59920e2d711cad266d49ac30d61932a69b75764a
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "symfile.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register flavors. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "solib-svr4.h"
37 #include "osabi.h"
38
39 #include "arm-tdep.h"
40 #include "gdb/sim-arm.h"
41
42 #include "elf-bfd.h"
43 #include "coff/internal.h"
44 #include "elf/arm.h"
45
46 #include "gdb_assert.h"
47
48 static int arm_debug;
49
50 /* Each OS has a different mechanism for accessing the various
51 registers stored in the sigcontext structure.
52
53 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
54 function pointer) which may be used to determine the addresses
55 of the various saved registers in the sigcontext structure.
56
57 For the ARM target, there are three parameters to this function.
58 The first is the pc value of the frame under consideration, the
59 second the stack pointer of this frame, and the last is the
60 register number to fetch.
61
62 If the tm.h file does not define this macro, then it's assumed that
63 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
64 be 0.
65
66 When it comes time to multi-arching this code, see the identically
67 named machinery in ia64-tdep.c for an example of how it could be
68 done. It should not be necessary to modify the code below where
69 this macro is used. */
70
71 #ifdef SIGCONTEXT_REGISTER_ADDRESS
72 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
73 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
74 #endif
75 #else
76 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
77 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
78 #endif
79
80 /* Macros for setting and testing a bit in a minimal symbol that marks
81 it as Thumb function. The MSB of the minimal symbol's "info" field
82 is used for this purpose. This field is already being used to store
83 the symbol size, so the assumption is that the symbol size cannot
84 exceed 2^31.
85
86 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
87 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
88 MSYMBOL_SIZE Returns the size of the minimal symbol,
89 i.e. the "info" field with the "special" bit
90 masked out. */
91
92 #define MSYMBOL_SET_SPECIAL(msym) \
93 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
94 | 0x80000000)
95
96 #define MSYMBOL_IS_SPECIAL(msym) \
97 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
98
99 #define MSYMBOL_SIZE(msym) \
100 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
101
102 /* Number of different reg name sets (options). */
103 static int num_flavor_options;
104
105 /* We have more registers than the disassembler as gdb can print the value
106 of special registers as well.
107 The general register names are overwritten by whatever is being used by
108 the disassembler at the moment. We also adjust the case of cpsr and fps. */
109
110 /* Initial value: Register names used in ARM's ISA documentation. */
111 static char * arm_register_name_strings[] =
112 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
113 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
114 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
115 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
116 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
117 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
118 "fps", "cpsr" }; /* 24 25 */
119 static char **arm_register_names = arm_register_name_strings;
120
121 /* Valid register name flavors. */
122 static const char **valid_flavors;
123
124 /* Disassembly flavor to use. Default to "std" register names. */
125 static const char *disassembly_flavor;
126 /* Index to that option in the opcodes table. */
127 static int current_option;
128
129 /* This is used to keep the bfd arch_info in sync with the disassembly
130 flavor. */
131 static void set_disassembly_flavor_sfunc(char *, int,
132 struct cmd_list_element *);
133 static void set_disassembly_flavor (void);
134
135 static void convert_from_extended (const struct floatformat *, const void *,
136 void *);
137 static void convert_to_extended (const struct floatformat *, void *,
138 const void *);
139
140 /* Define other aspects of the stack frame. We keep the offsets of
141 all saved registers, 'cause we need 'em a lot! We also keep the
142 current size of the stack frame, and the offset of the frame
143 pointer from the stack pointer (for frameless functions, and when
144 we're still in the prologue of a function with a frame). */
145
146 struct frame_extra_info
147 {
148 int framesize;
149 int frameoffset;
150 int framereg;
151 };
152
153 /* Addresses for calling Thumb functions have the bit 0 set.
154 Here are some macros to test, set, or clear bit 0 of addresses. */
155 #define IS_THUMB_ADDR(addr) ((addr) & 1)
156 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
157 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
158
159 static int
160 arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
161 {
162 return (FRAME_SAVED_PC (thisframe) >= LOWEST_PC);
163 }
164
165 /* Set to true if the 32-bit mode is in use. */
166
167 int arm_apcs_32 = 1;
168
169 /* Flag set by arm_fix_call_dummy that tells whether the target
170 function is a Thumb function. This flag is checked by
171 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
172 its use in valops.c) to pass the function address as an additional
173 parameter. */
174
175 static int target_is_thumb;
176
177 /* Flag set by arm_fix_call_dummy that tells whether the calling
178 function is a Thumb function. This flag is checked by
179 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
180
181 static int caller_is_thumb;
182
183 /* Determine if the program counter specified in MEMADDR is in a Thumb
184 function. */
185
186 int
187 arm_pc_is_thumb (CORE_ADDR memaddr)
188 {
189 struct minimal_symbol *sym;
190
191 /* If bit 0 of the address is set, assume this is a Thumb address. */
192 if (IS_THUMB_ADDR (memaddr))
193 return 1;
194
195 /* Thumb functions have a "special" bit set in minimal symbols. */
196 sym = lookup_minimal_symbol_by_pc (memaddr);
197 if (sym)
198 {
199 return (MSYMBOL_IS_SPECIAL (sym));
200 }
201 else
202 {
203 return 0;
204 }
205 }
206
207 /* Determine if the program counter specified in MEMADDR is in a call
208 dummy being called from a Thumb function. */
209
210 int
211 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
212 {
213 CORE_ADDR sp = read_sp ();
214
215 /* FIXME: Until we switch for the new call dummy macros, this heuristic
216 is the best we can do. We are trying to determine if the pc is on
217 the stack, which (hopefully) will only happen in a call dummy.
218 We hope the current stack pointer is not so far alway from the dummy
219 frame location (true if we have not pushed large data structures or
220 gone too many levels deep) and that our 1024 is not enough to consider
221 code regions as part of the stack (true for most practical purposes). */
222 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
223 return caller_is_thumb;
224 else
225 return 0;
226 }
227
228 /* Remove useless bits from addresses in a running program. */
229 static CORE_ADDR
230 arm_addr_bits_remove (CORE_ADDR val)
231 {
232 if (arm_apcs_32)
233 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
234 else
235 return (val & 0x03fffffc);
236 }
237
238 /* When reading symbols, we need to zap the low bit of the address,
239 which may be set to 1 for Thumb functions. */
240 static CORE_ADDR
241 arm_smash_text_address (CORE_ADDR val)
242 {
243 return val & ~1;
244 }
245
246 /* Immediately after a function call, return the saved pc. Can't
247 always go through the frames for this because on some machines the
248 new frame is not set up until the new function executes some
249 instructions. */
250
251 static CORE_ADDR
252 arm_saved_pc_after_call (struct frame_info *frame)
253 {
254 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
255 }
256
257 /* Determine whether the function invocation represented by FI has a
258 frame on the stack associated with it. If it does return zero,
259 otherwise return 1. */
260
261 static int
262 arm_frameless_function_invocation (struct frame_info *fi)
263 {
264 CORE_ADDR func_start, after_prologue;
265 int frameless;
266
267 /* Sometimes we have functions that do a little setup (like saving the
268 vN registers with the stmdb instruction, but DO NOT set up a frame.
269 The symbol table will report this as a prologue. However, it is
270 important not to try to parse these partial frames as frames, or we
271 will get really confused.
272
273 So I will demand 3 instructions between the start & end of the
274 prologue before I call it a real prologue, i.e. at least
275 mov ip, sp,
276 stmdb sp!, {}
277 sub sp, ip, #4. */
278
279 func_start = (get_pc_function_start (get_frame_pc (fi)) + FUNCTION_START_OFFSET);
280 after_prologue = SKIP_PROLOGUE (func_start);
281
282 /* There are some frameless functions whose first two instructions
283 follow the standard APCS form, in which case after_prologue will
284 be func_start + 8. */
285
286 frameless = (after_prologue < func_start + 12);
287 return frameless;
288 }
289
290 /* The address of the arguments in the frame. */
291 static CORE_ADDR
292 arm_frame_args_address (struct frame_info *fi)
293 {
294 return get_frame_base (fi);
295 }
296
297 /* The address of the local variables in the frame. */
298 static CORE_ADDR
299 arm_frame_locals_address (struct frame_info *fi)
300 {
301 return get_frame_base (fi);
302 }
303
304 /* The number of arguments being passed in the frame. */
305 static int
306 arm_frame_num_args (struct frame_info *fi)
307 {
308 /* We have no way of knowing. */
309 return -1;
310 }
311
312 /* A typical Thumb prologue looks like this:
313 push {r7, lr}
314 add sp, sp, #-28
315 add r7, sp, #12
316 Sometimes the latter instruction may be replaced by:
317 mov r7, sp
318
319 or like this:
320 push {r7, lr}
321 mov r7, sp
322 sub sp, #12
323
324 or, on tpcs, like this:
325 sub sp,#16
326 push {r7, lr}
327 (many instructions)
328 mov r7, sp
329 sub sp, #12
330
331 There is always one instruction of three classes:
332 1 - push
333 2 - setting of r7
334 3 - adjusting of sp
335
336 When we have found at least one of each class we are done with the prolog.
337 Note that the "sub sp, #NN" before the push does not count.
338 */
339
340 static CORE_ADDR
341 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
342 {
343 CORE_ADDR current_pc;
344 /* findmask:
345 bit 0 - push { rlist }
346 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
347 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
348 */
349 int findmask = 0;
350
351 for (current_pc = pc;
352 current_pc + 2 < func_end && current_pc < pc + 40;
353 current_pc += 2)
354 {
355 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
356
357 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
358 {
359 findmask |= 1; /* push found */
360 }
361 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
362 sub sp, #simm */
363 {
364 if ((findmask & 1) == 0) /* before push ? */
365 continue;
366 else
367 findmask |= 4; /* add/sub sp found */
368 }
369 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
370 {
371 findmask |= 2; /* setting of r7 found */
372 }
373 else if (insn == 0x466f) /* mov r7, sp */
374 {
375 findmask |= 2; /* setting of r7 found */
376 }
377 else if (findmask == (4+2+1))
378 {
379 /* We have found one of each type of prologue instruction */
380 break;
381 }
382 else
383 /* Something in the prolog that we don't care about or some
384 instruction from outside the prolog scheduled here for
385 optimization. */
386 continue;
387 }
388
389 return current_pc;
390 }
391
392 /* Advance the PC across any function entry prologue instructions to
393 reach some "real" code.
394
395 The APCS (ARM Procedure Call Standard) defines the following
396 prologue:
397
398 mov ip, sp
399 [stmfd sp!, {a1,a2,a3,a4}]
400 stmfd sp!, {...,fp,ip,lr,pc}
401 [stfe f7, [sp, #-12]!]
402 [stfe f6, [sp, #-12]!]
403 [stfe f5, [sp, #-12]!]
404 [stfe f4, [sp, #-12]!]
405 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
406
407 static CORE_ADDR
408 arm_skip_prologue (CORE_ADDR pc)
409 {
410 unsigned long inst;
411 CORE_ADDR skip_pc;
412 CORE_ADDR func_addr, func_end = 0;
413 char *func_name;
414 struct symtab_and_line sal;
415
416 /* If we're in a dummy frame, don't even try to skip the prologue. */
417 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
418 return pc;
419
420 /* See what the symbol table says. */
421
422 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
423 {
424 struct symbol *sym;
425
426 /* Found a function. */
427 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
428 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
429 {
430 /* Don't use this trick for assembly source files. */
431 sal = find_pc_line (func_addr, 0);
432 if ((sal.line != 0) && (sal.end < func_end))
433 return sal.end;
434 }
435 }
436
437 /* Check if this is Thumb code. */
438 if (arm_pc_is_thumb (pc))
439 return thumb_skip_prologue (pc, func_end);
440
441 /* Can't find the prologue end in the symbol table, try it the hard way
442 by disassembling the instructions. */
443
444 /* Like arm_scan_prologue, stop no later than pc + 64. */
445 if (func_end == 0 || func_end > pc + 64)
446 func_end = pc + 64;
447
448 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
449 {
450 inst = read_memory_integer (skip_pc, 4);
451
452 /* "mov ip, sp" is no longer a required part of the prologue. */
453 if (inst == 0xe1a0c00d) /* mov ip, sp */
454 continue;
455
456 /* Some prologues begin with "str lr, [sp, #-4]!". */
457 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
458 continue;
459
460 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
461 continue;
462
463 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
464 continue;
465
466 /* Any insns after this point may float into the code, if it makes
467 for better instruction scheduling, so we skip them only if we
468 find them, but still consider the function to be frame-ful. */
469
470 /* We may have either one sfmfd instruction here, or several stfe
471 insns, depending on the version of floating point code we
472 support. */
473 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
474 continue;
475
476 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
477 continue;
478
479 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
480 continue;
481
482 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
483 continue;
484
485 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
486 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
487 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
488 continue;
489
490 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
491 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
492 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
493 continue;
494
495 /* Un-recognized instruction; stop scanning. */
496 break;
497 }
498
499 return skip_pc; /* End of prologue */
500 }
501
502 /* *INDENT-OFF* */
503 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
504 This function decodes a Thumb function prologue to determine:
505 1) the size of the stack frame
506 2) which registers are saved on it
507 3) the offsets of saved regs
508 4) the offset from the stack pointer to the frame pointer
509 This information is stored in the "extra" fields of the frame_info.
510
511 A typical Thumb function prologue would create this stack frame
512 (offsets relative to FP)
513 old SP -> 24 stack parameters
514 20 LR
515 16 R7
516 R7 -> 0 local variables (16 bytes)
517 SP -> -12 additional stack space (12 bytes)
518 The frame size would thus be 36 bytes, and the frame offset would be
519 12 bytes. The frame register is R7.
520
521 The comments for thumb_skip_prolog() describe the algorithm we use
522 to detect the end of the prolog. */
523 /* *INDENT-ON* */
524
525 static void
526 thumb_scan_prologue (struct frame_info *fi)
527 {
528 CORE_ADDR prologue_start;
529 CORE_ADDR prologue_end;
530 CORE_ADDR current_pc;
531 /* Which register has been copied to register n? */
532 int saved_reg[16];
533 /* findmask:
534 bit 0 - push { rlist }
535 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
536 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
537 */
538 int findmask = 0;
539 int i;
540
541 /* Don't try to scan dummy frames. */
542 if (fi != NULL
543 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
544 return;
545
546 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
547 {
548 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
549
550 if (sal.line == 0) /* no line info, use current PC */
551 prologue_end = get_frame_pc (fi);
552 else if (sal.end < prologue_end) /* next line begins after fn end */
553 prologue_end = sal.end; /* (probably means no prologue) */
554 }
555 else
556 /* We're in the boondocks: allow for
557 16 pushes, an add, and "mv fp,sp". */
558 prologue_end = prologue_start + 40;
559
560 prologue_end = min (prologue_end, get_frame_pc (fi));
561
562 /* Initialize the saved register map. When register H is copied to
563 register L, we will put H in saved_reg[L]. */
564 for (i = 0; i < 16; i++)
565 saved_reg[i] = i;
566
567 /* Search the prologue looking for instructions that set up the
568 frame pointer, adjust the stack pointer, and save registers.
569 Do this until all basic prolog instructions are found. */
570
571 fi->extra_info->framesize = 0;
572 for (current_pc = prologue_start;
573 (current_pc < prologue_end) && ((findmask & 7) != 7);
574 current_pc += 2)
575 {
576 unsigned short insn;
577 int regno;
578 int offset;
579
580 insn = read_memory_unsigned_integer (current_pc, 2);
581
582 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
583 {
584 int mask;
585 findmask |= 1; /* push found */
586 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
587 whether to save LR (R14). */
588 mask = (insn & 0xff) | ((insn & 0x100) << 6);
589
590 /* Calculate offsets of saved R0-R7 and LR. */
591 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
592 if (mask & (1 << regno))
593 {
594 fi->extra_info->framesize += 4;
595 get_frame_saved_regs (fi)[saved_reg[regno]] =
596 -(fi->extra_info->framesize);
597 /* Reset saved register map. */
598 saved_reg[regno] = regno;
599 }
600 }
601 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
602 sub sp, #simm */
603 {
604 if ((findmask & 1) == 0) /* before push? */
605 continue;
606 else
607 findmask |= 4; /* add/sub sp found */
608
609 offset = (insn & 0x7f) << 2; /* get scaled offset */
610 if (insn & 0x80) /* is it signed? (==subtracting) */
611 {
612 fi->extra_info->frameoffset += offset;
613 offset = -offset;
614 }
615 fi->extra_info->framesize -= offset;
616 }
617 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
618 {
619 findmask |= 2; /* setting of r7 found */
620 fi->extra_info->framereg = THUMB_FP_REGNUM;
621 /* get scaled offset */
622 fi->extra_info->frameoffset = (insn & 0xff) << 2;
623 }
624 else if (insn == 0x466f) /* mov r7, sp */
625 {
626 findmask |= 2; /* setting of r7 found */
627 fi->extra_info->framereg = THUMB_FP_REGNUM;
628 fi->extra_info->frameoffset = 0;
629 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
630 }
631 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
632 {
633 int lo_reg = insn & 7; /* dest. register (r0-r7) */
634 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
635 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
636 }
637 else
638 /* Something in the prolog that we don't care about or some
639 instruction from outside the prolog scheduled here for
640 optimization. */
641 continue;
642 }
643 }
644
645 /* Check if prologue for this frame's PC has already been scanned. If
646 it has, copy the relevant information about that prologue and
647 return non-zero. Otherwise do not copy anything and return zero.
648
649 The information saved in the cache includes:
650 * the frame register number;
651 * the size of the stack frame;
652 * the offsets of saved regs (relative to the old SP); and
653 * the offset from the stack pointer to the frame pointer
654
655 The cache contains only one entry, since this is adequate for the
656 typical sequence of prologue scan requests we get. When performing
657 a backtrace, GDB will usually ask to scan the same function twice
658 in a row (once to get the frame chain, and once to fill in the
659 extra frame information). */
660
661 static struct frame_info *prologue_cache;
662
663 static int
664 check_prologue_cache (struct frame_info *fi)
665 {
666 int i;
667
668 if (get_frame_pc (fi) == get_frame_pc (prologue_cache))
669 {
670 fi->extra_info->framereg = prologue_cache->extra_info->framereg;
671 fi->extra_info->framesize = prologue_cache->extra_info->framesize;
672 fi->extra_info->frameoffset = prologue_cache->extra_info->frameoffset;
673 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
674 get_frame_saved_regs (fi)[i] = get_frame_saved_regs (prologue_cache)[i];
675 return 1;
676 }
677 else
678 return 0;
679 }
680
681
682 /* Copy the prologue information from fi to the prologue cache. */
683
684 static void
685 save_prologue_cache (struct frame_info *fi)
686 {
687 int i;
688
689 deprecated_update_frame_pc_hack (prologue_cache, get_frame_pc (fi));
690 prologue_cache->extra_info->framereg = fi->extra_info->framereg;
691 prologue_cache->extra_info->framesize = fi->extra_info->framesize;
692 prologue_cache->extra_info->frameoffset = fi->extra_info->frameoffset;
693
694 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
695 get_frame_saved_regs (prologue_cache)[i] = get_frame_saved_regs (fi)[i];
696 }
697
698
699 /* This function decodes an ARM function prologue to determine:
700 1) the size of the stack frame
701 2) which registers are saved on it
702 3) the offsets of saved regs
703 4) the offset from the stack pointer to the frame pointer
704 This information is stored in the "extra" fields of the frame_info.
705
706 There are two basic forms for the ARM prologue. The fixed argument
707 function call will look like:
708
709 mov ip, sp
710 stmfd sp!, {fp, ip, lr, pc}
711 sub fp, ip, #4
712 [sub sp, sp, #4]
713
714 Which would create this stack frame (offsets relative to FP):
715 IP -> 4 (caller's stack)
716 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
717 -4 LR (return address in caller)
718 -8 IP (copy of caller's SP)
719 -12 FP (caller's FP)
720 SP -> -28 Local variables
721
722 The frame size would thus be 32 bytes, and the frame offset would be
723 28 bytes. The stmfd call can also save any of the vN registers it
724 plans to use, which increases the frame size accordingly.
725
726 Note: The stored PC is 8 off of the STMFD instruction that stored it
727 because the ARM Store instructions always store PC + 8 when you read
728 the PC register.
729
730 A variable argument function call will look like:
731
732 mov ip, sp
733 stmfd sp!, {a1, a2, a3, a4}
734 stmfd sp!, {fp, ip, lr, pc}
735 sub fp, ip, #20
736
737 Which would create this stack frame (offsets relative to FP):
738 IP -> 20 (caller's stack)
739 16 A4
740 12 A3
741 8 A2
742 4 A1
743 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
744 -4 LR (return address in caller)
745 -8 IP (copy of caller's SP)
746 -12 FP (caller's FP)
747 SP -> -28 Local variables
748
749 The frame size would thus be 48 bytes, and the frame offset would be
750 28 bytes.
751
752 There is another potential complication, which is that the optimizer
753 will try to separate the store of fp in the "stmfd" instruction from
754 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
755 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
756
757 Also, note, the original version of the ARM toolchain claimed that there
758 should be an
759
760 instruction at the end of the prologue. I have never seen GCC produce
761 this, and the ARM docs don't mention it. We still test for it below in
762 case it happens...
763
764 */
765
766 static void
767 arm_scan_prologue (struct frame_info *fi)
768 {
769 int regno, sp_offset, fp_offset;
770 LONGEST return_value;
771 CORE_ADDR prologue_start, prologue_end, current_pc;
772
773 /* Check if this function is already in the cache of frame information. */
774 if (check_prologue_cache (fi))
775 return;
776
777 /* Assume there is no frame until proven otherwise. */
778 fi->extra_info->framereg = ARM_SP_REGNUM;
779 fi->extra_info->framesize = 0;
780 fi->extra_info->frameoffset = 0;
781
782 /* Check for Thumb prologue. */
783 if (arm_pc_is_thumb (get_frame_pc (fi)))
784 {
785 thumb_scan_prologue (fi);
786 save_prologue_cache (fi);
787 return;
788 }
789
790 /* Find the function prologue. If we can't find the function in
791 the symbol table, peek in the stack frame to find the PC. */
792 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
793 {
794 /* One way to find the end of the prologue (which works well
795 for unoptimized code) is to do the following:
796
797 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
798
799 if (sal.line == 0)
800 prologue_end = get_frame_pc (fi);
801 else if (sal.end < prologue_end)
802 prologue_end = sal.end;
803
804 This mechanism is very accurate so long as the optimizer
805 doesn't move any instructions from the function body into the
806 prologue. If this happens, sal.end will be the last
807 instruction in the first hunk of prologue code just before
808 the first instruction that the scheduler has moved from
809 the body to the prologue.
810
811 In order to make sure that we scan all of the prologue
812 instructions, we use a slightly less accurate mechanism which
813 may scan more than necessary. To help compensate for this
814 lack of accuracy, the prologue scanning loop below contains
815 several clauses which'll cause the loop to terminate early if
816 an implausible prologue instruction is encountered.
817
818 The expression
819
820 prologue_start + 64
821
822 is a suitable endpoint since it accounts for the largest
823 possible prologue plus up to five instructions inserted by
824 the scheduler. */
825
826 if (prologue_end > prologue_start + 64)
827 {
828 prologue_end = prologue_start + 64; /* See above. */
829 }
830 }
831 else
832 {
833 /* Get address of the stmfd in the prologue of the callee;
834 the saved PC is the address of the stmfd + 8. */
835 if (!safe_read_memory_integer (get_frame_base (fi), 4, &return_value))
836 return;
837 else
838 {
839 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
840 prologue_end = prologue_start + 64; /* See above. */
841 }
842 }
843
844 /* Now search the prologue looking for instructions that set up the
845 frame pointer, adjust the stack pointer, and save registers.
846
847 Be careful, however, and if it doesn't look like a prologue,
848 don't try to scan it. If, for instance, a frameless function
849 begins with stmfd sp!, then we will tell ourselves there is
850 a frame, which will confuse stack traceback, as well as "finish"
851 and other operations that rely on a knowledge of the stack
852 traceback.
853
854 In the APCS, the prologue should start with "mov ip, sp" so
855 if we don't see this as the first insn, we will stop.
856
857 [Note: This doesn't seem to be true any longer, so it's now an
858 optional part of the prologue. - Kevin Buettner, 2001-11-20]
859
860 [Note further: The "mov ip,sp" only seems to be missing in
861 frameless functions at optimization level "-O2" or above,
862 in which case it is often (but not always) replaced by
863 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
864
865 sp_offset = fp_offset = 0;
866
867 for (current_pc = prologue_start;
868 current_pc < prologue_end;
869 current_pc += 4)
870 {
871 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
872
873 if (insn == 0xe1a0c00d) /* mov ip, sp */
874 {
875 continue;
876 }
877 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
878 {
879 /* Function is frameless: extra_info defaults OK? */
880 continue;
881 }
882 else if ((insn & 0xffff0000) == 0xe92d0000)
883 /* stmfd sp!, {..., fp, ip, lr, pc}
884 or
885 stmfd sp!, {a1, a2, a3, a4} */
886 {
887 int mask = insn & 0xffff;
888
889 /* Calculate offsets of saved registers. */
890 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
891 if (mask & (1 << regno))
892 {
893 sp_offset -= 4;
894 get_frame_saved_regs (fi)[regno] = sp_offset;
895 }
896 }
897 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
898 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
899 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
900 {
901 /* No need to add this to saved_regs -- it's just an arg reg. */
902 continue;
903 }
904 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
905 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
906 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
907 {
908 /* No need to add this to saved_regs -- it's just an arg reg. */
909 continue;
910 }
911 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
912 {
913 unsigned imm = insn & 0xff; /* immediate value */
914 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
915 imm = (imm >> rot) | (imm << (32 - rot));
916 fp_offset = -imm;
917 fi->extra_info->framereg = ARM_FP_REGNUM;
918 }
919 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
920 {
921 unsigned imm = insn & 0xff; /* immediate value */
922 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
923 imm = (imm >> rot) | (imm << (32 - rot));
924 sp_offset -= imm;
925 }
926 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
927 {
928 sp_offset -= 12;
929 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
930 get_frame_saved_regs (fi)[regno] = sp_offset;
931 }
932 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
933 {
934 int n_saved_fp_regs;
935 unsigned int fp_start_reg, fp_bound_reg;
936
937 if ((insn & 0x800) == 0x800) /* N0 is set */
938 {
939 if ((insn & 0x40000) == 0x40000) /* N1 is set */
940 n_saved_fp_regs = 3;
941 else
942 n_saved_fp_regs = 1;
943 }
944 else
945 {
946 if ((insn & 0x40000) == 0x40000) /* N1 is set */
947 n_saved_fp_regs = 2;
948 else
949 n_saved_fp_regs = 4;
950 }
951
952 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
953 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
954 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
955 {
956 sp_offset -= 12;
957 get_frame_saved_regs (fi)[fp_start_reg++] = sp_offset;
958 }
959 }
960 else if ((insn & 0xf0000000) != 0xe0000000)
961 break; /* Condition not true, exit early */
962 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
963 break; /* Don't scan past a block load */
964 else
965 /* The optimizer might shove anything into the prologue,
966 so we just skip what we don't recognize. */
967 continue;
968 }
969
970 /* The frame size is just the negative of the offset (from the
971 original SP) of the last thing thing we pushed on the stack.
972 The frame offset is [new FP] - [new SP]. */
973 fi->extra_info->framesize = -sp_offset;
974 if (fi->extra_info->framereg == ARM_FP_REGNUM)
975 fi->extra_info->frameoffset = fp_offset - sp_offset;
976 else
977 fi->extra_info->frameoffset = 0;
978
979 save_prologue_cache (fi);
980 }
981
982 /* Find REGNUM on the stack. Otherwise, it's in an active register.
983 One thing we might want to do here is to check REGNUM against the
984 clobber mask, and somehow flag it as invalid if it isn't saved on
985 the stack somewhere. This would provide a graceful failure mode
986 when trying to get the value of caller-saves registers for an inner
987 frame. */
988
989 static CORE_ADDR
990 arm_find_callers_reg (struct frame_info *fi, int regnum)
991 {
992 /* NOTE: cagney/2002-05-03: This function really shouldn't be
993 needed. Instead the (still being written) register unwind
994 function could be called directly. */
995 for (; fi; fi = get_next_frame (fi))
996 {
997 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
998 {
999 return deprecated_read_register_dummy (get_frame_pc (fi),
1000 get_frame_base (fi), regnum);
1001 }
1002 else if (get_frame_saved_regs (fi)[regnum] != 0)
1003 {
1004 /* NOTE: cagney/2002-05-03: This would normally need to
1005 handle ARM_SP_REGNUM as a special case as, according to
1006 the frame.h comments, saved_regs[SP_REGNUM] contains the
1007 SP value not its address. It appears that the ARM isn't
1008 doing this though. */
1009 return read_memory_integer (get_frame_saved_regs (fi)[regnum],
1010 REGISTER_RAW_SIZE (regnum));
1011 }
1012 }
1013 return read_register (regnum);
1014 }
1015 /* Function: frame_chain Given a GDB frame, determine the address of
1016 the calling function's frame. This will be used to create a new
1017 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
1018 DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
1019 ARM, we save the frame size when we initialize the frame_info. */
1020
1021 static CORE_ADDR
1022 arm_frame_chain (struct frame_info *fi)
1023 {
1024 CORE_ADDR caller_pc;
1025 int framereg = fi->extra_info->framereg;
1026
1027 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
1028 /* A generic call dummy's frame is the same as caller's. */
1029 return get_frame_base (fi);
1030
1031 if (get_frame_pc (fi) < LOWEST_PC)
1032 return 0;
1033
1034 /* If the caller is the startup code, we're at the end of the chain. */
1035 caller_pc = FRAME_SAVED_PC (fi);
1036
1037 /* If the caller is Thumb and the caller is ARM, or vice versa,
1038 the frame register of the caller is different from ours.
1039 So we must scan the prologue of the caller to determine its
1040 frame register number. */
1041 /* XXX Fixme, we should try to do this without creating a temporary
1042 caller_fi. */
1043 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (get_frame_pc (fi)))
1044 {
1045 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1046 struct frame_info *caller_fi =
1047 deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
1048 sizeof (struct frame_extra_info));
1049
1050 /* Now, scan the prologue and obtain the frame register. */
1051 deprecated_update_frame_pc_hack (caller_fi, caller_pc);
1052 arm_scan_prologue (caller_fi);
1053 framereg = caller_fi->extra_info->framereg;
1054
1055 /* Deallocate the storage associated with the temporary frame
1056 created above. */
1057 do_cleanups (old_chain);
1058 }
1059
1060 /* If the caller used a frame register, return its value.
1061 Otherwise, return the caller's stack pointer. */
1062 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
1063 return arm_find_callers_reg (fi, framereg);
1064 else
1065 return get_frame_base (fi) + fi->extra_info->framesize;
1066 }
1067
1068 /* This function actually figures out the frame address for a given pc
1069 and sp. This is tricky because we sometimes don't use an explicit
1070 frame pointer, and the previous stack pointer isn't necessarily
1071 recorded on the stack. The only reliable way to get this info is
1072 to examine the prologue. FROMLEAF is a little confusing, it means
1073 this is the next frame up the chain AFTER a frameless function. If
1074 this is true, then the frame value for this frame is still in the
1075 fp register. */
1076
1077 static void
1078 arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1079 {
1080 int reg;
1081 CORE_ADDR sp;
1082
1083 if (get_frame_saved_regs (fi) == NULL)
1084 frame_saved_regs_zalloc (fi);
1085
1086 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1087
1088 fi->extra_info->framesize = 0;
1089 fi->extra_info->frameoffset = 0;
1090 fi->extra_info->framereg = 0;
1091
1092 if (get_next_frame (fi))
1093 deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (get_next_frame (fi)));
1094
1095 memset (get_frame_saved_regs (fi), '\000', sizeof get_frame_saved_regs (fi));
1096
1097 /* Compute stack pointer for this frame. We use this value for both
1098 the sigtramp and call dummy cases. */
1099 if (!get_next_frame (fi))
1100 sp = read_sp();
1101 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1102 /* For generic dummy frames, pull the value direct from the frame.
1103 Having an unwind function to do this would be nice. */
1104 sp = deprecated_read_register_dummy (get_frame_pc (get_next_frame (fi)),
1105 get_frame_base (get_next_frame (fi)),
1106 ARM_SP_REGNUM);
1107 else
1108 sp = (get_frame_base (get_next_frame (fi)) - get_next_frame (fi)->extra_info->frameoffset
1109 + get_next_frame (fi)->extra_info->framesize);
1110
1111 /* Determine whether or not we're in a sigtramp frame.
1112 Unfortunately, it isn't sufficient to test (get_frame_type (fi)
1113 == SIGTRAMP_FRAME) because this value is sometimes set after
1114 invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1115 (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
1116 determine if we need to use the sigcontext addresses for the
1117 saved registers.
1118
1119 Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1120 against the name of the function, the code below will have to be
1121 changed to first fetch the name of the function and then pass
1122 this name to PC_IN_SIGTRAMP. */
1123
1124 /* FIXME: cagney/2002-11-18: This problem will go away once
1125 frame.c:get_prev_frame() is modified to set the frame's type
1126 before calling functions like this. */
1127
1128 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1129 && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (get_frame_pc (fi), (char *)0)))
1130 {
1131 for (reg = 0; reg < NUM_REGS; reg++)
1132 get_frame_saved_regs (fi)[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, get_frame_pc (fi), reg);
1133
1134 /* FIXME: What about thumb mode? */
1135 fi->extra_info->framereg = ARM_SP_REGNUM;
1136 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (fi)[fi->extra_info->framereg], REGISTER_RAW_SIZE (fi->extra_info->framereg)));
1137 fi->extra_info->framesize = 0;
1138 fi->extra_info->frameoffset = 0;
1139
1140 }
1141 else
1142 {
1143 arm_scan_prologue (fi);
1144
1145 if (!get_next_frame (fi))
1146 /* This is the innermost frame? */
1147 deprecated_update_frame_base_hack (fi, read_register (fi->extra_info->framereg));
1148 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1149 /* Next inner most frame is a dummy, just grab its frame.
1150 Dummy frames always have the same FP as their caller. */
1151 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
1152 else if (fi->extra_info->framereg == ARM_FP_REGNUM
1153 || fi->extra_info->framereg == THUMB_FP_REGNUM)
1154 {
1155 /* not the innermost frame */
1156 /* If we have an FP, the callee saved it. */
1157 if (get_frame_saved_regs (get_next_frame (fi))[fi->extra_info->framereg] != 0)
1158 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (get_next_frame (fi))[fi->extra_info->framereg], 4));
1159 else if (fromleaf)
1160 /* If we were called by a frameless fn. then our frame is
1161 still in the frame pointer register on the board... */
1162 deprecated_update_frame_base_hack (fi, read_fp ());
1163 }
1164
1165 /* Calculate actual addresses of saved registers using offsets
1166 determined by arm_scan_prologue. */
1167 for (reg = 0; reg < NUM_REGS; reg++)
1168 if (get_frame_saved_regs (fi)[reg] != 0)
1169 get_frame_saved_regs (fi)[reg] += (get_frame_base (fi)
1170 + fi->extra_info->framesize
1171 - fi->extra_info->frameoffset);
1172 }
1173 }
1174
1175
1176 /* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
1177 is saved in the stack anywhere, otherwise we get it from the
1178 registers.
1179
1180 The old definition of this function was a macro:
1181 #define FRAME_SAVED_PC(FRAME) \
1182 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
1183
1184 static CORE_ADDR
1185 arm_frame_saved_pc (struct frame_info *fi)
1186 {
1187 /* If a dummy frame, pull the PC out of the frame's register buffer. */
1188 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
1189 return deprecated_read_register_dummy (get_frame_pc (fi),
1190 get_frame_base (fi), ARM_PC_REGNUM);
1191
1192 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1193 (get_frame_base (fi)
1194 - fi->extra_info->frameoffset),
1195 get_frame_base (fi)))
1196 {
1197 return read_memory_integer (get_frame_saved_regs (fi)[ARM_PC_REGNUM],
1198 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
1199 }
1200 else
1201 {
1202 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
1203 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1204 }
1205 }
1206
1207 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1208 Examine the Program Status Register to decide which state we're in. */
1209
1210 static CORE_ADDR
1211 arm_read_fp (void)
1212 {
1213 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
1214 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1215 else
1216 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
1217 }
1218
1219 /* Store into a struct frame_saved_regs the addresses of the saved
1220 registers of frame described by FRAME_INFO. This includes special
1221 registers such as PC and FP saved in special ways in the stack
1222 frame. SP is even more special: the address we return for it IS
1223 the sp for the next frame. */
1224
1225 static void
1226 arm_frame_init_saved_regs (struct frame_info *fip)
1227 {
1228
1229 if (get_frame_saved_regs (fip))
1230 return;
1231
1232 arm_init_extra_frame_info (0, fip);
1233 }
1234
1235 /* Set the return address for a generic dummy frame. ARM uses the
1236 entry point. */
1237
1238 static CORE_ADDR
1239 arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1240 {
1241 write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1242 return sp;
1243 }
1244
1245 /* Push an empty stack frame, to record the current PC, etc. */
1246
1247 static void
1248 arm_push_dummy_frame (void)
1249 {
1250 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
1251 CORE_ADDR sp = old_sp;
1252 CORE_ADDR fp, prologue_start;
1253 int regnum;
1254
1255 /* Push the two dummy prologue instructions in reverse order,
1256 so that they'll be in the correct low-to-high order in memory. */
1257 /* sub fp, ip, #4 */
1258 sp = push_word (sp, 0xe24cb004);
1259 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1260 prologue_start = sp = push_word (sp, 0xe92ddfff);
1261
1262 /* Push a pointer to the dummy prologue + 12, because when stm
1263 instruction stores the PC, it stores the address of the stm
1264 instruction itself plus 12. */
1265 fp = sp = push_word (sp, prologue_start + 12);
1266
1267 /* Push the processor status. */
1268 sp = push_word (sp, read_register (ARM_PS_REGNUM));
1269
1270 /* Push all 16 registers starting with r15. */
1271 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
1272 sp = push_word (sp, read_register (regnum));
1273
1274 /* Update fp (for both Thumb and ARM) and sp. */
1275 write_register (ARM_FP_REGNUM, fp);
1276 write_register (THUMB_FP_REGNUM, fp);
1277 write_register (ARM_SP_REGNUM, sp);
1278 }
1279
1280 /* CALL_DUMMY_WORDS:
1281 This sequence of words is the instructions
1282
1283 mov lr,pc
1284 mov pc,r4
1285 illegal
1286
1287 Note this is 12 bytes. */
1288
1289 static LONGEST arm_call_dummy_words[] =
1290 {
1291 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1292 };
1293
1294 /* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1295 breakpoint to the proper address in the call dummy, so that
1296 `finish' after a stop in a call dummy works.
1297
1298 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1299 optimal solution, but the call to arm_fix_call_dummy is immediately
1300 followed by a call to run_stack_dummy, which is the only function
1301 where call_dummy_breakpoint_offset is actually used. */
1302
1303
1304 static void
1305 arm_set_call_dummy_breakpoint_offset (void)
1306 {
1307 if (caller_is_thumb)
1308 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1309 else
1310 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1311 }
1312
1313 /* Fix up the call dummy, based on whether the processor is currently
1314 in Thumb or ARM mode, and whether the target function is Thumb or
1315 ARM. There are three different situations requiring three
1316 different dummies:
1317
1318 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
1319 been copied into the dummy parameter to this function.
1320 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
1321 "mov pc,r4" instruction patched to be a "bx r4" instead.
1322 * Thumb calling anything: uses the Thumb dummy defined below, which
1323 works for calling both ARM and Thumb functions.
1324
1325 All three call dummies expect to receive the target function
1326 address in R4, with the low bit set if it's a Thumb function. */
1327
1328 static void
1329 arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1330 struct value **args, struct type *type, int gcc_p)
1331 {
1332 static short thumb_dummy[4] =
1333 {
1334 0xf000, 0xf801, /* bl label */
1335 0xdf18, /* swi 24 */
1336 0x4720, /* label: bx r4 */
1337 };
1338 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1339
1340 /* Set flag indicating whether the current PC is in a Thumb function. */
1341 caller_is_thumb = arm_pc_is_thumb (read_pc ());
1342 arm_set_call_dummy_breakpoint_offset ();
1343
1344 /* If the target function is Thumb, set the low bit of the function
1345 address. And if the CPU is currently in ARM mode, patch the
1346 second instruction of call dummy to use a BX instruction to
1347 switch to Thumb mode. */
1348 target_is_thumb = arm_pc_is_thumb (fun);
1349 if (target_is_thumb)
1350 {
1351 fun |= 1;
1352 if (!caller_is_thumb)
1353 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1354 }
1355
1356 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1357 instead of the ARM one that's already been copied. This will
1358 work for both Thumb and ARM target functions. */
1359 if (caller_is_thumb)
1360 {
1361 int i;
1362 char *p = dummy;
1363 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1364
1365 for (i = 0; i < len; i++)
1366 {
1367 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1368 p += sizeof (thumb_dummy[0]);
1369 }
1370 }
1371
1372 /* Put the target address in r4; the call dummy will copy this to
1373 the PC. */
1374 write_register (4, fun);
1375 }
1376
1377 /* Note: ScottB
1378
1379 This function does not support passing parameters using the FPA
1380 variant of the APCS. It passes any floating point arguments in the
1381 general registers and/or on the stack. */
1382
1383 static CORE_ADDR
1384 arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1385 int struct_return, CORE_ADDR struct_addr)
1386 {
1387 CORE_ADDR fp;
1388 int argnum;
1389 int argreg;
1390 int nstack;
1391 int simd_argreg;
1392 int second_pass;
1393 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1394
1395 /* Walk through the list of args and determine how large a temporary
1396 stack is required. Need to take care here as structs may be
1397 passed on the stack, and we have to to push them. On the second
1398 pass, do the store. */
1399 nstack = 0;
1400 fp = sp;
1401 for (second_pass = 0; second_pass < 2; second_pass++)
1402 {
1403 /* Compute the FP using the information computed during the
1404 first pass. */
1405 if (second_pass)
1406 fp = sp - nstack;
1407
1408 simd_argreg = 0;
1409 argreg = ARM_A1_REGNUM;
1410 nstack = 0;
1411
1412 /* The struct_return pointer occupies the first parameter
1413 passing register. */
1414 if (struct_return)
1415 {
1416 if (second_pass)
1417 {
1418 if (arm_debug)
1419 fprintf_unfiltered (gdb_stdlog,
1420 "struct return in %s = 0x%s\n",
1421 REGISTER_NAME (argreg),
1422 paddr (struct_addr));
1423 write_register (argreg, struct_addr);
1424 }
1425 argreg++;
1426 }
1427
1428 for (argnum = 0; argnum < nargs; argnum++)
1429 {
1430 int len;
1431 struct type *arg_type;
1432 struct type *target_type;
1433 enum type_code typecode;
1434 char *val;
1435
1436 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1437 len = TYPE_LENGTH (arg_type);
1438 target_type = TYPE_TARGET_TYPE (arg_type);
1439 typecode = TYPE_CODE (arg_type);
1440 val = VALUE_CONTENTS (args[argnum]);
1441
1442 /* If the argument is a pointer to a function, and it is a
1443 Thumb function, create a LOCAL copy of the value and set
1444 the THUMB bit in it. */
1445 if (second_pass
1446 && TYPE_CODE_PTR == typecode
1447 && target_type != NULL
1448 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1449 {
1450 CORE_ADDR regval = extract_address (val, len);
1451 if (arm_pc_is_thumb (regval))
1452 {
1453 val = alloca (len);
1454 store_address (val, len, MAKE_THUMB_ADDR (regval));
1455 }
1456 }
1457
1458 /* Copy the argument to general registers or the stack in
1459 register-sized pieces. Large arguments are split between
1460 registers and stack. */
1461 while (len > 0)
1462 {
1463 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1464
1465 if (argreg <= ARM_LAST_ARG_REGNUM)
1466 {
1467 /* The argument is being passed in a general purpose
1468 register. */
1469 if (second_pass)
1470 {
1471 CORE_ADDR regval = extract_address (val,
1472 partial_len);
1473 if (arm_debug)
1474 fprintf_unfiltered (gdb_stdlog,
1475 "arg %d in %s = 0x%s\n",
1476 argnum,
1477 REGISTER_NAME (argreg),
1478 phex (regval, REGISTER_SIZE));
1479 write_register (argreg, regval);
1480 }
1481 argreg++;
1482 }
1483 else
1484 {
1485 if (second_pass)
1486 {
1487 /* Push the arguments onto the stack. */
1488 if (arm_debug)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "arg %d @ 0x%s + %d\n",
1491 argnum, paddr (fp), nstack);
1492 write_memory (fp + nstack, val, REGISTER_SIZE);
1493 }
1494 nstack += REGISTER_SIZE;
1495 }
1496
1497 len -= partial_len;
1498 val += partial_len;
1499 }
1500
1501 }
1502 }
1503
1504 /* Return the botom of the argument list (pointed to by fp). */
1505 return fp;
1506 }
1507
1508 /* Pop the current frame. So long as the frame info has been
1509 initialized properly (see arm_init_extra_frame_info), this code
1510 works for dummy frames as well as regular frames. I.e, there's no
1511 need to have a special case for dummy frames. */
1512 static void
1513 arm_pop_frame (void)
1514 {
1515 int regnum;
1516 struct frame_info *frame = get_current_frame ();
1517 CORE_ADDR old_SP = (get_frame_base (frame) - frame->extra_info->frameoffset
1518 + frame->extra_info->framesize);
1519
1520 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1521 get_frame_base (frame),
1522 get_frame_base (frame)))
1523 {
1524 generic_pop_dummy_frame ();
1525 flush_cached_frames ();
1526 return;
1527 }
1528
1529 for (regnum = 0; regnum < NUM_REGS; regnum++)
1530 if (get_frame_saved_regs (frame)[regnum] != 0)
1531 write_register (regnum,
1532 read_memory_integer (get_frame_saved_regs (frame)[regnum],
1533 REGISTER_RAW_SIZE (regnum)));
1534
1535 write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
1536 write_register (ARM_SP_REGNUM, old_SP);
1537
1538 flush_cached_frames ();
1539 }
1540
1541 static void
1542 print_fpu_flags (int flags)
1543 {
1544 if (flags & (1 << 0))
1545 fputs ("IVO ", stdout);
1546 if (flags & (1 << 1))
1547 fputs ("DVZ ", stdout);
1548 if (flags & (1 << 2))
1549 fputs ("OFL ", stdout);
1550 if (flags & (1 << 3))
1551 fputs ("UFL ", stdout);
1552 if (flags & (1 << 4))
1553 fputs ("INX ", stdout);
1554 putchar ('\n');
1555 }
1556
1557 /* Print interesting information about the floating point processor
1558 (if present) or emulator. */
1559 static void
1560 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1561 struct frame_info *frame, const char *args)
1562 {
1563 register unsigned long status = read_register (ARM_FPS_REGNUM);
1564 int type;
1565
1566 type = (status >> 24) & 127;
1567 printf ("%s FPU type %d\n",
1568 (status & (1 << 31)) ? "Hardware" : "Software",
1569 type);
1570 fputs ("mask: ", stdout);
1571 print_fpu_flags (status >> 16);
1572 fputs ("flags: ", stdout);
1573 print_fpu_flags (status);
1574 }
1575
1576 /* Return the GDB type object for the "standard" data type of data in
1577 register N. */
1578
1579 static struct type *
1580 arm_register_type (int regnum)
1581 {
1582 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1583 {
1584 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1585 return builtin_type_arm_ext_big;
1586 else
1587 return builtin_type_arm_ext_littlebyte_bigword;
1588 }
1589 else
1590 return builtin_type_int32;
1591 }
1592
1593 /* Index within `registers' of the first byte of the space for
1594 register N. */
1595
1596 static int
1597 arm_register_byte (int regnum)
1598 {
1599 if (regnum < ARM_F0_REGNUM)
1600 return regnum * INT_REGISTER_RAW_SIZE;
1601 else if (regnum < ARM_PS_REGNUM)
1602 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1603 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1604 else
1605 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1606 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1607 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1608 }
1609
1610 /* Number of bytes of storage in the actual machine representation for
1611 register N. All registers are 4 bytes, except fp0 - fp7, which are
1612 12 bytes in length. */
1613
1614 static int
1615 arm_register_raw_size (int regnum)
1616 {
1617 if (regnum < ARM_F0_REGNUM)
1618 return INT_REGISTER_RAW_SIZE;
1619 else if (regnum < ARM_FPS_REGNUM)
1620 return FP_REGISTER_RAW_SIZE;
1621 else
1622 return STATUS_REGISTER_SIZE;
1623 }
1624
1625 /* Number of bytes of storage in a program's representation
1626 for register N. */
1627 static int
1628 arm_register_virtual_size (int regnum)
1629 {
1630 if (regnum < ARM_F0_REGNUM)
1631 return INT_REGISTER_VIRTUAL_SIZE;
1632 else if (regnum < ARM_FPS_REGNUM)
1633 return FP_REGISTER_VIRTUAL_SIZE;
1634 else
1635 return STATUS_REGISTER_SIZE;
1636 }
1637
1638 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1639 static int
1640 arm_register_sim_regno (int regnum)
1641 {
1642 int reg = regnum;
1643 gdb_assert (reg >= 0 && reg < NUM_REGS);
1644
1645 if (reg < NUM_GREGS)
1646 return SIM_ARM_R0_REGNUM + reg;
1647 reg -= NUM_GREGS;
1648
1649 if (reg < NUM_FREGS)
1650 return SIM_ARM_FP0_REGNUM + reg;
1651 reg -= NUM_FREGS;
1652
1653 if (reg < NUM_SREGS)
1654 return SIM_ARM_FPS_REGNUM + reg;
1655 reg -= NUM_SREGS;
1656
1657 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1658 }
1659
1660 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1661 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1662 It is thought that this is is the floating-point register format on
1663 little-endian systems. */
1664
1665 static void
1666 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1667 void *dbl)
1668 {
1669 DOUBLEST d;
1670 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1671 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1672 else
1673 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1674 ptr, &d);
1675 floatformat_from_doublest (fmt, &d, dbl);
1676 }
1677
1678 static void
1679 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1680 {
1681 DOUBLEST d;
1682 floatformat_to_doublest (fmt, ptr, &d);
1683 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1684 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1685 else
1686 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1687 &d, dbl);
1688 }
1689
1690 static int
1691 condition_true (unsigned long cond, unsigned long status_reg)
1692 {
1693 if (cond == INST_AL || cond == INST_NV)
1694 return 1;
1695
1696 switch (cond)
1697 {
1698 case INST_EQ:
1699 return ((status_reg & FLAG_Z) != 0);
1700 case INST_NE:
1701 return ((status_reg & FLAG_Z) == 0);
1702 case INST_CS:
1703 return ((status_reg & FLAG_C) != 0);
1704 case INST_CC:
1705 return ((status_reg & FLAG_C) == 0);
1706 case INST_MI:
1707 return ((status_reg & FLAG_N) != 0);
1708 case INST_PL:
1709 return ((status_reg & FLAG_N) == 0);
1710 case INST_VS:
1711 return ((status_reg & FLAG_V) != 0);
1712 case INST_VC:
1713 return ((status_reg & FLAG_V) == 0);
1714 case INST_HI:
1715 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1716 case INST_LS:
1717 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1718 case INST_GE:
1719 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1720 case INST_LT:
1721 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1722 case INST_GT:
1723 return (((status_reg & FLAG_Z) == 0) &&
1724 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1725 case INST_LE:
1726 return (((status_reg & FLAG_Z) != 0) ||
1727 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1728 }
1729 return 1;
1730 }
1731
1732 /* Support routines for single stepping. Calculate the next PC value. */
1733 #define submask(x) ((1L << ((x) + 1)) - 1)
1734 #define bit(obj,st) (((obj) >> (st)) & 1)
1735 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1736 #define sbits(obj,st,fn) \
1737 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1738 #define BranchDest(addr,instr) \
1739 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1740 #define ARM_PC_32 1
1741
1742 static unsigned long
1743 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1744 unsigned long status_reg)
1745 {
1746 unsigned long res, shift;
1747 int rm = bits (inst, 0, 3);
1748 unsigned long shifttype = bits (inst, 5, 6);
1749
1750 if (bit (inst, 4))
1751 {
1752 int rs = bits (inst, 8, 11);
1753 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1754 }
1755 else
1756 shift = bits (inst, 7, 11);
1757
1758 res = (rm == 15
1759 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1760 + (bit (inst, 4) ? 12 : 8))
1761 : read_register (rm));
1762
1763 switch (shifttype)
1764 {
1765 case 0: /* LSL */
1766 res = shift >= 32 ? 0 : res << shift;
1767 break;
1768
1769 case 1: /* LSR */
1770 res = shift >= 32 ? 0 : res >> shift;
1771 break;
1772
1773 case 2: /* ASR */
1774 if (shift >= 32)
1775 shift = 31;
1776 res = ((res & 0x80000000L)
1777 ? ~((~res) >> shift) : res >> shift);
1778 break;
1779
1780 case 3: /* ROR/RRX */
1781 shift &= 31;
1782 if (shift == 0)
1783 res = (res >> 1) | (carry ? 0x80000000L : 0);
1784 else
1785 res = (res >> shift) | (res << (32 - shift));
1786 break;
1787 }
1788
1789 return res & 0xffffffff;
1790 }
1791
1792 /* Return number of 1-bits in VAL. */
1793
1794 static int
1795 bitcount (unsigned long val)
1796 {
1797 int nbits;
1798 for (nbits = 0; val != 0; nbits++)
1799 val &= val - 1; /* delete rightmost 1-bit in val */
1800 return nbits;
1801 }
1802
1803 CORE_ADDR
1804 thumb_get_next_pc (CORE_ADDR pc)
1805 {
1806 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1807 unsigned short inst1 = read_memory_integer (pc, 2);
1808 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1809 unsigned long offset;
1810
1811 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1812 {
1813 CORE_ADDR sp;
1814
1815 /* Fetch the saved PC from the stack. It's stored above
1816 all of the other registers. */
1817 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
1818 sp = read_register (ARM_SP_REGNUM);
1819 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1820 nextpc = ADDR_BITS_REMOVE (nextpc);
1821 if (nextpc == pc)
1822 error ("Infinite loop detected");
1823 }
1824 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1825 {
1826 unsigned long status = read_register (ARM_PS_REGNUM);
1827 unsigned long cond = bits (inst1, 8, 11);
1828 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1829 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1830 }
1831 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1832 {
1833 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1834 }
1835 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1836 {
1837 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1838 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1839 nextpc = pc_val + offset;
1840 }
1841
1842 return nextpc;
1843 }
1844
1845 CORE_ADDR
1846 arm_get_next_pc (CORE_ADDR pc)
1847 {
1848 unsigned long pc_val;
1849 unsigned long this_instr;
1850 unsigned long status;
1851 CORE_ADDR nextpc;
1852
1853 if (arm_pc_is_thumb (pc))
1854 return thumb_get_next_pc (pc);
1855
1856 pc_val = (unsigned long) pc;
1857 this_instr = read_memory_integer (pc, 4);
1858 status = read_register (ARM_PS_REGNUM);
1859 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1860
1861 if (condition_true (bits (this_instr, 28, 31), status))
1862 {
1863 switch (bits (this_instr, 24, 27))
1864 {
1865 case 0x0:
1866 case 0x1: /* data processing */
1867 case 0x2:
1868 case 0x3:
1869 {
1870 unsigned long operand1, operand2, result = 0;
1871 unsigned long rn;
1872 int c;
1873
1874 if (bits (this_instr, 12, 15) != 15)
1875 break;
1876
1877 if (bits (this_instr, 22, 25) == 0
1878 && bits (this_instr, 4, 7) == 9) /* multiply */
1879 error ("Illegal update to pc in instruction");
1880
1881 /* Multiply into PC */
1882 c = (status & FLAG_C) ? 1 : 0;
1883 rn = bits (this_instr, 16, 19);
1884 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1885
1886 if (bit (this_instr, 25))
1887 {
1888 unsigned long immval = bits (this_instr, 0, 7);
1889 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1890 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1891 & 0xffffffff;
1892 }
1893 else /* operand 2 is a shifted register */
1894 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1895
1896 switch (bits (this_instr, 21, 24))
1897 {
1898 case 0x0: /*and */
1899 result = operand1 & operand2;
1900 break;
1901
1902 case 0x1: /*eor */
1903 result = operand1 ^ operand2;
1904 break;
1905
1906 case 0x2: /*sub */
1907 result = operand1 - operand2;
1908 break;
1909
1910 case 0x3: /*rsb */
1911 result = operand2 - operand1;
1912 break;
1913
1914 case 0x4: /*add */
1915 result = operand1 + operand2;
1916 break;
1917
1918 case 0x5: /*adc */
1919 result = operand1 + operand2 + c;
1920 break;
1921
1922 case 0x6: /*sbc */
1923 result = operand1 - operand2 + c;
1924 break;
1925
1926 case 0x7: /*rsc */
1927 result = operand2 - operand1 + c;
1928 break;
1929
1930 case 0x8:
1931 case 0x9:
1932 case 0xa:
1933 case 0xb: /* tst, teq, cmp, cmn */
1934 result = (unsigned long) nextpc;
1935 break;
1936
1937 case 0xc: /*orr */
1938 result = operand1 | operand2;
1939 break;
1940
1941 case 0xd: /*mov */
1942 /* Always step into a function. */
1943 result = operand2;
1944 break;
1945
1946 case 0xe: /*bic */
1947 result = operand1 & ~operand2;
1948 break;
1949
1950 case 0xf: /*mvn */
1951 result = ~operand2;
1952 break;
1953 }
1954 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1955
1956 if (nextpc == pc)
1957 error ("Infinite loop detected");
1958 break;
1959 }
1960
1961 case 0x4:
1962 case 0x5: /* data transfer */
1963 case 0x6:
1964 case 0x7:
1965 if (bit (this_instr, 20))
1966 {
1967 /* load */
1968 if (bits (this_instr, 12, 15) == 15)
1969 {
1970 /* rd == pc */
1971 unsigned long rn;
1972 unsigned long base;
1973
1974 if (bit (this_instr, 22))
1975 error ("Illegal update to pc in instruction");
1976
1977 /* byte write to PC */
1978 rn = bits (this_instr, 16, 19);
1979 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1980 if (bit (this_instr, 24))
1981 {
1982 /* pre-indexed */
1983 int c = (status & FLAG_C) ? 1 : 0;
1984 unsigned long offset =
1985 (bit (this_instr, 25)
1986 ? shifted_reg_val (this_instr, c, pc_val, status)
1987 : bits (this_instr, 0, 11));
1988
1989 if (bit (this_instr, 23))
1990 base += offset;
1991 else
1992 base -= offset;
1993 }
1994 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1995 4);
1996
1997 nextpc = ADDR_BITS_REMOVE (nextpc);
1998
1999 if (nextpc == pc)
2000 error ("Infinite loop detected");
2001 }
2002 }
2003 break;
2004
2005 case 0x8:
2006 case 0x9: /* block transfer */
2007 if (bit (this_instr, 20))
2008 {
2009 /* LDM */
2010 if (bit (this_instr, 15))
2011 {
2012 /* loading pc */
2013 int offset = 0;
2014
2015 if (bit (this_instr, 23))
2016 {
2017 /* up */
2018 unsigned long reglist = bits (this_instr, 0, 14);
2019 offset = bitcount (reglist) * 4;
2020 if (bit (this_instr, 24)) /* pre */
2021 offset += 4;
2022 }
2023 else if (bit (this_instr, 24))
2024 offset = -4;
2025
2026 {
2027 unsigned long rn_val =
2028 read_register (bits (this_instr, 16, 19));
2029 nextpc =
2030 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
2031 + offset),
2032 4);
2033 }
2034 nextpc = ADDR_BITS_REMOVE (nextpc);
2035 if (nextpc == pc)
2036 error ("Infinite loop detected");
2037 }
2038 }
2039 break;
2040
2041 case 0xb: /* branch & link */
2042 case 0xa: /* branch */
2043 {
2044 nextpc = BranchDest (pc, this_instr);
2045
2046 nextpc = ADDR_BITS_REMOVE (nextpc);
2047 if (nextpc == pc)
2048 error ("Infinite loop detected");
2049 break;
2050 }
2051
2052 case 0xc:
2053 case 0xd:
2054 case 0xe: /* coproc ops */
2055 case 0xf: /* SWI */
2056 break;
2057
2058 default:
2059 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
2060 return (pc);
2061 }
2062 }
2063
2064 return nextpc;
2065 }
2066
2067 /* single_step() is called just before we want to resume the inferior,
2068 if we want to single-step it but there is no hardware or kernel
2069 single-step support. We find the target of the coming instruction
2070 and breakpoint it.
2071
2072 single_step() is also called just after the inferior stops. If we
2073 had set up a simulated single-step, we undo our damage. */
2074
2075 static void
2076 arm_software_single_step (enum target_signal sig, int insert_bpt)
2077 {
2078 static int next_pc; /* State between setting and unsetting. */
2079 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2080
2081 if (insert_bpt)
2082 {
2083 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
2084 target_insert_breakpoint (next_pc, break_mem);
2085 }
2086 else
2087 target_remove_breakpoint (next_pc, break_mem);
2088 }
2089
2090 #include "bfd-in2.h"
2091 #include "libcoff.h"
2092
2093 static int
2094 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
2095 {
2096 if (arm_pc_is_thumb (memaddr))
2097 {
2098 static asymbol *asym;
2099 static combined_entry_type ce;
2100 static struct coff_symbol_struct csym;
2101 static struct _bfd fake_bfd;
2102 static bfd_target fake_target;
2103
2104 if (csym.native == NULL)
2105 {
2106 /* Create a fake symbol vector containing a Thumb symbol.
2107 This is solely so that the code in print_insn_little_arm()
2108 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2109 the presence of a Thumb symbol and switch to decoding
2110 Thumb instructions. */
2111
2112 fake_target.flavour = bfd_target_coff_flavour;
2113 fake_bfd.xvec = &fake_target;
2114 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2115 csym.native = &ce;
2116 csym.symbol.the_bfd = &fake_bfd;
2117 csym.symbol.name = "fake";
2118 asym = (asymbol *) & csym;
2119 }
2120
2121 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2122 info->symbols = &asym;
2123 }
2124 else
2125 info->symbols = NULL;
2126
2127 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2128 return print_insn_big_arm (memaddr, info);
2129 else
2130 return print_insn_little_arm (memaddr, info);
2131 }
2132
2133 /* The following define instruction sequences that will cause ARM
2134 cpu's to take an undefined instruction trap. These are used to
2135 signal a breakpoint to GDB.
2136
2137 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2138 modes. A different instruction is required for each mode. The ARM
2139 cpu's can also be big or little endian. Thus four different
2140 instructions are needed to support all cases.
2141
2142 Note: ARMv4 defines several new instructions that will take the
2143 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2144 not in fact add the new instructions. The new undefined
2145 instructions in ARMv4 are all instructions that had no defined
2146 behaviour in earlier chips. There is no guarantee that they will
2147 raise an exception, but may be treated as NOP's. In practice, it
2148 may only safe to rely on instructions matching:
2149
2150 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2151 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2152 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2153
2154 Even this may only true if the condition predicate is true. The
2155 following use a condition predicate of ALWAYS so it is always TRUE.
2156
2157 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2158 and NetBSD all use a software interrupt rather than an undefined
2159 instruction to force a trap. This can be handled by by the
2160 abi-specific code during establishment of the gdbarch vector. */
2161
2162
2163 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2164 override these definitions. */
2165 #ifndef ARM_LE_BREAKPOINT
2166 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2167 #endif
2168 #ifndef ARM_BE_BREAKPOINT
2169 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2170 #endif
2171 #ifndef THUMB_LE_BREAKPOINT
2172 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2173 #endif
2174 #ifndef THUMB_BE_BREAKPOINT
2175 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2176 #endif
2177
2178 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2179 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2180 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2181 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2182
2183 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2184 the program counter value to determine whether a 16-bit or 32-bit
2185 breakpoint should be used. It returns a pointer to a string of
2186 bytes that encode a breakpoint instruction, stores the length of
2187 the string to *lenptr, and adjusts the program counter (if
2188 necessary) to point to the actual memory location where the
2189 breakpoint should be inserted. */
2190
2191 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2192 breakpoints and storing their handles instread of what was in
2193 memory. It is nice that this is the same size as a handle -
2194 otherwise remote-rdp will have to change. */
2195
2196 static const unsigned char *
2197 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2198 {
2199 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2200
2201 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2202 {
2203 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2204 *lenptr = tdep->thumb_breakpoint_size;
2205 return tdep->thumb_breakpoint;
2206 }
2207 else
2208 {
2209 *lenptr = tdep->arm_breakpoint_size;
2210 return tdep->arm_breakpoint;
2211 }
2212 }
2213
2214 /* Extract from an array REGBUF containing the (raw) register state a
2215 function return value of type TYPE, and copy that, in virtual
2216 format, into VALBUF. */
2217
2218 static void
2219 arm_extract_return_value (struct type *type,
2220 struct regcache *regs,
2221 void *dst)
2222 {
2223 bfd_byte *valbuf = dst;
2224
2225 if (TYPE_CODE_FLT == TYPE_CODE (type))
2226 {
2227 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2228
2229 switch (tdep->fp_model)
2230 {
2231 case ARM_FLOAT_FPA:
2232 {
2233 /* The value is in register F0 in internal format. We need to
2234 extract the raw value and then convert it to the desired
2235 internal type. */
2236 bfd_byte tmpbuf[FP_REGISTER_RAW_SIZE];
2237
2238 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2239 convert_from_extended (floatformat_from_type (type), tmpbuf,
2240 valbuf);
2241 }
2242 break;
2243
2244 case ARM_FLOAT_SOFT:
2245 case ARM_FLOAT_SOFT_VFP:
2246 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2247 if (TYPE_LENGTH (type) > 4)
2248 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2249 valbuf + INT_REGISTER_RAW_SIZE);
2250 break;
2251
2252 default:
2253 internal_error
2254 (__FILE__, __LINE__,
2255 "arm_extract_return_value: Floating point model not supported");
2256 break;
2257 }
2258 }
2259 else if (TYPE_CODE (type) == TYPE_CODE_INT
2260 || TYPE_CODE (type) == TYPE_CODE_CHAR
2261 || TYPE_CODE (type) == TYPE_CODE_BOOL
2262 || TYPE_CODE (type) == TYPE_CODE_PTR
2263 || TYPE_CODE (type) == TYPE_CODE_REF
2264 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2265 {
2266 /* If the the type is a plain integer, then the access is
2267 straight-forward. Otherwise we have to play around a bit more. */
2268 int len = TYPE_LENGTH (type);
2269 int regno = ARM_A1_REGNUM;
2270 ULONGEST tmp;
2271
2272 while (len > 0)
2273 {
2274 /* By using store_unsigned_integer we avoid having to do
2275 anything special for small big-endian values. */
2276 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2277 store_unsigned_integer (valbuf,
2278 (len > INT_REGISTER_RAW_SIZE
2279 ? INT_REGISTER_RAW_SIZE : len),
2280 tmp);
2281 len -= INT_REGISTER_RAW_SIZE;
2282 valbuf += INT_REGISTER_RAW_SIZE;
2283 }
2284 }
2285 else
2286 {
2287 /* For a structure or union the behaviour is as if the value had
2288 been stored to word-aligned memory and then loaded into
2289 registers with 32-bit load instruction(s). */
2290 int len = TYPE_LENGTH (type);
2291 int regno = ARM_A1_REGNUM;
2292 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2293
2294 while (len > 0)
2295 {
2296 regcache_cooked_read (regs, regno++, tmpbuf);
2297 memcpy (valbuf, tmpbuf,
2298 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2299 len -= INT_REGISTER_RAW_SIZE;
2300 valbuf += INT_REGISTER_RAW_SIZE;
2301 }
2302 }
2303 }
2304
2305 /* Extract from an array REGBUF containing the (raw) register state
2306 the address in which a function should return its structure value. */
2307
2308 static CORE_ADDR
2309 arm_extract_struct_value_address (struct regcache *regcache)
2310 {
2311 ULONGEST ret;
2312
2313 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2314 return ret;
2315 }
2316
2317 /* Will a function return an aggregate type in memory or in a
2318 register? Return 0 if an aggregate type can be returned in a
2319 register, 1 if it must be returned in memory. */
2320
2321 static int
2322 arm_use_struct_convention (int gcc_p, struct type *type)
2323 {
2324 int nRc;
2325 register enum type_code code;
2326
2327 /* In the ARM ABI, "integer" like aggregate types are returned in
2328 registers. For an aggregate type to be integer like, its size
2329 must be less than or equal to REGISTER_SIZE and the offset of
2330 each addressable subfield must be zero. Note that bit fields are
2331 not addressable, and all addressable subfields of unions always
2332 start at offset zero.
2333
2334 This function is based on the behaviour of GCC 2.95.1.
2335 See: gcc/arm.c: arm_return_in_memory() for details.
2336
2337 Note: All versions of GCC before GCC 2.95.2 do not set up the
2338 parameters correctly for a function returning the following
2339 structure: struct { float f;}; This should be returned in memory,
2340 not a register. Richard Earnshaw sent me a patch, but I do not
2341 know of any way to detect if a function like the above has been
2342 compiled with the correct calling convention. */
2343
2344 /* All aggregate types that won't fit in a register must be returned
2345 in memory. */
2346 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2347 {
2348 return 1;
2349 }
2350
2351 /* The only aggregate types that can be returned in a register are
2352 structs and unions. Arrays must be returned in memory. */
2353 code = TYPE_CODE (type);
2354 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2355 {
2356 return 1;
2357 }
2358
2359 /* Assume all other aggregate types can be returned in a register.
2360 Run a check for structures, unions and arrays. */
2361 nRc = 0;
2362
2363 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2364 {
2365 int i;
2366 /* Need to check if this struct/union is "integer" like. For
2367 this to be true, its size must be less than or equal to
2368 REGISTER_SIZE and the offset of each addressable subfield
2369 must be zero. Note that bit fields are not addressable, and
2370 unions always start at offset zero. If any of the subfields
2371 is a floating point type, the struct/union cannot be an
2372 integer type. */
2373
2374 /* For each field in the object, check:
2375 1) Is it FP? --> yes, nRc = 1;
2376 2) Is it addressable (bitpos != 0) and
2377 not packed (bitsize == 0)?
2378 --> yes, nRc = 1
2379 */
2380
2381 for (i = 0; i < TYPE_NFIELDS (type); i++)
2382 {
2383 enum type_code field_type_code;
2384 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2385
2386 /* Is it a floating point type field? */
2387 if (field_type_code == TYPE_CODE_FLT)
2388 {
2389 nRc = 1;
2390 break;
2391 }
2392
2393 /* If bitpos != 0, then we have to care about it. */
2394 if (TYPE_FIELD_BITPOS (type, i) != 0)
2395 {
2396 /* Bitfields are not addressable. If the field bitsize is
2397 zero, then the field is not packed. Hence it cannot be
2398 a bitfield or any other packed type. */
2399 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2400 {
2401 nRc = 1;
2402 break;
2403 }
2404 }
2405 }
2406 }
2407
2408 return nRc;
2409 }
2410
2411 /* Write into appropriate registers a function return value of type
2412 TYPE, given in virtual format. */
2413
2414 static void
2415 arm_store_return_value (struct type *type, struct regcache *regs,
2416 const void *src)
2417 {
2418 const bfd_byte *valbuf = src;
2419
2420 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2421 {
2422 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2423 char buf[ARM_MAX_REGISTER_RAW_SIZE];
2424
2425 switch (tdep->fp_model)
2426 {
2427 case ARM_FLOAT_FPA:
2428
2429 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2430 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2431 break;
2432
2433 case ARM_FLOAT_SOFT:
2434 case ARM_FLOAT_SOFT_VFP:
2435 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2436 if (TYPE_LENGTH (type) > 4)
2437 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2438 valbuf + INT_REGISTER_RAW_SIZE);
2439 break;
2440
2441 default:
2442 internal_error
2443 (__FILE__, __LINE__,
2444 "arm_store_return_value: Floating point model not supported");
2445 break;
2446 }
2447 }
2448 else if (TYPE_CODE (type) == TYPE_CODE_INT
2449 || TYPE_CODE (type) == TYPE_CODE_CHAR
2450 || TYPE_CODE (type) == TYPE_CODE_BOOL
2451 || TYPE_CODE (type) == TYPE_CODE_PTR
2452 || TYPE_CODE (type) == TYPE_CODE_REF
2453 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2454 {
2455 if (TYPE_LENGTH (type) <= 4)
2456 {
2457 /* Values of one word or less are zero/sign-extended and
2458 returned in r0. */
2459 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2460 LONGEST val = unpack_long (type, valbuf);
2461
2462 store_signed_integer (tmpbuf, INT_REGISTER_RAW_SIZE, val);
2463 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2464 }
2465 else
2466 {
2467 /* Integral values greater than one word are stored in consecutive
2468 registers starting with r0. This will always be a multiple of
2469 the regiser size. */
2470 int len = TYPE_LENGTH (type);
2471 int regno = ARM_A1_REGNUM;
2472
2473 while (len > 0)
2474 {
2475 regcache_cooked_write (regs, regno++, valbuf);
2476 len -= INT_REGISTER_RAW_SIZE;
2477 valbuf += INT_REGISTER_RAW_SIZE;
2478 }
2479 }
2480 }
2481 else
2482 {
2483 /* For a structure or union the behaviour is as if the value had
2484 been stored to word-aligned memory and then loaded into
2485 registers with 32-bit load instruction(s). */
2486 int len = TYPE_LENGTH (type);
2487 int regno = ARM_A1_REGNUM;
2488 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2489
2490 while (len > 0)
2491 {
2492 memcpy (tmpbuf, valbuf,
2493 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2494 regcache_cooked_write (regs, regno++, tmpbuf);
2495 len -= INT_REGISTER_RAW_SIZE;
2496 valbuf += INT_REGISTER_RAW_SIZE;
2497 }
2498 }
2499 }
2500
2501 /* Store the address of the place in which to copy the structure the
2502 subroutine will return. This is called from call_function. */
2503
2504 static void
2505 arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2506 {
2507 write_register (ARM_A1_REGNUM, addr);
2508 }
2509
2510 static int
2511 arm_get_longjmp_target (CORE_ADDR *pc)
2512 {
2513 CORE_ADDR jb_addr;
2514 char buf[INT_REGISTER_RAW_SIZE];
2515 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2516
2517 jb_addr = read_register (ARM_A1_REGNUM);
2518
2519 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2520 INT_REGISTER_RAW_SIZE))
2521 return 0;
2522
2523 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2524 return 1;
2525 }
2526
2527 /* Return non-zero if the PC is inside a thumb call thunk. */
2528
2529 int
2530 arm_in_call_stub (CORE_ADDR pc, char *name)
2531 {
2532 CORE_ADDR start_addr;
2533
2534 /* Find the starting address of the function containing the PC. If
2535 the caller didn't give us a name, look it up at the same time. */
2536 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2537 &start_addr, NULL))
2538 return 0;
2539
2540 return strncmp (name, "_call_via_r", 11) == 0;
2541 }
2542
2543 /* If PC is in a Thumb call or return stub, return the address of the
2544 target PC, which is in a register. The thunk functions are called
2545 _called_via_xx, where x is the register name. The possible names
2546 are r0-r9, sl, fp, ip, sp, and lr. */
2547
2548 CORE_ADDR
2549 arm_skip_stub (CORE_ADDR pc)
2550 {
2551 char *name;
2552 CORE_ADDR start_addr;
2553
2554 /* Find the starting address and name of the function containing the PC. */
2555 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2556 return 0;
2557
2558 /* Call thunks always start with "_call_via_". */
2559 if (strncmp (name, "_call_via_", 10) == 0)
2560 {
2561 /* Use the name suffix to determine which register contains the
2562 target PC. */
2563 static char *table[15] =
2564 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2565 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2566 };
2567 int regno;
2568
2569 for (regno = 0; regno <= 14; regno++)
2570 if (strcmp (&name[10], table[regno]) == 0)
2571 return read_register (regno);
2572 }
2573
2574 return 0; /* not a stub */
2575 }
2576
2577 /* If the user changes the register disassembly flavor used for info
2578 register and other commands, we have to also switch the flavor used
2579 in opcodes for disassembly output. This function is run in the set
2580 disassembly_flavor command, and does that. */
2581
2582 static void
2583 set_disassembly_flavor_sfunc (char *args, int from_tty,
2584 struct cmd_list_element *c)
2585 {
2586 set_disassembly_flavor ();
2587 }
2588 \f
2589 /* Return the ARM register name corresponding to register I. */
2590 static const char *
2591 arm_register_name (int i)
2592 {
2593 return arm_register_names[i];
2594 }
2595
2596 static void
2597 set_disassembly_flavor (void)
2598 {
2599 const char *setname, *setdesc, **regnames;
2600 int numregs, j;
2601
2602 /* Find the flavor that the user wants in the opcodes table. */
2603 int current = 0;
2604 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2605 while ((disassembly_flavor != setname)
2606 && (current < num_flavor_options))
2607 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2608 current_option = current;
2609
2610 /* Fill our copy. */
2611 for (j = 0; j < numregs; j++)
2612 arm_register_names[j] = (char *) regnames[j];
2613
2614 /* Adjust case. */
2615 if (isupper (*regnames[ARM_PC_REGNUM]))
2616 {
2617 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2618 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2619 }
2620 else
2621 {
2622 arm_register_names[ARM_FPS_REGNUM] = "fps";
2623 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2624 }
2625
2626 /* Synchronize the disassembler. */
2627 set_arm_regname_option (current);
2628 }
2629
2630 /* arm_othernames implements the "othernames" command. This is kind
2631 of hacky, and I prefer the set-show disassembly-flavor which is
2632 also used for the x86 gdb. I will keep this around, however, in
2633 case anyone is actually using it. */
2634
2635 static void
2636 arm_othernames (char *names, int n)
2637 {
2638 /* Circle through the various flavors. */
2639 current_option = (current_option + 1) % num_flavor_options;
2640
2641 disassembly_flavor = valid_flavors[current_option];
2642 set_disassembly_flavor ();
2643 }
2644
2645 /* Fetch, and possibly build, an appropriate link_map_offsets structure
2646 for ARM linux targets using the struct offsets defined in <link.h>.
2647 Note, however, that link.h is not actually referred to in this file.
2648 Instead, the relevant structs offsets were obtained from examining
2649 link.h. (We can't refer to link.h from this file because the host
2650 system won't necessarily have it, or if it does, the structs which
2651 it defines will refer to the host system, not the target). */
2652
2653 struct link_map_offsets *
2654 arm_linux_svr4_fetch_link_map_offsets (void)
2655 {
2656 static struct link_map_offsets lmo;
2657 static struct link_map_offsets *lmp = 0;
2658
2659 if (lmp == 0)
2660 {
2661 lmp = &lmo;
2662
2663 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2664 need. */
2665
2666 lmo.r_map_offset = 4;
2667 lmo.r_map_size = 4;
2668
2669 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2670 need. */
2671
2672 lmo.l_addr_offset = 0;
2673 lmo.l_addr_size = 4;
2674
2675 lmo.l_name_offset = 4;
2676 lmo.l_name_size = 4;
2677
2678 lmo.l_next_offset = 12;
2679 lmo.l_next_size = 4;
2680
2681 lmo.l_prev_offset = 16;
2682 lmo.l_prev_size = 4;
2683 }
2684
2685 return lmp;
2686 }
2687
2688 /* Test whether the coff symbol specific value corresponds to a Thumb
2689 function. */
2690
2691 static int
2692 coff_sym_is_thumb (int val)
2693 {
2694 return (val == C_THUMBEXT ||
2695 val == C_THUMBSTAT ||
2696 val == C_THUMBEXTFUNC ||
2697 val == C_THUMBSTATFUNC ||
2698 val == C_THUMBLABEL);
2699 }
2700
2701 /* arm_coff_make_msymbol_special()
2702 arm_elf_make_msymbol_special()
2703
2704 These functions test whether the COFF or ELF symbol corresponds to
2705 an address in thumb code, and set a "special" bit in a minimal
2706 symbol to indicate that it does. */
2707
2708 static void
2709 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2710 {
2711 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2712 STT_ARM_TFUNC). */
2713 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2714 == STT_LOPROC)
2715 MSYMBOL_SET_SPECIAL (msym);
2716 }
2717
2718 static void
2719 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2720 {
2721 if (coff_sym_is_thumb (val))
2722 MSYMBOL_SET_SPECIAL (msym);
2723 }
2724
2725 \f
2726 static enum gdb_osabi
2727 arm_elf_osabi_sniffer (bfd *abfd)
2728 {
2729 unsigned int elfosabi, eflags;
2730 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2731
2732 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2733
2734 switch (elfosabi)
2735 {
2736 case ELFOSABI_NONE:
2737 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2738 file are conforming to the base specification for that machine
2739 (there are no OS-specific extensions). In order to determine the
2740 real OS in use we must look for OS notes that have been added. */
2741 bfd_map_over_sections (abfd,
2742 generic_elf_osabi_sniff_abi_tag_sections,
2743 &osabi);
2744 if (osabi == GDB_OSABI_UNKNOWN)
2745 {
2746 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2747 field for more information. */
2748 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2749 switch (eflags)
2750 {
2751 case EF_ARM_EABI_VER1:
2752 osabi = GDB_OSABI_ARM_EABI_V1;
2753 break;
2754
2755 case EF_ARM_EABI_VER2:
2756 osabi = GDB_OSABI_ARM_EABI_V2;
2757 break;
2758
2759 case EF_ARM_EABI_UNKNOWN:
2760 /* Assume GNU tools. */
2761 osabi = GDB_OSABI_ARM_APCS;
2762 break;
2763
2764 default:
2765 internal_error (__FILE__, __LINE__,
2766 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2767 "version 0x%x", eflags);
2768 }
2769 }
2770 break;
2771
2772 case ELFOSABI_ARM:
2773 /* GNU tools use this value. Check note sections in this case,
2774 as well. */
2775 bfd_map_over_sections (abfd,
2776 generic_elf_osabi_sniff_abi_tag_sections,
2777 &osabi);
2778 if (osabi == GDB_OSABI_UNKNOWN)
2779 {
2780 /* Assume APCS ABI. */
2781 osabi = GDB_OSABI_ARM_APCS;
2782 }
2783 break;
2784
2785 case ELFOSABI_FREEBSD:
2786 osabi = GDB_OSABI_FREEBSD_ELF;
2787 break;
2788
2789 case ELFOSABI_NETBSD:
2790 osabi = GDB_OSABI_NETBSD_ELF;
2791 break;
2792
2793 case ELFOSABI_LINUX:
2794 osabi = GDB_OSABI_LINUX;
2795 break;
2796 }
2797
2798 return osabi;
2799 }
2800
2801 \f
2802 /* Initialize the current architecture based on INFO. If possible,
2803 re-use an architecture from ARCHES, which is a list of
2804 architectures already created during this debugging session.
2805
2806 Called e.g. at program startup, when reading a core file, and when
2807 reading a binary file. */
2808
2809 static struct gdbarch *
2810 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2811 {
2812 struct gdbarch_tdep *tdep;
2813 struct gdbarch *gdbarch;
2814
2815 /* Try to deterimine the ABI of the object we are loading. */
2816
2817 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2818 {
2819 switch (bfd_get_flavour (info.abfd))
2820 {
2821 case bfd_target_aout_flavour:
2822 /* Assume it's an old APCS-style ABI. */
2823 info.osabi = GDB_OSABI_ARM_APCS;
2824 break;
2825
2826 case bfd_target_coff_flavour:
2827 /* Assume it's an old APCS-style ABI. */
2828 /* XXX WinCE? */
2829 info.osabi = GDB_OSABI_ARM_APCS;
2830 break;
2831
2832 default:
2833 /* Leave it as "unknown". */
2834 }
2835 }
2836
2837 /* If there is already a candidate, use it. */
2838 arches = gdbarch_list_lookup_by_info (arches, &info);
2839 if (arches != NULL)
2840 return arches->gdbarch;
2841
2842 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2843 gdbarch = gdbarch_alloc (&info, tdep);
2844
2845 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2846 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2847 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
2848
2849 /* This is the way it has always defaulted. */
2850 tdep->fp_model = ARM_FLOAT_FPA;
2851
2852 /* Breakpoints. */
2853 switch (info.byte_order)
2854 {
2855 case BFD_ENDIAN_BIG:
2856 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2857 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2858 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2859 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2860
2861 break;
2862
2863 case BFD_ENDIAN_LITTLE:
2864 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2865 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2866 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2867 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2868
2869 break;
2870
2871 default:
2872 internal_error (__FILE__, __LINE__,
2873 "arm_gdbarch_init: bad byte order for float format");
2874 }
2875
2876 /* On ARM targets char defaults to unsigned. */
2877 set_gdbarch_char_signed (gdbarch, 0);
2878
2879 /* This should be low enough for everything. */
2880 tdep->lowest_pc = 0x20;
2881 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2882
2883 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2884 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2885
2886 set_gdbarch_call_dummy_p (gdbarch, 1);
2887 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2888
2889 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2890 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2891 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2892 set_gdbarch_call_dummy_length (gdbarch, 0);
2893
2894 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
2895
2896 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2897 set_gdbarch_push_return_address (gdbarch, arm_push_return_address);
2898
2899 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
2900
2901 /* Frame handling. */
2902 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
2903 set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2904 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2905 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2906 set_gdbarch_frameless_function_invocation
2907 (gdbarch, arm_frameless_function_invocation);
2908 set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2909 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2910 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2911 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2912 set_gdbarch_frame_args_skip (gdbarch, 0);
2913 set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
2914 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2915 set_gdbarch_pop_frame (gdbarch, arm_pop_frame);
2916
2917 /* Address manipulation. */
2918 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2919 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2920
2921 /* Offset from address of function to start of its code. */
2922 set_gdbarch_function_start_offset (gdbarch, 0);
2923
2924 /* Advance PC across function entry code. */
2925 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2926
2927 /* Get the PC when a frame might not be available. */
2928 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2929
2930 /* The stack grows downward. */
2931 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2932
2933 /* Breakpoint manipulation. */
2934 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2935 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2936
2937 /* Information about registers, etc. */
2938 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2939 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2940 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2941 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2942 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2943 set_gdbarch_register_bytes (gdbarch,
2944 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2945 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2946 + NUM_SREGS * STATUS_REGISTER_SIZE));
2947 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2948 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2949 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2950 set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2951 set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2952 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2953
2954 /* Internal <-> external register number maps. */
2955 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2956
2957 /* Integer registers are 4 bytes. */
2958 set_gdbarch_register_size (gdbarch, 4);
2959 set_gdbarch_register_name (gdbarch, arm_register_name);
2960
2961 /* Returning results. */
2962 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2963 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2964 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
2965 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2966 set_gdbarch_extract_struct_value_address (gdbarch,
2967 arm_extract_struct_value_address);
2968
2969 /* Single stepping. */
2970 /* XXX For an RDI target we should ask the target if it can single-step. */
2971 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2972
2973 /* Minsymbol frobbing. */
2974 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2975 set_gdbarch_coff_make_msymbol_special (gdbarch,
2976 arm_coff_make_msymbol_special);
2977
2978 /* Hook in the ABI-specific overrides, if they have been registered. */
2979 gdbarch_init_osabi (info, gdbarch);
2980
2981 /* Now we have tuned the configuration, set a few final things,
2982 based on what the OS ABI has told us. */
2983
2984 if (tdep->jb_pc >= 0)
2985 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2986
2987 /* Floating point sizes and format. */
2988 switch (info.byte_order)
2989 {
2990 case BFD_ENDIAN_BIG:
2991 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2992 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2993 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2994
2995 break;
2996
2997 case BFD_ENDIAN_LITTLE:
2998 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2999 if (tdep->fp_model == ARM_FLOAT_VFP
3000 || tdep->fp_model == ARM_FLOAT_SOFT_VFP)
3001 {
3002 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
3003 set_gdbarch_long_double_format (gdbarch,
3004 &floatformat_ieee_double_little);
3005 }
3006 else
3007 {
3008 set_gdbarch_double_format
3009 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3010 set_gdbarch_long_double_format
3011 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3012 }
3013 break;
3014
3015 default:
3016 internal_error (__FILE__, __LINE__,
3017 "arm_gdbarch_init: bad byte order for float format");
3018 }
3019
3020 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
3021 references the old architecture vector, not the one we are
3022 building here. */
3023 if (get_frame_saved_regs (prologue_cache) != NULL)
3024 xfree (get_frame_saved_regs (prologue_cache));
3025
3026 /* We can't use NUM_REGS nor NUM_PSEUDO_REGS here, since that still
3027 references the old architecture vector, not the one we are
3028 building here. */
3029 prologue_cache->saved_regs = (CORE_ADDR *)
3030 xcalloc (1, (sizeof (CORE_ADDR)
3031 * (gdbarch_num_regs (gdbarch)
3032 + gdbarch_num_pseudo_regs (gdbarch))));
3033
3034 return gdbarch;
3035 }
3036
3037 static void
3038 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3039 {
3040 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3041
3042 if (tdep == NULL)
3043 return;
3044
3045 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
3046 (unsigned long) tdep->lowest_pc);
3047 }
3048
3049 static void
3050 arm_init_abi_eabi_v1 (struct gdbarch_info info,
3051 struct gdbarch *gdbarch)
3052 {
3053 /* Place-holder. */
3054 }
3055
3056 static void
3057 arm_init_abi_eabi_v2 (struct gdbarch_info info,
3058 struct gdbarch *gdbarch)
3059 {
3060 /* Place-holder. */
3061 }
3062
3063 static void
3064 arm_init_abi_apcs (struct gdbarch_info info,
3065 struct gdbarch *gdbarch)
3066 {
3067 /* Place-holder. */
3068 }
3069
3070 void
3071 _initialize_arm_tdep (void)
3072 {
3073 struct ui_file *stb;
3074 long length;
3075 struct cmd_list_element *new_cmd;
3076 const char *setname;
3077 const char *setdesc;
3078 const char **regnames;
3079 int numregs, i, j;
3080 static char *helptext;
3081
3082 if (GDB_MULTI_ARCH)
3083 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3084
3085 /* Register an ELF OS ABI sniffer for ARM binaries. */
3086 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3087 bfd_target_elf_flavour,
3088 arm_elf_osabi_sniffer);
3089
3090 /* Register some ABI variants for embedded systems. */
3091 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
3092 arm_init_abi_eabi_v1);
3093 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
3094 arm_init_abi_eabi_v2);
3095 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
3096 arm_init_abi_apcs);
3097
3098 tm_print_insn = gdb_print_insn_arm;
3099
3100 /* Get the number of possible sets of register names defined in opcodes. */
3101 num_flavor_options = get_arm_regname_num_options ();
3102
3103 /* Sync the opcode insn printer with our register viewer. */
3104 parse_arm_disassembler_option ("reg-names-std");
3105
3106 /* Begin creating the help text. */
3107 stb = mem_fileopen ();
3108 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
3109 The valid values are:\n");
3110
3111 /* Initialize the array that will be passed to add_set_enum_cmd(). */
3112 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
3113 for (i = 0; i < num_flavor_options; i++)
3114 {
3115 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3116 valid_flavors[i] = setname;
3117 fprintf_unfiltered (stb, "%s - %s\n", setname,
3118 setdesc);
3119 /* Copy the default names (if found) and synchronize disassembler. */
3120 if (!strcmp (setname, "std"))
3121 {
3122 disassembly_flavor = setname;
3123 current_option = i;
3124 for (j = 0; j < numregs; j++)
3125 arm_register_names[j] = (char *) regnames[j];
3126 set_arm_regname_option (i);
3127 }
3128 }
3129 /* Mark the end of valid options. */
3130 valid_flavors[num_flavor_options] = NULL;
3131
3132 /* Finish the creation of the help text. */
3133 fprintf_unfiltered (stb, "The default is \"std\".");
3134 helptext = ui_file_xstrdup (stb, &length);
3135 ui_file_delete (stb);
3136
3137 /* Add the disassembly-flavor command. */
3138 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
3139 valid_flavors,
3140 &disassembly_flavor,
3141 helptext,
3142 &setlist);
3143 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
3144 add_show_from_set (new_cmd, &showlist);
3145
3146 /* ??? Maybe this should be a boolean. */
3147 add_show_from_set (add_set_cmd ("apcs32", no_class,
3148 var_zinteger, (char *) &arm_apcs_32,
3149 "Set usage of ARM 32-bit mode.\n", &setlist),
3150 &showlist);
3151
3152 /* Add the deprecated "othernames" command. */
3153
3154 add_com ("othernames", class_obscure, arm_othernames,
3155 "Switch to the next set of register names.");
3156
3157 /* Allocate the prologue_cache. */
3158 prologue_cache = deprecated_frame_xmalloc ();
3159 deprecated_set_frame_extra_info_hack (prologue_cache, xcalloc (1, sizeof (struct frame_extra_info)));
3160
3161 /* Debugging flag. */
3162 add_show_from_set (add_set_cmd ("arm", class_maintenance, var_zinteger,
3163 &arm_debug, "Set arm debugging.\n\
3164 When non-zero, arm specific debugging is enabled.", &setdebuglist),
3165 &showdebuglist);
3166 }
This page took 0.187939 seconds and 4 git commands to generate.