1 /* Common target dependent code for GDB on ARM systems.
3 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 #include <ctype.h> /* XXX for isupper () */
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
35 #include "arch-utils.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
41 #include "dwarf2-frame.h"
44 #include "gdb/sim-arm.h"
47 #include "coff/internal.h"
50 #include "gdb_assert.h"
54 /* Each OS has a different mechanism for accessing the various
55 registers stored in the sigcontext structure.
57 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
58 function pointer) which may be used to determine the addresses
59 of the various saved registers in the sigcontext structure.
61 For the ARM target, there are three parameters to this function.
62 The first is the pc value of the frame under consideration, the
63 second the stack pointer of this frame, and the last is the
64 register number to fetch.
66 If the tm.h file does not define this macro, then it's assumed that
67 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
70 When it comes time to multi-arching this code, see the identically
71 named machinery in ia64-tdep.c for an example of how it could be
72 done. It should not be necessary to modify the code below where
73 this macro is used. */
75 #ifdef SIGCONTEXT_REGISTER_ADDRESS
76 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
77 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
80 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
81 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
84 /* Macros for setting and testing a bit in a minimal symbol that marks
85 it as Thumb function. The MSB of the minimal symbol's "info" field
86 is used for this purpose.
88 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
89 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
91 #define MSYMBOL_SET_SPECIAL(msym) \
92 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
95 #define MSYMBOL_IS_SPECIAL(msym) \
96 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
98 /* The list of available "set arm ..." and "show arm ..." commands. */
99 static struct cmd_list_element
*setarmcmdlist
= NULL
;
100 static struct cmd_list_element
*showarmcmdlist
= NULL
;
102 /* The type of floating-point to use. Keep this in sync with enum
103 arm_float_model, and the help string in _initialize_arm_tdep. */
104 static const char *fp_model_strings
[] =
114 /* A variable that can be configured by the user. */
115 static enum arm_float_model arm_fp_model
= ARM_FLOAT_AUTO
;
116 static const char *current_fp_model
= "auto";
118 /* The ABI to use. Keep this in sync with arm_abi_kind. */
119 static const char *arm_abi_strings
[] =
127 /* A variable that can be configured by the user. */
128 static enum arm_abi_kind arm_abi_global
= ARM_ABI_AUTO
;
129 static const char *arm_abi_string
= "auto";
131 /* Number of different reg name sets (options). */
132 static int num_disassembly_options
;
134 /* We have more registers than the disassembler as gdb can print the value
135 of special registers as well.
136 The general register names are overwritten by whatever is being used by
137 the disassembler at the moment. We also adjust the case of cpsr and fps. */
139 /* Initial value: Register names used in ARM's ISA documentation. */
140 static char * arm_register_name_strings
[] =
141 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
142 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
143 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
144 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
145 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
146 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
147 "fps", "cpsr" }; /* 24 25 */
148 static char **arm_register_names
= arm_register_name_strings
;
150 /* Valid register name styles. */
151 static const char **valid_disassembly_styles
;
153 /* Disassembly style to use. Default to "std" register names. */
154 static const char *disassembly_style
;
155 /* Index to that option in the opcodes table. */
156 static int current_option
;
158 /* This is used to keep the bfd arch_info in sync with the disassembly
160 static void set_disassembly_style_sfunc(char *, int,
161 struct cmd_list_element
*);
162 static void set_disassembly_style (void);
164 static void convert_from_extended (const struct floatformat
*, const void *,
166 static void convert_to_extended (const struct floatformat
*, void *,
169 struct arm_prologue_cache
171 /* The stack pointer at the time this frame was created; i.e. the
172 caller's stack pointer when this function was called. It is used
173 to identify this frame. */
176 /* The frame base for this frame is just prev_sp + frame offset -
177 frame size. FRAMESIZE is the size of this stack frame, and
178 FRAMEOFFSET if the initial offset from the stack pointer (this
179 frame's stack pointer, not PREV_SP) to the frame base. */
184 /* The register used to hold the frame pointer for this frame. */
187 /* Saved register offsets. */
188 struct trad_frame_saved_reg
*saved_regs
;
191 /* Addresses for calling Thumb functions have the bit 0 set.
192 Here are some macros to test, set, or clear bit 0 of addresses. */
193 #define IS_THUMB_ADDR(addr) ((addr) & 1)
194 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
195 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
197 /* Set to true if the 32-bit mode is in use. */
201 /* Determine if the program counter specified in MEMADDR is in a Thumb
205 arm_pc_is_thumb (CORE_ADDR memaddr
)
207 struct minimal_symbol
*sym
;
209 /* If bit 0 of the address is set, assume this is a Thumb address. */
210 if (IS_THUMB_ADDR (memaddr
))
213 /* Thumb functions have a "special" bit set in minimal symbols. */
214 sym
= lookup_minimal_symbol_by_pc (memaddr
);
217 return (MSYMBOL_IS_SPECIAL (sym
));
225 /* Remove useless bits from addresses in a running program. */
227 arm_addr_bits_remove (CORE_ADDR val
)
230 return (val
& (arm_pc_is_thumb (val
) ? 0xfffffffe : 0xfffffffc));
232 return (val
& 0x03fffffc);
235 /* When reading symbols, we need to zap the low bit of the address,
236 which may be set to 1 for Thumb functions. */
238 arm_smash_text_address (CORE_ADDR val
)
243 /* Immediately after a function call, return the saved pc. Can't
244 always go through the frames for this because on some machines the
245 new frame is not set up until the new function executes some
249 arm_saved_pc_after_call (struct frame_info
*frame
)
251 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM
));
254 /* A typical Thumb prologue looks like this:
258 Sometimes the latter instruction may be replaced by:
266 or, on tpcs, like this:
273 There is always one instruction of three classes:
278 When we have found at least one of each class we are done with the prolog.
279 Note that the "sub sp, #NN" before the push does not count.
283 thumb_skip_prologue (CORE_ADDR pc
, CORE_ADDR func_end
)
285 CORE_ADDR current_pc
;
287 bit 0 - push { rlist }
288 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
289 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
293 for (current_pc
= pc
;
294 current_pc
+ 2 < func_end
&& current_pc
< pc
+ 40;
297 unsigned short insn
= read_memory_unsigned_integer (current_pc
, 2);
299 if ((insn
& 0xfe00) == 0xb400) /* push { rlist } */
301 findmask
|= 1; /* push found */
303 else if ((insn
& 0xff00) == 0xb000) /* add sp, #simm OR
306 if ((findmask
& 1) == 0) /* before push ? */
309 findmask
|= 4; /* add/sub sp found */
311 else if ((insn
& 0xff00) == 0xaf00) /* add r7, sp, #imm */
313 findmask
|= 2; /* setting of r7 found */
315 else if (insn
== 0x466f) /* mov r7, sp */
317 findmask
|= 2; /* setting of r7 found */
319 else if (findmask
== (4+2+1))
321 /* We have found one of each type of prologue instruction */
325 /* Something in the prolog that we don't care about or some
326 instruction from outside the prolog scheduled here for
334 /* Advance the PC across any function entry prologue instructions to
335 reach some "real" code.
337 The APCS (ARM Procedure Call Standard) defines the following
341 [stmfd sp!, {a1,a2,a3,a4}]
342 stmfd sp!, {...,fp,ip,lr,pc}
343 [stfe f7, [sp, #-12]!]
344 [stfe f6, [sp, #-12]!]
345 [stfe f5, [sp, #-12]!]
346 [stfe f4, [sp, #-12]!]
347 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
350 arm_skip_prologue (CORE_ADDR pc
)
354 CORE_ADDR func_addr
, func_end
= 0;
356 struct symtab_and_line sal
;
358 /* If we're in a dummy frame, don't even try to skip the prologue. */
359 if (deprecated_pc_in_call_dummy (pc
))
362 /* See what the symbol table says. */
364 if (find_pc_partial_function (pc
, &func_name
, &func_addr
, &func_end
))
368 /* Found a function. */
369 sym
= lookup_symbol (func_name
, NULL
, VAR_DOMAIN
, NULL
, NULL
);
370 if (sym
&& SYMBOL_LANGUAGE (sym
) != language_asm
)
372 /* Don't use this trick for assembly source files. */
373 sal
= find_pc_line (func_addr
, 0);
374 if ((sal
.line
!= 0) && (sal
.end
< func_end
))
379 /* Check if this is Thumb code. */
380 if (arm_pc_is_thumb (pc
))
381 return thumb_skip_prologue (pc
, func_end
);
383 /* Can't find the prologue end in the symbol table, try it the hard way
384 by disassembling the instructions. */
386 /* Like arm_scan_prologue, stop no later than pc + 64. */
387 if (func_end
== 0 || func_end
> pc
+ 64)
390 for (skip_pc
= pc
; skip_pc
< func_end
; skip_pc
+= 4)
392 inst
= read_memory_integer (skip_pc
, 4);
394 /* "mov ip, sp" is no longer a required part of the prologue. */
395 if (inst
== 0xe1a0c00d) /* mov ip, sp */
398 if ((inst
& 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
401 if ((inst
& 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
404 /* Some prologues begin with "str lr, [sp, #-4]!". */
405 if (inst
== 0xe52de004) /* str lr, [sp, #-4]! */
408 if ((inst
& 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
411 if ((inst
& 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
414 /* Any insns after this point may float into the code, if it makes
415 for better instruction scheduling, so we skip them only if we
416 find them, but still consider the function to be frame-ful. */
418 /* We may have either one sfmfd instruction here, or several stfe
419 insns, depending on the version of floating point code we
421 if ((inst
& 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
424 if ((inst
& 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
427 if ((inst
& 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
430 if ((inst
& 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
433 if ((inst
& 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
434 (inst
& 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
435 (inst
& 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
438 if ((inst
& 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
439 (inst
& 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
440 (inst
& 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
443 /* Un-recognized instruction; stop scanning. */
447 return skip_pc
; /* End of prologue */
451 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
452 This function decodes a Thumb function prologue to determine:
453 1) the size of the stack frame
454 2) which registers are saved on it
455 3) the offsets of saved regs
456 4) the offset from the stack pointer to the frame pointer
458 A typical Thumb function prologue would create this stack frame
459 (offsets relative to FP)
460 old SP -> 24 stack parameters
463 R7 -> 0 local variables (16 bytes)
464 SP -> -12 additional stack space (12 bytes)
465 The frame size would thus be 36 bytes, and the frame offset would be
466 12 bytes. The frame register is R7.
468 The comments for thumb_skip_prolog() describe the algorithm we use
469 to detect the end of the prolog. */
473 thumb_scan_prologue (CORE_ADDR prev_pc
, struct arm_prologue_cache
*cache
)
475 CORE_ADDR prologue_start
;
476 CORE_ADDR prologue_end
;
477 CORE_ADDR current_pc
;
478 /* Which register has been copied to register n? */
481 bit 0 - push { rlist }
482 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
483 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
488 if (find_pc_partial_function (prev_pc
, NULL
, &prologue_start
, &prologue_end
))
490 struct symtab_and_line sal
= find_pc_line (prologue_start
, 0);
492 if (sal
.line
== 0) /* no line info, use current PC */
493 prologue_end
= prev_pc
;
494 else if (sal
.end
< prologue_end
) /* next line begins after fn end */
495 prologue_end
= sal
.end
; /* (probably means no prologue) */
498 /* We're in the boondocks: allow for
499 16 pushes, an add, and "mv fp,sp". */
500 prologue_end
= prologue_start
+ 40;
502 prologue_end
= min (prologue_end
, prev_pc
);
504 /* Initialize the saved register map. When register H is copied to
505 register L, we will put H in saved_reg[L]. */
506 for (i
= 0; i
< 16; i
++)
509 /* Search the prologue looking for instructions that set up the
510 frame pointer, adjust the stack pointer, and save registers.
511 Do this until all basic prolog instructions are found. */
513 cache
->framesize
= 0;
514 for (current_pc
= prologue_start
;
515 (current_pc
< prologue_end
) && ((findmask
& 7) != 7);
522 insn
= read_memory_unsigned_integer (current_pc
, 2);
524 if ((insn
& 0xfe00) == 0xb400) /* push { rlist } */
527 findmask
|= 1; /* push found */
528 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
529 whether to save LR (R14). */
530 mask
= (insn
& 0xff) | ((insn
& 0x100) << 6);
532 /* Calculate offsets of saved R0-R7 and LR. */
533 for (regno
= ARM_LR_REGNUM
; regno
>= 0; regno
--)
534 if (mask
& (1 << regno
))
536 cache
->framesize
+= 4;
537 cache
->saved_regs
[saved_reg
[regno
]].addr
= -cache
->framesize
;
538 /* Reset saved register map. */
539 saved_reg
[regno
] = regno
;
542 else if ((insn
& 0xff00) == 0xb000) /* add sp, #simm OR
545 if ((findmask
& 1) == 0) /* before push? */
548 findmask
|= 4; /* add/sub sp found */
550 offset
= (insn
& 0x7f) << 2; /* get scaled offset */
551 if (insn
& 0x80) /* is it signed? (==subtracting) */
553 cache
->frameoffset
+= offset
;
556 cache
->framesize
-= offset
;
558 else if ((insn
& 0xff00) == 0xaf00) /* add r7, sp, #imm */
560 findmask
|= 2; /* setting of r7 found */
561 cache
->framereg
= THUMB_FP_REGNUM
;
562 /* get scaled offset */
563 cache
->frameoffset
= (insn
& 0xff) << 2;
565 else if (insn
== 0x466f) /* mov r7, sp */
567 findmask
|= 2; /* setting of r7 found */
568 cache
->framereg
= THUMB_FP_REGNUM
;
569 cache
->frameoffset
= 0;
570 saved_reg
[THUMB_FP_REGNUM
] = ARM_SP_REGNUM
;
572 else if ((insn
& 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
574 int lo_reg
= insn
& 7; /* dest. register (r0-r7) */
575 int hi_reg
= ((insn
>> 3) & 7) + 8; /* source register (r8-15) */
576 saved_reg
[lo_reg
] = hi_reg
; /* remember hi reg was saved */
579 /* Something in the prolog that we don't care about or some
580 instruction from outside the prolog scheduled here for
586 /* This function decodes an ARM function prologue to determine:
587 1) the size of the stack frame
588 2) which registers are saved on it
589 3) the offsets of saved regs
590 4) the offset from the stack pointer to the frame pointer
591 This information is stored in the "extra" fields of the frame_info.
593 There are two basic forms for the ARM prologue. The fixed argument
594 function call will look like:
597 stmfd sp!, {fp, ip, lr, pc}
601 Which would create this stack frame (offsets relative to FP):
602 IP -> 4 (caller's stack)
603 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
604 -4 LR (return address in caller)
605 -8 IP (copy of caller's SP)
607 SP -> -28 Local variables
609 The frame size would thus be 32 bytes, and the frame offset would be
610 28 bytes. The stmfd call can also save any of the vN registers it
611 plans to use, which increases the frame size accordingly.
613 Note: The stored PC is 8 off of the STMFD instruction that stored it
614 because the ARM Store instructions always store PC + 8 when you read
617 A variable argument function call will look like:
620 stmfd sp!, {a1, a2, a3, a4}
621 stmfd sp!, {fp, ip, lr, pc}
624 Which would create this stack frame (offsets relative to FP):
625 IP -> 20 (caller's stack)
630 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
631 -4 LR (return address in caller)
632 -8 IP (copy of caller's SP)
634 SP -> -28 Local variables
636 The frame size would thus be 48 bytes, and the frame offset would be
639 There is another potential complication, which is that the optimizer
640 will try to separate the store of fp in the "stmfd" instruction from
641 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
642 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
644 Also, note, the original version of the ARM toolchain claimed that there
647 instruction at the end of the prologue. I have never seen GCC produce
648 this, and the ARM docs don't mention it. We still test for it below in
654 arm_scan_prologue (struct frame_info
*next_frame
, struct arm_prologue_cache
*cache
)
656 int regno
, sp_offset
, fp_offset
, ip_offset
;
657 CORE_ADDR prologue_start
, prologue_end
, current_pc
;
658 CORE_ADDR prev_pc
= frame_pc_unwind (next_frame
);
660 /* Assume there is no frame until proven otherwise. */
661 cache
->framereg
= ARM_SP_REGNUM
;
662 cache
->framesize
= 0;
663 cache
->frameoffset
= 0;
665 /* Check for Thumb prologue. */
666 if (arm_pc_is_thumb (prev_pc
))
668 thumb_scan_prologue (prev_pc
, cache
);
672 /* Find the function prologue. If we can't find the function in
673 the symbol table, peek in the stack frame to find the PC. */
674 if (find_pc_partial_function (prev_pc
, NULL
, &prologue_start
, &prologue_end
))
676 /* One way to find the end of the prologue (which works well
677 for unoptimized code) is to do the following:
679 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
682 prologue_end = prev_pc;
683 else if (sal.end < prologue_end)
684 prologue_end = sal.end;
686 This mechanism is very accurate so long as the optimizer
687 doesn't move any instructions from the function body into the
688 prologue. If this happens, sal.end will be the last
689 instruction in the first hunk of prologue code just before
690 the first instruction that the scheduler has moved from
691 the body to the prologue.
693 In order to make sure that we scan all of the prologue
694 instructions, we use a slightly less accurate mechanism which
695 may scan more than necessary. To help compensate for this
696 lack of accuracy, the prologue scanning loop below contains
697 several clauses which'll cause the loop to terminate early if
698 an implausible prologue instruction is encountered.
704 is a suitable endpoint since it accounts for the largest
705 possible prologue plus up to five instructions inserted by
708 if (prologue_end
> prologue_start
+ 64)
710 prologue_end
= prologue_start
+ 64; /* See above. */
715 /* We have no symbol information. Our only option is to assume this
716 function has a standard stack frame and the normal frame register.
717 Then, we can find the value of our frame pointer on entrance to
718 the callee (or at the present moment if this is the innermost frame).
719 The value stored there should be the address of the stmfd + 8. */
721 LONGEST return_value
;
723 frame_loc
= frame_unwind_register_unsigned (next_frame
, ARM_FP_REGNUM
);
724 if (!safe_read_memory_integer (frame_loc
, 4, &return_value
))
728 prologue_start
= ADDR_BITS_REMOVE (return_value
) - 8;
729 prologue_end
= prologue_start
+ 64; /* See above. */
733 if (prev_pc
< prologue_end
)
734 prologue_end
= prev_pc
;
736 /* Now search the prologue looking for instructions that set up the
737 frame pointer, adjust the stack pointer, and save registers.
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
742 a frame, which will confuse stack traceback, as well as "finish"
743 and other operations that rely on a knowledge of the stack
746 In the APCS, the prologue should start with "mov ip, sp" so
747 if we don't see this as the first insn, we will stop.
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
757 sp_offset
= fp_offset
= ip_offset
= 0;
759 for (current_pc
= prologue_start
;
760 current_pc
< prologue_end
;
763 unsigned int insn
= read_memory_unsigned_integer (current_pc
, 4);
765 if (insn
== 0xe1a0c00d) /* mov ip, sp */
770 else if ((insn
& 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
772 unsigned imm
= insn
& 0xff; /* immediate value */
773 unsigned rot
= (insn
& 0xf00) >> 7; /* rotate amount */
774 imm
= (imm
>> rot
) | (imm
<< (32 - rot
));
778 else if ((insn
& 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
780 unsigned imm
= insn
& 0xff; /* immediate value */
781 unsigned rot
= (insn
& 0xf00) >> 7; /* rotate amount */
782 imm
= (imm
>> rot
) | (imm
<< (32 - rot
));
786 else if (insn
== 0xe52de004) /* str lr, [sp, #-4]! */
789 cache
->saved_regs
[ARM_LR_REGNUM
].addr
= sp_offset
;
792 else if ((insn
& 0xffff0000) == 0xe92d0000)
793 /* stmfd sp!, {..., fp, ip, lr, pc}
795 stmfd sp!, {a1, a2, a3, a4} */
797 int mask
= insn
& 0xffff;
799 /* Calculate offsets of saved registers. */
800 for (regno
= ARM_PC_REGNUM
; regno
>= 0; regno
--)
801 if (mask
& (1 << regno
))
804 cache
->saved_regs
[regno
].addr
= sp_offset
;
807 else if ((insn
& 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn
& 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn
& 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
811 /* No need to add this to saved_regs -- it's just an arg reg. */
814 else if ((insn
& 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn
& 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn
& 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
818 /* No need to add this to saved_regs -- it's just an arg reg. */
821 else if ((insn
& 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
823 unsigned imm
= insn
& 0xff; /* immediate value */
824 unsigned rot
= (insn
& 0xf00) >> 7; /* rotate amount */
825 imm
= (imm
>> rot
) | (imm
<< (32 - rot
));
826 fp_offset
= -imm
+ ip_offset
;
827 cache
->framereg
= ARM_FP_REGNUM
;
829 else if ((insn
& 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
831 unsigned imm
= insn
& 0xff; /* immediate value */
832 unsigned rot
= (insn
& 0xf00) >> 7; /* rotate amount */
833 imm
= (imm
>> rot
) | (imm
<< (32 - rot
));
836 else if ((insn
& 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
839 regno
= ARM_F0_REGNUM
+ ((insn
>> 12) & 0x07);
840 cache
->saved_regs
[regno
].addr
= sp_offset
;
842 else if ((insn
& 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
845 unsigned int fp_start_reg
, fp_bound_reg
;
847 if ((insn
& 0x800) == 0x800) /* N0 is set */
849 if ((insn
& 0x40000) == 0x40000) /* N1 is set */
856 if ((insn
& 0x40000) == 0x40000) /* N1 is set */
862 fp_start_reg
= ARM_F0_REGNUM
+ ((insn
>> 12) & 0x7);
863 fp_bound_reg
= fp_start_reg
+ n_saved_fp_regs
;
864 for (; fp_start_reg
< fp_bound_reg
; fp_start_reg
++)
867 cache
->saved_regs
[fp_start_reg
++].addr
= sp_offset
;
870 else if ((insn
& 0xf0000000) != 0xe0000000)
871 break; /* Condition not true, exit early */
872 else if ((insn
& 0xfe200000) == 0xe8200000) /* ldm? */
873 break; /* Don't scan past a block load */
875 /* The optimizer might shove anything into the prologue,
876 so we just skip what we don't recognize. */
880 /* The frame size is just the negative of the offset (from the
881 original SP) of the last thing thing we pushed on the stack.
882 The frame offset is [new FP] - [new SP]. */
883 cache
->framesize
= -sp_offset
;
884 if (cache
->framereg
== ARM_FP_REGNUM
)
885 cache
->frameoffset
= fp_offset
- sp_offset
;
887 cache
->frameoffset
= 0;
890 static struct arm_prologue_cache
*
891 arm_make_prologue_cache (struct frame_info
*next_frame
)
894 struct arm_prologue_cache
*cache
;
895 CORE_ADDR unwound_fp
;
897 cache
= frame_obstack_zalloc (sizeof (struct arm_prologue_cache
));
898 cache
->saved_regs
= trad_frame_alloc_saved_regs (next_frame
);
900 arm_scan_prologue (next_frame
, cache
);
902 unwound_fp
= frame_unwind_register_unsigned (next_frame
, cache
->framereg
);
906 cache
->prev_sp
= unwound_fp
+ cache
->framesize
- cache
->frameoffset
;
908 /* Calculate actual addresses of saved registers using offsets
909 determined by arm_scan_prologue. */
910 for (reg
= 0; reg
< NUM_REGS
; reg
++)
911 if (trad_frame_addr_p (cache
->saved_regs
, reg
))
912 cache
->saved_regs
[reg
].addr
+= cache
->prev_sp
;
917 /* Our frame ID for a normal frame is the current function's starting PC
918 and the caller's SP when we were called. */
921 arm_prologue_this_id (struct frame_info
*next_frame
,
923 struct frame_id
*this_id
)
925 struct arm_prologue_cache
*cache
;
929 if (*this_cache
== NULL
)
930 *this_cache
= arm_make_prologue_cache (next_frame
);
933 func
= frame_func_unwind (next_frame
);
935 /* This is meant to halt the backtrace at "_start". Make sure we
936 don't halt it at a generic dummy frame. */
937 if (func
<= LOWEST_PC
)
940 /* If we've hit a wall, stop. */
941 if (cache
->prev_sp
== 0)
944 id
= frame_id_build (cache
->prev_sp
, func
);
949 arm_prologue_prev_register (struct frame_info
*next_frame
,
953 enum lval_type
*lvalp
,
958 struct arm_prologue_cache
*cache
;
960 if (*this_cache
== NULL
)
961 *this_cache
= arm_make_prologue_cache (next_frame
);
964 /* If we are asked to unwind the PC, then we need to return the LR
965 instead. The saved value of PC points into this frame's
966 prologue, not the next frame's resume location. */
967 if (prev_regnum
== ARM_PC_REGNUM
)
968 prev_regnum
= ARM_LR_REGNUM
;
970 /* SP is generally not saved to the stack, but this frame is
971 identified by NEXT_FRAME's stack pointer at the time of the call.
972 The value was already reconstructed into PREV_SP. */
973 if (prev_regnum
== ARM_SP_REGNUM
)
977 store_unsigned_integer (valuep
, 4, cache
->prev_sp
);
981 trad_frame_get_prev_register (next_frame
, cache
->saved_regs
, prev_regnum
,
982 optimized
, lvalp
, addrp
, realnump
, valuep
);
985 struct frame_unwind arm_prologue_unwind
= {
987 arm_prologue_this_id
,
988 arm_prologue_prev_register
991 static const struct frame_unwind
*
992 arm_prologue_unwind_sniffer (struct frame_info
*next_frame
)
994 return &arm_prologue_unwind
;
997 static struct arm_prologue_cache
*
998 arm_make_stub_cache (struct frame_info
*next_frame
)
1001 struct arm_prologue_cache
*cache
;
1002 CORE_ADDR unwound_fp
;
1004 cache
= frame_obstack_zalloc (sizeof (struct arm_prologue_cache
));
1005 cache
->saved_regs
= trad_frame_alloc_saved_regs (next_frame
);
1007 cache
->prev_sp
= frame_unwind_register_unsigned (next_frame
, ARM_SP_REGNUM
);
1012 /* Our frame ID for a stub frame is the current SP and LR. */
1015 arm_stub_this_id (struct frame_info
*next_frame
,
1017 struct frame_id
*this_id
)
1019 struct arm_prologue_cache
*cache
;
1021 if (*this_cache
== NULL
)
1022 *this_cache
= arm_make_stub_cache (next_frame
);
1023 cache
= *this_cache
;
1025 *this_id
= frame_id_build (cache
->prev_sp
,
1026 frame_pc_unwind (next_frame
));
1029 struct frame_unwind arm_stub_unwind
= {
1032 arm_prologue_prev_register
1035 static const struct frame_unwind
*
1036 arm_stub_unwind_sniffer (struct frame_info
*next_frame
)
1040 if (in_plt_section (frame_unwind_address_in_block (next_frame
), NULL
)
1041 || target_read_memory (frame_pc_unwind (next_frame
), dummy
, 4) != 0)
1042 return &arm_stub_unwind
;
1048 arm_normal_frame_base (struct frame_info
*next_frame
, void **this_cache
)
1050 struct arm_prologue_cache
*cache
;
1052 if (*this_cache
== NULL
)
1053 *this_cache
= arm_make_prologue_cache (next_frame
);
1054 cache
= *this_cache
;
1056 return cache
->prev_sp
+ cache
->frameoffset
- cache
->framesize
;
1059 struct frame_base arm_normal_base
= {
1060 &arm_prologue_unwind
,
1061 arm_normal_frame_base
,
1062 arm_normal_frame_base
,
1063 arm_normal_frame_base
1066 static struct arm_prologue_cache
*
1067 arm_make_sigtramp_cache (struct frame_info
*next_frame
)
1069 struct arm_prologue_cache
*cache
;
1072 cache
= frame_obstack_zalloc (sizeof (struct arm_prologue_cache
));
1074 cache
->prev_sp
= frame_unwind_register_unsigned (next_frame
, ARM_SP_REGNUM
);
1076 cache
->saved_regs
= trad_frame_alloc_saved_regs (next_frame
);
1078 for (reg
= 0; reg
< NUM_REGS
; reg
++)
1079 cache
->saved_regs
[reg
].addr
1080 = SIGCONTEXT_REGISTER_ADDRESS (cache
->prev_sp
,
1081 frame_pc_unwind (next_frame
), reg
);
1083 /* FIXME: What about thumb mode? */
1084 cache
->framereg
= ARM_SP_REGNUM
;
1086 = read_memory_integer (cache
->saved_regs
[cache
->framereg
].addr
,
1087 register_size (current_gdbarch
, cache
->framereg
));
1093 arm_sigtramp_this_id (struct frame_info
*next_frame
,
1095 struct frame_id
*this_id
)
1097 struct arm_prologue_cache
*cache
;
1099 if (*this_cache
== NULL
)
1100 *this_cache
= arm_make_sigtramp_cache (next_frame
);
1101 cache
= *this_cache
;
1103 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1104 the sigtramp frame; the PC should be the beginning of the trampoline. */
1105 *this_id
= frame_id_build (cache
->prev_sp
, frame_pc_unwind (next_frame
));
1109 arm_sigtramp_prev_register (struct frame_info
*next_frame
,
1113 enum lval_type
*lvalp
,
1118 struct arm_prologue_cache
*cache
;
1120 if (*this_cache
== NULL
)
1121 *this_cache
= arm_make_sigtramp_cache (next_frame
);
1122 cache
= *this_cache
;
1124 trad_frame_get_prev_register (next_frame
, cache
->saved_regs
, prev_regnum
,
1125 optimized
, lvalp
, addrp
, realnump
, valuep
);
1128 struct frame_unwind arm_sigtramp_unwind
= {
1130 arm_sigtramp_this_id
,
1131 arm_sigtramp_prev_register
1134 static const struct frame_unwind
*
1135 arm_sigtramp_unwind_sniffer (struct frame_info
*next_frame
)
1137 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1138 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame
), (char *) 0))
1139 return &arm_sigtramp_unwind
;
1144 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1145 dummy frame. The frame ID's base needs to match the TOS value
1146 saved by save_dummy_frame_tos() and returned from
1147 arm_push_dummy_call, and the PC needs to match the dummy frame's
1150 static struct frame_id
1151 arm_unwind_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1153 return frame_id_build (frame_unwind_register_unsigned (next_frame
, ARM_SP_REGNUM
),
1154 frame_pc_unwind (next_frame
));
1157 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1158 be used to construct the previous frame's ID, after looking up the
1159 containing function). */
1162 arm_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1165 pc
= frame_unwind_register_unsigned (this_frame
, ARM_PC_REGNUM
);
1166 return IS_THUMB_ADDR (pc
) ? UNMAKE_THUMB_ADDR (pc
) : pc
;
1170 arm_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1172 return frame_unwind_register_unsigned (this_frame
, ARM_SP_REGNUM
);
1175 /* When arguments must be pushed onto the stack, they go on in reverse
1176 order. The code below implements a FILO (stack) to do this. */
1181 struct stack_item
*prev
;
1185 static struct stack_item
*
1186 push_stack_item (struct stack_item
*prev
, void *contents
, int len
)
1188 struct stack_item
*si
;
1189 si
= xmalloc (sizeof (struct stack_item
));
1190 si
->data
= xmalloc (len
);
1193 memcpy (si
->data
, contents
, len
);
1197 static struct stack_item
*
1198 pop_stack_item (struct stack_item
*si
)
1200 struct stack_item
*dead
= si
;
1207 /* We currently only support passing parameters in integer registers. This
1208 conforms with GCC's default model. Several other variants exist and
1209 we should probably support some of them based on the selected ABI. */
1212 arm_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
1213 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
1214 struct value
**args
, CORE_ADDR sp
, int struct_return
,
1215 CORE_ADDR struct_addr
)
1220 struct stack_item
*si
= NULL
;
1222 /* Set the return address. For the ARM, the return breakpoint is
1223 always at BP_ADDR. */
1224 /* XXX Fix for Thumb. */
1225 regcache_cooked_write_unsigned (regcache
, ARM_LR_REGNUM
, bp_addr
);
1227 /* Walk through the list of args and determine how large a temporary
1228 stack is required. Need to take care here as structs may be
1229 passed on the stack, and we have to to push them. */
1232 argreg
= ARM_A1_REGNUM
;
1235 /* Some platforms require a double-word aligned stack. Make sure sp
1236 is correctly aligned before we start. We always do this even if
1237 it isn't really needed -- it can never hurt things. */
1238 sp
&= ~(CORE_ADDR
)(2 * DEPRECATED_REGISTER_SIZE
- 1);
1240 /* The struct_return pointer occupies the first parameter
1241 passing register. */
1245 fprintf_unfiltered (gdb_stdlog
, "struct return in %s = 0x%s\n",
1246 REGISTER_NAME (argreg
), paddr (struct_addr
));
1247 regcache_cooked_write_unsigned (regcache
, argreg
, struct_addr
);
1251 for (argnum
= 0; argnum
< nargs
; argnum
++)
1254 struct type
*arg_type
;
1255 struct type
*target_type
;
1256 enum type_code typecode
;
1259 arg_type
= check_typedef (value_type (args
[argnum
]));
1260 len
= TYPE_LENGTH (arg_type
);
1261 target_type
= TYPE_TARGET_TYPE (arg_type
);
1262 typecode
= TYPE_CODE (arg_type
);
1263 val
= value_contents_writeable (args
[argnum
]);
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR
== typecode
1269 && target_type
!= NULL
1270 && TYPE_CODE_FUNC
== TYPE_CODE (target_type
))
1272 CORE_ADDR regval
= extract_unsigned_integer (val
, len
);
1273 if (arm_pc_is_thumb (regval
))
1276 store_unsigned_integer (val
, len
, MAKE_THUMB_ADDR (regval
));
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1285 int partial_len
= len
< DEPRECATED_REGISTER_SIZE
? len
: DEPRECATED_REGISTER_SIZE
;
1287 if (argreg
<= ARM_LAST_ARG_REGNUM
)
1289 /* The argument is being passed in a general purpose
1291 CORE_ADDR regval
= extract_unsigned_integer (val
, partial_len
);
1293 fprintf_unfiltered (gdb_stdlog
, "arg %d in %s = 0x%s\n",
1294 argnum
, REGISTER_NAME (argreg
),
1295 phex (regval
, DEPRECATED_REGISTER_SIZE
));
1296 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
1301 /* Push the arguments onto the stack. */
1303 fprintf_unfiltered (gdb_stdlog
, "arg %d @ sp + %d\n",
1305 si
= push_stack_item (si
, val
, DEPRECATED_REGISTER_SIZE
);
1306 nstack
+= DEPRECATED_REGISTER_SIZE
;
1313 /* If we have an odd number of words to push, then decrement the stack
1314 by one word now, so first stack argument will be dword aligned. */
1321 write_memory (sp
, si
->data
, si
->len
);
1322 si
= pop_stack_item (si
);
1325 /* Finally, update teh SP register. */
1326 regcache_cooked_write_unsigned (regcache
, ARM_SP_REGNUM
, sp
);
1332 print_fpu_flags (int flags
)
1334 if (flags
& (1 << 0))
1335 fputs ("IVO ", stdout
);
1336 if (flags
& (1 << 1))
1337 fputs ("DVZ ", stdout
);
1338 if (flags
& (1 << 2))
1339 fputs ("OFL ", stdout
);
1340 if (flags
& (1 << 3))
1341 fputs ("UFL ", stdout
);
1342 if (flags
& (1 << 4))
1343 fputs ("INX ", stdout
);
1347 /* Print interesting information about the floating point processor
1348 (if present) or emulator. */
1350 arm_print_float_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
1351 struct frame_info
*frame
, const char *args
)
1353 unsigned long status
= read_register (ARM_FPS_REGNUM
);
1356 type
= (status
>> 24) & 127;
1357 if (status
& (1 << 31))
1358 printf (_("Hardware FPU type %d\n"), type
);
1360 printf (_("Software FPU type %d\n"), type
);
1361 /* i18n: [floating point unit] mask */
1362 fputs (_("mask: "), stdout
);
1363 print_fpu_flags (status
>> 16);
1364 /* i18n: [floating point unit] flags */
1365 fputs (_("flags: "), stdout
);
1366 print_fpu_flags (status
);
1369 /* Return the GDB type object for the "standard" data type of data in
1372 static struct type
*
1373 arm_register_type (struct gdbarch
*gdbarch
, int regnum
)
1375 if (regnum
>= ARM_F0_REGNUM
&& regnum
< ARM_F0_REGNUM
+ NUM_FREGS
)
1377 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
1378 return builtin_type_arm_ext_big
;
1380 return builtin_type_arm_ext_littlebyte_bigword
;
1383 return builtin_type_int32
;
1386 /* Index within `registers' of the first byte of the space for
1390 arm_register_byte (int regnum
)
1392 if (regnum
< ARM_F0_REGNUM
)
1393 return regnum
* INT_REGISTER_SIZE
;
1394 else if (regnum
< ARM_PS_REGNUM
)
1395 return (NUM_GREGS
* INT_REGISTER_SIZE
1396 + (regnum
- ARM_F0_REGNUM
) * FP_REGISTER_SIZE
);
1398 return (NUM_GREGS
* INT_REGISTER_SIZE
1399 + NUM_FREGS
* FP_REGISTER_SIZE
1400 + (regnum
- ARM_FPS_REGNUM
) * STATUS_REGISTER_SIZE
);
1403 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1405 arm_register_sim_regno (int regnum
)
1408 gdb_assert (reg
>= 0 && reg
< NUM_REGS
);
1410 if (reg
< NUM_GREGS
)
1411 return SIM_ARM_R0_REGNUM
+ reg
;
1414 if (reg
< NUM_FREGS
)
1415 return SIM_ARM_FP0_REGNUM
+ reg
;
1418 if (reg
< NUM_SREGS
)
1419 return SIM_ARM_FPS_REGNUM
+ reg
;
1422 internal_error (__FILE__
, __LINE__
, _("Bad REGNUM %d"), regnum
);
1425 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1426 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1427 It is thought that this is is the floating-point register format on
1428 little-endian systems. */
1431 convert_from_extended (const struct floatformat
*fmt
, const void *ptr
,
1435 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
1436 floatformat_to_doublest (&floatformat_arm_ext_big
, ptr
, &d
);
1438 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword
,
1440 floatformat_from_doublest (fmt
, &d
, dbl
);
1444 convert_to_extended (const struct floatformat
*fmt
, void *dbl
, const void *ptr
)
1447 floatformat_to_doublest (fmt
, ptr
, &d
);
1448 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
1449 floatformat_from_doublest (&floatformat_arm_ext_big
, &d
, dbl
);
1451 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword
,
1456 condition_true (unsigned long cond
, unsigned long status_reg
)
1458 if (cond
== INST_AL
|| cond
== INST_NV
)
1464 return ((status_reg
& FLAG_Z
) != 0);
1466 return ((status_reg
& FLAG_Z
) == 0);
1468 return ((status_reg
& FLAG_C
) != 0);
1470 return ((status_reg
& FLAG_C
) == 0);
1472 return ((status_reg
& FLAG_N
) != 0);
1474 return ((status_reg
& FLAG_N
) == 0);
1476 return ((status_reg
& FLAG_V
) != 0);
1478 return ((status_reg
& FLAG_V
) == 0);
1480 return ((status_reg
& (FLAG_C
| FLAG_Z
)) == FLAG_C
);
1482 return ((status_reg
& (FLAG_C
| FLAG_Z
)) != FLAG_C
);
1484 return (((status_reg
& FLAG_N
) == 0) == ((status_reg
& FLAG_V
) == 0));
1486 return (((status_reg
& FLAG_N
) == 0) != ((status_reg
& FLAG_V
) == 0));
1488 return (((status_reg
& FLAG_Z
) == 0) &&
1489 (((status_reg
& FLAG_N
) == 0) == ((status_reg
& FLAG_V
) == 0)));
1491 return (((status_reg
& FLAG_Z
) != 0) ||
1492 (((status_reg
& FLAG_N
) == 0) != ((status_reg
& FLAG_V
) == 0)));
1497 /* Support routines for single stepping. Calculate the next PC value. */
1498 #define submask(x) ((1L << ((x) + 1)) - 1)
1499 #define bit(obj,st) (((obj) >> (st)) & 1)
1500 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1501 #define sbits(obj,st,fn) \
1502 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1503 #define BranchDest(addr,instr) \
1504 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1507 static unsigned long
1508 shifted_reg_val (unsigned long inst
, int carry
, unsigned long pc_val
,
1509 unsigned long status_reg
)
1511 unsigned long res
, shift
;
1512 int rm
= bits (inst
, 0, 3);
1513 unsigned long shifttype
= bits (inst
, 5, 6);
1517 int rs
= bits (inst
, 8, 11);
1518 shift
= (rs
== 15 ? pc_val
+ 8 : read_register (rs
)) & 0xFF;
1521 shift
= bits (inst
, 7, 11);
1524 ? ((pc_val
| (ARM_PC_32
? 0 : status_reg
))
1525 + (bit (inst
, 4) ? 12 : 8))
1526 : read_register (rm
));
1531 res
= shift
>= 32 ? 0 : res
<< shift
;
1535 res
= shift
>= 32 ? 0 : res
>> shift
;
1541 res
= ((res
& 0x80000000L
)
1542 ? ~((~res
) >> shift
) : res
>> shift
);
1545 case 3: /* ROR/RRX */
1548 res
= (res
>> 1) | (carry
? 0x80000000L
: 0);
1550 res
= (res
>> shift
) | (res
<< (32 - shift
));
1554 return res
& 0xffffffff;
1557 /* Return number of 1-bits in VAL. */
1560 bitcount (unsigned long val
)
1563 for (nbits
= 0; val
!= 0; nbits
++)
1564 val
&= val
- 1; /* delete rightmost 1-bit in val */
1569 thumb_get_next_pc (CORE_ADDR pc
)
1571 unsigned long pc_val
= ((unsigned long) pc
) + 4; /* PC after prefetch */
1572 unsigned short inst1
= read_memory_integer (pc
, 2);
1573 CORE_ADDR nextpc
= pc
+ 2; /* default is next instruction */
1574 unsigned long offset
;
1576 if ((inst1
& 0xff00) == 0xbd00) /* pop {rlist, pc} */
1580 /* Fetch the saved PC from the stack. It's stored above
1581 all of the other registers. */
1582 offset
= bitcount (bits (inst1
, 0, 7)) * DEPRECATED_REGISTER_SIZE
;
1583 sp
= read_register (ARM_SP_REGNUM
);
1584 nextpc
= (CORE_ADDR
) read_memory_integer (sp
+ offset
, 4);
1585 nextpc
= ADDR_BITS_REMOVE (nextpc
);
1587 error (_("Infinite loop detected"));
1589 else if ((inst1
& 0xf000) == 0xd000) /* conditional branch */
1591 unsigned long status
= read_register (ARM_PS_REGNUM
);
1592 unsigned long cond
= bits (inst1
, 8, 11);
1593 if (cond
!= 0x0f && condition_true (cond
, status
)) /* 0x0f = SWI */
1594 nextpc
= pc_val
+ (sbits (inst1
, 0, 7) << 1);
1596 else if ((inst1
& 0xf800) == 0xe000) /* unconditional branch */
1598 nextpc
= pc_val
+ (sbits (inst1
, 0, 10) << 1);
1600 else if ((inst1
& 0xf800) == 0xf000) /* long branch with link, and blx */
1602 unsigned short inst2
= read_memory_integer (pc
+ 2, 2);
1603 offset
= (sbits (inst1
, 0, 10) << 12) + (bits (inst2
, 0, 10) << 1);
1604 nextpc
= pc_val
+ offset
;
1605 /* For BLX make sure to clear the low bits. */
1606 if (bits (inst2
, 11, 12) == 1)
1607 nextpc
= nextpc
& 0xfffffffc;
1609 else if ((inst1
& 0xff00) == 0x4700) /* bx REG, blx REG */
1611 if (bits (inst1
, 3, 6) == 0x0f)
1614 nextpc
= read_register (bits (inst1
, 3, 6));
1616 nextpc
= ADDR_BITS_REMOVE (nextpc
);
1618 error (_("Infinite loop detected"));
1625 arm_get_next_pc (CORE_ADDR pc
)
1627 unsigned long pc_val
;
1628 unsigned long this_instr
;
1629 unsigned long status
;
1632 if (arm_pc_is_thumb (pc
))
1633 return thumb_get_next_pc (pc
);
1635 pc_val
= (unsigned long) pc
;
1636 this_instr
= read_memory_integer (pc
, 4);
1637 status
= read_register (ARM_PS_REGNUM
);
1638 nextpc
= (CORE_ADDR
) (pc_val
+ 4); /* Default case */
1640 if (condition_true (bits (this_instr
, 28, 31), status
))
1642 switch (bits (this_instr
, 24, 27))
1645 case 0x1: /* data processing */
1649 unsigned long operand1
, operand2
, result
= 0;
1653 if (bits (this_instr
, 12, 15) != 15)
1656 if (bits (this_instr
, 22, 25) == 0
1657 && bits (this_instr
, 4, 7) == 9) /* multiply */
1658 error (_("Invalid update to pc in instruction"));
1660 /* BX <reg>, BLX <reg> */
1661 if (bits (this_instr
, 4, 28) == 0x12fff1
1662 || bits (this_instr
, 4, 28) == 0x12fff3)
1664 rn
= bits (this_instr
, 0, 3);
1665 result
= (rn
== 15) ? pc_val
+ 8 : read_register (rn
);
1666 nextpc
= (CORE_ADDR
) ADDR_BITS_REMOVE (result
);
1669 error (_("Infinite loop detected"));
1674 /* Multiply into PC */
1675 c
= (status
& FLAG_C
) ? 1 : 0;
1676 rn
= bits (this_instr
, 16, 19);
1677 operand1
= (rn
== 15) ? pc_val
+ 8 : read_register (rn
);
1679 if (bit (this_instr
, 25))
1681 unsigned long immval
= bits (this_instr
, 0, 7);
1682 unsigned long rotate
= 2 * bits (this_instr
, 8, 11);
1683 operand2
= ((immval
>> rotate
) | (immval
<< (32 - rotate
)))
1686 else /* operand 2 is a shifted register */
1687 operand2
= shifted_reg_val (this_instr
, c
, pc_val
, status
);
1689 switch (bits (this_instr
, 21, 24))
1692 result
= operand1
& operand2
;
1696 result
= operand1
^ operand2
;
1700 result
= operand1
- operand2
;
1704 result
= operand2
- operand1
;
1708 result
= operand1
+ operand2
;
1712 result
= operand1
+ operand2
+ c
;
1716 result
= operand1
- operand2
+ c
;
1720 result
= operand2
- operand1
+ c
;
1726 case 0xb: /* tst, teq, cmp, cmn */
1727 result
= (unsigned long) nextpc
;
1731 result
= operand1
| operand2
;
1735 /* Always step into a function. */
1740 result
= operand1
& ~operand2
;
1747 nextpc
= (CORE_ADDR
) ADDR_BITS_REMOVE (result
);
1750 error (_("Infinite loop detected"));
1755 case 0x5: /* data transfer */
1758 if (bit (this_instr
, 20))
1761 if (bits (this_instr
, 12, 15) == 15)
1767 if (bit (this_instr
, 22))
1768 error (_("Invalid update to pc in instruction"));
1770 /* byte write to PC */
1771 rn
= bits (this_instr
, 16, 19);
1772 base
= (rn
== 15) ? pc_val
+ 8 : read_register (rn
);
1773 if (bit (this_instr
, 24))
1776 int c
= (status
& FLAG_C
) ? 1 : 0;
1777 unsigned long offset
=
1778 (bit (this_instr
, 25)
1779 ? shifted_reg_val (this_instr
, c
, pc_val
, status
)
1780 : bits (this_instr
, 0, 11));
1782 if (bit (this_instr
, 23))
1787 nextpc
= (CORE_ADDR
) read_memory_integer ((CORE_ADDR
) base
,
1790 nextpc
= ADDR_BITS_REMOVE (nextpc
);
1793 error (_("Infinite loop detected"));
1799 case 0x9: /* block transfer */
1800 if (bit (this_instr
, 20))
1803 if (bit (this_instr
, 15))
1808 if (bit (this_instr
, 23))
1811 unsigned long reglist
= bits (this_instr
, 0, 14);
1812 offset
= bitcount (reglist
) * 4;
1813 if (bit (this_instr
, 24)) /* pre */
1816 else if (bit (this_instr
, 24))
1820 unsigned long rn_val
=
1821 read_register (bits (this_instr
, 16, 19));
1823 (CORE_ADDR
) read_memory_integer ((CORE_ADDR
) (rn_val
1827 nextpc
= ADDR_BITS_REMOVE (nextpc
);
1829 error (_("Infinite loop detected"));
1834 case 0xb: /* branch & link */
1835 case 0xa: /* branch */
1837 nextpc
= BranchDest (pc
, this_instr
);
1840 if (bits (this_instr
, 28, 31) == INST_NV
)
1841 nextpc
|= bit (this_instr
, 24) << 1;
1843 nextpc
= ADDR_BITS_REMOVE (nextpc
);
1845 error (_("Infinite loop detected"));
1851 case 0xe: /* coproc ops */
1856 fprintf_filtered (gdb_stderr
, _("Bad bit-field extraction\n"));
1864 /* single_step() is called just before we want to resume the inferior,
1865 if we want to single-step it but there is no hardware or kernel
1866 single-step support. We find the target of the coming instruction
1869 single_step() is also called just after the inferior stops. If we
1870 had set up a simulated single-step, we undo our damage. */
1873 arm_software_single_step (enum target_signal sig
, int insert_bpt
)
1875 static int next_pc
; /* State between setting and unsetting. */
1876 static char break_mem
[BREAKPOINT_MAX
]; /* Temporary storage for mem@bpt */
1880 next_pc
= arm_get_next_pc (read_register (ARM_PC_REGNUM
));
1881 target_insert_breakpoint (next_pc
, break_mem
);
1884 target_remove_breakpoint (next_pc
, break_mem
);
1887 #include "bfd-in2.h"
1888 #include "libcoff.h"
1891 gdb_print_insn_arm (bfd_vma memaddr
, disassemble_info
*info
)
1893 if (arm_pc_is_thumb (memaddr
))
1895 static asymbol
*asym
;
1896 static combined_entry_type ce
;
1897 static struct coff_symbol_struct csym
;
1898 static struct bfd fake_bfd
;
1899 static bfd_target fake_target
;
1901 if (csym
.native
== NULL
)
1903 /* Create a fake symbol vector containing a Thumb symbol.
1904 This is solely so that the code in print_insn_little_arm()
1905 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1906 the presence of a Thumb symbol and switch to decoding
1907 Thumb instructions. */
1909 fake_target
.flavour
= bfd_target_coff_flavour
;
1910 fake_bfd
.xvec
= &fake_target
;
1911 ce
.u
.syment
.n_sclass
= C_THUMBEXTFUNC
;
1913 csym
.symbol
.the_bfd
= &fake_bfd
;
1914 csym
.symbol
.name
= "fake";
1915 asym
= (asymbol
*) & csym
;
1918 memaddr
= UNMAKE_THUMB_ADDR (memaddr
);
1919 info
->symbols
= &asym
;
1922 info
->symbols
= NULL
;
1924 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
1925 return print_insn_big_arm (memaddr
, info
);
1927 return print_insn_little_arm (memaddr
, info
);
1930 /* The following define instruction sequences that will cause ARM
1931 cpu's to take an undefined instruction trap. These are used to
1932 signal a breakpoint to GDB.
1934 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1935 modes. A different instruction is required for each mode. The ARM
1936 cpu's can also be big or little endian. Thus four different
1937 instructions are needed to support all cases.
1939 Note: ARMv4 defines several new instructions that will take the
1940 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1941 not in fact add the new instructions. The new undefined
1942 instructions in ARMv4 are all instructions that had no defined
1943 behaviour in earlier chips. There is no guarantee that they will
1944 raise an exception, but may be treated as NOP's. In practice, it
1945 may only safe to rely on instructions matching:
1947 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1948 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1949 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1951 Even this may only true if the condition predicate is true. The
1952 following use a condition predicate of ALWAYS so it is always TRUE.
1954 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1955 and NetBSD all use a software interrupt rather than an undefined
1956 instruction to force a trap. This can be handled by by the
1957 abi-specific code during establishment of the gdbarch vector. */
1960 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1961 override these definitions. */
1962 #ifndef ARM_LE_BREAKPOINT
1963 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1965 #ifndef ARM_BE_BREAKPOINT
1966 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1968 #ifndef THUMB_LE_BREAKPOINT
1969 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1971 #ifndef THUMB_BE_BREAKPOINT
1972 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1975 static const char arm_default_arm_le_breakpoint
[] = ARM_LE_BREAKPOINT
;
1976 static const char arm_default_arm_be_breakpoint
[] = ARM_BE_BREAKPOINT
;
1977 static const char arm_default_thumb_le_breakpoint
[] = THUMB_LE_BREAKPOINT
;
1978 static const char arm_default_thumb_be_breakpoint
[] = THUMB_BE_BREAKPOINT
;
1980 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
1981 the program counter value to determine whether a 16-bit or 32-bit
1982 breakpoint should be used. It returns a pointer to a string of
1983 bytes that encode a breakpoint instruction, stores the length of
1984 the string to *lenptr, and adjusts the program counter (if
1985 necessary) to point to the actual memory location where the
1986 breakpoint should be inserted. */
1988 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1989 breakpoints and storing their handles instread of what was in
1990 memory. It is nice that this is the same size as a handle -
1991 otherwise remote-rdp will have to change. */
1993 static const unsigned char *
1994 arm_breakpoint_from_pc (CORE_ADDR
*pcptr
, int *lenptr
)
1996 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
1998 if (arm_pc_is_thumb (*pcptr
))
2000 *pcptr
= UNMAKE_THUMB_ADDR (*pcptr
);
2001 *lenptr
= tdep
->thumb_breakpoint_size
;
2002 return tdep
->thumb_breakpoint
;
2006 *lenptr
= tdep
->arm_breakpoint_size
;
2007 return tdep
->arm_breakpoint
;
2011 /* Extract from an array REGBUF containing the (raw) register state a
2012 function return value of type TYPE, and copy that, in virtual
2013 format, into VALBUF. */
2016 arm_extract_return_value (struct type
*type
, struct regcache
*regs
,
2019 if (TYPE_CODE_FLT
== TYPE_CODE (type
))
2021 switch (gdbarch_tdep (current_gdbarch
)->fp_model
)
2025 /* The value is in register F0 in internal format. We need to
2026 extract the raw value and then convert it to the desired
2028 bfd_byte tmpbuf
[FP_REGISTER_SIZE
];
2030 regcache_cooked_read (regs
, ARM_F0_REGNUM
, tmpbuf
);
2031 convert_from_extended (floatformat_from_type (type
), tmpbuf
,
2036 case ARM_FLOAT_SOFT_FPA
:
2037 case ARM_FLOAT_SOFT_VFP
:
2038 regcache_cooked_read (regs
, ARM_A1_REGNUM
, valbuf
);
2039 if (TYPE_LENGTH (type
) > 4)
2040 regcache_cooked_read (regs
, ARM_A1_REGNUM
+ 1,
2041 valbuf
+ INT_REGISTER_SIZE
);
2046 (__FILE__
, __LINE__
,
2047 _("arm_extract_return_value: Floating point model not supported"));
2051 else if (TYPE_CODE (type
) == TYPE_CODE_INT
2052 || TYPE_CODE (type
) == TYPE_CODE_CHAR
2053 || TYPE_CODE (type
) == TYPE_CODE_BOOL
2054 || TYPE_CODE (type
) == TYPE_CODE_PTR
2055 || TYPE_CODE (type
) == TYPE_CODE_REF
2056 || TYPE_CODE (type
) == TYPE_CODE_ENUM
)
2058 /* If the the type is a plain integer, then the access is
2059 straight-forward. Otherwise we have to play around a bit more. */
2060 int len
= TYPE_LENGTH (type
);
2061 int regno
= ARM_A1_REGNUM
;
2066 /* By using store_unsigned_integer we avoid having to do
2067 anything special for small big-endian values. */
2068 regcache_cooked_read_unsigned (regs
, regno
++, &tmp
);
2069 store_unsigned_integer (valbuf
,
2070 (len
> INT_REGISTER_SIZE
2071 ? INT_REGISTER_SIZE
: len
),
2073 len
-= INT_REGISTER_SIZE
;
2074 valbuf
+= INT_REGISTER_SIZE
;
2079 /* For a structure or union the behaviour is as if the value had
2080 been stored to word-aligned memory and then loaded into
2081 registers with 32-bit load instruction(s). */
2082 int len
= TYPE_LENGTH (type
);
2083 int regno
= ARM_A1_REGNUM
;
2084 bfd_byte tmpbuf
[INT_REGISTER_SIZE
];
2088 regcache_cooked_read (regs
, regno
++, tmpbuf
);
2089 memcpy (valbuf
, tmpbuf
,
2090 len
> INT_REGISTER_SIZE
? INT_REGISTER_SIZE
: len
);
2091 len
-= INT_REGISTER_SIZE
;
2092 valbuf
+= INT_REGISTER_SIZE
;
2097 /* Extract from an array REGBUF containing the (raw) register state
2098 the address in which a function should return its structure value. */
2101 arm_extract_struct_value_address (struct regcache
*regcache
)
2105 regcache_cooked_read_unsigned (regcache
, ARM_A1_REGNUM
, &ret
);
2109 /* Will a function return an aggregate type in memory or in a
2110 register? Return 0 if an aggregate type can be returned in a
2111 register, 1 if it must be returned in memory. */
2114 arm_use_struct_convention (int gcc_p
, struct type
*type
)
2117 enum type_code code
;
2119 CHECK_TYPEDEF (type
);
2121 /* In the ARM ABI, "integer" like aggregate types are returned in
2122 registers. For an aggregate type to be integer like, its size
2123 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2124 offset of each addressable subfield must be zero. Note that bit
2125 fields are not addressable, and all addressable subfields of
2126 unions always start at offset zero.
2128 This function is based on the behaviour of GCC 2.95.1.
2129 See: gcc/arm.c: arm_return_in_memory() for details.
2131 Note: All versions of GCC before GCC 2.95.2 do not set up the
2132 parameters correctly for a function returning the following
2133 structure: struct { float f;}; This should be returned in memory,
2134 not a register. Richard Earnshaw sent me a patch, but I do not
2135 know of any way to detect if a function like the above has been
2136 compiled with the correct calling convention. */
2138 /* All aggregate types that won't fit in a register must be returned
2140 if (TYPE_LENGTH (type
) > DEPRECATED_REGISTER_SIZE
)
2145 /* The only aggregate types that can be returned in a register are
2146 structs and unions. Arrays must be returned in memory. */
2147 code
= TYPE_CODE (type
);
2148 if ((TYPE_CODE_STRUCT
!= code
) && (TYPE_CODE_UNION
!= code
))
2153 /* Assume all other aggregate types can be returned in a register.
2154 Run a check for structures, unions and arrays. */
2157 if ((TYPE_CODE_STRUCT
== code
) || (TYPE_CODE_UNION
== code
))
2160 /* Need to check if this struct/union is "integer" like. For
2161 this to be true, its size must be less than or equal to
2162 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2163 subfield must be zero. Note that bit fields are not
2164 addressable, and unions always start at offset zero. If any
2165 of the subfields is a floating point type, the struct/union
2166 cannot be an integer type. */
2168 /* For each field in the object, check:
2169 1) Is it FP? --> yes, nRc = 1;
2170 2) Is it addressable (bitpos != 0) and
2171 not packed (bitsize == 0)?
2175 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
2177 enum type_code field_type_code
;
2178 field_type_code
= TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type
, i
)));
2180 /* Is it a floating point type field? */
2181 if (field_type_code
== TYPE_CODE_FLT
)
2187 /* If bitpos != 0, then we have to care about it. */
2188 if (TYPE_FIELD_BITPOS (type
, i
) != 0)
2190 /* Bitfields are not addressable. If the field bitsize is
2191 zero, then the field is not packed. Hence it cannot be
2192 a bitfield or any other packed type. */
2193 if (TYPE_FIELD_BITSIZE (type
, i
) == 0)
2205 /* Write into appropriate registers a function return value of type
2206 TYPE, given in virtual format. */
2209 arm_store_return_value (struct type
*type
, struct regcache
*regs
,
2210 const gdb_byte
*valbuf
)
2212 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2214 char buf
[MAX_REGISTER_SIZE
];
2216 switch (gdbarch_tdep (current_gdbarch
)->fp_model
)
2220 convert_to_extended (floatformat_from_type (type
), buf
, valbuf
);
2221 regcache_cooked_write (regs
, ARM_F0_REGNUM
, buf
);
2224 case ARM_FLOAT_SOFT_FPA
:
2225 case ARM_FLOAT_SOFT_VFP
:
2226 regcache_cooked_write (regs
, ARM_A1_REGNUM
, valbuf
);
2227 if (TYPE_LENGTH (type
) > 4)
2228 regcache_cooked_write (regs
, ARM_A1_REGNUM
+ 1,
2229 valbuf
+ INT_REGISTER_SIZE
);
2234 (__FILE__
, __LINE__
,
2235 _("arm_store_return_value: Floating point model not supported"));
2239 else if (TYPE_CODE (type
) == TYPE_CODE_INT
2240 || TYPE_CODE (type
) == TYPE_CODE_CHAR
2241 || TYPE_CODE (type
) == TYPE_CODE_BOOL
2242 || TYPE_CODE (type
) == TYPE_CODE_PTR
2243 || TYPE_CODE (type
) == TYPE_CODE_REF
2244 || TYPE_CODE (type
) == TYPE_CODE_ENUM
)
2246 if (TYPE_LENGTH (type
) <= 4)
2248 /* Values of one word or less are zero/sign-extended and
2250 bfd_byte tmpbuf
[INT_REGISTER_SIZE
];
2251 LONGEST val
= unpack_long (type
, valbuf
);
2253 store_signed_integer (tmpbuf
, INT_REGISTER_SIZE
, val
);
2254 regcache_cooked_write (regs
, ARM_A1_REGNUM
, tmpbuf
);
2258 /* Integral values greater than one word are stored in consecutive
2259 registers starting with r0. This will always be a multiple of
2260 the regiser size. */
2261 int len
= TYPE_LENGTH (type
);
2262 int regno
= ARM_A1_REGNUM
;
2266 regcache_cooked_write (regs
, regno
++, valbuf
);
2267 len
-= INT_REGISTER_SIZE
;
2268 valbuf
+= INT_REGISTER_SIZE
;
2274 /* For a structure or union the behaviour is as if the value had
2275 been stored to word-aligned memory and then loaded into
2276 registers with 32-bit load instruction(s). */
2277 int len
= TYPE_LENGTH (type
);
2278 int regno
= ARM_A1_REGNUM
;
2279 bfd_byte tmpbuf
[INT_REGISTER_SIZE
];
2283 memcpy (tmpbuf
, valbuf
,
2284 len
> INT_REGISTER_SIZE
? INT_REGISTER_SIZE
: len
);
2285 regcache_cooked_write (regs
, regno
++, tmpbuf
);
2286 len
-= INT_REGISTER_SIZE
;
2287 valbuf
+= INT_REGISTER_SIZE
;
2293 arm_get_longjmp_target (CORE_ADDR
*pc
)
2296 char buf
[INT_REGISTER_SIZE
];
2297 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
2299 jb_addr
= read_register (ARM_A1_REGNUM
);
2301 if (target_read_memory (jb_addr
+ tdep
->jb_pc
* tdep
->jb_elt_size
, buf
,
2305 *pc
= extract_unsigned_integer (buf
, INT_REGISTER_SIZE
);
2309 /* Return non-zero if the PC is inside a thumb call thunk. */
2312 arm_in_call_stub (CORE_ADDR pc
, char *name
)
2314 CORE_ADDR start_addr
;
2316 /* Find the starting address of the function containing the PC. If
2317 the caller didn't give us a name, look it up at the same time. */
2318 if (0 == find_pc_partial_function (pc
, name
? NULL
: &name
,
2322 return strncmp (name
, "_call_via_r", 11) == 0;
2325 /* If PC is in a Thumb call or return stub, return the address of the
2326 target PC, which is in a register. The thunk functions are called
2327 _called_via_xx, where x is the register name. The possible names
2328 are r0-r9, sl, fp, ip, sp, and lr. */
2331 arm_skip_stub (CORE_ADDR pc
)
2334 CORE_ADDR start_addr
;
2336 /* Find the starting address and name of the function containing the PC. */
2337 if (find_pc_partial_function (pc
, &name
, &start_addr
, NULL
) == 0)
2340 /* Call thunks always start with "_call_via_". */
2341 if (strncmp (name
, "_call_via_", 10) == 0)
2343 /* Use the name suffix to determine which register contains the
2345 static char *table
[15] =
2346 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2347 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2351 for (regno
= 0; regno
<= 14; regno
++)
2352 if (strcmp (&name
[10], table
[regno
]) == 0)
2353 return read_register (regno
);
2356 return 0; /* not a stub */
2360 set_arm_command (char *args
, int from_tty
)
2362 printf_unfiltered (_("\
2363 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2364 help_list (setarmcmdlist
, "set arm ", all_commands
, gdb_stdout
);
2368 show_arm_command (char *args
, int from_tty
)
2370 cmd_show_list (showarmcmdlist
, from_tty
, "");
2374 arm_update_current_architecture (void)
2376 struct gdbarch_info info
;
2378 /* If the current architecture is not ARM, we have nothing to do. */
2379 if (gdbarch_bfd_arch_info (current_gdbarch
)->arch
!= bfd_arch_arm
)
2382 /* Update the architecture. */
2383 gdbarch_info_init (&info
);
2385 if (!gdbarch_update_p (info
))
2386 internal_error (__FILE__
, __LINE__
, "could not update architecture");
2390 set_fp_model_sfunc (char *args
, int from_tty
,
2391 struct cmd_list_element
*c
)
2393 enum arm_float_model fp_model
;
2395 for (fp_model
= ARM_FLOAT_AUTO
; fp_model
!= ARM_FLOAT_LAST
; fp_model
++)
2396 if (strcmp (current_fp_model
, fp_model_strings
[fp_model
]) == 0)
2398 arm_fp_model
= fp_model
;
2402 if (fp_model
== ARM_FLOAT_LAST
)
2403 internal_error (__FILE__
, __LINE__
, _("Invalid fp model accepted: %s."),
2406 arm_update_current_architecture ();
2410 show_fp_model (struct ui_file
*file
, int from_tty
,
2411 struct cmd_list_element
*c
, const char *value
)
2413 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
2415 if (arm_fp_model
== ARM_FLOAT_AUTO
2416 && gdbarch_bfd_arch_info (current_gdbarch
)->arch
== bfd_arch_arm
)
2417 fprintf_filtered (file
, _("\
2418 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2419 fp_model_strings
[tdep
->fp_model
]);
2421 fprintf_filtered (file
, _("\
2422 The current ARM floating point model is \"%s\".\n"),
2423 fp_model_strings
[arm_fp_model
]);
2427 arm_set_abi (char *args
, int from_tty
,
2428 struct cmd_list_element
*c
)
2430 enum arm_abi_kind arm_abi
;
2432 for (arm_abi
= ARM_ABI_AUTO
; arm_abi
!= ARM_ABI_LAST
; arm_abi
++)
2433 if (strcmp (arm_abi_string
, arm_abi_strings
[arm_abi
]) == 0)
2435 arm_abi_global
= arm_abi
;
2439 if (arm_abi
== ARM_ABI_LAST
)
2440 internal_error (__FILE__
, __LINE__
, _("Invalid ABI accepted: %s."),
2443 arm_update_current_architecture ();
2447 arm_show_abi (struct ui_file
*file
, int from_tty
,
2448 struct cmd_list_element
*c
, const char *value
)
2450 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
2452 if (arm_abi_global
== ARM_ABI_AUTO
2453 && gdbarch_bfd_arch_info (current_gdbarch
)->arch
== bfd_arch_arm
)
2454 fprintf_filtered (file
, _("\
2455 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2456 arm_abi_strings
[tdep
->arm_abi
]);
2458 fprintf_filtered (file
, _("The current ARM ABI is \"%s\".\n"),
2462 /* If the user changes the register disassembly style used for info
2463 register and other commands, we have to also switch the style used
2464 in opcodes for disassembly output. This function is run in the "set
2465 arm disassembly" command, and does that. */
2468 set_disassembly_style_sfunc (char *args
, int from_tty
,
2469 struct cmd_list_element
*c
)
2471 set_disassembly_style ();
2474 /* Return the ARM register name corresponding to register I. */
2476 arm_register_name (int i
)
2478 return arm_register_names
[i
];
2482 set_disassembly_style (void)
2484 const char *setname
, *setdesc
, *const *regnames
;
2487 /* Find the style that the user wants in the opcodes table. */
2489 numregs
= get_arm_regnames (current
, &setname
, &setdesc
, ®names
);
2490 while ((disassembly_style
!= setname
)
2491 && (current
< num_disassembly_options
))
2492 get_arm_regnames (++current
, &setname
, &setdesc
, ®names
);
2493 current_option
= current
;
2495 /* Fill our copy. */
2496 for (j
= 0; j
< numregs
; j
++)
2497 arm_register_names
[j
] = (char *) regnames
[j
];
2500 if (isupper (*regnames
[ARM_PC_REGNUM
]))
2502 arm_register_names
[ARM_FPS_REGNUM
] = "FPS";
2503 arm_register_names
[ARM_PS_REGNUM
] = "CPSR";
2507 arm_register_names
[ARM_FPS_REGNUM
] = "fps";
2508 arm_register_names
[ARM_PS_REGNUM
] = "cpsr";
2511 /* Synchronize the disassembler. */
2512 set_arm_regname_option (current
);
2515 /* Test whether the coff symbol specific value corresponds to a Thumb
2519 coff_sym_is_thumb (int val
)
2521 return (val
== C_THUMBEXT
||
2522 val
== C_THUMBSTAT
||
2523 val
== C_THUMBEXTFUNC
||
2524 val
== C_THUMBSTATFUNC
||
2525 val
== C_THUMBLABEL
);
2528 /* arm_coff_make_msymbol_special()
2529 arm_elf_make_msymbol_special()
2531 These functions test whether the COFF or ELF symbol corresponds to
2532 an address in thumb code, and set a "special" bit in a minimal
2533 symbol to indicate that it does. */
2536 arm_elf_make_msymbol_special(asymbol
*sym
, struct minimal_symbol
*msym
)
2538 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2540 if (ELF_ST_TYPE (((elf_symbol_type
*)sym
)->internal_elf_sym
.st_info
)
2542 MSYMBOL_SET_SPECIAL (msym
);
2546 arm_coff_make_msymbol_special(int val
, struct minimal_symbol
*msym
)
2548 if (coff_sym_is_thumb (val
))
2549 MSYMBOL_SET_SPECIAL (msym
);
2553 arm_write_pc (CORE_ADDR pc
, ptid_t ptid
)
2555 write_register_pid (ARM_PC_REGNUM
, pc
, ptid
);
2557 /* If necessary, set the T bit. */
2560 CORE_ADDR val
= read_register_pid (ARM_PS_REGNUM
, ptid
);
2561 if (arm_pc_is_thumb (pc
))
2562 write_register_pid (ARM_PS_REGNUM
, val
| 0x20, ptid
);
2564 write_register_pid (ARM_PS_REGNUM
, val
& ~(CORE_ADDR
) 0x20, ptid
);
2568 static enum gdb_osabi
2569 arm_elf_osabi_sniffer (bfd
*abfd
)
2571 unsigned int elfosabi
, eflags
;
2572 enum gdb_osabi osabi
= GDB_OSABI_UNKNOWN
;
2574 elfosabi
= elf_elfheader (abfd
)->e_ident
[EI_OSABI
];
2576 if (elfosabi
== ELFOSABI_ARM
)
2577 /* GNU tools use this value. Check note sections in this case,
2579 bfd_map_over_sections (abfd
,
2580 generic_elf_osabi_sniff_abi_tag_sections
,
2583 /* Anything else will be handled by the generic ELF sniffer. */
2588 /* Initialize the current architecture based on INFO. If possible,
2589 re-use an architecture from ARCHES, which is a list of
2590 architectures already created during this debugging session.
2592 Called e.g. at program startup, when reading a core file, and when
2593 reading a binary file. */
2595 static struct gdbarch
*
2596 arm_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2598 struct gdbarch_tdep
*tdep
;
2599 struct gdbarch
*gdbarch
;
2600 struct gdbarch_list
*best_arch
;
2601 enum arm_abi_kind arm_abi
= arm_abi_global
;
2602 enum arm_float_model fp_model
= arm_fp_model
;
2604 /* If we have an object to base this architecture on, try to determine
2607 if (arm_abi
== ARM_ABI_AUTO
&& info
.abfd
!= NULL
)
2611 switch (bfd_get_flavour (info
.abfd
))
2613 case bfd_target_aout_flavour
:
2614 /* Assume it's an old APCS-style ABI. */
2615 arm_abi
= ARM_ABI_APCS
;
2618 case bfd_target_coff_flavour
:
2619 /* Assume it's an old APCS-style ABI. */
2621 arm_abi
= ARM_ABI_APCS
;
2624 case bfd_target_elf_flavour
:
2625 ei_osabi
= elf_elfheader (info
.abfd
)->e_ident
[EI_OSABI
];
2626 if (ei_osabi
== ELFOSABI_ARM
)
2628 /* GNU tools used to use this value, but do not for EABI
2629 objects. There's nowhere to tag an EABI version anyway,
2631 arm_abi
= ARM_ABI_APCS
;
2633 else if (ei_osabi
== ELFOSABI_NONE
)
2635 int e_flags
, eabi_ver
;
2637 e_flags
= elf_elfheader (info
.abfd
)->e_flags
;
2638 eabi_ver
= EF_ARM_EABI_VERSION (e_flags
);
2642 case EF_ARM_EABI_UNKNOWN
:
2643 /* Assume GNU tools. */
2644 arm_abi
= ARM_ABI_APCS
;
2647 case EF_ARM_EABI_VER4
:
2648 arm_abi
= ARM_ABI_AAPCS
;
2652 warning (_("unknown ARM EABI version 0x%x"), eabi_ver
);
2653 arm_abi
= ARM_ABI_APCS
;
2660 /* Leave it as "auto". */
2665 /* Now that we have inferred any architecture settings that we
2666 can, try to inherit from the last ARM ABI. */
2669 if (arm_abi
== ARM_ABI_AUTO
)
2670 arm_abi
= gdbarch_tdep (arches
->gdbarch
)->arm_abi
;
2672 if (fp_model
== ARM_FLOAT_AUTO
)
2673 fp_model
= gdbarch_tdep (arches
->gdbarch
)->fp_model
;
2677 /* There was no prior ARM architecture; fill in default values. */
2679 if (arm_abi
== ARM_ABI_AUTO
)
2680 arm_abi
= ARM_ABI_APCS
;
2682 /* We used to default to FPA for generic ARM, but almost nobody
2683 uses that now, and we now provide a way for the user to force
2684 the model. So default to the most useful variant. */
2685 if (fp_model
== ARM_FLOAT_AUTO
)
2686 fp_model
= ARM_FLOAT_SOFT_FPA
;
2689 /* If there is already a candidate, use it. */
2690 for (best_arch
= gdbarch_list_lookup_by_info (arches
, &info
);
2692 best_arch
= gdbarch_list_lookup_by_info (best_arch
->next
, &info
))
2694 if (arm_abi
!= gdbarch_tdep (best_arch
->gdbarch
)->arm_abi
)
2697 if (fp_model
!= gdbarch_tdep (best_arch
->gdbarch
)->fp_model
)
2700 /* Found a match. */
2704 if (best_arch
!= NULL
)
2705 return best_arch
->gdbarch
;
2707 tdep
= xcalloc (1, sizeof (struct gdbarch_tdep
));
2708 gdbarch
= gdbarch_alloc (&info
, tdep
);
2710 /* Record additional information about the architecture we are defining.
2711 These are gdbarch discriminators, like the OSABI. */
2712 tdep
->arm_abi
= arm_abi
;
2713 tdep
->fp_model
= fp_model
;
2716 switch (info
.byte_order
)
2718 case BFD_ENDIAN_BIG
:
2719 tdep
->arm_breakpoint
= arm_default_arm_be_breakpoint
;
2720 tdep
->arm_breakpoint_size
= sizeof (arm_default_arm_be_breakpoint
);
2721 tdep
->thumb_breakpoint
= arm_default_thumb_be_breakpoint
;
2722 tdep
->thumb_breakpoint_size
= sizeof (arm_default_thumb_be_breakpoint
);
2726 case BFD_ENDIAN_LITTLE
:
2727 tdep
->arm_breakpoint
= arm_default_arm_le_breakpoint
;
2728 tdep
->arm_breakpoint_size
= sizeof (arm_default_arm_le_breakpoint
);
2729 tdep
->thumb_breakpoint
= arm_default_thumb_le_breakpoint
;
2730 tdep
->thumb_breakpoint_size
= sizeof (arm_default_thumb_le_breakpoint
);
2735 internal_error (__FILE__
, __LINE__
,
2736 _("arm_gdbarch_init: bad byte order for float format"));
2739 /* On ARM targets char defaults to unsigned. */
2740 set_gdbarch_char_signed (gdbarch
, 0);
2742 /* This should be low enough for everything. */
2743 tdep
->lowest_pc
= 0x20;
2744 tdep
->jb_pc
= -1; /* Longjump support not enabled by default. */
2746 set_gdbarch_push_dummy_call (gdbarch
, arm_push_dummy_call
);
2748 set_gdbarch_write_pc (gdbarch
, arm_write_pc
);
2750 /* Frame handling. */
2751 set_gdbarch_unwind_dummy_id (gdbarch
, arm_unwind_dummy_id
);
2752 set_gdbarch_unwind_pc (gdbarch
, arm_unwind_pc
);
2753 set_gdbarch_unwind_sp (gdbarch
, arm_unwind_sp
);
2755 frame_base_set_default (gdbarch
, &arm_normal_base
);
2757 /* Address manipulation. */
2758 set_gdbarch_smash_text_address (gdbarch
, arm_smash_text_address
);
2759 set_gdbarch_addr_bits_remove (gdbarch
, arm_addr_bits_remove
);
2761 /* Advance PC across function entry code. */
2762 set_gdbarch_skip_prologue (gdbarch
, arm_skip_prologue
);
2764 /* Get the PC when a frame might not be available. */
2765 set_gdbarch_deprecated_saved_pc_after_call (gdbarch
, arm_saved_pc_after_call
);
2767 /* The stack grows downward. */
2768 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2770 /* Breakpoint manipulation. */
2771 set_gdbarch_breakpoint_from_pc (gdbarch
, arm_breakpoint_from_pc
);
2773 /* Information about registers, etc. */
2774 set_gdbarch_print_float_info (gdbarch
, arm_print_float_info
);
2775 set_gdbarch_deprecated_fp_regnum (gdbarch
, ARM_FP_REGNUM
); /* ??? */
2776 set_gdbarch_sp_regnum (gdbarch
, ARM_SP_REGNUM
);
2777 set_gdbarch_pc_regnum (gdbarch
, ARM_PC_REGNUM
);
2778 set_gdbarch_deprecated_register_byte (gdbarch
, arm_register_byte
);
2779 set_gdbarch_num_regs (gdbarch
, NUM_GREGS
+ NUM_FREGS
+ NUM_SREGS
);
2780 set_gdbarch_register_type (gdbarch
, arm_register_type
);
2782 /* Internal <-> external register number maps. */
2783 set_gdbarch_register_sim_regno (gdbarch
, arm_register_sim_regno
);
2785 /* Integer registers are 4 bytes. */
2786 set_gdbarch_deprecated_register_size (gdbarch
, 4);
2787 set_gdbarch_register_name (gdbarch
, arm_register_name
);
2789 /* Returning results. */
2790 set_gdbarch_extract_return_value (gdbarch
, arm_extract_return_value
);
2791 set_gdbarch_store_return_value (gdbarch
, arm_store_return_value
);
2792 set_gdbarch_deprecated_use_struct_convention (gdbarch
, arm_use_struct_convention
);
2793 set_gdbarch_deprecated_extract_struct_value_address (gdbarch
, arm_extract_struct_value_address
);
2795 /* Single stepping. */
2796 /* XXX For an RDI target we should ask the target if it can single-step. */
2797 set_gdbarch_software_single_step (gdbarch
, arm_software_single_step
);
2800 set_gdbarch_print_insn (gdbarch
, gdb_print_insn_arm
);
2802 /* Minsymbol frobbing. */
2803 set_gdbarch_elf_make_msymbol_special (gdbarch
, arm_elf_make_msymbol_special
);
2804 set_gdbarch_coff_make_msymbol_special (gdbarch
,
2805 arm_coff_make_msymbol_special
);
2807 /* Hook in the ABI-specific overrides, if they have been registered. */
2808 gdbarch_init_osabi (info
, gdbarch
);
2810 /* Add some default predicates. */
2811 frame_unwind_append_sniffer (gdbarch
, arm_stub_unwind_sniffer
);
2812 frame_unwind_append_sniffer (gdbarch
, arm_sigtramp_unwind_sniffer
);
2813 frame_unwind_append_sniffer (gdbarch
, dwarf2_frame_sniffer
);
2814 frame_unwind_append_sniffer (gdbarch
, arm_prologue_unwind_sniffer
);
2816 /* Now we have tuned the configuration, set a few final things,
2817 based on what the OS ABI has told us. */
2819 if (tdep
->jb_pc
>= 0)
2820 set_gdbarch_get_longjmp_target (gdbarch
, arm_get_longjmp_target
);
2822 /* Floating point sizes and format. */
2823 switch (info
.byte_order
)
2825 case BFD_ENDIAN_BIG
:
2826 set_gdbarch_float_format (gdbarch
, &floatformat_ieee_single_big
);
2827 set_gdbarch_double_format (gdbarch
, &floatformat_ieee_double_big
);
2828 set_gdbarch_long_double_format (gdbarch
, &floatformat_ieee_double_big
);
2831 case BFD_ENDIAN_LITTLE
:
2832 set_gdbarch_float_format (gdbarch
, &floatformat_ieee_single_little
);
2833 if (fp_model
== ARM_FLOAT_SOFT_FPA
|| fp_model
== ARM_FLOAT_FPA
)
2835 set_gdbarch_double_format
2836 (gdbarch
, &floatformat_ieee_double_littlebyte_bigword
);
2837 set_gdbarch_long_double_format
2838 (gdbarch
, &floatformat_ieee_double_littlebyte_bigword
);
2842 set_gdbarch_double_format (gdbarch
, &floatformat_ieee_double_little
);
2843 set_gdbarch_long_double_format (gdbarch
,
2844 &floatformat_ieee_double_little
);
2849 internal_error (__FILE__
, __LINE__
,
2850 _("arm_gdbarch_init: bad byte order for float format"));
2857 arm_dump_tdep (struct gdbarch
*current_gdbarch
, struct ui_file
*file
)
2859 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
2864 fprintf_unfiltered (file
, _("arm_dump_tdep: Lowest pc = 0x%lx"),
2865 (unsigned long) tdep
->lowest_pc
);
2868 extern initialize_file_ftype _initialize_arm_tdep
; /* -Wmissing-prototypes */
2871 _initialize_arm_tdep (void)
2873 struct ui_file
*stb
;
2875 struct cmd_list_element
*new_set
, *new_show
;
2876 const char *setname
;
2877 const char *setdesc
;
2878 const char *const *regnames
;
2880 static char *helptext
;
2881 char regdesc
[1024], *rdptr
= regdesc
;
2882 size_t rest
= sizeof (regdesc
);
2884 gdbarch_register (bfd_arch_arm
, arm_gdbarch_init
, arm_dump_tdep
);
2886 /* Register an ELF OS ABI sniffer for ARM binaries. */
2887 gdbarch_register_osabi_sniffer (bfd_arch_arm
,
2888 bfd_target_elf_flavour
,
2889 arm_elf_osabi_sniffer
);
2891 /* Get the number of possible sets of register names defined in opcodes. */
2892 num_disassembly_options
= get_arm_regname_num_options ();
2894 /* Add root prefix command for all "set arm"/"show arm" commands. */
2895 add_prefix_cmd ("arm", no_class
, set_arm_command
,
2896 _("Various ARM-specific commands."),
2897 &setarmcmdlist
, "set arm ", 0, &setlist
);
2899 add_prefix_cmd ("arm", no_class
, show_arm_command
,
2900 _("Various ARM-specific commands."),
2901 &showarmcmdlist
, "show arm ", 0, &showlist
);
2903 /* Sync the opcode insn printer with our register viewer. */
2904 parse_arm_disassembler_option ("reg-names-std");
2906 /* Initialize the array that will be passed to
2907 add_setshow_enum_cmd(). */
2908 valid_disassembly_styles
2909 = xmalloc ((num_disassembly_options
+ 1) * sizeof (char *));
2910 for (i
= 0; i
< num_disassembly_options
; i
++)
2912 numregs
= get_arm_regnames (i
, &setname
, &setdesc
, ®names
);
2913 valid_disassembly_styles
[i
] = setname
;
2914 length
= snprintf (rdptr
, rest
, "%s - %s\n", setname
, setdesc
);
2917 /* Copy the default names (if found) and synchronize disassembler. */
2918 if (!strcmp (setname
, "std"))
2920 disassembly_style
= setname
;
2922 for (j
= 0; j
< numregs
; j
++)
2923 arm_register_names
[j
] = (char *) regnames
[j
];
2924 set_arm_regname_option (i
);
2927 /* Mark the end of valid options. */
2928 valid_disassembly_styles
[num_disassembly_options
] = NULL
;
2930 /* Create the help text. */
2931 stb
= mem_fileopen ();
2932 fprintf_unfiltered (stb
, "%s%s%s",
2933 _("The valid values are:\n"),
2935 _("The default is \"std\"."));
2936 helptext
= ui_file_xstrdup (stb
, &length
);
2937 ui_file_delete (stb
);
2939 add_setshow_enum_cmd("disassembler", no_class
,
2940 valid_disassembly_styles
, &disassembly_style
,
2941 _("Set the disassembly style."),
2942 _("Show the disassembly style."),
2944 set_disassembly_style_sfunc
,
2945 NULL
, /* FIXME: i18n: The disassembly style is \"%s\". */
2946 &setarmcmdlist
, &showarmcmdlist
);
2948 add_setshow_boolean_cmd ("apcs32", no_class
, &arm_apcs_32
,
2949 _("Set usage of ARM 32-bit mode."),
2950 _("Show usage of ARM 32-bit mode."),
2951 _("When off, a 26-bit PC will be used."),
2953 NULL
, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
2954 &setarmcmdlist
, &showarmcmdlist
);
2956 /* Add a command to allow the user to force the FPU model. */
2957 add_setshow_enum_cmd ("fpu", no_class
, fp_model_strings
, ¤t_fp_model
,
2958 _("Set the floating point type."),
2959 _("Show the floating point type."),
2960 _("auto - Determine the FP typefrom the OS-ABI.\n\
2961 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
2962 fpa - FPA co-processor (GCC compiled).\n\
2963 softvfp - Software FP with pure-endian doubles.\n\
2964 vfp - VFP co-processor."),
2965 set_fp_model_sfunc
, show_fp_model
,
2966 &setarmcmdlist
, &showarmcmdlist
);
2968 /* Add a command to allow the user to force the ABI. */
2969 add_setshow_enum_cmd ("abi", class_support
, arm_abi_strings
, &arm_abi_string
,
2972 NULL
, arm_set_abi
, arm_show_abi
,
2973 &setarmcmdlist
, &showarmcmdlist
);
2975 /* Debugging flag. */
2976 add_setshow_boolean_cmd ("arm", class_maintenance
, &arm_debug
,
2977 _("Set ARM debugging."),
2978 _("Show ARM debugging."),
2979 _("When on, arm-specific debugging is enabled."),
2981 NULL
, /* FIXME: i18n: "ARM debugging is %s. */
2982 &setdebuglist
, &showdebuglist
);