an aggregate type can be returned in a
8010 register, 1 if it must be returned in memory. */
8011
8012 static int
8013 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8014 {
8015 enum type_code code;
8016
8017 type = check_typedef (type);
8018
8019 /* Simple, non-aggregate types (ie not including vectors and
8020 complex) are always returned in a register (or registers). */
8021 code = TYPE_CODE (type);
8022 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
8023 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
8024 return 0;
8025
8026 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
8027 {
8028 /* Vector values should be returned using ARM registers if they
8029 are not over 16 bytes. */
8030 return (TYPE_LENGTH (type) > 16);
8031 }
8032
8033 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
8034 {
8035 /* The AAPCS says all aggregates not larger than a word are returned
8036 in a register. */
8037 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
8038 return 0;
8039
8040 return 1;
8041 }
8042 else
8043 {
8044 int nRc;
8045
8046 /* All aggregate types that won't fit in a register must be returned
8047 in memory. */
8048 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8049 return 1;
8050
8051 /* In the ARM ABI, "integer" like aggregate types are returned in
8052 registers. For an aggregate type to be integer like, its size
8053 must be less than or equal to INT_REGISTER_SIZE and the
8054 offset of each addressable subfield must be zero. Note that bit
8055 fields are not addressable, and all addressable subfields of
8056 unions always start at offset zero.
8057
8058 This function is based on the behaviour of GCC 2.95.1.
8059 See: gcc/arm.c: arm_return_in_memory() for details.
8060
8061 Note: All versions of GCC before GCC 2.95.2 do not set up the
8062 parameters correctly for a function returning the following
8063 structure: struct { float f;}; This should be returned in memory,
8064 not a register. Richard Earnshaw sent me a patch, but I do not
8065 know of any way to detect if a function like the above has been
8066 compiled with the correct calling convention. */
8067
8068 /* Assume all other aggregate types can be returned in a register.
8069 Run a check for structures, unions and arrays. */
8070 nRc = 0;
8071
8072 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8073 {
8074 int i;
8075 /* Need to check if this struct/union is "integer" like. For
8076 this to be true, its size must be less than or equal to
8077 INT_REGISTER_SIZE and the offset of each addressable
8078 subfield must be zero. Note that bit fields are not
8079 addressable, and unions always start at offset zero. If any
8080 of the subfields is a floating point type, the struct/union
8081 cannot be an integer type. */
8082
8083 /* For each field in the object, check:
8084 1) Is it FP? --> yes, nRc = 1;
8085 2) Is it addressable (bitpos != 0) and
8086 not packed (bitsize == 0)?
8087 --> yes, nRc = 1
8088 */
8089
8090 for (i = 0; i < TYPE_NFIELDS (type); i++)
8091 {
8092 enum type_code field_type_code;
8093
8094 field_type_code
8095 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8096 i)));
8097
8098 /* Is it a floating point type field? */
8099 if (field_type_code == TYPE_CODE_FLT)
8100 {
8101 nRc = 1;
8102 break;
8103 }
8104
8105 /* If bitpos != 0, then we have to care about it. */
8106 if (TYPE_FIELD_BITPOS (type, i) != 0)
8107 {
8108 /* Bitfields are not addressable. If the field bitsize is
8109 zero, then the field is not packed. Hence it cannot be
8110 a bitfield or any other packed type. */
8111 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8112 {
8113 nRc = 1;
8114 break;
8115 }
8116 }
8117 }
8118 }
8119
8120 return nRc;
8121 }
8122 }
8123
8124 /* Write into appropriate registers a function return value of type
8125 TYPE, given in virtual format. */
8126
8127 static void
8128 arm_store_return_value (struct type *type, struct regcache *regs,
8129 const gdb_byte *valbuf)
8130 {
8131 struct gdbarch *gdbarch = get_regcache_arch (regs);
8132 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8133
8134 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8135 {
8136 gdb_byte buf[MAX_REGISTER_SIZE];
8137
8138 switch (gdbarch_tdep (gdbarch)->fp_model)
8139 {
8140 case ARM_FLOAT_FPA:
8141
8142 convert_to_extended (floatformat_from_type (type), buf, valbuf,
8143 gdbarch_byte_order (gdbarch));
8144 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
8145 break;
8146
8147 case ARM_FLOAT_SOFT_FPA:
8148 case ARM_FLOAT_SOFT_VFP:
8149 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8150 not using the VFP ABI code. */
8151 case ARM_FLOAT_VFP:
8152 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
8153 if (TYPE_LENGTH (type) > 4)
8154 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
8155 valbuf + INT_REGISTER_SIZE);
8156 break;
8157
8158 default:
8159 internal_error (__FILE__, __LINE__,
8160 _("arm_store_return_value: Floating "
8161 "point model not supported"));
8162 break;
8163 }
8164 }
8165 else if (TYPE_CODE (type) == TYPE_CODE_INT
8166 || TYPE_CODE (type) == TYPE_CODE_CHAR
8167 || TYPE_CODE (type) == TYPE_CODE_BOOL
8168 || TYPE_CODE (type) == TYPE_CODE_PTR
8169 || TYPE_CODE (type) == TYPE_CODE_REF
8170 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8171 {
8172 if (TYPE_LENGTH (type) <= 4)
8173 {
8174 /* Values of one word or less are zero/sign-extended and
8175 returned in r0. */
8176 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8177 LONGEST val = unpack_long (type, valbuf);
8178
8179 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
8180 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
8181 }
8182 else
8183 {
8184 /* Integral values greater than one word are stored in consecutive
8185 registers starting with r0. This will always be a multiple of
8186 the regiser size. */
8187 int len = TYPE_LENGTH (type);
8188 int regno = ARM_A1_REGNUM;
8189
8190 while (len > 0)
8191 {
8192 regcache_cooked_write (regs, regno++, valbuf);
8193 len -= INT_REGISTER_SIZE;
8194 valbuf += INT_REGISTER_SIZE;
8195 }
8196 }
8197 }
8198 else
8199 {
8200 /* For a structure or union the behaviour is as if the value had
8201 been stored to word-aligned memory and then loaded into
8202 registers with 32-bit load instruction(s). */
8203 int len = TYPE_LENGTH (type);
8204 int regno = ARM_A1_REGNUM;
8205 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8206
8207 while (len > 0)
8208 {
8209 memcpy (tmpbuf, valbuf,
8210 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8211 regcache_cooked_write (regs, regno++, tmpbuf);
8212 len -= INT_REGISTER_SIZE;
8213 valbuf += INT_REGISTER_SIZE;
8214 }
8215 }
8216 }
8217
8218
8219 /* Handle function return values. */
8220
8221 static enum return_value_convention
8222 arm_return_value (struct gdbarch *gdbarch, struct value *function,
8223 struct type *valtype, struct regcache *regcache,
8224 gdb_byte *readbuf, const gdb_byte *writebuf)
8225 {
8226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8227 struct type *func_type = function ? value_type (function) : NULL;
8228 enum arm_vfp_cprc_base_type vfp_base_type;
8229 int vfp_base_count;
8230
8231 if (arm_vfp_abi_for_function (gdbarch, func_type)
8232 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8233 {
8234 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8235 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8236 int i;
8237 for (i = 0; i < vfp_base_count; i++)
8238 {
8239 if (reg_char == 'q')
8240 {
8241 if (writebuf)
8242 arm_neon_quad_write (gdbarch, regcache, i,
8243 writebuf + i * unit_length);
8244
8245 if (readbuf)
8246 arm_neon_quad_read (gdbarch, regcache, i,
8247 readbuf + i * unit_length);
8248 }
8249 else
8250 {
8251 char name_buf[4];
8252 int regnum;
8253
8254 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
8255 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8256 strlen (name_buf));
8257 if (writebuf)
8258 regcache_cooked_write (regcache, regnum,
8259 writebuf + i * unit_length);
8260 if (readbuf)
8261 regcache_cooked_read (regcache, regnum,
8262 readbuf + i * unit_length);
8263 }
8264 }
8265 return RETURN_VALUE_REGISTER_CONVENTION;
8266 }
8267
8268 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8269 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8270 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8271 {
8272 if (tdep->struct_return == pcc_struct_return
8273 || arm_return_in_memory (gdbarch, valtype))
8274 return RETURN_VALUE_STRUCT_CONVENTION;
8275 }
8276 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8277 {
8278 if (arm_return_in_memory (gdbarch, valtype))
8279 return RETURN_VALUE_STRUCT_CONVENTION;
8280 }
8281
8282 if (writebuf)
8283 arm_store_return_value (valtype, regcache, writebuf);
8284
8285 if (readbuf)
8286 arm_extract_return_value (valtype, regcache, readbuf);
8287
8288 return RETURN_VALUE_REGISTER_CONVENTION;
8289 }
8290
8291
8292 static int
8293 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
8294 {
8295 struct gdbarch *gdbarch = get_frame_arch (frame);
8296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8297 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8298 CORE_ADDR jb_addr;
8299 gdb_byte buf[INT_REGISTER_SIZE];
8300
8301 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
8302
8303 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
8304 INT_REGISTER_SIZE))
8305 return 0;
8306
8307 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
8308 return 1;
8309 }
8310
8311 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8312 return the target PC. Otherwise return 0. */
8313
8314 CORE_ADDR
8315 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
8316 {
8317 const char *name;
8318 int namelen;
8319 CORE_ADDR start_addr;
8320
8321 /* Find the starting address and name of the function containing the PC. */
8322 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
8323 {
8324 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8325 check here. */
8326 start_addr = arm_skip_bx_reg (frame, pc);
8327 if (start_addr != 0)
8328 return start_addr;
8329
8330 return 0;
8331 }
8332
8333 /* If PC is in a Thumb call or return stub, return the address of the
8334 target PC, which is in a register. The thunk functions are called
8335 _call_via_xx, where x is the register name. The possible names
8336 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8337 functions, named __ARM_call_via_r[0-7]. */
8338 if (startswith (name, "_call_via_")
8339 || startswith (name, "__ARM_call_via_"))
8340 {
8341 /* Use the name suffix to determine which register contains the
8342 target PC. */
8343 static char *table[15] =
8344 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8345 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8346 };
8347 int regno;
8348 int offset = strlen (name) - 2;
8349
8350 for (regno = 0; regno <= 14; regno++)
8351 if (strcmp (&name[offset], table[regno]) == 0)
8352 return get_frame_register_unsigned (frame, regno);
8353 }
8354
8355 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8356 non-interworking calls to foo. We could decode the stubs
8357 to find the target but it's easier to use the symbol table. */
8358 namelen = strlen (name);
8359 if (name[0] == '_' && name[1] == '_'
8360 && ((namelen > 2 + strlen ("_from_thumb")
8361 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
8362 || (namelen > 2 + strlen ("_from_arm")
8363 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
8364 {
8365 char *target_name;
8366 int target_len = namelen - 2;
8367 struct bound_minimal_symbol minsym;
8368 struct objfile *objfile;
8369 struct obj_section *sec;
8370
8371 if (name[namelen - 1] == 'b')
8372 target_len -= strlen ("_from_thumb");
8373 else
8374 target_len -= strlen ("_from_arm");
8375
8376 target_name = (char *) alloca (target_len + 1);
8377 memcpy (target_name, name + 2, target_len);
8378 target_name[target_len] = '\0';
8379
8380 sec = find_pc_section (pc);
8381 objfile = (sec == NULL) ? NULL : sec->objfile;
8382 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
8383 if (minsym.minsym != NULL)
8384 return BMSYMBOL_VALUE_ADDRESS (minsym);
8385 else
8386 return 0;
8387 }
8388
8389 return 0; /* not a stub */
8390 }
8391
8392 static void
8393 set_arm_command (char *args, int from_tty)
8394 {
8395 printf_unfiltered (_("\
8396 \"set arm\" must be followed by an apporpriate subcommand.\n"));
8397 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8398 }
8399
8400 static void
8401 show_arm_command (char *args, int from_tty)
8402 {
8403 cmd_show_list (showarmcmdlist, from_tty, "");
8404 }
8405
8406 static void
8407 arm_update_current_architecture (void)
8408 {
8409 struct gdbarch_info info;
8410
8411 /* If the current architecture is not ARM, we have nothing to do. */
8412 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
8413 return;
8414
8415 /* Update the architecture. */
8416 gdbarch_info_init (&info);
8417
8418 if (!gdbarch_update_p (info))
8419 internal_error (__FILE__, __LINE__, _("could not update architecture"));
8420 }
8421
8422 static void
8423 set_fp_model_sfunc (char *args, int from_tty,
8424 struct cmd_list_element *c)
8425 {
8426 int fp_model;
8427
8428 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8429 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8430 {
8431 arm_fp_model = (enum arm_float_model) fp_model;
8432 break;
8433 }
8434
8435 if (fp_model == ARM_FLOAT_LAST)
8436 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
8437 current_fp_model);
8438
8439 arm_update_current_architecture ();
8440 }
8441
8442 static void
8443 show_fp_model (struct ui_file *file, int from_tty,
8444 struct cmd_list_element *c, const char *value)
8445 {
8446 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8447
8448 if (arm_fp_model == ARM_FLOAT_AUTO
8449 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8450 fprintf_filtered (file, _("\
8451 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8452 fp_model_strings[tdep->fp_model]);
8453 else
8454 fprintf_filtered (file, _("\
8455 The current ARM floating point model is \"%s\".\n"),
8456 fp_model_strings[arm_fp_model]);
8457 }
8458
8459 static void
8460 arm_set_abi (char *args, int from_tty,
8461 struct cmd_list_element *c)
8462 {
8463 int arm_abi;
8464
8465 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8466 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8467 {
8468 arm_abi_global = (enum arm_abi_kind) arm_abi;
8469 break;
8470 }
8471
8472 if (arm_abi == ARM_ABI_LAST)
8473 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8474 arm_abi_string);
8475
8476 arm_update_current_architecture ();
8477 }
8478
8479 static void
8480 arm_show_abi (struct ui_file *file, int from_tty,
8481 struct cmd_list_element *c, const char *value)
8482 {
8483 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8484
8485 if (arm_abi_global == ARM_ABI_AUTO
8486 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8487 fprintf_filtered (file, _("\
8488 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8489 arm_abi_strings[tdep->arm_abi]);
8490 else
8491 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8492 arm_abi_string);
8493 }
8494
8495 static void
8496 arm_show_fallback_mode (struct ui_file *file, int from_tty,
8497 struct cmd_list_element *c, const char *value)
8498 {
8499 fprintf_filtered (file,
8500 _("The current execution mode assumed "
8501 "(when symbols are unavailable) is \"%s\".\n"),
8502 arm_fallback_mode_string);
8503 }
8504
8505 static void
8506 arm_show_force_mode (struct ui_file *file, int from_tty,
8507 struct cmd_list_element *c, const char *value)
8508 {
8509 fprintf_filtered (file,
8510 _("The current execution mode assumed "
8511 "(even when symbols are available) is \"%s\".\n"),
8512 arm_force_mode_string);
8513 }
8514
8515 /* If the user changes the register disassembly style used for info
8516 register and other commands, we have to also switch the style used
8517 in opcodes for disassembly output. This function is run in the "set
8518 arm disassembly" command, and does that. */
8519
8520 static void
8521 set_disassembly_style_sfunc (char *args, int from_tty,
8522 struct cmd_list_element *c)
8523 {
8524 set_disassembly_style ();
8525 }
8526 \f
8527 /* Return the ARM register name corresponding to register I. */
8528 static const char *
8529 arm_register_name (struct gdbarch *gdbarch, int i)
8530 {
8531 const int num_regs = gdbarch_num_regs (gdbarch);
8532
8533 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8534 && i >= num_regs && i < num_regs + 32)
8535 {
8536 static const char *const vfp_pseudo_names[] = {
8537 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8538 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8539 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8540 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8541 };
8542
8543 return vfp_pseudo_names[i - num_regs];
8544 }
8545
8546 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8547 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8548 {
8549 static const char *const neon_pseudo_names[] = {
8550 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8551 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8552 };
8553
8554 return neon_pseudo_names[i - num_regs - 32];
8555 }
8556
8557 if (i >= ARRAY_SIZE (arm_register_names))
8558 /* These registers are only supported on targets which supply
8559 an XML description. */
8560 return "";
8561
8562 return arm_register_names[i];
8563 }
8564
8565 static void
8566 set_disassembly_style (void)
8567 {
8568 int current;
8569
8570 /* Find the style that the user wants. */
8571 for (current = 0; current < num_disassembly_options; current++)
8572 if (disassembly_style == valid_disassembly_styles[current])
8573 break;
8574 gdb_assert (current < num_disassembly_options);
8575
8576 /* Synchronize the disassembler. */
8577 set_arm_regname_option (current);
8578 }
8579
8580 /* Test whether the coff symbol specific value corresponds to a Thumb
8581 function. */
8582
8583 static int
8584 coff_sym_is_thumb (int val)
8585 {
8586 return (val == C_THUMBEXT
8587 || val == C_THUMBSTAT
8588 || val == C_THUMBEXTFUNC
8589 || val == C_THUMBSTATFUNC
8590 || val == C_THUMBLABEL);
8591 }
8592
8593 /* arm_coff_make_msymbol_special()
8594 arm_elf_make_msymbol_special()
8595
8596 These functions test whether the COFF or ELF symbol corresponds to
8597 an address in thumb code, and set a "special" bit in a minimal
8598 symbol to indicate that it does. */
8599
8600 static void
8601 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8602 {
8603 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8604
8605 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
8606 == ST_BRANCH_TO_THUMB)
8607 MSYMBOL_SET_SPECIAL (msym);
8608 }
8609
8610 static void
8611 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8612 {
8613 if (coff_sym_is_thumb (val))
8614 MSYMBOL_SET_SPECIAL (msym);
8615 }
8616
8617 static void
8618 arm_objfile_data_free (struct objfile *objfile, void *arg)
8619 {
8620 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
8621 unsigned int i;
8622
8623 for (i = 0; i < objfile->obfd->section_count; i++)
8624 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8625 }
8626
8627 static void
8628 arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8629 asymbol *sym)
8630 {
8631 const char *name = bfd_asymbol_name (sym);
8632 struct arm_per_objfile *data;
8633 VEC(arm_mapping_symbol_s) **map_p;
8634 struct arm_mapping_symbol new_map_sym;
8635
8636 gdb_assert (name[0] == '$');
8637 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8638 return;
8639
8640 data = (struct arm_per_objfile *) objfile_data (objfile,
8641 arm_objfile_data_key);
8642 if (data == NULL)
8643 {
8644 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8645 struct arm_per_objfile);
8646 set_objfile_data (objfile, arm_objfile_data_key, data);
8647 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8648 objfile->obfd->section_count,
8649 VEC(arm_mapping_symbol_s) *);
8650 }
8651 map_p = &data->section_maps[bfd_get_section (sym)->index];
8652
8653 new_map_sym.value = sym->value;
8654 new_map_sym.type = name[1];
8655
8656 /* Assume that most mapping symbols appear in order of increasing
8657 value. If they were randomly distributed, it would be faster to
8658 always push here and then sort at first use. */
8659 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8660 {
8661 struct arm_mapping_symbol *prev_map_sym;
8662
8663 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8664 if (prev_map_sym->value >= sym->value)
8665 {
8666 unsigned int idx;
8667 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8668 arm_compare_mapping_symbols);
8669 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8670 return;
8671 }
8672 }
8673
8674 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8675 }
8676
8677 static void
8678 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
8679 {
8680 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8681 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
8682
8683 /* If necessary, set the T bit. */
8684 if (arm_apcs_32)
8685 {
8686 ULONGEST val, t_bit;
8687 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
8688 t_bit = arm_psr_thumb_bit (gdbarch);
8689 if (arm_pc_is_thumb (gdbarch, pc))
8690 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8691 val | t_bit);
8692 else
8693 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8694 val & ~t_bit);
8695 }
8696 }
8697
8698 /* Read the contents of a NEON quad register, by reading from two
8699 double registers. This is used to implement the quad pseudo
8700 registers, and for argument passing in case the quad registers are
8701 missing; vectors are passed in quad registers when using the VFP
8702 ABI, even if a NEON unit is not present. REGNUM is the index of
8703 the quad register, in [0, 15]. */
8704
8705 static enum register_status
8706 arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8707 int regnum, gdb_byte *buf)
8708 {
8709 char name_buf[4];
8710 gdb_byte reg_buf[8];
8711 int offset, double_regnum;
8712 enum register_status status;
8713
8714 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8715 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8716 strlen (name_buf));
8717
8718 /* d0 is always the least significant half of q0. */
8719 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8720 offset = 8;
8721 else
8722 offset = 0;
8723
8724 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8725 if (status != REG_VALID)
8726 return status;
8727 memcpy (buf + offset, reg_buf, 8);
8728
8729 offset = 8 - offset;
8730 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8731 if (status != REG_VALID)
8732 return status;
8733 memcpy (buf + offset, reg_buf, 8);
8734
8735 return REG_VALID;
8736 }
8737
8738 static enum register_status
8739 arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8740 int regnum, gdb_byte *buf)
8741 {
8742 const int num_regs = gdbarch_num_regs (gdbarch);
8743 char name_buf[4];
8744 gdb_byte reg_buf[8];
8745 int offset, double_regnum;
8746
8747 gdb_assert (regnum >= num_regs);
8748 regnum -= num_regs;
8749
8750 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8751 /* Quad-precision register. */
8752 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
8753 else
8754 {
8755 enum register_status status;
8756
8757 /* Single-precision register. */
8758 gdb_assert (regnum < 32);
8759
8760 /* s0 is always the least significant half of d0. */
8761 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8762 offset = (regnum & 1) ? 0 : 4;
8763 else
8764 offset = (regnum & 1) ? 4 : 0;
8765
8766 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8767 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8768 strlen (name_buf));
8769
8770 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8771 if (status == REG_VALID)
8772 memcpy (buf, reg_buf + offset, 4);
8773 return status;
8774 }
8775 }
8776
8777 /* Store the contents of BUF to a NEON quad register, by writing to
8778 two double registers. This is used to implement the quad pseudo
8779 registers, and for argument passing in case the quad registers are
8780 missing; vectors are passed in quad registers when using the VFP
8781 ABI, even if a NEON unit is not present. REGNUM is the index
8782 of the quad register, in [0, 15]. */
8783
8784 static void
8785 arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8786 int regnum, const gdb_byte *buf)
8787 {
8788 char name_buf[4];
8789 int offset, double_regnum;
8790
8791 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8792 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8793 strlen (name_buf));
8794
8795 /* d0 is always the least significant half of q0. */
8796 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8797 offset = 8;
8798 else
8799 offset = 0;
8800
8801 regcache_raw_write (regcache, double_regnum, buf + offset);
8802 offset = 8 - offset;
8803 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8804 }
8805
8806 static void
8807 arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8808 int regnum, const gdb_byte *buf)
8809 {
8810 const int num_regs = gdbarch_num_regs (gdbarch);
8811 char name_buf[4];
8812 gdb_byte reg_buf[8];
8813 int offset, double_regnum;
8814
8815 gdb_assert (regnum >= num_regs);
8816 regnum -= num_regs;
8817
8818 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8819 /* Quad-precision register. */
8820 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8821 else
8822 {
8823 /* Single-precision register. */
8824 gdb_assert (regnum < 32);
8825
8826 /* s0 is always the least significant half of d0. */
8827 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8828 offset = (regnum & 1) ? 0 : 4;
8829 else
8830 offset = (regnum & 1) ? 4 : 0;
8831
8832 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8833 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8834 strlen (name_buf));
8835
8836 regcache_raw_read (regcache, double_regnum, reg_buf);
8837 memcpy (reg_buf + offset, buf, 4);
8838 regcache_raw_write (regcache, double_regnum, reg_buf);
8839 }
8840 }
8841
8842 static struct value *
8843 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8844 {
8845 const int *reg_p = (const int *) baton;
8846 return value_of_register (*reg_p, frame);
8847 }
8848 \f
8849 static enum gdb_osabi
8850 arm_elf_osabi_sniffer (bfd *abfd)
8851 {
8852 unsigned int elfosabi;
8853 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
8854
8855 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
8856
8857 if (elfosabi == ELFOSABI_ARM)
8858 /* GNU tools use this value. Check note sections in this case,
8859 as well. */
8860 bfd_map_over_sections (abfd,
8861 generic_elf_osabi_sniff_abi_tag_sections,
8862 &osabi);
8863
8864 /* Anything else will be handled by the generic ELF sniffer. */
8865 return osabi;
8866 }
8867
8868 static int
8869 arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8870 struct reggroup *group)
8871 {
8872 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8873 this, FPS register belongs to save_regroup, restore_reggroup, and
8874 all_reggroup, of course. */
8875 if (regnum == ARM_FPS_REGNUM)
8876 return (group == float_reggroup
8877 || group == save_reggroup
8878 || group == restore_reggroup
8879 || group == all_reggroup);
8880 else
8881 return default_register_reggroup_p (gdbarch, regnum, group);
8882 }
8883
8884 \f
8885 /* For backward-compatibility we allow two 'g' packet lengths with
8886 the remote protocol depending on whether FPA registers are
8887 supplied. M-profile targets do not have FPA registers, but some
8888 stubs already exist in the wild which use a 'g' packet which
8889 supplies them albeit with dummy values. The packet format which
8890 includes FPA registers should be considered deprecated for
8891 M-profile targets. */
8892
8893 static void
8894 arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8895 {
8896 if (gdbarch_tdep (gdbarch)->is_m)
8897 {
8898 /* If we know from the executable this is an M-profile target,
8899 cater for remote targets whose register set layout is the
8900 same as the FPA layout. */
8901 register_remote_g_packet_guess (gdbarch,
8902 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
8903 (16 * INT_REGISTER_SIZE)
8904 + (8 * FP_REGISTER_SIZE)
8905 + (2 * INT_REGISTER_SIZE),
8906 tdesc_arm_with_m_fpa_layout);
8907
8908 /* The regular M-profile layout. */
8909 register_remote_g_packet_guess (gdbarch,
8910 /* r0-r12,sp,lr,pc; xpsr */
8911 (16 * INT_REGISTER_SIZE)
8912 + INT_REGISTER_SIZE,
8913 tdesc_arm_with_m);
8914
8915 /* M-profile plus M4F VFP. */
8916 register_remote_g_packet_guess (gdbarch,
8917 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8918 (16 * INT_REGISTER_SIZE)
8919 + (16 * VFP_REGISTER_SIZE)
8920 + (2 * INT_REGISTER_SIZE),
8921 tdesc_arm_with_m_vfp_d16);
8922 }
8923
8924 /* Otherwise we don't have a useful guess. */
8925 }
8926
8927 /* Implement the code_of_frame_writable gdbarch method. */
8928
8929 static int
8930 arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8931 {
8932 if (gdbarch_tdep (gdbarch)->is_m
8933 && get_frame_type (frame) == SIGTRAMP_FRAME)
8934 {
8935 /* M-profile exception frames return to some magic PCs, where
8936 isn't writable at all. */
8937 return 0;
8938 }
8939 else
8940 return 1;
8941 }
8942
8943 \f
8944 /* Initialize the current architecture based on INFO. If possible,
8945 re-use an architecture from ARCHES, which is a list of
8946 architectures already created during this debugging session.
8947
8948 Called e.g. at program startup, when reading a core file, and when
8949 reading a binary file. */
8950
8951 static struct gdbarch *
8952 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8953 {
8954 struct gdbarch_tdep *tdep;
8955 struct gdbarch *gdbarch;
8956 struct gdbarch_list *best_arch;
8957 enum arm_abi_kind arm_abi = arm_abi_global;
8958 enum arm_float_model fp_model = arm_fp_model;
8959 struct tdesc_arch_data *tdesc_data = NULL;
8960 int i, is_m = 0;
8961 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8962 int have_wmmx_registers = 0;
8963 int have_neon = 0;
8964 int have_fpa_registers = 1;
8965 const struct target_desc *tdesc = info.target_desc;
8966
8967 /* If we have an object to base this architecture on, try to determine
8968 its ABI. */
8969
8970 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8971 {
8972 int ei_osabi, e_flags;
8973
8974 switch (bfd_get_flavour (info.abfd))
8975 {
8976 case bfd_target_aout_flavour:
8977 /* Assume it's an old APCS-style ABI. */
8978 arm_abi = ARM_ABI_APCS;
8979 break;
8980
8981 case bfd_target_coff_flavour:
8982 /* Assume it's an old APCS-style ABI. */
8983 /* XXX WinCE? */
8984 arm_abi = ARM_ABI_APCS;
8985 break;
8986
8987 case bfd_target_elf_flavour:
8988 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
8989 e_flags = elf_elfheader (info.abfd)->e_flags;
8990
8991 if (ei_osabi == ELFOSABI_ARM)
8992 {
8993 /* GNU tools used to use this value, but do not for EABI
8994 objects. There's nowhere to tag an EABI version
8995 anyway, so assume APCS. */
8996 arm_abi = ARM_ABI_APCS;
8997 }
8998 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
8999 {
9000 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9001 int attr_arch, attr_profile;
9002
9003 switch (eabi_ver)
9004 {
9005 case EF_ARM_EABI_UNKNOWN:
9006 /* Assume GNU tools. */
9007 arm_abi = ARM_ABI_APCS;
9008 break;
9009
9010 case EF_ARM_EABI_VER4:
9011 case EF_ARM_EABI_VER5:
9012 arm_abi = ARM_ABI_AAPCS;
9013 /* EABI binaries default to VFP float ordering.
9014 They may also contain build attributes that can
9015 be used to identify if the VFP argument-passing
9016 ABI is in use. */
9017 if (fp_model == ARM_FLOAT_AUTO)
9018 {
9019 #ifdef HAVE_ELF
9020 switch (bfd_elf_get_obj_attr_int (info.abfd,
9021 OBJ_ATTR_PROC,
9022 Tag_ABI_VFP_args))
9023 {
9024 case AEABI_VFP_args_base:
9025 /* "The user intended FP parameter/result
9026 passing to conform to AAPCS, base
9027 variant". */
9028 fp_model = ARM_FLOAT_SOFT_VFP;
9029 break;
9030 case AEABI_VFP_args_vfp:
9031 /* "The user intended FP parameter/result
9032 passing to conform to AAPCS, VFP
9033 variant". */
9034 fp_model = ARM_FLOAT_VFP;
9035 break;
9036 case AEABI_VFP_args_toolchain:
9037 /* "The user intended FP parameter/result
9038 passing to conform to tool chain-specific
9039 conventions" - we don't know any such
9040 conventions, so leave it as "auto". */
9041 break;
9042 case AEABI_VFP_args_compatible:
9043 /* "Code is compatible with both the base
9044 and VFP variants; the user did not permit
9045 non-variadic functions to pass FP
9046 parameters/results" - leave it as
9047 "auto". */
9048 break;
9049 default:
9050 /* Attribute value not mentioned in the
9051 November 2012 ABI, so leave it as
9052 "auto". */
9053 break;
9054 }
9055 #else
9056 fp_model = ARM_FLOAT_SOFT_VFP;
9057 #endif
9058 }
9059 break;
9060
9061 default:
9062 /* Leave it as "auto". */
9063 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9064 break;
9065 }
9066
9067 #ifdef HAVE_ELF
9068 /* Detect M-profile programs. This only works if the
9069 executable file includes build attributes; GCC does
9070 copy them to the executable, but e.g. RealView does
9071 not. */
9072 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9073 Tag_CPU_arch);
9074 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9075 OBJ_ATTR_PROC,
9076 Tag_CPU_arch_profile);
9077 /* GCC specifies the profile for v6-M; RealView only
9078 specifies the profile for architectures starting with
9079 V7 (as opposed to architectures with a tag
9080 numerically greater than TAG_CPU_ARCH_V7). */
9081 if (!tdesc_has_registers (tdesc)
9082 && (attr_arch == TAG_CPU_ARCH_V6_M
9083 || attr_arch == TAG_CPU_ARCH_V6S_M
9084 || attr_profile == 'M'))
9085 is_m = 1;
9086 #endif
9087 }
9088
9089 if (fp_model == ARM_FLOAT_AUTO)
9090 {
9091 int e_flags = elf_elfheader (info.abfd)->e_flags;
9092
9093 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9094 {
9095 case 0:
9096 /* Leave it as "auto". Strictly speaking this case
9097 means FPA, but almost nobody uses that now, and
9098 many toolchains fail to set the appropriate bits
9099 for the floating-point model they use. */
9100 break;
9101 case EF_ARM_SOFT_FLOAT:
9102 fp_model = ARM_FLOAT_SOFT_FPA;
9103 break;
9104 case EF_ARM_VFP_FLOAT:
9105 fp_model = ARM_FLOAT_VFP;
9106 break;
9107 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9108 fp_model = ARM_FLOAT_SOFT_VFP;
9109 break;
9110 }
9111 }
9112
9113 if (e_flags & EF_ARM_BE8)
9114 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9115
9116 break;
9117
9118 default:
9119 /* Leave it as "auto". */
9120 break;
9121 }
9122 }
9123
9124 /* Check any target description for validity. */
9125 if (tdesc_has_registers (tdesc))
9126 {
9127 /* For most registers we require GDB's default names; but also allow
9128 the numeric names for sp / lr / pc, as a convenience. */
9129 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9130 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9131 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9132
9133 const struct tdesc_feature *feature;
9134 int valid_p;
9135
9136 feature = tdesc_find_feature (tdesc,
9137 "org.gnu.gdb.arm.core");
9138 if (feature == NULL)
9139 {
9140 feature = tdesc_find_feature (tdesc,
9141 "org.gnu.gdb.arm.m-profile");
9142 if (feature == NULL)
9143 return NULL;
9144 else
9145 is_m = 1;
9146 }
9147
9148 tdesc_data = tdesc_data_alloc ();
9149
9150 valid_p = 1;
9151 for (i = 0; i < ARM_SP_REGNUM; i++)
9152 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9153 arm_register_names[i]);
9154 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9155 ARM_SP_REGNUM,
9156 arm_sp_names);
9157 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9158 ARM_LR_REGNUM,
9159 arm_lr_names);
9160 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9161 ARM_PC_REGNUM,
9162 arm_pc_names);
9163 if (is_m)
9164 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9165 ARM_PS_REGNUM, "xpsr");
9166 else
9167 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9168 ARM_PS_REGNUM, "cpsr");
9169
9170 if (!valid_p)
9171 {
9172 tdesc_data_cleanup (tdesc_data);
9173 return NULL;
9174 }
9175
9176 feature = tdesc_find_feature (tdesc,
9177 "org.gnu.gdb.arm.fpa");
9178 if (feature != NULL)
9179 {
9180 valid_p = 1;
9181 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9182 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9183 arm_register_names[i]);
9184 if (!valid_p)
9185 {
9186 tdesc_data_cleanup (tdesc_data);
9187 return NULL;
9188 }
9189 }
9190 else
9191 have_fpa_registers = 0;
9192
9193 feature = tdesc_find_feature (tdesc,
9194 "org.gnu.gdb.xscale.iwmmxt");
9195 if (feature != NULL)
9196 {
9197 static const char *const iwmmxt_names[] = {
9198 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9199 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9200 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9201 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9202 };
9203
9204 valid_p = 1;
9205 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9206 valid_p
9207 &= tdesc_numbered_register (feature, tdesc_data, i,
9208 iwmmxt_names[i - ARM_WR0_REGNUM]);
9209
9210 /* Check for the control registers, but do not fail if they
9211 are missing. */
9212 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9213 tdesc_numbered_register (feature, tdesc_data, i,
9214 iwmmxt_names[i - ARM_WR0_REGNUM]);
9215
9216 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9217 valid_p
9218 &= tdesc_numbered_register (feature, tdesc_data, i,
9219 iwmmxt_names[i - ARM_WR0_REGNUM]);
9220
9221 if (!valid_p)
9222 {
9223 tdesc_data_cleanup (tdesc_data);
9224 return NULL;
9225 }
9226
9227 have_wmmx_registers = 1;
9228 }
9229
9230 /* If we have a VFP unit, check whether the single precision registers
9231 are present. If not, then we will synthesize them as pseudo
9232 registers. */
9233 feature = tdesc_find_feature (tdesc,
9234 "org.gnu.gdb.arm.vfp");
9235 if (feature != NULL)
9236 {
9237 static const char *const vfp_double_names[] = {
9238 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9239 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9240 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9241 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9242 };
9243
9244 /* Require the double precision registers. There must be either
9245 16 or 32. */
9246 valid_p = 1;
9247 for (i = 0; i < 32; i++)
9248 {
9249 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9250 ARM_D0_REGNUM + i,
9251 vfp_double_names[i]);
9252 if (!valid_p)
9253 break;
9254 }
9255 if (!valid_p && i == 16)
9256 valid_p = 1;
9257
9258 /* Also require FPSCR. */
9259 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9260 ARM_FPSCR_REGNUM, "fpscr");
9261 if (!valid_p)
9262 {
9263 tdesc_data_cleanup (tdesc_data);
9264 return NULL;
9265 }
9266
9267 if (tdesc_unnumbered_register (feature, "s0") == 0)
9268 have_vfp_pseudos = 1;
9269
9270 vfp_register_count = i;
9271
9272 /* If we have VFP, also check for NEON. The architecture allows
9273 NEON without VFP (integer vector operations only), but GDB
9274 does not support that. */
9275 feature = tdesc_find_feature (tdesc,
9276 "org.gnu.gdb.arm.neon");
9277 if (feature != NULL)
9278 {
9279 /* NEON requires 32 double-precision registers. */
9280 if (i != 32)
9281 {
9282 tdesc_data_cleanup (tdesc_data);
9283 return NULL;
9284 }
9285
9286 /* If there are quad registers defined by the stub, use
9287 their type; otherwise (normally) provide them with
9288 the default type. */
9289 if (tdesc_unnumbered_register (feature, "q0") == 0)
9290 have_neon_pseudos = 1;
9291
9292 have_neon = 1;
9293 }
9294 }
9295 }
9296
9297 /* If there is already a candidate, use it. */
9298 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9299 best_arch != NULL;
9300 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9301 {
9302 if (arm_abi != ARM_ABI_AUTO
9303 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
9304 continue;
9305
9306 if (fp_model != ARM_FLOAT_AUTO
9307 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
9308 continue;
9309
9310 /* There are various other properties in tdep that we do not
9311 need to check here: those derived from a target description,
9312 since gdbarches with a different target description are
9313 automatically disqualified. */
9314
9315 /* Do check is_m, though, since it might come from the binary. */
9316 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9317 continue;
9318
9319 /* Found a match. */
9320 break;
9321 }
9322
9323 if (best_arch != NULL)
9324 {
9325 if (tdesc_data != NULL)
9326 tdesc_data_cleanup (tdesc_data);
9327 return best_arch->gdbarch;
9328 }
9329
9330 tdep = XCNEW (struct gdbarch_tdep);
9331 gdbarch = gdbarch_alloc (&info, tdep);
9332
9333 /* Record additional information about the architecture we are defining.
9334 These are gdbarch discriminators, like the OSABI. */
9335 tdep->arm_abi = arm_abi;
9336 tdep->fp_model = fp_model;
9337 tdep->is_m = is_m;
9338 tdep->have_fpa_registers = have_fpa_registers;
9339 tdep->have_wmmx_registers = have_wmmx_registers;
9340 gdb_assert (vfp_register_count == 0
9341 || vfp_register_count == 16
9342 || vfp_register_count == 32);
9343 tdep->vfp_register_count = vfp_register_count;
9344 tdep->have_vfp_pseudos = have_vfp_pseudos;
9345 tdep->have_neon_pseudos = have_neon_pseudos;
9346 tdep->have_neon = have_neon;
9347
9348 arm_register_g_packet_guesses (gdbarch);
9349
9350 /* Breakpoints. */
9351 switch (info.byte_order_for_code)
9352 {
9353 case BFD_ENDIAN_BIG:
9354 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9355 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9356 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9357 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9358
9359 break;
9360
9361 case BFD_ENDIAN_LITTLE:
9362 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9363 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9364 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9365 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9366
9367 break;
9368
9369 default:
9370 internal_error (__FILE__, __LINE__,
9371 _("arm_gdbarch_init: bad byte order for float format"));
9372 }
9373
9374 /* On ARM targets char defaults to unsigned. */
9375 set_gdbarch_char_signed (gdbarch, 0);
9376
9377 /* Note: for displaced stepping, this includes the breakpoint, and one word
9378 of additional scratch space. This setting isn't used for anything beside
9379 displaced stepping at present. */
9380 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9381
9382 /* This should be low enough for everything. */
9383 tdep->lowest_pc = 0x20;
9384 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
9385
9386 /* The default, for both APCS and AAPCS, is to return small
9387 structures in registers. */
9388 tdep->struct_return = reg_struct_return;
9389
9390 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
9391 set_gdbarch_frame_align (gdbarch, arm_frame_align);
9392
9393 if (is_m)
9394 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9395
9396 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9397
9398 /* Frame handling. */
9399 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
9400 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
9401 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
9402
9403 frame_base_set_default (gdbarch, &arm_normal_base);
9404
9405 /* Address manipulation. */
9406 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9407
9408 /* Advance PC across function entry code. */
9409 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9410
9411 /* Detect whether PC is at a point where the stack has been destroyed. */
9412 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
9413
9414 /* Skip trampolines. */
9415 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9416
9417 /* The stack grows downward. */
9418 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9419
9420 /* Breakpoint manipulation. */
9421 SET_GDBARCH_BREAKPOINT_MANIPULATION (arm);
9422
9423 /* Information about registers, etc. */
9424 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9425 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9426 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
9427 set_gdbarch_register_type (gdbarch, arm_register_type);
9428 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
9429
9430 /* This "info float" is FPA-specific. Use the generic version if we
9431 do not have FPA. */
9432 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9433 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9434
9435 /* Internal <-> external register number maps. */
9436 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
9437 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9438
9439 set_gdbarch_register_name (gdbarch, arm_register_name);
9440
9441 /* Returning results. */
9442 set_gdbarch_return_value (gdbarch, arm_return_value);
9443
9444 /* Disassembly. */
9445 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9446
9447 /* Minsymbol frobbing. */
9448 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9449 set_gdbarch_coff_make_msymbol_special (gdbarch,
9450 arm_coff_make_msymbol_special);
9451 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
9452
9453 /* Thumb-2 IT block support. */
9454 set_gdbarch_adjust_breakpoint_address (gdbarch,
9455 arm_adjust_breakpoint_address);
9456
9457 /* Virtual tables. */
9458 set_gdbarch_vbit_in_delta (gdbarch, 1);
9459
9460 /* Hook in the ABI-specific overrides, if they have been registered. */
9461 gdbarch_init_osabi (info, gdbarch);
9462
9463 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9464
9465 /* Add some default predicates. */
9466 if (is_m)
9467 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
9468 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9469 dwarf2_append_unwinders (gdbarch);
9470 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
9471 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
9472 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
9473
9474 /* Now we have tuned the configuration, set a few final things,
9475 based on what the OS ABI has told us. */
9476
9477 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9478 binaries are always marked. */
9479 if (tdep->arm_abi == ARM_ABI_AUTO)
9480 tdep->arm_abi = ARM_ABI_APCS;
9481
9482 /* Watchpoints are not steppable. */
9483 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9484
9485 /* We used to default to FPA for generic ARM, but almost nobody
9486 uses that now, and we now provide a way for the user to force
9487 the model. So default to the most useful variant. */
9488 if (tdep->fp_model == ARM_FLOAT_AUTO)
9489 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9490
9491 if (tdep->jb_pc >= 0)
9492 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9493
9494 /* Floating point sizes and format. */
9495 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
9496 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
9497 {
9498 set_gdbarch_double_format
9499 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9500 set_gdbarch_long_double_format
9501 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9502 }
9503 else
9504 {
9505 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9506 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
9507 }
9508
9509 if (have_vfp_pseudos)
9510 {
9511 /* NOTE: These are the only pseudo registers used by
9512 the ARM target at the moment. If more are added, a
9513 little more care in numbering will be needed. */
9514
9515 int num_pseudos = 32;
9516 if (have_neon_pseudos)
9517 num_pseudos += 16;
9518 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9519 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9520 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9521 }
9522
9523 if (tdesc_data)
9524 {
9525 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9526
9527 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
9528
9529 /* Override tdesc_register_type to adjust the types of VFP
9530 registers for NEON. */
9531 set_gdbarch_register_type (gdbarch, arm_register_type);
9532 }
9533
9534 /* Add standard register aliases. We add aliases even for those
9535 nanes which are used by the current architecture - it's simpler,
9536 and does no harm, since nothing ever lists user registers. */
9537 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9538 user_reg_add (gdbarch, arm_register_aliases[i].name,
9539 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9540
9541 return gdbarch;
9542 }
9543
9544 static void
9545 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
9546 {
9547 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9548
9549 if (tdep == NULL)
9550 return;
9551
9552 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
9553 (unsigned long) tdep->lowest_pc);
9554 }
9555
9556 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
9557
9558 void
9559 _initialize_arm_tdep (void)
9560 {
9561 struct ui_file *stb;
9562 long length;
9563 const char *setname;
9564 const char *setdesc;
9565 const char *const *regnames;
9566 int i;
9567 static char *helptext;
9568 char regdesc[1024], *rdptr = regdesc;
9569 size_t rest = sizeof (regdesc);
9570
9571 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
9572
9573 arm_objfile_data_key
9574 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
9575
9576 /* Add ourselves to objfile event chain. */
9577 observer_attach_new_objfile (arm_exidx_new_objfile);
9578 arm_exidx_data_key
9579 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9580
9581 /* Register an ELF OS ABI sniffer for ARM binaries. */
9582 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9583 bfd_target_elf_flavour,
9584 arm_elf_osabi_sniffer);
9585
9586 /* Initialize the standard target descriptions. */
9587 initialize_tdesc_arm_with_m ();
9588 initialize_tdesc_arm_with_m_fpa_layout ();
9589 initialize_tdesc_arm_with_m_vfp_d16 ();
9590 initialize_tdesc_arm_with_iwmmxt ();
9591 initialize_tdesc_arm_with_vfpv2 ();
9592 initialize_tdesc_arm_with_vfpv3 ();
9593 initialize_tdesc_arm_with_neon ();
9594
9595 /* Get the number of possible sets of register names defined in opcodes. */
9596 num_disassembly_options = get_arm_regname_num_options ();
9597
9598 /* Add root prefix command for all "set arm"/"show arm" commands. */
9599 add_prefix_cmd ("arm", no_class, set_arm_command,
9600 _("Various ARM-specific commands."),
9601 &setarmcmdlist, "set arm ", 0, &setlist);
9602
9603 add_prefix_cmd ("arm", no_class, show_arm_command,
9604 _("Various ARM-specific commands."),
9605 &showarmcmdlist, "show arm ", 0, &showlist);
9606
9607 /* Sync the opcode insn printer with our register viewer. */
9608 parse_arm_disassembler_option ("reg-names-std");
9609
9610 /* Initialize the array that will be passed to
9611 add_setshow_enum_cmd(). */
9612 valid_disassembly_styles = XNEWVEC (const char *,
9613 num_disassembly_options + 1);
9614 for (i = 0; i < num_disassembly_options; i++)
9615 {
9616 get_arm_regnames (i, &setname, &setdesc, &regnames);
9617 valid_disassembly_styles[i] = setname;
9618 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
9619 rdptr += length;
9620 rest -= length;
9621 /* When we find the default names, tell the disassembler to use
9622 them. */
9623 if (!strcmp (setname, "std"))
9624 {
9625 disassembly_style = setname;
9626 set_arm_regname_option (i);
9627 }
9628 }
9629 /* Mark the end of valid options. */
9630 valid_disassembly_styles[num_disassembly_options] = NULL;
9631
9632 /* Create the help text. */
9633 stb = mem_fileopen ();
9634 fprintf_unfiltered (stb, "%s%s%s",
9635 _("The valid values are:\n"),
9636 regdesc,
9637 _("The default is \"std\"."));
9638 helptext = ui_file_xstrdup (stb, NULL);
9639 ui_file_delete (stb);
9640
9641 add_setshow_enum_cmd("disassembler", no_class,
9642 valid_disassembly_styles, &disassembly_style,
9643 _("Set the disassembly style."),
9644 _("Show the disassembly style."),
9645 helptext,
9646 set_disassembly_style_sfunc,
9647 NULL, /* FIXME: i18n: The disassembly style is
9648 \"%s\". */
9649 &setarmcmdlist, &showarmcmdlist);
9650
9651 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9652 _("Set usage of ARM 32-bit mode."),
9653 _("Show usage of ARM 32-bit mode."),
9654 _("When off, a 26-bit PC will be used."),
9655 NULL,
9656 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9657 mode is %s. */
9658 &setarmcmdlist, &showarmcmdlist);
9659
9660 /* Add a command to allow the user to force the FPU model. */
9661 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9662 _("Set the floating point type."),
9663 _("Show the floating point type."),
9664 _("auto - Determine the FP typefrom the OS-ABI.\n\
9665 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9666 fpa - FPA co-processor (GCC compiled).\n\
9667 softvfp - Software FP with pure-endian doubles.\n\
9668 vfp - VFP co-processor."),
9669 set_fp_model_sfunc, show_fp_model,
9670 &setarmcmdlist, &showarmcmdlist);
9671
9672 /* Add a command to allow the user to force the ABI. */
9673 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9674 _("Set the ABI."),
9675 _("Show the ABI."),
9676 NULL, arm_set_abi, arm_show_abi,
9677 &setarmcmdlist, &showarmcmdlist);
9678
9679 /* Add two commands to allow the user to force the assumed
9680 execution mode. */
9681 add_setshow_enum_cmd ("fallback-mode", class_support,
9682 arm_mode_strings, &arm_fallback_mode_string,
9683 _("Set the mode assumed when symbols are unavailable."),
9684 _("Show the mode assumed when symbols are unavailable."),
9685 NULL, NULL, arm_show_fallback_mode,
9686 &setarmcmdlist, &showarmcmdlist);
9687 add_setshow_enum_cmd ("force-mode", class_support,
9688 arm_mode_strings, &arm_force_mode_string,
9689 _("Set the mode assumed even when symbols are available."),
9690 _("Show the mode assumed even when symbols are available."),
9691 NULL, NULL, arm_show_force_mode,
9692 &setarmcmdlist, &showarmcmdlist);
9693
9694 /* Debugging flag. */
9695 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9696 _("Set ARM debugging."),
9697 _("Show ARM debugging."),
9698 _("When on, arm-specific debugging is enabled."),
9699 NULL,
9700 NULL, /* FIXME: i18n: "ARM debugging is %s. */
9701 &setdebuglist, &showdebuglist);
9702 }
9703
9704 /* ARM-reversible process record data structures. */
9705
9706 #define ARM_INSN_SIZE_BYTES 4
9707 #define THUMB_INSN_SIZE_BYTES 2
9708 #define THUMB2_INSN_SIZE_BYTES 4
9709
9710
9711 /* Position of the bit within a 32-bit ARM instruction
9712 that defines whether the instruction is a load or store. */
9713 #define INSN_S_L_BIT_NUM 20
9714
9715 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9716 do \
9717 { \
9718 unsigned int reg_len = LENGTH; \
9719 if (reg_len) \
9720 { \
9721 REGS = XNEWVEC (uint32_t, reg_len); \
9722 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9723 } \
9724 } \
9725 while (0)
9726
9727 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9728 do \
9729 { \
9730 unsigned int mem_len = LENGTH; \
9731 if (mem_len) \
9732 { \
9733 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9734 memcpy(&MEMS->len, &RECORD_BUF[0], \
9735 sizeof(struct arm_mem_r) * LENGTH); \
9736 } \
9737 } \
9738 while (0)
9739
9740 /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9741 #define INSN_RECORDED(ARM_RECORD) \
9742 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9743
9744 /* ARM memory record structure. */
9745 struct arm_mem_r
9746 {
9747 uint32_t len; /* Record length. */
9748 uint32_t addr; /* Memory address. */
9749 };
9750
9751 /* ARM instruction record contains opcode of current insn
9752 and execution state (before entry to decode_insn()),
9753 contains list of to-be-modified registers and
9754 memory blocks (on return from decode_insn()). */
9755
9756 typedef struct insn_decode_record_t
9757 {
9758 struct gdbarch *gdbarch;
9759 struct regcache *regcache;
9760 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9761 uint32_t arm_insn; /* Should accommodate thumb. */
9762 uint32_t cond; /* Condition code. */
9763 uint32_t opcode; /* Insn opcode. */
9764 uint32_t decode; /* Insn decode bits. */
9765 uint32_t mem_rec_count; /* No of mem records. */
9766 uint32_t reg_rec_count; /* No of reg records. */
9767 uint32_t *arm_regs; /* Registers to be saved for this record. */
9768 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9769 } insn_decode_record;
9770
9771
9772 /* Checks ARM SBZ and SBO mandatory fields. */
9773
9774 static int
9775 sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9776 {
9777 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9778
9779 if (!len)
9780 return 1;
9781
9782 if (!sbo)
9783 ones = ~ones;
9784
9785 while (ones)
9786 {
9787 if (!(ones & sbo))
9788 {
9789 return 0;
9790 }
9791 ones = ones >> 1;
9792 }
9793 return 1;
9794 }
9795
9796 enum arm_record_result
9797 {
9798 ARM_RECORD_SUCCESS = 0,
9799 ARM_RECORD_FAILURE = 1
9800 };
9801
9802 typedef enum
9803 {
9804 ARM_RECORD_STRH=1,
9805 ARM_RECORD_STRD
9806 } arm_record_strx_t;
9807
9808 typedef enum
9809 {
9810 ARM_RECORD=1,
9811 THUMB_RECORD,
9812 THUMB2_RECORD
9813 } record_type_t;
9814
9815
9816 static int
9817 arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9818 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9819 {
9820
9821 struct regcache *reg_cache = arm_insn_r->regcache;
9822 ULONGEST u_regval[2]= {0};
9823
9824 uint32_t reg_src1 = 0, reg_src2 = 0;
9825 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
9826
9827 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9828 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
9829
9830 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9831 {
9832 /* 1) Handle misc store, immediate offset. */
9833 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9834 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9835 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9836 regcache_raw_read_unsigned (reg_cache, reg_src1,
9837 &u_regval[0]);
9838 if (ARM_PC_REGNUM == reg_src1)
9839 {
9840 /* If R15 was used as Rn, hence current PC+8. */
9841 u_regval[0] = u_regval[0] + 8;
9842 }
9843 offset_8 = (immed_high << 4) | immed_low;
9844 /* Calculate target store address. */
9845 if (14 == arm_insn_r->opcode)
9846 {
9847 tgt_mem_addr = u_regval[0] + offset_8;
9848 }
9849 else
9850 {
9851 tgt_mem_addr = u_regval[0] - offset_8;
9852 }
9853 if (ARM_RECORD_STRH == str_type)
9854 {
9855 record_buf_mem[0] = 2;
9856 record_buf_mem[1] = tgt_mem_addr;
9857 arm_insn_r->mem_rec_count = 1;
9858 }
9859 else if (ARM_RECORD_STRD == str_type)
9860 {
9861 record_buf_mem[0] = 4;
9862 record_buf_mem[1] = tgt_mem_addr;
9863 record_buf_mem[2] = 4;
9864 record_buf_mem[3] = tgt_mem_addr + 4;
9865 arm_insn_r->mem_rec_count = 2;
9866 }
9867 }
9868 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9869 {
9870 /* 2) Store, register offset. */
9871 /* Get Rm. */
9872 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9873 /* Get Rn. */
9874 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9875 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9876 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9877 if (15 == reg_src2)
9878 {
9879 /* If R15 was used as Rn, hence current PC+8. */
9880 u_regval[0] = u_regval[0] + 8;
9881 }
9882 /* Calculate target store address, Rn +/- Rm, register offset. */
9883 if (12 == arm_insn_r->opcode)
9884 {
9885 tgt_mem_addr = u_regval[0] + u_regval[1];
9886 }
9887 else
9888 {
9889 tgt_mem_addr = u_regval[1] - u_regval[0];
9890 }
9891 if (ARM_RECORD_STRH == str_type)
9892 {
9893 record_buf_mem[0] = 2;
9894 record_buf_mem[1] = tgt_mem_addr;
9895 arm_insn_r->mem_rec_count = 1;
9896 }
9897 else if (ARM_RECORD_STRD == str_type)
9898 {
9899 record_buf_mem[0] = 4;
9900 record_buf_mem[1] = tgt_mem_addr;
9901 record_buf_mem[2] = 4;
9902 record_buf_mem[3] = tgt_mem_addr + 4;
9903 arm_insn_r->mem_rec_count = 2;
9904 }
9905 }
9906 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9907 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9908 {
9909 /* 3) Store, immediate pre-indexed. */
9910 /* 5) Store, immediate post-indexed. */
9911 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9912 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9913 offset_8 = (immed_high << 4) | immed_low;
9914 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9915 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9916 /* Calculate target store address, Rn +/- Rm, register offset. */
9917 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9918 {
9919 tgt_mem_addr = u_regval[0] + offset_8;
9920 }
9921 else
9922 {
9923 tgt_mem_addr = u_regval[0] - offset_8;
9924 }
9925 if (ARM_RECORD_STRH == str_type)
9926 {
9927 record_buf_mem[0] = 2;
9928 record_buf_mem[1] = tgt_mem_addr;
9929 arm_insn_r->mem_rec_count = 1;
9930 }
9931 else if (ARM_RECORD_STRD == str_type)
9932 {
9933 record_buf_mem[0] = 4;
9934 record_buf_mem[1] = tgt_mem_addr;
9935 record_buf_mem[2] = 4;
9936 record_buf_mem[3] = tgt_mem_addr + 4;
9937 arm_insn_r->mem_rec_count = 2;
9938 }
9939 /* Record Rn also as it changes. */
9940 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9941 arm_insn_r->reg_rec_count = 1;
9942 }
9943 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9944 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9945 {
9946 /* 4) Store, register pre-indexed. */
9947 /* 6) Store, register post -indexed. */
9948 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9949 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9950 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9951 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9952 /* Calculate target store address, Rn +/- Rm, register offset. */
9953 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9954 {
9955 tgt_mem_addr = u_regval[0] + u_regval[1];
9956 }
9957 else
9958 {
9959 tgt_mem_addr = u_regval[1] - u_regval[0];
9960 }
9961 if (ARM_RECORD_STRH == str_type)
9962 {
9963 record_buf_mem[0] = 2;
9964 record_buf_mem[1] = tgt_mem_addr;
9965 arm_insn_r->mem_rec_count = 1;
9966 }
9967 else if (ARM_RECORD_STRD == str_type)
9968 {
9969 record_buf_mem[0] = 4;
9970 record_buf_mem[1] = tgt_mem_addr;
9971 record_buf_mem[2] = 4;
9972 record_buf_mem[3] = tgt_mem_addr + 4;
9973 arm_insn_r->mem_rec_count = 2;
9974 }
9975 /* Record Rn also as it changes. */
9976 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9977 arm_insn_r->reg_rec_count = 1;
9978 }
9979 return 0;
9980 }
9981
9982 /* Handling ARM extension space insns. */
9983
9984 static int
9985 arm_record_extension_space (insn_decode_record *arm_insn_r)
9986 {
9987 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
9988 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
9989 uint32_t record_buf[8], record_buf_mem[8];
9990 uint32_t reg_src1 = 0;
9991 struct regcache *reg_cache = arm_insn_r->regcache;
9992 ULONGEST u_regval = 0;
9993
9994 gdb_assert (!INSN_RECORDED(arm_insn_r));
9995 /* Handle unconditional insn extension space. */
9996
9997 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
9998 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
9999 if (arm_insn_r->cond)
10000 {
10001 /* PLD has no affect on architectural state, it just affects
10002 the caches. */
10003 if (5 == ((opcode1 & 0xE0) >> 5))
10004 {
10005 /* BLX(1) */
10006 record_buf[0] = ARM_PS_REGNUM;
10007 record_buf[1] = ARM_LR_REGNUM;
10008 arm_insn_r->reg_rec_count = 2;
10009 }
10010 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10011 }
10012
10013
10014 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10015 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10016 {
10017 ret = -1;
10018 /* Undefined instruction on ARM V5; need to handle if later
10019 versions define it. */
10020 }
10021
10022 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10023 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10024 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10025
10026 /* Handle arithmetic insn extension space. */
10027 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10028 && !INSN_RECORDED(arm_insn_r))
10029 {
10030 /* Handle MLA(S) and MUL(S). */
10031 if (0 <= insn_op1 && 3 >= insn_op1)
10032 {
10033 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10034 record_buf[1] = ARM_PS_REGNUM;
10035 arm_insn_r->reg_rec_count = 2;
10036 }
10037 else if (4 <= insn_op1 && 15 >= insn_op1)
10038 {
10039 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10040 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10041 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10042 record_buf[2] = ARM_PS_REGNUM;
10043 arm_insn_r->reg_rec_count = 3;
10044 }
10045 }
10046
10047 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10048 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10049 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10050
10051 /* Handle control insn extension space. */
10052
10053 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10054 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10055 {
10056 if (!bit (arm_insn_r->arm_insn,25))
10057 {
10058 if (!bits (arm_insn_r->arm_insn, 4, 7))
10059 {
10060 if ((0 == insn_op1) || (2 == insn_op1))
10061 {
10062 /* MRS. */
10063 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10064 arm_insn_r->reg_rec_count = 1;
10065 }
10066 else if (1 == insn_op1)
10067 {
10068 /* CSPR is going to be changed. */
10069 record_buf[0] = ARM_PS_REGNUM;
10070 arm_insn_r->reg_rec_count = 1;
10071 }
10072 else if (3 == insn_op1)
10073 {
10074 /* SPSR is going to be changed. */
10075 /* We need to get SPSR value, which is yet to be done. */
10076 return -1;
10077 }
10078 }
10079 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10080 {
10081 if (1 == insn_op1)
10082 {
10083 /* BX. */
10084 record_buf[0] = ARM_PS_REGNUM;
10085 arm_insn_r->reg_rec_count = 1;
10086 }
10087 else if (3 == insn_op1)
10088 {
10089 /* CLZ. */
10090 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10091 arm_insn_r->reg_rec_count = 1;
10092 }
10093 }
10094 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10095 {
10096 /* BLX. */
10097 record_buf[0] = ARM_PS_REGNUM;
10098 record_buf[1] = ARM_LR_REGNUM;
10099 arm_insn_r->reg_rec_count = 2;
10100 }
10101 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10102 {
10103 /* QADD, QSUB, QDADD, QDSUB */
10104 record_buf[0] = ARM_PS_REGNUM;
10105 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10106 arm_insn_r->reg_rec_count = 2;
10107 }
10108 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10109 {
10110 /* BKPT. */
10111 record_buf[0] = ARM_PS_REGNUM;
10112 record_buf[1] = ARM_LR_REGNUM;
10113 arm_insn_r->reg_rec_count = 2;
10114
10115 /* Save SPSR also;how? */
10116 return -1;
10117 }
10118 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10119 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10120 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10121 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10122 )
10123 {
10124 if (0 == insn_op1 || 1 == insn_op1)
10125 {
10126 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10127 /* We dont do optimization for SMULW<y> where we
10128 need only Rd. */
10129 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10130 record_buf[1] = ARM_PS_REGNUM;
10131 arm_insn_r->reg_rec_count = 2;
10132 }
10133 else if (2 == insn_op1)
10134 {
10135 /* SMLAL<x><y>. */
10136 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10137 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10138 arm_insn_r->reg_rec_count = 2;
10139 }
10140 else if (3 == insn_op1)
10141 {
10142 /* SMUL<x><y>. */
10143 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10144 arm_insn_r->reg_rec_count = 1;
10145 }
10146 }
10147 }
10148 else
10149 {
10150 /* MSR : immediate form. */
10151 if (1 == insn_op1)
10152 {
10153 /* CSPR is going to be changed. */
10154 record_buf[0] = ARM_PS_REGNUM;
10155 arm_insn_r->reg_rec_count = 1;
10156 }
10157 else if (3 == insn_op1)
10158 {
10159 /* SPSR is going to be changed. */
10160 /* we need to get SPSR value, which is yet to be done */
10161 return -1;
10162 }
10163 }
10164 }
10165
10166 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10167 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10168 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10169
10170 /* Handle load/store insn extension space. */
10171
10172 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10173 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10174 && !INSN_RECORDED(arm_insn_r))
10175 {
10176 /* SWP/SWPB. */
10177 if (0 == insn_op1)
10178 {
10179 /* These insn, changes register and memory as well. */
10180 /* SWP or SWPB insn. */
10181 /* Get memory address given by Rn. */
10182 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10183 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10184 /* SWP insn ?, swaps word. */
10185 if (8 == arm_insn_r->opcode)
10186 {
10187 record_buf_mem[0] = 4;
10188 }
10189 else
10190 {
10191 /* SWPB insn, swaps only byte. */
10192 record_buf_mem[0] = 1;
10193 }
10194 record_buf_mem[1] = u_regval;
10195 arm_insn_r->mem_rec_count = 1;
10196 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10197 arm_insn_r->reg_rec_count = 1;
10198 }
10199 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10200 {
10201 /* STRH. */
10202 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10203 ARM_RECORD_STRH);
10204 }
10205 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10206 {
10207 /* LDRD. */
10208 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10209 record_buf[1] = record_buf[0] + 1;
10210 arm_insn_r->reg_rec_count = 2;
10211 }
10212 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10213 {
10214 /* STRD. */
10215 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10216 ARM_RECORD_STRD);
10217 }
10218 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10219 {
10220 /* LDRH, LDRSB, LDRSH. */
10221 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10222 arm_insn_r->reg_rec_count = 1;
10223 }
10224
10225 }
10226
10227 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10228 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10229 && !INSN_RECORDED(arm_insn_r))
10230 {
10231 ret = -1;
10232 /* Handle coprocessor insn extension space. */
10233 }
10234
10235 /* To be done for ARMv5 and later; as of now we return -1. */
10236 if (-1 == ret)
10237 return ret;
10238
10239 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10240 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10241
10242 return ret;
10243 }
10244
10245 /* Handling opcode 000 insns. */
10246
10247 static int
10248 arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10249 {
10250 struct regcache *reg_cache = arm_insn_r->regcache;
10251 uint32_t record_buf[8], record_buf_mem[8];
10252 ULONGEST u_regval[2] = {0};
10253
10254 uint32_t reg_src1 = 0, reg_dest = 0;
10255 uint32_t opcode1 = 0;
10256
10257 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10258 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10259 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10260
10261 /* Data processing insn /multiply insn. */
10262 if (9 == arm_insn_r->decode
10263 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10264 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
10265 {
10266 /* Handle multiply instructions. */
10267 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10268 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10269 {
10270 /* Handle MLA and MUL. */
10271 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10272 record_buf[1] = ARM_PS_REGNUM;
10273 arm_insn_r->reg_rec_count = 2;
10274 }
10275 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10276 {
10277 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10278 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10279 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10280 record_buf[2] = ARM_PS_REGNUM;
10281 arm_insn_r->reg_rec_count = 3;
10282 }
10283 }
10284 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10285 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
10286 {
10287 /* Handle misc load insns, as 20th bit (L = 1). */
10288 /* LDR insn has a capability to do branching, if
10289 MOV LR, PC is precceded by LDR insn having Rn as R15
10290 in that case, it emulates branch and link insn, and hence we
10291 need to save CSPR and PC as well. I am not sure this is right
10292 place; as opcode = 010 LDR insn make this happen, if R15 was
10293 used. */
10294 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10295 if (15 != reg_dest)
10296 {
10297 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10298 arm_insn_r->reg_rec_count = 1;
10299 }
10300 else
10301 {
10302 record_buf[0] = reg_dest;
10303 record_buf[1] = ARM_PS_REGNUM;
10304 arm_insn_r->reg_rec_count = 2;
10305 }
10306 }
10307 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10308 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
10309 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10310 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
10311 {
10312 /* Handle MSR insn. */
10313 if (9 == arm_insn_r->opcode)
10314 {
10315 /* CSPR is going to be changed. */
10316 record_buf[0] = ARM_PS_REGNUM;
10317 arm_insn_r->reg_rec_count = 1;
10318 }
10319 else
10320 {
10321 /* SPSR is going to be changed. */
10322 /* How to read SPSR value? */
10323 return -1;
10324 }
10325 }
10326 else if (9 == arm_insn_r->decode
10327 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10328 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10329 {
10330 /* Handling SWP, SWPB. */
10331 /* These insn, changes register and memory as well. */
10332 /* SWP or SWPB insn. */
10333
10334 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10335 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10336 /* SWP insn ?, swaps word. */
10337 if (8 == arm_insn_r->opcode)
10338 {
10339 record_buf_mem[0] = 4;
10340 }
10341 else
10342 {
10343 /* SWPB insn, swaps only byte. */
10344 record_buf_mem[0] = 1;
10345 }
10346 record_buf_mem[1] = u_regval[0];
10347 arm_insn_r->mem_rec_count = 1;
10348 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10349 arm_insn_r->reg_rec_count = 1;
10350 }
10351 else if (3 == arm_insn_r->decode && 0x12 == opcode1
10352 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10353 {
10354 /* Handle BLX, branch and link/exchange. */
10355 if (9 == arm_insn_r->opcode)
10356 {
10357 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10358 and R14 stores the return address. */
10359 record_buf[0] = ARM_PS_REGNUM;
10360 record_buf[1] = ARM_LR_REGNUM;
10361 arm_insn_r->reg_rec_count = 2;
10362 }
10363 }
10364 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10365 {
10366 /* Handle enhanced software breakpoint insn, BKPT. */
10367 /* CPSR is changed to be executed in ARM state, disabling normal
10368 interrupts, entering abort mode. */
10369 /* According to high vector configuration PC is set. */
10370 /* user hit breakpoint and type reverse, in
10371 that case, we need to go back with previous CPSR and
10372 Program Counter. */
10373 record_buf[0] = ARM_PS_REGNUM;
10374 record_buf[1] = ARM_LR_REGNUM;
10375 arm_insn_r->reg_rec_count = 2;
10376
10377 /* Save SPSR also; how? */
10378 return -1;
10379 }
10380 else if (11 == arm_insn_r->decode
10381 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10382 {
10383 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
10384
10385 /* Handle str(x) insn */
10386 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10387 ARM_RECORD_STRH);
10388 }
10389 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10390 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10391 {
10392 /* Handle BX, branch and link/exchange. */
10393 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10394 record_buf[0] = ARM_PS_REGNUM;
10395 arm_insn_r->reg_rec_count = 1;
10396 }
10397 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10398 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10399 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10400 {
10401 /* Count leading zeros: CLZ. */
10402 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10403 arm_insn_r->reg_rec_count = 1;
10404 }
10405 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10406 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10407 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10408 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
10409 )
10410 {
10411 /* Handle MRS insn. */
10412 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10413 arm_insn_r->reg_rec_count = 1;
10414 }
10415 else if (arm_insn_r->opcode <= 15)
10416 {
10417 /* Normal data processing insns. */
10418 /* Out of 11 shifter operands mode, all the insn modifies destination
10419 register, which is specified by 13-16 decode. */
10420 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10421 record_buf[1] = ARM_PS_REGNUM;
10422 arm_insn_r->reg_rec_count = 2;
10423 }
10424 else
10425 {
10426 return -1;
10427 }
10428
10429 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10430 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10431 return 0;
10432 }
10433
10434 /* Handling opcode 001 insns. */
10435
10436 static int
10437 arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10438 {
10439 uint32_t record_buf[8], record_buf_mem[8];
10440
10441 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10442 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10443
10444 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10445 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10446 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10447 )
10448 {
10449 /* Handle MSR insn. */
10450 if (9 == arm_insn_r->opcode)
10451 {
10452 /* CSPR is going to be changed. */
10453 record_buf[0] = ARM_PS_REGNUM;
10454 arm_insn_r->reg_rec_count = 1;
10455 }
10456 else
10457 {
10458 /* SPSR is going to be changed. */
10459 }
10460 }
10461 else if (arm_insn_r->opcode <= 15)
10462 {
10463 /* Normal data processing insns. */
10464 /* Out of 11 shifter operands mode, all the insn modifies destination
10465 register, which is specified by 13-16 decode. */
10466 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10467 record_buf[1] = ARM_PS_REGNUM;
10468 arm_insn_r->reg_rec_count = 2;
10469 }
10470 else
10471 {
10472 return -1;
10473 }
10474
10475 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10476 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10477 return 0;
10478 }
10479
10480 static int
10481 arm_record_media (insn_decode_record *arm_insn_r)
10482 {
10483 uint32_t record_buf[8];
10484
10485 switch (bits (arm_insn_r->arm_insn, 22, 24))
10486 {
10487 case 0:
10488 /* Parallel addition and subtraction, signed */
10489 case 1:
10490 /* Parallel addition and subtraction, unsigned */
10491 case 2:
10492 case 3:
10493 /* Packing, unpacking, saturation and reversal */
10494 {
10495 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10496
10497 record_buf[arm_insn_r->reg_rec_count++] = rd;
10498 }
10499 break;
10500
10501 case 4:
10502 case 5:
10503 /* Signed multiplies */
10504 {
10505 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10506 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10507
10508 record_buf[arm_insn_r->reg_rec_count++] = rd;
10509 if (op1 == 0x0)
10510 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10511 else if (op1 == 0x4)
10512 record_buf[arm_insn_r->reg_rec_count++]
10513 = bits (arm_insn_r->arm_insn, 12, 15);
10514 }
10515 break;
10516
10517 case 6:
10518 {
10519 if (bit (arm_insn_r->arm_insn, 21)
10520 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10521 {
10522 /* SBFX */
10523 record_buf[arm_insn_r->reg_rec_count++]
10524 = bits (arm_insn_r->arm_insn, 12, 15);
10525 }
10526 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10527 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10528 {
10529 /* USAD8 and USADA8 */
10530 record_buf[arm_insn_r->reg_rec_count++]
10531 = bits (arm_insn_r->arm_insn, 16, 19);
10532 }
10533 }
10534 break;
10535
10536 case 7:
10537 {
10538 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10539 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10540 {
10541 /* Permanently UNDEFINED */
10542 return -1;
10543 }
10544 else
10545 {
10546 /* BFC, BFI and UBFX */
10547 record_buf[arm_insn_r->reg_rec_count++]
10548 = bits (arm_insn_r->arm_insn, 12, 15);
10549 }
10550 }
10551 break;
10552
10553 default:
10554 return -1;
10555 }
10556
10557 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10558
10559 return 0;
10560 }
10561
10562 /* Handle ARM mode instructions with opcode 010. */
10563
10564 static int
10565 arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10566 {
10567 struct regcache *reg_cache = arm_insn_r->regcache;
10568
10569 uint32_t reg_base , reg_dest;
10570 uint32_t offset_12, tgt_mem_addr;
10571 uint32_t record_buf[8], record_buf_mem[8];
10572 unsigned char wback;
10573 ULONGEST u_regval;
10574
10575 /* Calculate wback. */
10576 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10577 || (bit (arm_insn_r->arm_insn, 21) == 1);
10578
10579 arm_insn_r->reg_rec_count = 0;
10580 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10581
10582 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10583 {
10584 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10585 and LDRT. */
10586
10587 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10588 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10589
10590 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10591 preceeds a LDR instruction having R15 as reg_base, it
10592 emulates a branch and link instruction, and hence we need to save
10593 CPSR and PC as well. */
10594 if (ARM_PC_REGNUM == reg_dest)
10595 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10596
10597 /* If wback is true, also save the base register, which is going to be
10598 written to. */
10599 if (wback)
10600 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10601 }
10602 else
10603 {
10604 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10605
10606 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
10607 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10608
10609 /* Handle bit U. */
10610 if (bit (arm_insn_r->arm_insn, 23))
10611 {
10612 /* U == 1: Add the offset. */
10613 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10614 }
10615 else
10616 {
10617 /* U == 0: subtract the offset. */
10618 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10619 }
10620
10621 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10622 bytes. */
10623 if (bit (arm_insn_r->arm_insn, 22))
10624 {
10625 /* STRB and STRBT: 1 byte. */
10626 record_buf_mem[0] = 1;
10627 }
10628 else
10629 {
10630 /* STR and STRT: 4 bytes. */
10631 record_buf_mem[0] = 4;
10632 }
10633
10634 /* Handle bit P. */
10635 if (bit (arm_insn_r->arm_insn, 24))
10636 record_buf_mem[1] = tgt_mem_addr;
10637 else
10638 record_buf_mem[1] = (uint32_t) u_regval;
10639
10640 arm_insn_r->mem_rec_count = 1;
10641
10642 /* If wback is true, also save the base register, which is going to be
10643 written to. */
10644 if (wback)
10645 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10646 }
10647
10648 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10649 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10650 return 0;
10651 }
10652
10653 /* Handling opcode 011 insns. */
10654
10655 static int
10656 arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10657 {
10658 struct regcache *reg_cache = arm_insn_r->regcache;
10659
10660 uint32_t shift_imm = 0;
10661 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10662 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10663 uint32_t record_buf[8], record_buf_mem[8];
10664
10665 LONGEST s_word;
10666 ULONGEST u_regval[2];
10667
10668 if (bit (arm_insn_r->arm_insn, 4))
10669 return arm_record_media (arm_insn_r);
10670
10671 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10672 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10673
10674 /* Handle enhanced store insns and LDRD DSP insn,
10675 order begins according to addressing modes for store insns
10676 STRH insn. */
10677
10678 /* LDR or STR? */
10679 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10680 {
10681 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10682 /* LDR insn has a capability to do branching, if
10683 MOV LR, PC is precedded by LDR insn having Rn as R15
10684 in that case, it emulates branch and link insn, and hence we
10685 need to save CSPR and PC as well. */
10686 if (15 != reg_dest)
10687 {
10688 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10689 arm_insn_r->reg_rec_count = 1;
10690 }
10691 else
10692 {
10693 record_buf[0] = reg_dest;
10694 record_buf[1] = ARM_PS_REGNUM;
10695 arm_insn_r->reg_rec_count = 2;
10696 }
10697 }
10698 else
10699 {
10700 if (! bits (arm_insn_r->arm_insn, 4, 11))
10701 {
10702 /* Store insn, register offset and register pre-indexed,
10703 register post-indexed. */
10704 /* Get Rm. */
10705 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10706 /* Get Rn. */
10707 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10708 regcache_raw_read_unsigned (reg_cache, reg_src1
10709 , &u_regval[0]);
10710 regcache_raw_read_unsigned (reg_cache, reg_src2
10711 , &u_regval[1]);
10712 if (15 == reg_src2)
10713 {
10714 /* If R15 was used as Rn, hence current PC+8. */
10715 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10716 u_regval[0] = u_regval[0] + 8;
10717 }
10718 /* Calculate target store address, Rn +/- Rm, register offset. */
10719 /* U == 1. */
10720 if (bit (arm_insn_r->arm_insn, 23))
10721 {
10722 tgt_mem_addr = u_regval[0] + u_regval[1];
10723 }
10724 else
10725 {
10726 tgt_mem_addr = u_regval[1] - u_regval[0];
10727 }
10728
10729 switch (arm_insn_r->opcode)
10730 {
10731 /* STR. */
10732 case 8:
10733 case 12:
10734 /* STR. */
10735 case 9:
10736 case 13:
10737 /* STRT. */
10738 case 1:
10739 case 5:
10740 /* STR. */
10741 case 0:
10742 case 4:
10743 record_buf_mem[0] = 4;
10744 break;
10745
10746 /* STRB. */
10747 case 10:
10748 case 14:
10749 /* STRB. */
10750 case 11:
10751 case 15:
10752 /* STRBT. */
10753 case 3:
10754 case 7:
10755 /* STRB. */
10756 case 2:
10757 case 6:
10758 record_buf_mem[0] = 1;
10759 break;
10760
10761 default:
10762 gdb_assert_not_reached ("no decoding pattern found");
10763 break;
10764 }
10765 record_buf_mem[1] = tgt_mem_addr;
10766 arm_insn_r->mem_rec_count = 1;
10767
10768 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10769 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10770 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10771 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10772 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10773 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10774 )
10775 {
10776 /* Rn is going to be changed in pre-indexed mode and
10777 post-indexed mode as well. */
10778 record_buf[0] = reg_src2;
10779 arm_insn_r->reg_rec_count = 1;
10780 }
10781 }
10782 else
10783 {
10784 /* Store insn, scaled register offset; scaled pre-indexed. */
10785 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10786 /* Get Rm. */
10787 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10788 /* Get Rn. */
10789 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10790 /* Get shift_imm. */
10791 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10792 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10793 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10794 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10795 /* Offset_12 used as shift. */
10796 switch (offset_12)
10797 {
10798 case 0:
10799 /* Offset_12 used as index. */
10800 offset_12 = u_regval[0] << shift_imm;
10801 break;
10802
10803 case 1:
10804 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10805 break;
10806
10807 case 2:
10808 if (!shift_imm)
10809 {
10810 if (bit (u_regval[0], 31))
10811 {
10812 offset_12 = 0xFFFFFFFF;
10813 }
10814 else
10815 {
10816 offset_12 = 0;
10817 }
10818 }
10819 else
10820 {
10821 /* This is arithmetic shift. */
10822 offset_12 = s_word >> shift_imm;
10823 }
10824 break;
10825
10826 case 3:
10827 if (!shift_imm)
10828 {
10829 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10830 &u_regval[1]);
10831 /* Get C flag value and shift it by 31. */
10832 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10833 | (u_regval[0]) >> 1);
10834 }
10835 else
10836 {
10837 offset_12 = (u_regval[0] >> shift_imm) \
10838 | (u_regval[0] <<
10839 (sizeof(uint32_t) - shift_imm));
10840 }
10841 break;
10842
10843 default:
10844 gdb_assert_not_reached ("no decoding pattern found");
10845 break;
10846 }
10847
10848 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10849 /* bit U set. */
10850 if (bit (arm_insn_r->arm_insn, 23))
10851 {
10852 tgt_mem_addr = u_regval[1] + offset_12;
10853 }
10854 else
10855 {
10856 tgt_mem_addr = u_regval[1] - offset_12;
10857 }
10858
10859 switch (arm_insn_r->opcode)
10860 {
10861 /* STR. */
10862 case 8:
10863 case 12:
10864 /* STR. */
10865 case 9:
10866 case 13:
10867 /* STRT. */
10868 case 1:
10869 case 5:
10870 /* STR. */
10871 case 0:
10872 case 4:
10873 record_buf_mem[0] = 4;
10874 break;
10875
10876 /* STRB. */
10877 case 10:
10878 case 14:
10879 /* STRB. */
10880 case 11:
10881 case 15:
10882 /* STRBT. */
10883 case 3:
10884 case 7:
10885 /* STRB. */
10886 case 2:
10887 case 6:
10888 record_buf_mem[0] = 1;
10889 break;
10890
10891 default:
10892 gdb_assert_not_reached ("no decoding pattern found");
10893 break;
10894 }
10895 record_buf_mem[1] = tgt_mem_addr;
10896 arm_insn_r->mem_rec_count = 1;
10897
10898 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10899 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10900 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10901 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10902 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10903 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10904 )
10905 {
10906 /* Rn is going to be changed in register scaled pre-indexed
10907 mode,and scaled post indexed mode. */
10908 record_buf[0] = reg_src2;
10909 arm_insn_r->reg_rec_count = 1;
10910 }
10911 }
10912 }
10913
10914 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10915 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10916 return 0;
10917 }
10918
10919 /* Handle ARM mode instructions with opcode 100. */
10920
10921 static int
10922 arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10923 {
10924 struct regcache *reg_cache = arm_insn_r->regcache;
10925 uint32_t register_count = 0, register_bits;
10926 uint32_t reg_base, addr_mode;
10927 uint32_t record_buf[24], record_buf_mem[48];
10928 uint32_t wback;
10929 ULONGEST u_regval;
10930
10931 /* Fetch the list of registers. */
10932 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10933 arm_insn_r->reg_rec_count = 0;
10934
10935 /* Fetch the base register that contains the address we are loading data
10936 to. */
10937 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10938
10939 /* Calculate wback. */
10940 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
10941
10942 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10943 {
10944 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
10945
10946 /* Find out which registers are going to be loaded from memory. */
10947 while (register_bits)
10948 {
10949 if (register_bits & 0x00000001)
10950 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10951 register_bits = register_bits >> 1;
10952 register_count++;
10953 }
10954
10955
10956 /* If wback is true, also save the base register, which is going to be
10957 written to. */
10958 if (wback)
10959 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10960
10961 /* Save the CPSR register. */
10962 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10963 }
10964 else
10965 {
10966 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
10967
10968 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
10969
10970 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10971
10972 /* Find out how many registers are going to be stored to memory. */
10973 while (register_bits)
10974 {
10975 if (register_bits & 0x00000001)
10976 register_count++;
10977 register_bits = register_bits >> 1;
10978 }
10979
10980 switch (addr_mode)
10981 {
10982 /* STMDA (STMED): Decrement after. */
10983 case 0:
10984 record_buf_mem[1] = (uint32_t) u_regval
10985 - register_count * INT_REGISTER_SIZE + 4;
10986 break;
10987 /* STM (STMIA, STMEA): Increment after. */
10988 case 1:
10989 record_buf_mem[1] = (uint32_t) u_regval;
10990 break;
10991 /* STMDB (STMFD): Decrement before. */
10992 case 2:
10993 record_buf_mem[1] = (uint32_t) u_regval
10994 - register_count * INT_REGISTER_SIZE;
10995 break;
10996 /* STMIB (STMFA): Increment before. */
10997 case 3:
10998 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
10999 break;
11000 default:
11001 gdb_assert_not_reached ("no decoding pattern found");
11002 break;
11003 }
11004
11005 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
11006 arm_insn_r->mem_rec_count = 1;
11007
11008 /* If wback is true, also save the base register, which is going to be
11009 written to. */
11010 if (wback)
11011 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
11012 }
11013
11014 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11015 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11016 return 0;
11017 }
11018
11019 /* Handling opcode 101 insns. */
11020
11021 static int
11022 arm_record_b_bl (insn_decode_record *arm_insn_r)
11023 {
11024 uint32_t record_buf[8];
11025
11026 /* Handle B, BL, BLX(1) insns. */
11027 /* B simply branches so we do nothing here. */
11028 /* Note: BLX(1) doesnt fall here but instead it falls into
11029 extension space. */
11030 if (bit (arm_insn_r->arm_insn, 24))
11031 {
11032 record_buf[0] = ARM_LR_REGNUM;
11033 arm_insn_r->reg_rec_count = 1;
11034 }
11035
11036 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11037
11038 return 0;
11039 }
11040
11041 static int
11042 arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
11043 {
11044 printf_unfiltered (_("Process record does not support instruction "
11045 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11046 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11047
11048 return -1;
11049 }
11050
11051 /* Record handler for vector data transfer instructions. */
11052
11053 static int
11054 arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11055 {
11056 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11057 uint32_t record_buf[4];
11058
11059 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11060 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11061 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11062 bit_l = bit (arm_insn_r->arm_insn, 20);
11063 bit_c = bit (arm_insn_r->arm_insn, 8);
11064
11065 /* Handle VMOV instruction. */
11066 if (bit_l && bit_c)
11067 {
11068 record_buf[0] = reg_t;
11069 arm_insn_r->reg_rec_count = 1;
11070 }
11071 else if (bit_l && !bit_c)
11072 {
11073 /* Handle VMOV instruction. */
11074 if (bits_a == 0x00)
11075 {
11076 record_buf[0] = reg_t;
11077 arm_insn_r->reg_rec_count = 1;
11078 }
11079 /* Handle VMRS instruction. */
11080 else if (bits_a == 0x07)
11081 {
11082 if (reg_t == 15)
11083 reg_t = ARM_PS_REGNUM;
11084
11085 record_buf[0] = reg_t;
11086 arm_insn_r->reg_rec_count = 1;
11087 }
11088 }
11089 else if (!bit_l && !bit_c)
11090 {
11091 /* Handle VMOV instruction. */
11092 if (bits_a == 0x00)
11093 {
11094 record_buf[0] = ARM_D0_REGNUM + reg_v;
11095
11096 arm_insn_r->reg_rec_count = 1;
11097 }
11098 /* Handle VMSR instruction. */
11099 else if (bits_a == 0x07)
11100 {
11101 record_buf[0] = ARM_FPSCR_REGNUM;
11102 arm_insn_r->reg_rec_count = 1;
11103 }
11104 }
11105 else if (!bit_l && bit_c)
11106 {
11107 /* Handle VMOV instruction. */
11108 if (!(bits_a & 0x04))
11109 {
11110 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11111 + ARM_D0_REGNUM;
11112 arm_insn_r->reg_rec_count = 1;
11113 }
11114 /* Handle VDUP instruction. */
11115 else
11116 {
11117 if (bit (arm_insn_r->arm_insn, 21))
11118 {
11119 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11120 record_buf[0] = reg_v + ARM_D0_REGNUM;
11121 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11122 arm_insn_r->reg_rec_count = 2;
11123 }
11124 else
11125 {
11126 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11127 record_buf[0] = reg_v + ARM_D0_REGNUM;
11128 arm_insn_r->reg_rec_count = 1;
11129 }
11130 }
11131 }
11132
11133 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11134 return 0;
11135 }
11136
11137 /* Record handler for extension register load/store instructions. */
11138
11139 static int
11140 arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11141 {
11142 uint32_t opcode, single_reg;
11143 uint8_t op_vldm_vstm;
11144 uint32_t record_buf[8], record_buf_mem[128];
11145 ULONGEST u_regval = 0;
11146
11147 struct regcache *reg_cache = arm_insn_r->regcache;
11148
11149 opcode = bits (arm_insn_r->arm_insn, 20, 24);
11150 single_reg = !bit (arm_insn_r->arm_insn, 8);
11151 op_vldm_vstm = opcode & 0x1b;
11152
11153 /* Handle VMOV instructions. */
11154 if ((opcode & 0x1e) == 0x04)
11155 {
11156 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
11157 {
11158 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11159 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11160 arm_insn_r->reg_rec_count = 2;
11161 }
11162 else
11163 {
11164 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11165 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
11166
11167 if (single_reg)
11168 {
11169 /* The first S register number m is REG_M:M (M is bit 5),
11170 the corresponding D register number is REG_M:M / 2, which
11171 is REG_M. */
11172 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11173 /* The second S register number is REG_M:M + 1, the
11174 corresponding D register number is (REG_M:M + 1) / 2.
11175 IOW, if bit M is 1, the first and second S registers
11176 are mapped to different D registers, otherwise, they are
11177 in the same D register. */
11178 if (bit_m)
11179 {
11180 record_buf[arm_insn_r->reg_rec_count++]
11181 = ARM_D0_REGNUM + reg_m + 1;
11182 }
11183 }
11184 else
11185 {
11186 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
11187 arm_insn_r->reg_rec_count = 1;
11188 }
11189 }
11190 }
11191 /* Handle VSTM and VPUSH instructions. */
11192 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
11193 || op_vldm_vstm == 0x12)
11194 {
11195 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11196 uint32_t memory_index = 0;
11197
11198 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11199 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11200 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11201 imm_off32 = imm_off8 << 2;
11202 memory_count = imm_off8;
11203
11204 if (bit (arm_insn_r->arm_insn, 23))
11205 start_address = u_regval;
11206 else
11207 start_address = u_regval - imm_off32;
11208
11209 if (bit (arm_insn_r->arm_insn, 21))
11210 {
11211 record_buf[0] = reg_rn;
11212 arm_insn_r->reg_rec_count = 1;
11213 }
11214
11215 while (memory_count > 0)
11216 {
11217 if (single_reg)
11218 {
11219 record_buf_mem[memory_index] = 4;
11220 record_buf_mem[memory_index + 1] = start_address;
11221 start_address = start_address + 4;
11222 memory_index = memory_index + 2;
11223 }
11224 else
11225 {
11226 record_buf_mem[memory_index] = 4;
11227 record_buf_mem[memory_index + 1] = start_address;
11228 record_buf_mem[memory_index + 2] = 4;
11229 record_buf_mem[memory_index + 3] = start_address + 4;
11230 start_address = start_address + 8;
11231 memory_index = memory_index + 4;
11232 }
11233 memory_count--;
11234 }
11235 arm_insn_r->mem_rec_count = (memory_index >> 1);
11236 }
11237 /* Handle VLDM instructions. */
11238 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
11239 || op_vldm_vstm == 0x13)
11240 {
11241 uint32_t reg_count, reg_vd;
11242 uint32_t reg_index = 0;
11243 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
11244
11245 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11246 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11247
11248 /* REG_VD is the first D register number. If the instruction
11249 loads memory to S registers (SINGLE_REG is TRUE), the register
11250 number is (REG_VD << 1 | bit D), so the corresponding D
11251 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11252 if (!single_reg)
11253 reg_vd = reg_vd | (bit_d << 4);
11254
11255 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
11256 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
11257
11258 /* If the instruction loads memory to D register, REG_COUNT should
11259 be divided by 2, according to the ARM Architecture Reference
11260 Manual. If the instruction loads memory to S register, divide by
11261 2 as well because two S registers are mapped to D register. */
11262 reg_count = reg_count / 2;
11263 if (single_reg && bit_d)
11264 {
11265 /* Increase the register count if S register list starts from
11266 an odd number (bit d is one). */
11267 reg_count++;
11268 }
11269
11270 while (reg_count > 0)
11271 {
11272 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
11273 reg_count--;
11274 }
11275 arm_insn_r->reg_rec_count = reg_index;
11276 }
11277 /* VSTR Vector store register. */
11278 else if ((opcode & 0x13) == 0x10)
11279 {
11280 uint32_t start_address, reg_rn, imm_off32, imm_off8;
11281 uint32_t memory_index = 0;
11282
11283 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11284 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11285 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11286 imm_off32 = imm_off8 << 2;
11287
11288 if (bit (arm_insn_r->arm_insn, 23))
11289 start_address = u_regval + imm_off32;
11290 else
11291 start_address = u_regval - imm_off32;
11292
11293 if (single_reg)
11294 {
11295 record_buf_mem[memory_index] = 4;
11296 record_buf_mem[memory_index + 1] = start_address;
11297 arm_insn_r->mem_rec_count = 1;
11298 }
11299 else
11300 {
11301 record_buf_mem[memory_index] = 4;
11302 record_buf_mem[memory_index + 1] = start_address;
11303 record_buf_mem[memory_index + 2] = 4;
11304 record_buf_mem[memory_index + 3] = start_address + 4;
11305 arm_insn_r->mem_rec_count = 2;
11306 }
11307 }
11308 /* VLDR Vector load register. */
11309 else if ((opcode & 0x13) == 0x11)
11310 {
11311 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11312
11313 if (!single_reg)
11314 {
11315 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11316 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11317 }
11318 else
11319 {
11320 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
11321 /* Record register D rather than pseudo register S. */
11322 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
11323 }
11324 arm_insn_r->reg_rec_count = 1;
11325 }
11326
11327 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11328 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11329 return 0;
11330 }
11331
11332 /* Record handler for arm/thumb mode VFP data processing instructions. */
11333
11334 static int
11335 arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11336 {
11337 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11338 uint32_t record_buf[4];
11339 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11340 enum insn_types curr_insn_type = INSN_INV;
11341
11342 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11343 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11344 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11345 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11346 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11347 bit_d = bit (arm_insn_r->arm_insn, 22);
11348 opc1 = opc1 & 0x04;
11349
11350 /* Handle VMLA, VMLS. */
11351 if (opc1 == 0x00)
11352 {
11353 if (bit (arm_insn_r->arm_insn, 10))
11354 {
11355 if (bit (arm_insn_r->arm_insn, 6))
11356 curr_insn_type = INSN_T0;
11357 else
11358 curr_insn_type = INSN_T1;
11359 }
11360 else
11361 {
11362 if (dp_op_sz)
11363 curr_insn_type = INSN_T1;
11364 else
11365 curr_insn_type = INSN_T2;
11366 }
11367 }
11368 /* Handle VNMLA, VNMLS, VNMUL. */
11369 else if (opc1 == 0x01)
11370 {
11371 if (dp_op_sz)
11372 curr_insn_type = INSN_T1;
11373 else
11374 curr_insn_type = INSN_T2;
11375 }
11376 /* Handle VMUL. */
11377 else if (opc1 == 0x02 && !(opc3 & 0x01))
11378 {
11379 if (bit (arm_insn_r->arm_insn, 10))
11380 {
11381 if (bit (arm_insn_r->arm_insn, 6))
11382 curr_insn_type = INSN_T0;
11383 else
11384 curr_insn_type = INSN_T1;
11385 }
11386 else
11387 {
11388 if (dp_op_sz)
11389 curr_insn_type = INSN_T1;
11390 else
11391 curr_insn_type = INSN_T2;
11392 }
11393 }
11394 /* Handle VADD, VSUB. */
11395 else if (opc1 == 0x03)
11396 {
11397 if (!bit (arm_insn_r->arm_insn, 9))
11398 {
11399 if (bit (arm_insn_r->arm_insn, 6))
11400 curr_insn_type = INSN_T0;
11401 else
11402 curr_insn_type = INSN_T1;
11403 }
11404 else
11405 {
11406 if (dp_op_sz)
11407 curr_insn_type = INSN_T1;
11408 else
11409 curr_insn_type = INSN_T2;
11410 }
11411 }
11412 /* Handle VDIV. */
11413 else if (opc1 == 0x0b)
11414 {
11415 if (dp_op_sz)
11416 curr_insn_type = INSN_T1;
11417 else
11418 curr_insn_type = INSN_T2;
11419 }
11420 /* Handle all other vfp data processing instructions. */
11421 else if (opc1 == 0x0b)
11422 {
11423 /* Handle VMOV. */
11424 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11425 {
11426 if (bit (arm_insn_r->arm_insn, 4))
11427 {
11428 if (bit (arm_insn_r->arm_insn, 6))
11429 curr_insn_type = INSN_T0;
11430 else
11431 curr_insn_type = INSN_T1;
11432 }
11433 else
11434 {
11435 if (dp_op_sz)
11436 curr_insn_type = INSN_T1;
11437 else
11438 curr_insn_type = INSN_T2;
11439 }
11440 }
11441 /* Handle VNEG and VABS. */
11442 else if ((opc2 == 0x01 && opc3 == 0x01)
11443 || (opc2 == 0x00 && opc3 == 0x03))
11444 {
11445 if (!bit (arm_insn_r->arm_insn, 11))
11446 {
11447 if (bit (arm_insn_r->arm_insn, 6))
11448 curr_insn_type = INSN_T0;
11449 else
11450 curr_insn_type = INSN_T1;
11451 }
11452 else
11453 {
11454 if (dp_op_sz)
11455 curr_insn_type = INSN_T1;
11456 else
11457 curr_insn_type = INSN_T2;
11458 }
11459 }
11460 /* Handle VSQRT. */
11461 else if (opc2 == 0x01 && opc3 == 0x03)
11462 {
11463 if (dp_op_sz)
11464 curr_insn_type = INSN_T1;
11465 else
11466 curr_insn_type = INSN_T2;
11467 }
11468 /* Handle VCVT. */
11469 else if (opc2 == 0x07 && opc3 == 0x03)
11470 {
11471 if (!dp_op_sz)
11472 curr_insn_type = INSN_T1;
11473 else
11474 curr_insn_type = INSN_T2;
11475 }
11476 else if (opc3 & 0x01)
11477 {
11478 /* Handle VCVT. */
11479 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11480 {
11481 if (!bit (arm_insn_r->arm_insn, 18))
11482 curr_insn_type = INSN_T2;
11483 else
11484 {
11485 if (dp_op_sz)
11486 curr_insn_type = INSN_T1;
11487 else
11488 curr_insn_type = INSN_T2;
11489 }
11490 }
11491 /* Handle VCVT. */
11492 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11493 {
11494 if (dp_op_sz)
11495 curr_insn_type = INSN_T1;
11496 else
11497 curr_insn_type = INSN_T2;
11498 }
11499 /* Handle VCVTB, VCVTT. */
11500 else if ((opc2 & 0x0e) == 0x02)
11501 curr_insn_type = INSN_T2;
11502 /* Handle VCMP, VCMPE. */
11503 else if ((opc2 & 0x0e) == 0x04)
11504 curr_insn_type = INSN_T3;
11505 }
11506 }
11507
11508 switch (curr_insn_type)
11509 {
11510 case INSN_T0:
11511 reg_vd = reg_vd | (bit_d << 4);
11512 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11513 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11514 arm_insn_r->reg_rec_count = 2;
11515 break;
11516
11517 case INSN_T1:
11518 reg_vd = reg_vd | (bit_d << 4);
11519 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11520 arm_insn_r->reg_rec_count = 1;
11521 break;
11522
11523 case INSN_T2:
11524 reg_vd = (reg_vd << 1) | bit_d;
11525 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11526 arm_insn_r->reg_rec_count = 1;
11527 break;
11528
11529 case INSN_T3:
11530 record_buf[0] = ARM_FPSCR_REGNUM;
11531 arm_insn_r->reg_rec_count = 1;
11532 break;
11533
11534 default:
11535 gdb_assert_not_reached ("no decoding pattern found");
11536 break;
11537 }
11538
11539 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11540 return 0;
11541 }
11542
11543 /* Handling opcode 110 insns. */
11544
11545 static int
11546 arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11547 {
11548 uint32_t op1, op1_ebit, coproc;
11549
11550 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11551 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11552 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11553
11554 if ((coproc & 0x0e) == 0x0a)
11555 {
11556 /* Handle extension register ld/st instructions. */
11557 if (!(op1 & 0x20))
11558 return arm_record_exreg_ld_st_insn (arm_insn_r);
11559
11560 /* 64-bit transfers between arm core and extension registers. */
11561 if ((op1 & 0x3e) == 0x04)
11562 return arm_record_exreg_ld_st_insn (arm_insn_r);
11563 }
11564 else
11565 {
11566 /* Handle coprocessor ld/st instructions. */
11567 if (!(op1 & 0x3a))
11568 {
11569 /* Store. */
11570 if (!op1_ebit)
11571 return arm_record_unsupported_insn (arm_insn_r);
11572 else
11573 /* Load. */
11574 return arm_record_unsupported_insn (arm_insn_r);
11575 }
11576
11577 /* Move to coprocessor from two arm core registers. */
11578 if (op1 == 0x4)
11579 return arm_record_unsupported_insn (arm_insn_r);
11580
11581 /* Move to two arm core registers from coprocessor. */
11582 if (op1 == 0x5)
11583 {
11584 uint32_t reg_t[2];
11585
11586 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11587 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11588 arm_insn_r->reg_rec_count = 2;
11589
11590 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11591 return 0;
11592 }
11593 }
11594 return arm_record_unsupported_insn (arm_insn_r);
11595 }
11596
11597 /* Handling opcode 111 insns. */
11598
11599 static int
11600 arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11601 {
11602 uint32_t op, op1_sbit, op1_ebit, coproc;
11603 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11604 struct regcache *reg_cache = arm_insn_r->regcache;
11605
11606 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
11607 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11608 op1_sbit = bit (arm_insn_r->arm_insn, 24);
11609 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11610 op = bit (arm_insn_r->arm_insn, 4);
11611
11612 /* Handle arm SWI/SVC system call instructions. */
11613 if (op1_sbit)
11614 {
11615 if (tdep->arm_syscall_record != NULL)
11616 {
11617 ULONGEST svc_operand, svc_number;
11618
11619 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11620
11621 if (svc_operand) /* OABI. */
11622 svc_number = svc_operand - 0x900000;
11623 else /* EABI. */
11624 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11625
11626 return tdep->arm_syscall_record (reg_cache, svc_number);
11627 }
11628 else
11629 {
11630 printf_unfiltered (_("no syscall record support\n"));
11631 return -1;
11632 }
11633 }
11634
11635 if ((coproc & 0x0e) == 0x0a)
11636 {
11637 /* VFP data-processing instructions. */
11638 if (!op1_sbit && !op)
11639 return arm_record_vfp_data_proc_insn (arm_insn_r);
11640
11641 /* Advanced SIMD, VFP instructions. */
11642 if (!op1_sbit && op)
11643 return arm_record_vdata_transfer_insn (arm_insn_r);
11644 }
11645 else
11646 {
11647 /* Coprocessor data operations. */
11648 if (!op1_sbit && !op)
11649 return arm_record_unsupported_insn (arm_insn_r);
11650
11651 /* Move to Coprocessor from ARM core register. */
11652 if (!op1_sbit && !op1_ebit && op)
11653 return arm_record_unsupported_insn (arm_insn_r);
11654
11655 /* Move to arm core register from coprocessor. */
11656 if (!op1_sbit && op1_ebit && op)
11657 {
11658 uint32_t record_buf[1];
11659
11660 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11661 if (record_buf[0] == 15)
11662 record_buf[0] = ARM_PS_REGNUM;
11663
11664 arm_insn_r->reg_rec_count = 1;
11665 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11666 record_buf);
11667 return 0;
11668 }
11669 }
11670
11671 return arm_record_unsupported_insn (arm_insn_r);
11672 }
11673
11674 /* Handling opcode 000 insns. */
11675
11676 static int
11677 thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11678 {
11679 uint32_t record_buf[8];
11680 uint32_t reg_src1 = 0;
11681
11682 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11683
11684 record_buf[0] = ARM_PS_REGNUM;
11685 record_buf[1] = reg_src1;
11686 thumb_insn_r->reg_rec_count = 2;
11687
11688 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11689
11690 return 0;
11691 }
11692
11693
11694 /* Handling opcode 001 insns. */
11695
11696 static int
11697 thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11698 {
11699 uint32_t record_buf[8];
11700 uint32_t reg_src1 = 0;
11701
11702 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11703
11704 record_buf[0] = ARM_PS_REGNUM;
11705 record_buf[1] = reg_src1;
11706 thumb_insn_r->reg_rec_count = 2;
11707
11708 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11709
11710 return 0;
11711 }
11712
11713 /* Handling opcode 010 insns. */
11714
11715 static int
11716 thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11717 {
11718 struct regcache *reg_cache = thumb_insn_r->regcache;
11719 uint32_t record_buf[8], record_buf_mem[8];
11720
11721 uint32_t reg_src1 = 0, reg_src2 = 0;
11722 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11723
11724 ULONGEST u_regval[2] = {0};
11725
11726 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11727
11728 if (bit (thumb_insn_r->arm_insn, 12))
11729 {
11730 /* Handle load/store register offset. */
11731 opcode2 = bits (thumb_insn_r->arm_insn, 9, 10);
11732 if (opcode2 >= 12 && opcode2 <= 15)
11733 {
11734 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11735 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11736 record_buf[0] = reg_src1;
11737 thumb_insn_r->reg_rec_count = 1;
11738 }
11739 else if (opcode2 >= 8 && opcode2 <= 10)
11740 {
11741 /* STR(2), STRB(2), STRH(2) . */
11742 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11743 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11744 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11745 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11746 if (8 == opcode2)
11747 record_buf_mem[0] = 4; /* STR (2). */
11748 else if (10 == opcode2)
11749 record_buf_mem[0] = 1; /* STRB (2). */
11750 else if (9 == opcode2)
11751 record_buf_mem[0] = 2; /* STRH (2). */
11752 record_buf_mem[1] = u_regval[0] + u_regval[1];
11753 thumb_insn_r->mem_rec_count = 1;
11754 }
11755 }
11756 else if (bit (thumb_insn_r->arm_insn, 11))
11757 {
11758 /* Handle load from literal pool. */
11759 /* LDR(3). */
11760 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11761 record_buf[0] = reg_src1;
11762 thumb_insn_r->reg_rec_count = 1;
11763 }
11764 else if (opcode1)
11765 {
11766 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11767 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11768 if ((3 == opcode2) && (!opcode3))
11769 {
11770 /* Branch with exchange. */
11771 record_buf[0] = ARM_PS_REGNUM;
11772 thumb_insn_r->reg_rec_count = 1;
11773 }
11774 else
11775 {
11776 /* Format 8; special data processing insns. */
11777 record_buf[0] = ARM_PS_REGNUM;
11778 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11779 | bits (thumb_insn_r->arm_insn, 0, 2));
11780 thumb_insn_r->reg_rec_count = 2;
11781 }
11782 }
11783 else
11784 {
11785 /* Format 5; data processing insns. */
11786 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11787 if (bit (thumb_insn_r->arm_insn, 7))
11788 {
11789 reg_src1 = reg_src1 + 8;
11790 }
11791 record_buf[0] = ARM_PS_REGNUM;
11792 record_buf[1] = reg_src1;
11793 thumb_insn_r->reg_rec_count = 2;
11794 }
11795
11796 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11797 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11798 record_buf_mem);
11799
11800 return 0;
11801 }
11802
11803 /* Handling opcode 001 insns. */
11804
11805 static int
11806 thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11807 {
11808 struct regcache *reg_cache = thumb_insn_r->regcache;
11809 uint32_t record_buf[8], record_buf_mem[8];
11810
11811 uint32_t reg_src1 = 0;
11812 uint32_t opcode = 0, immed_5 = 0;
11813
11814 ULONGEST u_regval = 0;
11815
11816 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11817
11818 if (opcode)
11819 {
11820 /* LDR(1). */
11821 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11822 record_buf[0] = reg_src1;
11823 thumb_insn_r->reg_rec_count = 1;
11824 }
11825 else
11826 {
11827 /* STR(1). */
11828 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11829 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11830 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11831 record_buf_mem[0] = 4;
11832 record_buf_mem[1] = u_regval + (immed_5 * 4);
11833 thumb_insn_r->mem_rec_count = 1;
11834 }
11835
11836 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11837 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11838 record_buf_mem);
11839
11840 return 0;
11841 }
11842
11843 /* Handling opcode 100 insns. */
11844
11845 static int
11846 thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11847 {
11848 struct regcache *reg_cache = thumb_insn_r->regcache;
11849 uint32_t record_buf[8], record_buf_mem[8];
11850
11851 uint32_t reg_src1 = 0;
11852 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11853
11854 ULONGEST u_regval = 0;
11855
11856 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11857
11858 if (3 == opcode)
11859 {
11860 /* LDR(4). */
11861 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11862 record_buf[0] = reg_src1;
11863 thumb_insn_r->reg_rec_count = 1;
11864 }
11865 else if (1 == opcode)
11866 {
11867 /* LDRH(1). */
11868 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11869 record_buf[0] = reg_src1;
11870 thumb_insn_r->reg_rec_count = 1;
11871 }
11872 else if (2 == opcode)
11873 {
11874 /* STR(3). */
11875 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11876 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11877 record_buf_mem[0] = 4;
11878 record_buf_mem[1] = u_regval + (immed_8 * 4);
11879 thumb_insn_r->mem_rec_count = 1;
11880 }
11881 else if (0 == opcode)
11882 {
11883 /* STRH(1). */
11884 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11885 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11886 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11887 record_buf_mem[0] = 2;
11888 record_buf_mem[1] = u_regval + (immed_5 * 2);
11889 thumb_insn_r->mem_rec_count = 1;
11890 }
11891
11892 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11893 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11894 record_buf_mem);
11895
11896 return 0;
11897 }
11898
11899 /* Handling opcode 101 insns. */
11900
11901 static int
11902 thumb_record_misc (insn_decode_record *thumb_insn_r)
11903 {
11904 struct regcache *reg_cache = thumb_insn_r->regcache;
11905
11906 uint32_t opcode = 0, opcode1 = 0, opcode2 = 0;
11907 uint32_t register_bits = 0, register_count = 0;
11908 uint32_t index = 0, start_address = 0;
11909 uint32_t record_buf[24], record_buf_mem[48];
11910 uint32_t reg_src1;
11911
11912 ULONGEST u_regval = 0;
11913
11914 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11915 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
11916 opcode2 = bits (thumb_insn_r->arm_insn, 9, 12);
11917
11918 if (14 == opcode2)
11919 {
11920 /* POP. */
11921 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11922 while (register_bits)
11923 {
11924 if (register_bits & 0x00000001)
11925 record_buf[index++] = register_count;
11926 register_bits = register_bits >> 1;
11927 register_count++;
11928 }
11929 record_buf[index++] = ARM_PS_REGNUM;
11930 record_buf[index++] = ARM_SP_REGNUM;
11931 thumb_insn_r->reg_rec_count = index;
11932 }
11933 else if (10 == opcode2)
11934 {
11935 /* PUSH. */
11936 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11937 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11938 while (register_bits)
11939 {
11940 if (register_bits & 0x00000001)
11941 register_count++;
11942 register_bits = register_bits >> 1;
11943 }
11944 start_address = u_regval - \
11945 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
11946 thumb_insn_r->mem_rec_count = register_count;
11947 while (register_count)
11948 {
11949 record_buf_mem[(register_count * 2) - 1] = start_address;
11950 record_buf_mem[(register_count * 2) - 2] = 4;
11951 start_address = start_address + 4;
11952 register_count--;
11953 }
11954 record_buf[0] = ARM_SP_REGNUM;
11955 thumb_insn_r->reg_rec_count = 1;
11956 }
11957 else if (0x1E == opcode1)
11958 {
11959 /* BKPT insn. */
11960 /* Handle enhanced software breakpoint insn, BKPT. */
11961 /* CPSR is changed to be executed in ARM state, disabling normal
11962 interrupts, entering abort mode. */
11963 /* According to high vector configuration PC is set. */
11964 /* User hits breakpoint and type reverse, in that case, we need to go back with
11965 previous CPSR and Program Counter. */
11966 record_buf[0] = ARM_PS_REGNUM;
11967 record_buf[1] = ARM_LR_REGNUM;
11968 thumb_insn_r->reg_rec_count = 2;
11969 /* We need to save SPSR value, which is not yet done. */
11970 printf_unfiltered (_("Process record does not support instruction "
11971 "0x%0x at address %s.\n"),
11972 thumb_insn_r->arm_insn,
11973 paddress (thumb_insn_r->gdbarch,
11974 thumb_insn_r->this_addr));
11975 return -1;
11976 }
11977 else if ((0 == opcode) || (1 == opcode))
11978 {
11979 /* ADD(5), ADD(6). */
11980 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11981 record_buf[0] = reg_src1;
11982 thumb_insn_r->reg_rec_count = 1;
11983 }
11984 else if (2 == opcode)
11985 {
11986 /* ADD(7), SUB(4). */
11987 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11988 record_buf[0] = ARM_SP_REGNUM;
11989 thumb_insn_r->reg_rec_count = 1;
11990 }
11991
11992 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11993 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11994 record_buf_mem);
11995
11996 return 0;
11997 }
11998
11999 /* Handling opcode 110 insns. */
12000
12001 static int
12002 thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12003 {
12004 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12005 struct regcache *reg_cache = thumb_insn_r->regcache;
12006
12007 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12008 uint32_t reg_src1 = 0;
12009 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
12010 uint32_t index = 0, start_address = 0;
12011 uint32_t record_buf[24], record_buf_mem[48];
12012
12013 ULONGEST u_regval = 0;
12014
12015 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12016 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12017
12018 if (1 == opcode2)
12019 {
12020
12021 /* LDMIA. */
12022 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12023 /* Get Rn. */
12024 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12025 while (register_bits)
12026 {
12027 if (register_bits & 0x00000001)
12028 record_buf[index++] = register_count;
12029 register_bits = register_bits >> 1;
12030 register_count++;
12031 }
12032 record_buf[index++] = reg_src1;
12033 thumb_insn_r->reg_rec_count = index;
12034 }
12035 else if (0 == opcode2)
12036 {
12037 /* It handles both STMIA. */
12038 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12039 /* Get Rn. */
12040 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12041 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12042 while (register_bits)
12043 {
12044 if (register_bits & 0x00000001)
12045 register_count++;
12046 register_bits = register_bits >> 1;
12047 }
12048 start_address = u_regval;
12049 thumb_insn_r->mem_rec_count = register_count;
12050 while (register_count)
12051 {
12052 record_buf_mem[(register_count * 2) - 1] = start_address;
12053 record_buf_mem[(register_count * 2) - 2] = 4;
12054 start_address = start_address + 4;
12055 register_count--;
12056 }
12057 }
12058 else if (0x1F == opcode1)
12059 {
12060 /* Handle arm syscall insn. */
12061 if (tdep->arm_syscall_record != NULL)
12062 {
12063 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12064 ret = tdep->arm_syscall_record (reg_cache, u_regval);
12065 }
12066 else
12067 {
12068 printf_unfiltered (_("no syscall record support\n"));
12069 return -1;
12070 }
12071 }
12072
12073 /* B (1), conditional branch is automatically taken care in process_record,
12074 as PC is saved there. */
12075
12076 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12077 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12078 record_buf_mem);
12079
12080 return ret;
12081 }
12082
12083 /* Handling opcode 111 insns. */
12084
12085 static int
12086 thumb_record_branch (insn_decode_record *thumb_insn_r)
12087 {
12088 uint32_t record_buf[8];
12089 uint32_t bits_h = 0;
12090
12091 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12092
12093 if (2 == bits_h || 3 == bits_h)
12094 {
12095 /* BL */
12096 record_buf[0] = ARM_LR_REGNUM;
12097 thumb_insn_r->reg_rec_count = 1;
12098 }
12099 else if (1 == bits_h)
12100 {
12101 /* BLX(1). */
12102 record_buf[0] = ARM_PS_REGNUM;
12103 record_buf[1] = ARM_LR_REGNUM;
12104 thumb_insn_r->reg_rec_count = 2;
12105 }
12106
12107 /* B(2) is automatically taken care in process_record, as PC is
12108 saved there. */
12109
12110 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12111
12112 return 0;
12113 }
12114
12115 /* Handler for thumb2 load/store multiple instructions. */
12116
12117 static int
12118 thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12119 {
12120 struct regcache *reg_cache = thumb2_insn_r->regcache;
12121
12122 uint32_t reg_rn, op;
12123 uint32_t register_bits = 0, register_count = 0;
12124 uint32_t index = 0, start_address = 0;
12125 uint32_t record_buf[24], record_buf_mem[48];
12126
12127 ULONGEST u_regval = 0;
12128
12129 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12130 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12131
12132 if (0 == op || 3 == op)
12133 {
12134 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12135 {
12136 /* Handle RFE instruction. */
12137 record_buf[0] = ARM_PS_REGNUM;
12138 thumb2_insn_r->reg_rec_count = 1;
12139 }
12140 else
12141 {
12142 /* Handle SRS instruction after reading banked SP. */
12143 return arm_record_unsupported_insn (thumb2_insn_r);
12144 }
12145 }
12146 else if (1 == op || 2 == op)
12147 {
12148 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12149 {
12150 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12151 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12152 while (register_bits)
12153 {
12154 if (register_bits & 0x00000001)
12155 record_buf[index++] = register_count;
12156
12157 register_count++;
12158 register_bits = register_bits >> 1;
12159 }
12160 record_buf[index++] = reg_rn;
12161 record_buf[index++] = ARM_PS_REGNUM;
12162 thumb2_insn_r->reg_rec_count = index;
12163 }
12164 else
12165 {
12166 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12167 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12168 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12169 while (register_bits)
12170 {
12171 if (register_bits & 0x00000001)
12172 register_count++;
12173
12174 register_bits = register_bits >> 1;
12175 }
12176
12177 if (1 == op)
12178 {
12179 /* Start address calculation for LDMDB/LDMEA. */
12180 start_address = u_regval;
12181 }
12182 else if (2 == op)
12183 {
12184 /* Start address calculation for LDMDB/LDMEA. */
12185 start_address = u_regval - register_count * 4;
12186 }
12187
12188 thumb2_insn_r->mem_rec_count = register_count;
12189 while (register_count)
12190 {
12191 record_buf_mem[register_count * 2 - 1] = start_address;
12192 record_buf_mem[register_count * 2 - 2] = 4;
12193 start_address = start_address + 4;
12194 register_count--;
12195 }
12196 record_buf[0] = reg_rn;
12197 record_buf[1] = ARM_PS_REGNUM;
12198 thumb2_insn_r->reg_rec_count = 2;
12199 }
12200 }
12201
12202 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12203 record_buf_mem);
12204 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12205 record_buf);
12206 return ARM_RECORD_SUCCESS;
12207 }
12208
12209 /* Handler for thumb2 load/store (dual/exclusive) and table branch
12210 instructions. */
12211
12212 static int
12213 thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12214 {
12215 struct regcache *reg_cache = thumb2_insn_r->regcache;
12216
12217 uint32_t reg_rd, reg_rn, offset_imm;
12218 uint32_t reg_dest1, reg_dest2;
12219 uint32_t address, offset_addr;
12220 uint32_t record_buf[8], record_buf_mem[8];
12221 uint32_t op1, op2, op3;
12222
12223 ULONGEST u_regval[2];
12224
12225 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12226 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12227 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12228
12229 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12230 {
12231 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12232 {
12233 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12234 record_buf[0] = reg_dest1;
12235 record_buf[1] = ARM_PS_REGNUM;
12236 thumb2_insn_r->reg_rec_count = 2;
12237 }
12238
12239 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12240 {
12241 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12242 record_buf[2] = reg_dest2;
12243 thumb2_insn_r->reg_rec_count = 3;
12244 }
12245 }
12246 else
12247 {
12248 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12249 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12250
12251 if (0 == op1 && 0 == op2)
12252 {
12253 /* Handle STREX. */
12254 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12255 address = u_regval[0] + (offset_imm * 4);
12256 record_buf_mem[0] = 4;
12257 record_buf_mem[1] = address;
12258 thumb2_insn_r->mem_rec_count = 1;
12259 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12260 record_buf[0] = reg_rd;
12261 thumb2_insn_r->reg_rec_count = 1;
12262 }
12263 else if (1 == op1 && 0 == op2)
12264 {
12265 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12266 record_buf[0] = reg_rd;
12267 thumb2_insn_r->reg_rec_count = 1;
12268 address = u_regval[0];
12269 record_buf_mem[1] = address;
12270
12271 if (4 == op3)
12272 {
12273 /* Handle STREXB. */
12274 record_buf_mem[0] = 1;
12275 thumb2_insn_r->mem_rec_count = 1;
12276 }
12277 else if (5 == op3)
12278 {
12279 /* Handle STREXH. */
12280 record_buf_mem[0] = 2 ;
12281 thumb2_insn_r->mem_rec_count = 1;
12282 }
12283 else if (7 == op3)
12284 {
12285 /* Handle STREXD. */
12286 address = u_regval[0];
12287 record_buf_mem[0] = 4;
12288 record_buf_mem[2] = 4;
12289 record_buf_mem[3] = address + 4;
12290 thumb2_insn_r->mem_rec_count = 2;
12291 }
12292 }
12293 else
12294 {
12295 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12296
12297 if (bit (thumb2_insn_r->arm_insn, 24))
12298 {
12299 if (bit (thumb2_insn_r->arm_insn, 23))
12300 offset_addr = u_regval[0] + (offset_imm * 4);
12301 else
12302 offset_addr = u_regval[0] - (offset_imm * 4);
12303
12304 address = offset_addr;
12305 }
12306 else
12307 address = u_regval[0];
12308
12309 record_buf_mem[0] = 4;
12310 record_buf_mem[1] = address;
12311 record_buf_mem[2] = 4;
12312 record_buf_mem[3] = address + 4;
12313 thumb2_insn_r->mem_rec_count = 2;
12314 record_buf[0] = reg_rn;
12315 thumb2_insn_r->reg_rec_count = 1;
12316 }
12317 }
12318
12319 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12320 record_buf);
12321 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12322 record_buf_mem);
12323 return ARM_RECORD_SUCCESS;
12324 }
12325
12326 /* Handler for thumb2 data processing (shift register and modified immediate)
12327 instructions. */
12328
12329 static int
12330 thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12331 {
12332 uint32_t reg_rd, op;
12333 uint32_t record_buf[8];
12334
12335 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12336 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12337
12338 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12339 {
12340 record_buf[0] = ARM_PS_REGNUM;
12341 thumb2_insn_r->reg_rec_count = 1;
12342 }
12343 else
12344 {
12345 record_buf[0] = reg_rd;
12346 record_buf[1] = ARM_PS_REGNUM;
12347 thumb2_insn_r->reg_rec_count = 2;
12348 }
12349
12350 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12351 record_buf);
12352 return ARM_RECORD_SUCCESS;
12353 }
12354
12355 /* Generic handler for thumb2 instructions which effect destination and PS
12356 registers. */
12357
12358 static int
12359 thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12360 {
12361 uint32_t reg_rd;
12362 uint32_t record_buf[8];
12363
12364 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12365
12366 record_buf[0] = reg_rd;
12367 record_buf[1] = ARM_PS_REGNUM;
12368 thumb2_insn_r->reg_rec_count = 2;
12369
12370 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12371 record_buf);
12372 return ARM_RECORD_SUCCESS;
12373 }
12374
12375 /* Handler for thumb2 branch and miscellaneous control instructions. */
12376
12377 static int
12378 thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12379 {
12380 uint32_t op, op1, op2;
12381 uint32_t record_buf[8];
12382
12383 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12384 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12385 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12386
12387 /* Handle MSR insn. */
12388 if (!(op1 & 0x2) && 0x38 == op)
12389 {
12390 if (!(op2 & 0x3))
12391 {
12392 /* CPSR is going to be changed. */
12393 record_buf[0] = ARM_PS_REGNUM;
12394 thumb2_insn_r->reg_rec_count = 1;
12395 }
12396 else
12397 {
12398 arm_record_unsupported_insn(thumb2_insn_r);
12399 return -1;
12400 }
12401 }
12402 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12403 {
12404 /* BLX. */
12405 record_buf[0] = ARM_PS_REGNUM;
12406 record_buf[1] = ARM_LR_REGNUM;
12407 thumb2_insn_r->reg_rec_count = 2;
12408 }
12409
12410 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12411 record_buf);
12412 return ARM_RECORD_SUCCESS;
12413 }
12414
12415 /* Handler for thumb2 store single data item instructions. */
12416
12417 static int
12418 thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12419 {
12420 struct regcache *reg_cache = thumb2_insn_r->regcache;
12421
12422 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12423 uint32_t address, offset_addr;
12424 uint32_t record_buf[8], record_buf_mem[8];
12425 uint32_t op1, op2;
12426
12427 ULONGEST u_regval[2];
12428
12429 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12430 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12431 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12432 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12433
12434 if (bit (thumb2_insn_r->arm_insn, 23))
12435 {
12436 /* T2 encoding. */
12437 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12438 offset_addr = u_regval[0] + offset_imm;
12439 address = offset_addr;
12440 }
12441 else
12442 {
12443 /* T3 encoding. */
12444 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12445 {
12446 /* Handle STRB (register). */
12447 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12448 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12449 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12450 offset_addr = u_regval[1] << shift_imm;
12451 address = u_regval[0] + offset_addr;
12452 }
12453 else
12454 {
12455 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12456 if (bit (thumb2_insn_r->arm_insn, 10))
12457 {
12458 if (bit (thumb2_insn_r->arm_insn, 9))
12459 offset_addr = u_regval[0] + offset_imm;
12460 else
12461 offset_addr = u_regval[0] - offset_imm;
12462
12463 address = offset_addr;
12464 }
12465 else
12466 address = u_regval[0];
12467 }
12468 }
12469
12470 switch (op1)
12471 {
12472 /* Store byte instructions. */
12473 case 4:
12474 case 0:
12475 record_buf_mem[0] = 1;
12476 break;
12477 /* Store half word instructions. */
12478 case 1:
12479 case 5:
12480 record_buf_mem[0] = 2;
12481 break;
12482 /* Store word instructions. */
12483 case 2:
12484 case 6:
12485 record_buf_mem[0] = 4;
12486 break;
12487
12488 default:
12489 gdb_assert_not_reached ("no decoding pattern found");
12490 break;
12491 }
12492
12493 record_buf_mem[1] = address;
12494 thumb2_insn_r->mem_rec_count = 1;
12495 record_buf[0] = reg_rn;
12496 thumb2_insn_r->reg_rec_count = 1;
12497
12498 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12499 record_buf);
12500 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12501 record_buf_mem);
12502 return ARM_RECORD_SUCCESS;
12503 }
12504
12505 /* Handler for thumb2 load memory hints instructions. */
12506
12507 static int
12508 thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12509 {
12510 uint32_t record_buf[8];
12511 uint32_t reg_rt, reg_rn;
12512
12513 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12514 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12515
12516 if (ARM_PC_REGNUM != reg_rt)
12517 {
12518 record_buf[0] = reg_rt;
12519 record_buf[1] = reg_rn;
12520 record_buf[2] = ARM_PS_REGNUM;
12521 thumb2_insn_r->reg_rec_count = 3;
12522
12523 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12524 record_buf);
12525 return ARM_RECORD_SUCCESS;
12526 }
12527
12528 return ARM_RECORD_FAILURE;
12529 }
12530
12531 /* Handler for thumb2 load word instructions. */
12532
12533 static int
12534 thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12535 {
12536 uint32_t record_buf[8];
12537
12538 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12539 record_buf[1] = ARM_PS_REGNUM;
12540 thumb2_insn_r->reg_rec_count = 2;
12541
12542 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12543 record_buf);
12544 return ARM_RECORD_SUCCESS;
12545 }
12546
12547 /* Handler for thumb2 long multiply, long multiply accumulate, and
12548 divide instructions. */
12549
12550 static int
12551 thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12552 {
12553 uint32_t opcode1 = 0, opcode2 = 0;
12554 uint32_t record_buf[8];
12555
12556 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12557 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12558
12559 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12560 {
12561 /* Handle SMULL, UMULL, SMULAL. */
12562 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12563 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12564 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12565 record_buf[2] = ARM_PS_REGNUM;
12566 thumb2_insn_r->reg_rec_count = 3;
12567 }
12568 else if (1 == opcode1 || 3 == opcode2)
12569 {
12570 /* Handle SDIV and UDIV. */
12571 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12572 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12573 record_buf[2] = ARM_PS_REGNUM;
12574 thumb2_insn_r->reg_rec_count = 3;
12575 }
12576 else
12577 return ARM_RECORD_FAILURE;
12578
12579 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12580 record_buf);
12581 return ARM_RECORD_SUCCESS;
12582 }
12583
12584 /* Record handler for thumb32 coprocessor instructions. */
12585
12586 static int
12587 thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12588 {
12589 if (bit (thumb2_insn_r->arm_insn, 25))
12590 return arm_record_coproc_data_proc (thumb2_insn_r);
12591 else
12592 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12593 }
12594
12595 /* Record handler for advance SIMD structure load/store instructions. */
12596
12597 static int
12598 thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12599 {
12600 struct regcache *reg_cache = thumb2_insn_r->regcache;
12601 uint32_t l_bit, a_bit, b_bits;
12602 uint32_t record_buf[128], record_buf_mem[128];
12603 uint32_t reg_rn, reg_vd, address, f_elem;
12604 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12605 uint8_t f_ebytes;
12606
12607 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12608 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12609 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12610 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12611 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12612 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12613 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
12614 f_elem = 8 / f_ebytes;
12615
12616 if (!l_bit)
12617 {
12618 ULONGEST u_regval = 0;
12619 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12620 address = u_regval;
12621
12622 if (!a_bit)
12623 {
12624 /* Handle VST1. */
12625 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12626 {
12627 if (b_bits == 0x07)
12628 bf_regs = 1;
12629 else if (b_bits == 0x0a)
12630 bf_regs = 2;
12631 else if (b_bits == 0x06)
12632 bf_regs = 3;
12633 else if (b_bits == 0x02)
12634 bf_regs = 4;
12635 else
12636 bf_regs = 0;
12637
12638 for (index_r = 0; index_r < bf_regs; index_r++)
12639 {
12640 for (index_e = 0; index_e < f_elem; index_e++)
12641 {
12642 record_buf_mem[index_m++] = f_ebytes;
12643 record_buf_mem[index_m++] = address;
12644 address = address + f_ebytes;
12645 thumb2_insn_r->mem_rec_count += 1;
12646 }
12647 }
12648 }
12649 /* Handle VST2. */
12650 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12651 {
12652 if (b_bits == 0x09 || b_bits == 0x08)
12653 bf_regs = 1;
12654 else if (b_bits == 0x03)
12655 bf_regs = 2;
12656 else
12657 bf_regs = 0;
12658
12659 for (index_r = 0; index_r < bf_regs; index_r++)
12660 for (index_e = 0; index_e < f_elem; index_e++)
12661 {
12662 for (loop_t = 0; loop_t < 2; loop_t++)
12663 {
12664 record_buf_mem[index_m++] = f_ebytes;
12665 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12666 thumb2_insn_r->mem_rec_count += 1;
12667 }
12668 address = address + (2 * f_ebytes);
12669 }
12670 }
12671 /* Handle VST3. */
12672 else if ((b_bits & 0x0e) == 0x04)
12673 {
12674 for (index_e = 0; index_e < f_elem; index_e++)
12675 {
12676 for (loop_t = 0; loop_t < 3; loop_t++)
12677 {
12678 record_buf_mem[index_m++] = f_ebytes;
12679 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12680 thumb2_insn_r->mem_rec_count += 1;
12681 }
12682 address = address + (3 * f_ebytes);
12683 }
12684 }
12685 /* Handle VST4. */
12686 else if (!(b_bits & 0x0e))
12687 {
12688 for (index_e = 0; index_e < f_elem; index_e++)
12689 {
12690 for (loop_t = 0; loop_t < 4; loop_t++)
12691 {
12692 record_buf_mem[index_m++] = f_ebytes;
12693 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12694 thumb2_insn_r->mem_rec_count += 1;
12695 }
12696 address = address + (4 * f_ebytes);
12697 }
12698 }
12699 }
12700 else
12701 {
12702 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12703
12704 if (bft_size == 0x00)
12705 f_ebytes = 1;
12706 else if (bft_size == 0x01)
12707 f_ebytes = 2;
12708 else if (bft_size == 0x02)
12709 f_ebytes = 4;
12710 else
12711 f_ebytes = 0;
12712
12713 /* Handle VST1. */
12714 if (!(b_bits & 0x0b) || b_bits == 0x08)
12715 thumb2_insn_r->mem_rec_count = 1;
12716 /* Handle VST2. */
12717 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12718 thumb2_insn_r->mem_rec_count = 2;
12719 /* Handle VST3. */
12720 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12721 thumb2_insn_r->mem_rec_count = 3;
12722 /* Handle VST4. */
12723 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12724 thumb2_insn_r->mem_rec_count = 4;
12725
12726 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12727 {
12728 record_buf_mem[index_m] = f_ebytes;
12729 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12730 }
12731 }
12732 }
12733 else
12734 {
12735 if (!a_bit)
12736 {
12737 /* Handle VLD1. */
12738 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12739 thumb2_insn_r->reg_rec_count = 1;
12740 /* Handle VLD2. */
12741 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12742 thumb2_insn_r->reg_rec_count = 2;
12743 /* Handle VLD3. */
12744 else if ((b_bits & 0x0e) == 0x04)
12745 thumb2_insn_r->reg_rec_count = 3;
12746 /* Handle VLD4. */
12747 else if (!(b_bits & 0x0e))
12748 thumb2_insn_r->reg_rec_count = 4;
12749 }
12750 else
12751 {
12752 /* Handle VLD1. */
12753 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12754 thumb2_insn_r->reg_rec_count = 1;
12755 /* Handle VLD2. */
12756 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12757 thumb2_insn_r->reg_rec_count = 2;
12758 /* Handle VLD3. */
12759 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12760 thumb2_insn_r->reg_rec_count = 3;
12761 /* Handle VLD4. */
12762 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12763 thumb2_insn_r->reg_rec_count = 4;
12764
12765 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12766 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12767 }
12768 }
12769
12770 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12771 {
12772 record_buf[index_r] = reg_rn;
12773 thumb2_insn_r->reg_rec_count += 1;
12774 }
12775
12776 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12777 record_buf);
12778 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12779 record_buf_mem);
12780 return 0;
12781 }
12782
12783 /* Decodes thumb2 instruction type and invokes its record handler. */
12784
12785 static unsigned int
12786 thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12787 {
12788 uint32_t op, op1, op2;
12789
12790 op = bit (thumb2_insn_r->arm_insn, 15);
12791 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12792 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12793
12794 if (op1 == 0x01)
12795 {
12796 if (!(op2 & 0x64 ))
12797 {
12798 /* Load/store multiple instruction. */
12799 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12800 }
12801 else if (!((op2 & 0x64) ^ 0x04))
12802 {
12803 /* Load/store (dual/exclusive) and table branch instruction. */
12804 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12805 }
12806 else if (!((op2 & 0x20) ^ 0x20))
12807 {
12808 /* Data-processing (shifted register). */
12809 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12810 }
12811 else if (op2 & 0x40)
12812 {
12813 /* Co-processor instructions. */
12814 return thumb2_record_coproc_insn (thumb2_insn_r);
12815 }
12816 }
12817 else if (op1 == 0x02)
12818 {
12819 if (op)
12820 {
12821 /* Branches and miscellaneous control instructions. */
12822 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12823 }
12824 else if (op2 & 0x20)
12825 {
12826 /* Data-processing (plain binary immediate) instruction. */
12827 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12828 }
12829 else
12830 {
12831 /* Data-processing (modified immediate). */
12832 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12833 }
12834 }
12835 else if (op1 == 0x03)
12836 {
12837 if (!(op2 & 0x71 ))
12838 {
12839 /* Store single data item. */
12840 return thumb2_record_str_single_data (thumb2_insn_r);
12841 }
12842 else if (!((op2 & 0x71) ^ 0x10))
12843 {
12844 /* Advanced SIMD or structure load/store instructions. */
12845 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
12846 }
12847 else if (!((op2 & 0x67) ^ 0x01))
12848 {
12849 /* Load byte, memory hints instruction. */
12850 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12851 }
12852 else if (!((op2 & 0x67) ^ 0x03))
12853 {
12854 /* Load halfword, memory hints instruction. */
12855 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12856 }
12857 else if (!((op2 & 0x67) ^ 0x05))
12858 {
12859 /* Load word instruction. */
12860 return thumb2_record_ld_word (thumb2_insn_r);
12861 }
12862 else if (!((op2 & 0x70) ^ 0x20))
12863 {
12864 /* Data-processing (register) instruction. */
12865 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12866 }
12867 else if (!((op2 & 0x78) ^ 0x30))
12868 {
12869 /* Multiply, multiply accumulate, abs diff instruction. */
12870 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12871 }
12872 else if (!((op2 & 0x78) ^ 0x38))
12873 {
12874 /* Long multiply, long multiply accumulate, and divide. */
12875 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12876 }
12877 else if (op2 & 0x40)
12878 {
12879 /* Co-processor instructions. */
12880 return thumb2_record_coproc_insn (thumb2_insn_r);
12881 }
12882 }
12883
12884 return -1;
12885 }
12886
12887 /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12888 and positive val on fauilure. */
12889
12890 static int
12891 extract_arm_insn (insn_decode_record *insn_record, uint32_t insn_size)
12892 {
12893 gdb_byte buf[insn_size];
12894
12895 memset (&buf[0], 0, insn_size);
12896
12897 if (target_read_memory (insn_record->this_addr, &buf[0], insn_size))
12898 return 1;
12899 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12900 insn_size,
12901 gdbarch_byte_order_for_code (insn_record->gdbarch));
12902 return 0;
12903 }
12904
12905 typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
12906
12907 /* Decode arm/thumb insn depending on condition cods and opcodes; and
12908 dispatch it. */
12909
12910 static int
12911 decode_insn (insn_decode_record *arm_record, record_type_t record_type,
12912 uint32_t insn_size)
12913 {
12914
12915 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
12916 instruction. */
12917 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
12918 {
12919 arm_record_data_proc_misc_ld_str, /* 000. */
12920 arm_record_data_proc_imm, /* 001. */
12921 arm_record_ld_st_imm_offset, /* 010. */
12922 arm_record_ld_st_reg_offset, /* 011. */
12923 arm_record_ld_st_multiple, /* 100. */
12924 arm_record_b_bl, /* 101. */
12925 arm_record_asimd_vfp_coproc, /* 110. */
12926 arm_record_coproc_data_proc /* 111. */
12927 };
12928
12929 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
12930 instruction. */
12931 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
12932 { \
12933 thumb_record_shift_add_sub, /* 000. */
12934 thumb_record_add_sub_cmp_mov, /* 001. */
12935 thumb_record_ld_st_reg_offset, /* 010. */
12936 thumb_record_ld_st_imm_offset, /* 011. */
12937 thumb_record_ld_st_stack, /* 100. */
12938 thumb_record_misc, /* 101. */
12939 thumb_record_ldm_stm_swi, /* 110. */
12940 thumb_record_branch /* 111. */
12941 };
12942
12943 uint32_t ret = 0; /* return value: negative:failure 0:success. */
12944 uint32_t insn_id = 0;
12945
12946 if (extract_arm_insn (arm_record, insn_size))
12947 {
12948 if (record_debug)
12949 {
12950 printf_unfiltered (_("Process record: error reading memory at "
12951 "addr %s len = %d.\n"),
12952 paddress (arm_record->gdbarch,
12953 arm_record->this_addr), insn_size);
12954 }
12955 return -1;
12956 }
12957 else if (ARM_RECORD == record_type)
12958 {
12959 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
12960 insn_id = bits (arm_record->arm_insn, 25, 27);
12961
12962 if (arm_record->cond == 0xf)
12963 ret = arm_record_extension_space (arm_record);
12964 else
12965 {
12966 /* If this insn has fallen into extension space
12967 then we need not decode it anymore. */
12968 ret = arm_handle_insn[insn_id] (arm_record);
12969 }
12970 if (ret != ARM_RECORD_SUCCESS)
12971 {
12972 arm_record_unsupported_insn (arm_record);
12973 ret = -1;
12974 }
12975 }
12976 else if (THUMB_RECORD == record_type)
12977 {
12978 /* As thumb does not have condition codes, we set negative. */
12979 arm_record->cond = -1;
12980 insn_id = bits (arm_record->arm_insn, 13, 15);
12981 ret = thumb_handle_insn[insn_id] (arm_record);
12982 if (ret != ARM_RECORD_SUCCESS)
12983 {
12984 arm_record_unsupported_insn (arm_record);
12985 ret = -1;
12986 }
12987 }
12988 else if (THUMB2_RECORD == record_type)
12989 {
12990 /* As thumb does not have condition codes, we set negative. */
12991 arm_record->cond = -1;
12992
12993 /* Swap first half of 32bit thumb instruction with second half. */
12994 arm_record->arm_insn
12995 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
12996
12997 ret = thumb2_record_decode_insn_handler (arm_record);
12998
12999 if (ret != ARM_RECORD_SUCCESS)
13000 {
13001 arm_record_unsupported_insn (arm_record);
13002 ret = -1;
13003 }
13004 }
13005 else
13006 {
13007 /* Throw assertion. */
13008 gdb_assert_not_reached ("not a valid instruction, could not decode");
13009 }
13010
13011 return ret;
13012 }
13013
13014
13015 /* Cleans up local record registers and memory allocations. */
13016
13017 static void
13018 deallocate_reg_mem (insn_decode_record *record)
13019 {
13020 xfree (record->arm_regs);
13021 xfree (record->arm_mems);
13022 }
13023
13024
13025 /* Parse the current instruction and record the values of the registers and
13026 memory that will be changed in current instruction to record_arch_list".
13027 Return -1 if something is wrong. */
13028
13029 int
13030 arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13031 CORE_ADDR insn_addr)
13032 {
13033
13034 uint32_t no_of_rec = 0;
13035 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13036 ULONGEST t_bit = 0, insn_id = 0;
13037
13038 ULONGEST u_regval = 0;
13039
13040 insn_decode_record arm_record;
13041
13042 memset (&arm_record, 0, sizeof (insn_decode_record));
13043 arm_record.regcache = regcache;
13044 arm_record.this_addr = insn_addr;
13045 arm_record.gdbarch = gdbarch;
13046
13047
13048 if (record_debug > 1)
13049 {
13050 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
13051 "addr = %s\n",
13052 paddress (gdbarch, arm_record.this_addr));
13053 }
13054
13055 if (extract_arm_insn (&arm_record, 2))
13056 {
13057 if (record_debug)
13058 {
13059 printf_unfiltered (_("Process record: error reading memory at "
13060 "addr %s len = %d.\n"),
13061 paddress (arm_record.gdbarch,
13062 arm_record.this_addr), 2);
13063 }
13064 return -1;
13065 }
13066
13067 /* Check the insn, whether it is thumb or arm one. */
13068
13069 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13070 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13071
13072
13073 if (!(u_regval & t_bit))
13074 {
13075 /* We are decoding arm insn. */
13076 ret = decode_insn (&arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13077 }
13078 else
13079 {
13080 insn_id = bits (arm_record.arm_insn, 11, 15);
13081 /* is it thumb2 insn? */
13082 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
13083 {
13084 ret = decode_insn (&arm_record, THUMB2_RECORD,
13085 THUMB2_INSN_SIZE_BYTES);
13086 }
13087 else
13088 {
13089 /* We are decoding thumb insn. */
13090 ret = decode_insn (&arm_record, THUMB_RECORD, THUMB_INSN_SIZE_BYTES);
13091 }
13092 }
13093
13094 if (0 == ret)
13095 {
13096 /* Record registers. */
13097 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
13098 if (arm_record.arm_regs)
13099 {
13100 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13101 {
13102 if (record_full_arch_list_add_reg
13103 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
13104 ret = -1;
13105 }
13106 }
13107 /* Record memories. */
13108 if (arm_record.arm_mems)
13109 {
13110 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13111 {
13112 if (record_full_arch_list_add_mem
13113 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
13114 arm_record.arm_mems[no_of_rec].len))
13115 ret = -1;
13116 }
13117 }
13118
13119 if (record_full_arch_list_add_end ())
13120 ret = -1;
13121 }
13122
13123
13124 deallocate_reg_mem (&arm_record);
13125
13126 return ret;
13127 }
This page took 0.369281 seconds and 3 git commands to generate.