* configure.ac (BFD_NEED_DECLARATION): Replace with AC_CHECK_DECLS.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include <ctype.h> /* XXX for isupper () */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42
43 #include "arm-tdep.h"
44 #include "gdb/sim-arm.h"
45
46 #include "elf-bfd.h"
47 #include "coff/internal.h"
48 #include "elf/arm.h"
49
50 #include "gdb_assert.h"
51
52 static int arm_debug;
53
54 /* Each OS has a different mechanism for accessing the various
55 registers stored in the sigcontext structure.
56
57 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
58 function pointer) which may be used to determine the addresses
59 of the various saved registers in the sigcontext structure.
60
61 For the ARM target, there are three parameters to this function.
62 The first is the pc value of the frame under consideration, the
63 second the stack pointer of this frame, and the last is the
64 register number to fetch.
65
66 If the tm.h file does not define this macro, then it's assumed that
67 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
68 be 0.
69
70 When it comes time to multi-arching this code, see the identically
71 named machinery in ia64-tdep.c for an example of how it could be
72 done. It should not be necessary to modify the code below where
73 this macro is used. */
74
75 #ifdef SIGCONTEXT_REGISTER_ADDRESS
76 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
77 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
78 #endif
79 #else
80 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
81 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
82 #endif
83
84 /* Macros for setting and testing a bit in a minimal symbol that marks
85 it as Thumb function. The MSB of the minimal symbol's "info" field
86 is used for this purpose.
87
88 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
89 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
90
91 #define MSYMBOL_SET_SPECIAL(msym) \
92 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
93 | 0x80000000)
94
95 #define MSYMBOL_IS_SPECIAL(msym) \
96 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
97
98 /* The list of available "set arm ..." and "show arm ..." commands. */
99 static struct cmd_list_element *setarmcmdlist = NULL;
100 static struct cmd_list_element *showarmcmdlist = NULL;
101
102 /* The type of floating-point to use. Keep this in sync with enum
103 arm_float_model, and the help string in _initialize_arm_tdep. */
104 static const char *fp_model_strings[] =
105 {
106 "auto",
107 "softfpa",
108 "fpa",
109 "softvfp",
110 "vfp",
111 NULL
112 };
113
114 /* A variable that can be configured by the user. */
115 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
116 static const char *current_fp_model = "auto";
117
118 /* The ABI to use. Keep this in sync with arm_abi_kind. */
119 static const char *arm_abi_strings[] =
120 {
121 "auto",
122 "APCS",
123 "AAPCS",
124 NULL
125 };
126
127 /* A variable that can be configured by the user. */
128 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
129 static const char *arm_abi_string = "auto";
130
131 /* Number of different reg name sets (options). */
132 static int num_disassembly_options;
133
134 /* We have more registers than the disassembler as gdb can print the value
135 of special registers as well.
136 The general register names are overwritten by whatever is being used by
137 the disassembler at the moment. We also adjust the case of cpsr and fps. */
138
139 /* Initial value: Register names used in ARM's ISA documentation. */
140 static char * arm_register_name_strings[] =
141 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
142 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
143 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
144 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
145 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
146 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
147 "fps", "cpsr" }; /* 24 25 */
148 static char **arm_register_names = arm_register_name_strings;
149
150 /* Valid register name styles. */
151 static const char **valid_disassembly_styles;
152
153 /* Disassembly style to use. Default to "std" register names. */
154 static const char *disassembly_style;
155 /* Index to that option in the opcodes table. */
156 static int current_option;
157
158 /* This is used to keep the bfd arch_info in sync with the disassembly
159 style. */
160 static void set_disassembly_style_sfunc(char *, int,
161 struct cmd_list_element *);
162 static void set_disassembly_style (void);
163
164 static void convert_from_extended (const struct floatformat *, const void *,
165 void *);
166 static void convert_to_extended (const struct floatformat *, void *,
167 const void *);
168
169 struct arm_prologue_cache
170 {
171 /* The stack pointer at the time this frame was created; i.e. the
172 caller's stack pointer when this function was called. It is used
173 to identify this frame. */
174 CORE_ADDR prev_sp;
175
176 /* The frame base for this frame is just prev_sp + frame offset -
177 frame size. FRAMESIZE is the size of this stack frame, and
178 FRAMEOFFSET if the initial offset from the stack pointer (this
179 frame's stack pointer, not PREV_SP) to the frame base. */
180
181 int framesize;
182 int frameoffset;
183
184 /* The register used to hold the frame pointer for this frame. */
185 int framereg;
186
187 /* Saved register offsets. */
188 struct trad_frame_saved_reg *saved_regs;
189 };
190
191 /* Addresses for calling Thumb functions have the bit 0 set.
192 Here are some macros to test, set, or clear bit 0 of addresses. */
193 #define IS_THUMB_ADDR(addr) ((addr) & 1)
194 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
195 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
196
197 /* Set to true if the 32-bit mode is in use. */
198
199 int arm_apcs_32 = 1;
200
201 /* Determine if the program counter specified in MEMADDR is in a Thumb
202 function. */
203
204 int
205 arm_pc_is_thumb (CORE_ADDR memaddr)
206 {
207 struct minimal_symbol *sym;
208
209 /* If bit 0 of the address is set, assume this is a Thumb address. */
210 if (IS_THUMB_ADDR (memaddr))
211 return 1;
212
213 /* Thumb functions have a "special" bit set in minimal symbols. */
214 sym = lookup_minimal_symbol_by_pc (memaddr);
215 if (sym)
216 {
217 return (MSYMBOL_IS_SPECIAL (sym));
218 }
219 else
220 {
221 return 0;
222 }
223 }
224
225 /* Remove useless bits from addresses in a running program. */
226 static CORE_ADDR
227 arm_addr_bits_remove (CORE_ADDR val)
228 {
229 if (arm_apcs_32)
230 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
231 else
232 return (val & 0x03fffffc);
233 }
234
235 /* When reading symbols, we need to zap the low bit of the address,
236 which may be set to 1 for Thumb functions. */
237 static CORE_ADDR
238 arm_smash_text_address (CORE_ADDR val)
239 {
240 return val & ~1;
241 }
242
243 /* Immediately after a function call, return the saved pc. Can't
244 always go through the frames for this because on some machines the
245 new frame is not set up until the new function executes some
246 instructions. */
247
248 static CORE_ADDR
249 arm_saved_pc_after_call (struct frame_info *frame)
250 {
251 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
252 }
253
254 /* A typical Thumb prologue looks like this:
255 push {r7, lr}
256 add sp, sp, #-28
257 add r7, sp, #12
258 Sometimes the latter instruction may be replaced by:
259 mov r7, sp
260
261 or like this:
262 push {r7, lr}
263 mov r7, sp
264 sub sp, #12
265
266 or, on tpcs, like this:
267 sub sp,#16
268 push {r7, lr}
269 (many instructions)
270 mov r7, sp
271 sub sp, #12
272
273 There is always one instruction of three classes:
274 1 - push
275 2 - setting of r7
276 3 - adjusting of sp
277
278 When we have found at least one of each class we are done with the prolog.
279 Note that the "sub sp, #NN" before the push does not count.
280 */
281
282 static CORE_ADDR
283 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
284 {
285 CORE_ADDR current_pc;
286 /* findmask:
287 bit 0 - push { rlist }
288 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
289 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
290 */
291 int findmask = 0;
292
293 for (current_pc = pc;
294 current_pc + 2 < func_end && current_pc < pc + 40;
295 current_pc += 2)
296 {
297 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
298
299 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
300 {
301 findmask |= 1; /* push found */
302 }
303 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
304 sub sp, #simm */
305 {
306 if ((findmask & 1) == 0) /* before push ? */
307 continue;
308 else
309 findmask |= 4; /* add/sub sp found */
310 }
311 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
312 {
313 findmask |= 2; /* setting of r7 found */
314 }
315 else if (insn == 0x466f) /* mov r7, sp */
316 {
317 findmask |= 2; /* setting of r7 found */
318 }
319 else if (findmask == (4+2+1))
320 {
321 /* We have found one of each type of prologue instruction */
322 break;
323 }
324 else
325 /* Something in the prolog that we don't care about or some
326 instruction from outside the prolog scheduled here for
327 optimization. */
328 continue;
329 }
330
331 return current_pc;
332 }
333
334 /* Advance the PC across any function entry prologue instructions to
335 reach some "real" code.
336
337 The APCS (ARM Procedure Call Standard) defines the following
338 prologue:
339
340 mov ip, sp
341 [stmfd sp!, {a1,a2,a3,a4}]
342 stmfd sp!, {...,fp,ip,lr,pc}
343 [stfe f7, [sp, #-12]!]
344 [stfe f6, [sp, #-12]!]
345 [stfe f5, [sp, #-12]!]
346 [stfe f4, [sp, #-12]!]
347 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
348
349 static CORE_ADDR
350 arm_skip_prologue (CORE_ADDR pc)
351 {
352 unsigned long inst;
353 CORE_ADDR skip_pc;
354 CORE_ADDR func_addr, func_end = 0;
355 char *func_name;
356 struct symtab_and_line sal;
357
358 /* If we're in a dummy frame, don't even try to skip the prologue. */
359 if (deprecated_pc_in_call_dummy (pc))
360 return pc;
361
362 /* See what the symbol table says. */
363
364 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
365 {
366 struct symbol *sym;
367
368 /* Found a function. */
369 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
370 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
371 {
372 /* Don't use this trick for assembly source files. */
373 sal = find_pc_line (func_addr, 0);
374 if ((sal.line != 0) && (sal.end < func_end))
375 return sal.end;
376 }
377 }
378
379 /* Check if this is Thumb code. */
380 if (arm_pc_is_thumb (pc))
381 return thumb_skip_prologue (pc, func_end);
382
383 /* Can't find the prologue end in the symbol table, try it the hard way
384 by disassembling the instructions. */
385
386 /* Like arm_scan_prologue, stop no later than pc + 64. */
387 if (func_end == 0 || func_end > pc + 64)
388 func_end = pc + 64;
389
390 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
391 {
392 inst = read_memory_integer (skip_pc, 4);
393
394 /* "mov ip, sp" is no longer a required part of the prologue. */
395 if (inst == 0xe1a0c00d) /* mov ip, sp */
396 continue;
397
398 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
399 continue;
400
401 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
402 continue;
403
404 /* Some prologues begin with "str lr, [sp, #-4]!". */
405 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
406 continue;
407
408 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
409 continue;
410
411 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
412 continue;
413
414 /* Any insns after this point may float into the code, if it makes
415 for better instruction scheduling, so we skip them only if we
416 find them, but still consider the function to be frame-ful. */
417
418 /* We may have either one sfmfd instruction here, or several stfe
419 insns, depending on the version of floating point code we
420 support. */
421 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
422 continue;
423
424 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
425 continue;
426
427 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
428 continue;
429
430 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
431 continue;
432
433 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
434 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
435 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
436 continue;
437
438 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
439 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
440 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
441 continue;
442
443 /* Un-recognized instruction; stop scanning. */
444 break;
445 }
446
447 return skip_pc; /* End of prologue */
448 }
449
450 /* *INDENT-OFF* */
451 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
452 This function decodes a Thumb function prologue to determine:
453 1) the size of the stack frame
454 2) which registers are saved on it
455 3) the offsets of saved regs
456 4) the offset from the stack pointer to the frame pointer
457
458 A typical Thumb function prologue would create this stack frame
459 (offsets relative to FP)
460 old SP -> 24 stack parameters
461 20 LR
462 16 R7
463 R7 -> 0 local variables (16 bytes)
464 SP -> -12 additional stack space (12 bytes)
465 The frame size would thus be 36 bytes, and the frame offset would be
466 12 bytes. The frame register is R7.
467
468 The comments for thumb_skip_prolog() describe the algorithm we use
469 to detect the end of the prolog. */
470 /* *INDENT-ON* */
471
472 static void
473 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
474 {
475 CORE_ADDR prologue_start;
476 CORE_ADDR prologue_end;
477 CORE_ADDR current_pc;
478 /* Which register has been copied to register n? */
479 int saved_reg[16];
480 /* findmask:
481 bit 0 - push { rlist }
482 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
483 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
484 */
485 int findmask = 0;
486 int i;
487
488 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
489 {
490 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
491
492 if (sal.line == 0) /* no line info, use current PC */
493 prologue_end = prev_pc;
494 else if (sal.end < prologue_end) /* next line begins after fn end */
495 prologue_end = sal.end; /* (probably means no prologue) */
496 }
497 else
498 /* We're in the boondocks: allow for
499 16 pushes, an add, and "mv fp,sp". */
500 prologue_end = prologue_start + 40;
501
502 prologue_end = min (prologue_end, prev_pc);
503
504 /* Initialize the saved register map. When register H is copied to
505 register L, we will put H in saved_reg[L]. */
506 for (i = 0; i < 16; i++)
507 saved_reg[i] = i;
508
509 /* Search the prologue looking for instructions that set up the
510 frame pointer, adjust the stack pointer, and save registers.
511 Do this until all basic prolog instructions are found. */
512
513 cache->framesize = 0;
514 for (current_pc = prologue_start;
515 (current_pc < prologue_end) && ((findmask & 7) != 7);
516 current_pc += 2)
517 {
518 unsigned short insn;
519 int regno;
520 int offset;
521
522 insn = read_memory_unsigned_integer (current_pc, 2);
523
524 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
525 {
526 int mask;
527 findmask |= 1; /* push found */
528 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
529 whether to save LR (R14). */
530 mask = (insn & 0xff) | ((insn & 0x100) << 6);
531
532 /* Calculate offsets of saved R0-R7 and LR. */
533 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
534 if (mask & (1 << regno))
535 {
536 cache->framesize += 4;
537 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
538 /* Reset saved register map. */
539 saved_reg[regno] = regno;
540 }
541 }
542 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
543 sub sp, #simm */
544 {
545 if ((findmask & 1) == 0) /* before push? */
546 continue;
547 else
548 findmask |= 4; /* add/sub sp found */
549
550 offset = (insn & 0x7f) << 2; /* get scaled offset */
551 if (insn & 0x80) /* is it signed? (==subtracting) */
552 {
553 cache->frameoffset += offset;
554 offset = -offset;
555 }
556 cache->framesize -= offset;
557 }
558 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
559 {
560 findmask |= 2; /* setting of r7 found */
561 cache->framereg = THUMB_FP_REGNUM;
562 /* get scaled offset */
563 cache->frameoffset = (insn & 0xff) << 2;
564 }
565 else if (insn == 0x466f) /* mov r7, sp */
566 {
567 findmask |= 2; /* setting of r7 found */
568 cache->framereg = THUMB_FP_REGNUM;
569 cache->frameoffset = 0;
570 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
571 }
572 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
573 {
574 int lo_reg = insn & 7; /* dest. register (r0-r7) */
575 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
576 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
577 }
578 else
579 /* Something in the prolog that we don't care about or some
580 instruction from outside the prolog scheduled here for
581 optimization. */
582 continue;
583 }
584 }
585
586 /* This function decodes an ARM function prologue to determine:
587 1) the size of the stack frame
588 2) which registers are saved on it
589 3) the offsets of saved regs
590 4) the offset from the stack pointer to the frame pointer
591 This information is stored in the "extra" fields of the frame_info.
592
593 There are two basic forms for the ARM prologue. The fixed argument
594 function call will look like:
595
596 mov ip, sp
597 stmfd sp!, {fp, ip, lr, pc}
598 sub fp, ip, #4
599 [sub sp, sp, #4]
600
601 Which would create this stack frame (offsets relative to FP):
602 IP -> 4 (caller's stack)
603 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
604 -4 LR (return address in caller)
605 -8 IP (copy of caller's SP)
606 -12 FP (caller's FP)
607 SP -> -28 Local variables
608
609 The frame size would thus be 32 bytes, and the frame offset would be
610 28 bytes. The stmfd call can also save any of the vN registers it
611 plans to use, which increases the frame size accordingly.
612
613 Note: The stored PC is 8 off of the STMFD instruction that stored it
614 because the ARM Store instructions always store PC + 8 when you read
615 the PC register.
616
617 A variable argument function call will look like:
618
619 mov ip, sp
620 stmfd sp!, {a1, a2, a3, a4}
621 stmfd sp!, {fp, ip, lr, pc}
622 sub fp, ip, #20
623
624 Which would create this stack frame (offsets relative to FP):
625 IP -> 20 (caller's stack)
626 16 A4
627 12 A3
628 8 A2
629 4 A1
630 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
631 -4 LR (return address in caller)
632 -8 IP (copy of caller's SP)
633 -12 FP (caller's FP)
634 SP -> -28 Local variables
635
636 The frame size would thus be 48 bytes, and the frame offset would be
637 28 bytes.
638
639 There is another potential complication, which is that the optimizer
640 will try to separate the store of fp in the "stmfd" instruction from
641 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
642 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
643
644 Also, note, the original version of the ARM toolchain claimed that there
645 should be an
646
647 instruction at the end of the prologue. I have never seen GCC produce
648 this, and the ARM docs don't mention it. We still test for it below in
649 case it happens...
650
651 */
652
653 static void
654 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
655 {
656 int regno, sp_offset, fp_offset, ip_offset;
657 CORE_ADDR prologue_start, prologue_end, current_pc;
658 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
659
660 /* Assume there is no frame until proven otherwise. */
661 cache->framereg = ARM_SP_REGNUM;
662 cache->framesize = 0;
663 cache->frameoffset = 0;
664
665 /* Check for Thumb prologue. */
666 if (arm_pc_is_thumb (prev_pc))
667 {
668 thumb_scan_prologue (prev_pc, cache);
669 return;
670 }
671
672 /* Find the function prologue. If we can't find the function in
673 the symbol table, peek in the stack frame to find the PC. */
674 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
675 {
676 /* One way to find the end of the prologue (which works well
677 for unoptimized code) is to do the following:
678
679 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
680
681 if (sal.line == 0)
682 prologue_end = prev_pc;
683 else if (sal.end < prologue_end)
684 prologue_end = sal.end;
685
686 This mechanism is very accurate so long as the optimizer
687 doesn't move any instructions from the function body into the
688 prologue. If this happens, sal.end will be the last
689 instruction in the first hunk of prologue code just before
690 the first instruction that the scheduler has moved from
691 the body to the prologue.
692
693 In order to make sure that we scan all of the prologue
694 instructions, we use a slightly less accurate mechanism which
695 may scan more than necessary. To help compensate for this
696 lack of accuracy, the prologue scanning loop below contains
697 several clauses which'll cause the loop to terminate early if
698 an implausible prologue instruction is encountered.
699
700 The expression
701
702 prologue_start + 64
703
704 is a suitable endpoint since it accounts for the largest
705 possible prologue plus up to five instructions inserted by
706 the scheduler. */
707
708 if (prologue_end > prologue_start + 64)
709 {
710 prologue_end = prologue_start + 64; /* See above. */
711 }
712 }
713 else
714 {
715 /* We have no symbol information. Our only option is to assume this
716 function has a standard stack frame and the normal frame register.
717 Then, we can find the value of our frame pointer on entrance to
718 the callee (or at the present moment if this is the innermost frame).
719 The value stored there should be the address of the stmfd + 8. */
720 CORE_ADDR frame_loc;
721 LONGEST return_value;
722
723 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
724 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
725 return;
726 else
727 {
728 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
729 prologue_end = prologue_start + 64; /* See above. */
730 }
731 }
732
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
735
736 /* Now search the prologue looking for instructions that set up the
737 frame pointer, adjust the stack pointer, and save registers.
738
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
742 a frame, which will confuse stack traceback, as well as "finish"
743 and other operations that rely on a knowledge of the stack
744 traceback.
745
746 In the APCS, the prologue should start with "mov ip, sp" so
747 if we don't see this as the first insn, we will stop.
748
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
751
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
756
757 sp_offset = fp_offset = ip_offset = 0;
758
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
761 current_pc += 4)
762 {
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
764
765 if (insn == 0xe1a0c00d) /* mov ip, sp */
766 {
767 ip_offset = 0;
768 continue;
769 }
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
771 {
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
775 ip_offset = imm;
776 continue;
777 }
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
779 {
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
783 ip_offset = -imm;
784 continue;
785 }
786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
787 {
788 sp_offset -= 4;
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
790 continue;
791 }
792 else if ((insn & 0xffff0000) == 0xe92d0000)
793 /* stmfd sp!, {..., fp, ip, lr, pc}
794 or
795 stmfd sp!, {a1, a2, a3, a4} */
796 {
797 int mask = insn & 0xffff;
798
799 /* Calculate offsets of saved registers. */
800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
801 if (mask & (1 << regno))
802 {
803 sp_offset -= 4;
804 cache->saved_regs[regno].addr = sp_offset;
805 }
806 }
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
810 {
811 /* No need to add this to saved_regs -- it's just an arg reg. */
812 continue;
813 }
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
817 {
818 /* No need to add this to saved_regs -- it's just an arg reg. */
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 fp_offset = -imm + ip_offset;
827 cache->framereg = ARM_FP_REGNUM;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 sp_offset -= imm;
835 }
836 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
837 {
838 sp_offset -= 12;
839 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
840 cache->saved_regs[regno].addr = sp_offset;
841 }
842 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
843 {
844 int n_saved_fp_regs;
845 unsigned int fp_start_reg, fp_bound_reg;
846
847 if ((insn & 0x800) == 0x800) /* N0 is set */
848 {
849 if ((insn & 0x40000) == 0x40000) /* N1 is set */
850 n_saved_fp_regs = 3;
851 else
852 n_saved_fp_regs = 1;
853 }
854 else
855 {
856 if ((insn & 0x40000) == 0x40000) /* N1 is set */
857 n_saved_fp_regs = 2;
858 else
859 n_saved_fp_regs = 4;
860 }
861
862 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
863 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
864 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
865 {
866 sp_offset -= 12;
867 cache->saved_regs[fp_start_reg++].addr = sp_offset;
868 }
869 }
870 else if ((insn & 0xf0000000) != 0xe0000000)
871 break; /* Condition not true, exit early */
872 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
873 break; /* Don't scan past a block load */
874 else
875 /* The optimizer might shove anything into the prologue,
876 so we just skip what we don't recognize. */
877 continue;
878 }
879
880 /* The frame size is just the negative of the offset (from the
881 original SP) of the last thing thing we pushed on the stack.
882 The frame offset is [new FP] - [new SP]. */
883 cache->framesize = -sp_offset;
884 if (cache->framereg == ARM_FP_REGNUM)
885 cache->frameoffset = fp_offset - sp_offset;
886 else
887 cache->frameoffset = 0;
888 }
889
890 static struct arm_prologue_cache *
891 arm_make_prologue_cache (struct frame_info *next_frame)
892 {
893 int reg;
894 struct arm_prologue_cache *cache;
895 CORE_ADDR unwound_fp;
896
897 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
898 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
899
900 arm_scan_prologue (next_frame, cache);
901
902 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
903 if (unwound_fp == 0)
904 return cache;
905
906 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
907
908 /* Calculate actual addresses of saved registers using offsets
909 determined by arm_scan_prologue. */
910 for (reg = 0; reg < NUM_REGS; reg++)
911 if (trad_frame_addr_p (cache->saved_regs, reg))
912 cache->saved_regs[reg].addr += cache->prev_sp;
913
914 return cache;
915 }
916
917 /* Our frame ID for a normal frame is the current function's starting PC
918 and the caller's SP when we were called. */
919
920 static void
921 arm_prologue_this_id (struct frame_info *next_frame,
922 void **this_cache,
923 struct frame_id *this_id)
924 {
925 struct arm_prologue_cache *cache;
926 struct frame_id id;
927 CORE_ADDR func;
928
929 if (*this_cache == NULL)
930 *this_cache = arm_make_prologue_cache (next_frame);
931 cache = *this_cache;
932
933 func = frame_func_unwind (next_frame);
934
935 /* This is meant to halt the backtrace at "_start". Make sure we
936 don't halt it at a generic dummy frame. */
937 if (func <= LOWEST_PC)
938 return;
939
940 /* If we've hit a wall, stop. */
941 if (cache->prev_sp == 0)
942 return;
943
944 id = frame_id_build (cache->prev_sp, func);
945 *this_id = id;
946 }
947
948 static void
949 arm_prologue_prev_register (struct frame_info *next_frame,
950 void **this_cache,
951 int prev_regnum,
952 int *optimized,
953 enum lval_type *lvalp,
954 CORE_ADDR *addrp,
955 int *realnump,
956 gdb_byte *valuep)
957 {
958 struct arm_prologue_cache *cache;
959
960 if (*this_cache == NULL)
961 *this_cache = arm_make_prologue_cache (next_frame);
962 cache = *this_cache;
963
964 /* If we are asked to unwind the PC, then we need to return the LR
965 instead. The saved value of PC points into this frame's
966 prologue, not the next frame's resume location. */
967 if (prev_regnum == ARM_PC_REGNUM)
968 prev_regnum = ARM_LR_REGNUM;
969
970 /* SP is generally not saved to the stack, but this frame is
971 identified by NEXT_FRAME's stack pointer at the time of the call.
972 The value was already reconstructed into PREV_SP. */
973 if (prev_regnum == ARM_SP_REGNUM)
974 {
975 *lvalp = not_lval;
976 if (valuep)
977 store_unsigned_integer (valuep, 4, cache->prev_sp);
978 return;
979 }
980
981 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
982 optimized, lvalp, addrp, realnump, valuep);
983 }
984
985 struct frame_unwind arm_prologue_unwind = {
986 NORMAL_FRAME,
987 arm_prologue_this_id,
988 arm_prologue_prev_register
989 };
990
991 static const struct frame_unwind *
992 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
993 {
994 return &arm_prologue_unwind;
995 }
996
997 static struct arm_prologue_cache *
998 arm_make_stub_cache (struct frame_info *next_frame)
999 {
1000 int reg;
1001 struct arm_prologue_cache *cache;
1002 CORE_ADDR unwound_fp;
1003
1004 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1005 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1006
1007 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1008
1009 return cache;
1010 }
1011
1012 /* Our frame ID for a stub frame is the current SP and LR. */
1013
1014 static void
1015 arm_stub_this_id (struct frame_info *next_frame,
1016 void **this_cache,
1017 struct frame_id *this_id)
1018 {
1019 struct arm_prologue_cache *cache;
1020
1021 if (*this_cache == NULL)
1022 *this_cache = arm_make_stub_cache (next_frame);
1023 cache = *this_cache;
1024
1025 *this_id = frame_id_build (cache->prev_sp,
1026 frame_pc_unwind (next_frame));
1027 }
1028
1029 struct frame_unwind arm_stub_unwind = {
1030 NORMAL_FRAME,
1031 arm_stub_this_id,
1032 arm_prologue_prev_register
1033 };
1034
1035 static const struct frame_unwind *
1036 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1037 {
1038 char dummy[4];
1039
1040 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
1041 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1042 return &arm_stub_unwind;
1043
1044 return NULL;
1045 }
1046
1047 static CORE_ADDR
1048 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1049 {
1050 struct arm_prologue_cache *cache;
1051
1052 if (*this_cache == NULL)
1053 *this_cache = arm_make_prologue_cache (next_frame);
1054 cache = *this_cache;
1055
1056 return cache->prev_sp + cache->frameoffset - cache->framesize;
1057 }
1058
1059 struct frame_base arm_normal_base = {
1060 &arm_prologue_unwind,
1061 arm_normal_frame_base,
1062 arm_normal_frame_base,
1063 arm_normal_frame_base
1064 };
1065
1066 static struct arm_prologue_cache *
1067 arm_make_sigtramp_cache (struct frame_info *next_frame)
1068 {
1069 struct arm_prologue_cache *cache;
1070 int reg;
1071
1072 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1073
1074 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1075
1076 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1077
1078 for (reg = 0; reg < NUM_REGS; reg++)
1079 cache->saved_regs[reg].addr
1080 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1081 frame_pc_unwind (next_frame), reg);
1082
1083 /* FIXME: What about thumb mode? */
1084 cache->framereg = ARM_SP_REGNUM;
1085 cache->prev_sp
1086 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
1087 register_size (current_gdbarch, cache->framereg));
1088
1089 return cache;
1090 }
1091
1092 static void
1093 arm_sigtramp_this_id (struct frame_info *next_frame,
1094 void **this_cache,
1095 struct frame_id *this_id)
1096 {
1097 struct arm_prologue_cache *cache;
1098
1099 if (*this_cache == NULL)
1100 *this_cache = arm_make_sigtramp_cache (next_frame);
1101 cache = *this_cache;
1102
1103 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1104 the sigtramp frame; the PC should be the beginning of the trampoline. */
1105 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1106 }
1107
1108 static void
1109 arm_sigtramp_prev_register (struct frame_info *next_frame,
1110 void **this_cache,
1111 int prev_regnum,
1112 int *optimized,
1113 enum lval_type *lvalp,
1114 CORE_ADDR *addrp,
1115 int *realnump,
1116 gdb_byte *valuep)
1117 {
1118 struct arm_prologue_cache *cache;
1119
1120 if (*this_cache == NULL)
1121 *this_cache = arm_make_sigtramp_cache (next_frame);
1122 cache = *this_cache;
1123
1124 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1125 optimized, lvalp, addrp, realnump, valuep);
1126 }
1127
1128 struct frame_unwind arm_sigtramp_unwind = {
1129 SIGTRAMP_FRAME,
1130 arm_sigtramp_this_id,
1131 arm_sigtramp_prev_register
1132 };
1133
1134 static const struct frame_unwind *
1135 arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
1136 {
1137 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1138 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame), (char *) 0))
1139 return &arm_sigtramp_unwind;
1140
1141 return NULL;
1142 }
1143
1144 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1145 dummy frame. The frame ID's base needs to match the TOS value
1146 saved by save_dummy_frame_tos() and returned from
1147 arm_push_dummy_call, and the PC needs to match the dummy frame's
1148 breakpoint. */
1149
1150 static struct frame_id
1151 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1152 {
1153 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1154 frame_pc_unwind (next_frame));
1155 }
1156
1157 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1158 be used to construct the previous frame's ID, after looking up the
1159 containing function). */
1160
1161 static CORE_ADDR
1162 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1163 {
1164 CORE_ADDR pc;
1165 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1166 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1167 }
1168
1169 static CORE_ADDR
1170 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1171 {
1172 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1173 }
1174
1175 /* When arguments must be pushed onto the stack, they go on in reverse
1176 order. The code below implements a FILO (stack) to do this. */
1177
1178 struct stack_item
1179 {
1180 int len;
1181 struct stack_item *prev;
1182 void *data;
1183 };
1184
1185 static struct stack_item *
1186 push_stack_item (struct stack_item *prev, void *contents, int len)
1187 {
1188 struct stack_item *si;
1189 si = xmalloc (sizeof (struct stack_item));
1190 si->data = xmalloc (len);
1191 si->len = len;
1192 si->prev = prev;
1193 memcpy (si->data, contents, len);
1194 return si;
1195 }
1196
1197 static struct stack_item *
1198 pop_stack_item (struct stack_item *si)
1199 {
1200 struct stack_item *dead = si;
1201 si = si->prev;
1202 xfree (dead->data);
1203 xfree (dead);
1204 return si;
1205 }
1206
1207 /* We currently only support passing parameters in integer registers. This
1208 conforms with GCC's default model. Several other variants exist and
1209 we should probably support some of them based on the selected ABI. */
1210
1211 static CORE_ADDR
1212 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1213 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1214 struct value **args, CORE_ADDR sp, int struct_return,
1215 CORE_ADDR struct_addr)
1216 {
1217 int argnum;
1218 int argreg;
1219 int nstack;
1220 struct stack_item *si = NULL;
1221
1222 /* Set the return address. For the ARM, the return breakpoint is
1223 always at BP_ADDR. */
1224 /* XXX Fix for Thumb. */
1225 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1226
1227 /* Walk through the list of args and determine how large a temporary
1228 stack is required. Need to take care here as structs may be
1229 passed on the stack, and we have to to push them. */
1230 nstack = 0;
1231
1232 argreg = ARM_A1_REGNUM;
1233 nstack = 0;
1234
1235 /* Some platforms require a double-word aligned stack. Make sure sp
1236 is correctly aligned before we start. We always do this even if
1237 it isn't really needed -- it can never hurt things. */
1238 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1239
1240 /* The struct_return pointer occupies the first parameter
1241 passing register. */
1242 if (struct_return)
1243 {
1244 if (arm_debug)
1245 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1246 REGISTER_NAME (argreg), paddr (struct_addr));
1247 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1248 argreg++;
1249 }
1250
1251 for (argnum = 0; argnum < nargs; argnum++)
1252 {
1253 int len;
1254 struct type *arg_type;
1255 struct type *target_type;
1256 enum type_code typecode;
1257 bfd_byte *val;
1258
1259 arg_type = check_typedef (value_type (args[argnum]));
1260 len = TYPE_LENGTH (arg_type);
1261 target_type = TYPE_TARGET_TYPE (arg_type);
1262 typecode = TYPE_CODE (arg_type);
1263 val = value_contents_writeable (args[argnum]);
1264
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR == typecode
1269 && target_type != NULL
1270 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1271 {
1272 CORE_ADDR regval = extract_unsigned_integer (val, len);
1273 if (arm_pc_is_thumb (regval))
1274 {
1275 val = alloca (len);
1276 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1277 }
1278 }
1279
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1283 while (len > 0)
1284 {
1285 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1286
1287 if (argreg <= ARM_LAST_ARG_REGNUM)
1288 {
1289 /* The argument is being passed in a general purpose
1290 register. */
1291 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1292 if (arm_debug)
1293 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1294 argnum, REGISTER_NAME (argreg),
1295 phex (regval, DEPRECATED_REGISTER_SIZE));
1296 regcache_cooked_write_unsigned (regcache, argreg, regval);
1297 argreg++;
1298 }
1299 else
1300 {
1301 /* Push the arguments onto the stack. */
1302 if (arm_debug)
1303 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1304 argnum, nstack);
1305 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1306 nstack += DEPRECATED_REGISTER_SIZE;
1307 }
1308
1309 len -= partial_len;
1310 val += partial_len;
1311 }
1312 }
1313 /* If we have an odd number of words to push, then decrement the stack
1314 by one word now, so first stack argument will be dword aligned. */
1315 if (nstack & 4)
1316 sp -= 4;
1317
1318 while (si)
1319 {
1320 sp -= si->len;
1321 write_memory (sp, si->data, si->len);
1322 si = pop_stack_item (si);
1323 }
1324
1325 /* Finally, update teh SP register. */
1326 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1327
1328 return sp;
1329 }
1330
1331 static void
1332 print_fpu_flags (int flags)
1333 {
1334 if (flags & (1 << 0))
1335 fputs ("IVO ", stdout);
1336 if (flags & (1 << 1))
1337 fputs ("DVZ ", stdout);
1338 if (flags & (1 << 2))
1339 fputs ("OFL ", stdout);
1340 if (flags & (1 << 3))
1341 fputs ("UFL ", stdout);
1342 if (flags & (1 << 4))
1343 fputs ("INX ", stdout);
1344 putchar ('\n');
1345 }
1346
1347 /* Print interesting information about the floating point processor
1348 (if present) or emulator. */
1349 static void
1350 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1351 struct frame_info *frame, const char *args)
1352 {
1353 unsigned long status = read_register (ARM_FPS_REGNUM);
1354 int type;
1355
1356 type = (status >> 24) & 127;
1357 if (status & (1 << 31))
1358 printf (_("Hardware FPU type %d\n"), type);
1359 else
1360 printf (_("Software FPU type %d\n"), type);
1361 /* i18n: [floating point unit] mask */
1362 fputs (_("mask: "), stdout);
1363 print_fpu_flags (status >> 16);
1364 /* i18n: [floating point unit] flags */
1365 fputs (_("flags: "), stdout);
1366 print_fpu_flags (status);
1367 }
1368
1369 /* Return the GDB type object for the "standard" data type of data in
1370 register N. */
1371
1372 static struct type *
1373 arm_register_type (struct gdbarch *gdbarch, int regnum)
1374 {
1375 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1376 {
1377 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1378 return builtin_type_arm_ext_big;
1379 else
1380 return builtin_type_arm_ext_littlebyte_bigword;
1381 }
1382 else
1383 return builtin_type_int32;
1384 }
1385
1386 /* Index within `registers' of the first byte of the space for
1387 register N. */
1388
1389 static int
1390 arm_register_byte (int regnum)
1391 {
1392 if (regnum < ARM_F0_REGNUM)
1393 return regnum * INT_REGISTER_SIZE;
1394 else if (regnum < ARM_PS_REGNUM)
1395 return (NUM_GREGS * INT_REGISTER_SIZE
1396 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
1397 else
1398 return (NUM_GREGS * INT_REGISTER_SIZE
1399 + NUM_FREGS * FP_REGISTER_SIZE
1400 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1401 }
1402
1403 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1404 static int
1405 arm_register_sim_regno (int regnum)
1406 {
1407 int reg = regnum;
1408 gdb_assert (reg >= 0 && reg < NUM_REGS);
1409
1410 if (reg < NUM_GREGS)
1411 return SIM_ARM_R0_REGNUM + reg;
1412 reg -= NUM_GREGS;
1413
1414 if (reg < NUM_FREGS)
1415 return SIM_ARM_FP0_REGNUM + reg;
1416 reg -= NUM_FREGS;
1417
1418 if (reg < NUM_SREGS)
1419 return SIM_ARM_FPS_REGNUM + reg;
1420 reg -= NUM_SREGS;
1421
1422 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1423 }
1424
1425 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1426 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1427 It is thought that this is is the floating-point register format on
1428 little-endian systems. */
1429
1430 static void
1431 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1432 void *dbl)
1433 {
1434 DOUBLEST d;
1435 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1436 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1437 else
1438 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1439 ptr, &d);
1440 floatformat_from_doublest (fmt, &d, dbl);
1441 }
1442
1443 static void
1444 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1445 {
1446 DOUBLEST d;
1447 floatformat_to_doublest (fmt, ptr, &d);
1448 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1449 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1450 else
1451 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1452 &d, dbl);
1453 }
1454
1455 static int
1456 condition_true (unsigned long cond, unsigned long status_reg)
1457 {
1458 if (cond == INST_AL || cond == INST_NV)
1459 return 1;
1460
1461 switch (cond)
1462 {
1463 case INST_EQ:
1464 return ((status_reg & FLAG_Z) != 0);
1465 case INST_NE:
1466 return ((status_reg & FLAG_Z) == 0);
1467 case INST_CS:
1468 return ((status_reg & FLAG_C) != 0);
1469 case INST_CC:
1470 return ((status_reg & FLAG_C) == 0);
1471 case INST_MI:
1472 return ((status_reg & FLAG_N) != 0);
1473 case INST_PL:
1474 return ((status_reg & FLAG_N) == 0);
1475 case INST_VS:
1476 return ((status_reg & FLAG_V) != 0);
1477 case INST_VC:
1478 return ((status_reg & FLAG_V) == 0);
1479 case INST_HI:
1480 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1481 case INST_LS:
1482 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1483 case INST_GE:
1484 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1485 case INST_LT:
1486 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1487 case INST_GT:
1488 return (((status_reg & FLAG_Z) == 0) &&
1489 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1490 case INST_LE:
1491 return (((status_reg & FLAG_Z) != 0) ||
1492 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1493 }
1494 return 1;
1495 }
1496
1497 /* Support routines for single stepping. Calculate the next PC value. */
1498 #define submask(x) ((1L << ((x) + 1)) - 1)
1499 #define bit(obj,st) (((obj) >> (st)) & 1)
1500 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1501 #define sbits(obj,st,fn) \
1502 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1503 #define BranchDest(addr,instr) \
1504 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1505 #define ARM_PC_32 1
1506
1507 static unsigned long
1508 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1509 unsigned long status_reg)
1510 {
1511 unsigned long res, shift;
1512 int rm = bits (inst, 0, 3);
1513 unsigned long shifttype = bits (inst, 5, 6);
1514
1515 if (bit (inst, 4))
1516 {
1517 int rs = bits (inst, 8, 11);
1518 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1519 }
1520 else
1521 shift = bits (inst, 7, 11);
1522
1523 res = (rm == 15
1524 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1525 + (bit (inst, 4) ? 12 : 8))
1526 : read_register (rm));
1527
1528 switch (shifttype)
1529 {
1530 case 0: /* LSL */
1531 res = shift >= 32 ? 0 : res << shift;
1532 break;
1533
1534 case 1: /* LSR */
1535 res = shift >= 32 ? 0 : res >> shift;
1536 break;
1537
1538 case 2: /* ASR */
1539 if (shift >= 32)
1540 shift = 31;
1541 res = ((res & 0x80000000L)
1542 ? ~((~res) >> shift) : res >> shift);
1543 break;
1544
1545 case 3: /* ROR/RRX */
1546 shift &= 31;
1547 if (shift == 0)
1548 res = (res >> 1) | (carry ? 0x80000000L : 0);
1549 else
1550 res = (res >> shift) | (res << (32 - shift));
1551 break;
1552 }
1553
1554 return res & 0xffffffff;
1555 }
1556
1557 /* Return number of 1-bits in VAL. */
1558
1559 static int
1560 bitcount (unsigned long val)
1561 {
1562 int nbits;
1563 for (nbits = 0; val != 0; nbits++)
1564 val &= val - 1; /* delete rightmost 1-bit in val */
1565 return nbits;
1566 }
1567
1568 CORE_ADDR
1569 thumb_get_next_pc (CORE_ADDR pc)
1570 {
1571 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1572 unsigned short inst1 = read_memory_integer (pc, 2);
1573 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1574 unsigned long offset;
1575
1576 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1577 {
1578 CORE_ADDR sp;
1579
1580 /* Fetch the saved PC from the stack. It's stored above
1581 all of the other registers. */
1582 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1583 sp = read_register (ARM_SP_REGNUM);
1584 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1585 nextpc = ADDR_BITS_REMOVE (nextpc);
1586 if (nextpc == pc)
1587 error (_("Infinite loop detected"));
1588 }
1589 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1590 {
1591 unsigned long status = read_register (ARM_PS_REGNUM);
1592 unsigned long cond = bits (inst1, 8, 11);
1593 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1594 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1595 }
1596 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1597 {
1598 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1599 }
1600 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1601 {
1602 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1603 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1604 nextpc = pc_val + offset;
1605 /* For BLX make sure to clear the low bits. */
1606 if (bits (inst2, 11, 12) == 1)
1607 nextpc = nextpc & 0xfffffffc;
1608 }
1609 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1610 {
1611 if (bits (inst1, 3, 6) == 0x0f)
1612 nextpc = pc_val;
1613 else
1614 nextpc = read_register (bits (inst1, 3, 6));
1615
1616 nextpc = ADDR_BITS_REMOVE (nextpc);
1617 if (nextpc == pc)
1618 error (_("Infinite loop detected"));
1619 }
1620
1621 return nextpc;
1622 }
1623
1624 CORE_ADDR
1625 arm_get_next_pc (CORE_ADDR pc)
1626 {
1627 unsigned long pc_val;
1628 unsigned long this_instr;
1629 unsigned long status;
1630 CORE_ADDR nextpc;
1631
1632 if (arm_pc_is_thumb (pc))
1633 return thumb_get_next_pc (pc);
1634
1635 pc_val = (unsigned long) pc;
1636 this_instr = read_memory_integer (pc, 4);
1637 status = read_register (ARM_PS_REGNUM);
1638 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1639
1640 if (condition_true (bits (this_instr, 28, 31), status))
1641 {
1642 switch (bits (this_instr, 24, 27))
1643 {
1644 case 0x0:
1645 case 0x1: /* data processing */
1646 case 0x2:
1647 case 0x3:
1648 {
1649 unsigned long operand1, operand2, result = 0;
1650 unsigned long rn;
1651 int c;
1652
1653 if (bits (this_instr, 12, 15) != 15)
1654 break;
1655
1656 if (bits (this_instr, 22, 25) == 0
1657 && bits (this_instr, 4, 7) == 9) /* multiply */
1658 error (_("Invalid update to pc in instruction"));
1659
1660 /* BX <reg>, BLX <reg> */
1661 if (bits (this_instr, 4, 28) == 0x12fff1
1662 || bits (this_instr, 4, 28) == 0x12fff3)
1663 {
1664 rn = bits (this_instr, 0, 3);
1665 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1666 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1667
1668 if (nextpc == pc)
1669 error (_("Infinite loop detected"));
1670
1671 return nextpc;
1672 }
1673
1674 /* Multiply into PC */
1675 c = (status & FLAG_C) ? 1 : 0;
1676 rn = bits (this_instr, 16, 19);
1677 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1678
1679 if (bit (this_instr, 25))
1680 {
1681 unsigned long immval = bits (this_instr, 0, 7);
1682 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1683 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1684 & 0xffffffff;
1685 }
1686 else /* operand 2 is a shifted register */
1687 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1688
1689 switch (bits (this_instr, 21, 24))
1690 {
1691 case 0x0: /*and */
1692 result = operand1 & operand2;
1693 break;
1694
1695 case 0x1: /*eor */
1696 result = operand1 ^ operand2;
1697 break;
1698
1699 case 0x2: /*sub */
1700 result = operand1 - operand2;
1701 break;
1702
1703 case 0x3: /*rsb */
1704 result = operand2 - operand1;
1705 break;
1706
1707 case 0x4: /*add */
1708 result = operand1 + operand2;
1709 break;
1710
1711 case 0x5: /*adc */
1712 result = operand1 + operand2 + c;
1713 break;
1714
1715 case 0x6: /*sbc */
1716 result = operand1 - operand2 + c;
1717 break;
1718
1719 case 0x7: /*rsc */
1720 result = operand2 - operand1 + c;
1721 break;
1722
1723 case 0x8:
1724 case 0x9:
1725 case 0xa:
1726 case 0xb: /* tst, teq, cmp, cmn */
1727 result = (unsigned long) nextpc;
1728 break;
1729
1730 case 0xc: /*orr */
1731 result = operand1 | operand2;
1732 break;
1733
1734 case 0xd: /*mov */
1735 /* Always step into a function. */
1736 result = operand2;
1737 break;
1738
1739 case 0xe: /*bic */
1740 result = operand1 & ~operand2;
1741 break;
1742
1743 case 0xf: /*mvn */
1744 result = ~operand2;
1745 break;
1746 }
1747 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1748
1749 if (nextpc == pc)
1750 error (_("Infinite loop detected"));
1751 break;
1752 }
1753
1754 case 0x4:
1755 case 0x5: /* data transfer */
1756 case 0x6:
1757 case 0x7:
1758 if (bit (this_instr, 20))
1759 {
1760 /* load */
1761 if (bits (this_instr, 12, 15) == 15)
1762 {
1763 /* rd == pc */
1764 unsigned long rn;
1765 unsigned long base;
1766
1767 if (bit (this_instr, 22))
1768 error (_("Invalid update to pc in instruction"));
1769
1770 /* byte write to PC */
1771 rn = bits (this_instr, 16, 19);
1772 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1773 if (bit (this_instr, 24))
1774 {
1775 /* pre-indexed */
1776 int c = (status & FLAG_C) ? 1 : 0;
1777 unsigned long offset =
1778 (bit (this_instr, 25)
1779 ? shifted_reg_val (this_instr, c, pc_val, status)
1780 : bits (this_instr, 0, 11));
1781
1782 if (bit (this_instr, 23))
1783 base += offset;
1784 else
1785 base -= offset;
1786 }
1787 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1788 4);
1789
1790 nextpc = ADDR_BITS_REMOVE (nextpc);
1791
1792 if (nextpc == pc)
1793 error (_("Infinite loop detected"));
1794 }
1795 }
1796 break;
1797
1798 case 0x8:
1799 case 0x9: /* block transfer */
1800 if (bit (this_instr, 20))
1801 {
1802 /* LDM */
1803 if (bit (this_instr, 15))
1804 {
1805 /* loading pc */
1806 int offset = 0;
1807
1808 if (bit (this_instr, 23))
1809 {
1810 /* up */
1811 unsigned long reglist = bits (this_instr, 0, 14);
1812 offset = bitcount (reglist) * 4;
1813 if (bit (this_instr, 24)) /* pre */
1814 offset += 4;
1815 }
1816 else if (bit (this_instr, 24))
1817 offset = -4;
1818
1819 {
1820 unsigned long rn_val =
1821 read_register (bits (this_instr, 16, 19));
1822 nextpc =
1823 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1824 + offset),
1825 4);
1826 }
1827 nextpc = ADDR_BITS_REMOVE (nextpc);
1828 if (nextpc == pc)
1829 error (_("Infinite loop detected"));
1830 }
1831 }
1832 break;
1833
1834 case 0xb: /* branch & link */
1835 case 0xa: /* branch */
1836 {
1837 nextpc = BranchDest (pc, this_instr);
1838
1839 /* BLX */
1840 if (bits (this_instr, 28, 31) == INST_NV)
1841 nextpc |= bit (this_instr, 24) << 1;
1842
1843 nextpc = ADDR_BITS_REMOVE (nextpc);
1844 if (nextpc == pc)
1845 error (_("Infinite loop detected"));
1846 break;
1847 }
1848
1849 case 0xc:
1850 case 0xd:
1851 case 0xe: /* coproc ops */
1852 case 0xf: /* SWI */
1853 break;
1854
1855 default:
1856 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1857 return (pc);
1858 }
1859 }
1860
1861 return nextpc;
1862 }
1863
1864 /* single_step() is called just before we want to resume the inferior,
1865 if we want to single-step it but there is no hardware or kernel
1866 single-step support. We find the target of the coming instruction
1867 and breakpoint it.
1868
1869 single_step() is also called just after the inferior stops. If we
1870 had set up a simulated single-step, we undo our damage. */
1871
1872 static void
1873 arm_software_single_step (enum target_signal sig, int insert_bpt)
1874 {
1875 static int next_pc; /* State between setting and unsetting. */
1876 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1877
1878 if (insert_bpt)
1879 {
1880 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1881 target_insert_breakpoint (next_pc, break_mem);
1882 }
1883 else
1884 target_remove_breakpoint (next_pc, break_mem);
1885 }
1886
1887 #include "bfd-in2.h"
1888 #include "libcoff.h"
1889
1890 static int
1891 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1892 {
1893 if (arm_pc_is_thumb (memaddr))
1894 {
1895 static asymbol *asym;
1896 static combined_entry_type ce;
1897 static struct coff_symbol_struct csym;
1898 static struct bfd fake_bfd;
1899 static bfd_target fake_target;
1900
1901 if (csym.native == NULL)
1902 {
1903 /* Create a fake symbol vector containing a Thumb symbol.
1904 This is solely so that the code in print_insn_little_arm()
1905 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1906 the presence of a Thumb symbol and switch to decoding
1907 Thumb instructions. */
1908
1909 fake_target.flavour = bfd_target_coff_flavour;
1910 fake_bfd.xvec = &fake_target;
1911 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1912 csym.native = &ce;
1913 csym.symbol.the_bfd = &fake_bfd;
1914 csym.symbol.name = "fake";
1915 asym = (asymbol *) & csym;
1916 }
1917
1918 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1919 info->symbols = &asym;
1920 }
1921 else
1922 info->symbols = NULL;
1923
1924 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1925 return print_insn_big_arm (memaddr, info);
1926 else
1927 return print_insn_little_arm (memaddr, info);
1928 }
1929
1930 /* The following define instruction sequences that will cause ARM
1931 cpu's to take an undefined instruction trap. These are used to
1932 signal a breakpoint to GDB.
1933
1934 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1935 modes. A different instruction is required for each mode. The ARM
1936 cpu's can also be big or little endian. Thus four different
1937 instructions are needed to support all cases.
1938
1939 Note: ARMv4 defines several new instructions that will take the
1940 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1941 not in fact add the new instructions. The new undefined
1942 instructions in ARMv4 are all instructions that had no defined
1943 behaviour in earlier chips. There is no guarantee that they will
1944 raise an exception, but may be treated as NOP's. In practice, it
1945 may only safe to rely on instructions matching:
1946
1947 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1948 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1949 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1950
1951 Even this may only true if the condition predicate is true. The
1952 following use a condition predicate of ALWAYS so it is always TRUE.
1953
1954 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1955 and NetBSD all use a software interrupt rather than an undefined
1956 instruction to force a trap. This can be handled by by the
1957 abi-specific code during establishment of the gdbarch vector. */
1958
1959
1960 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1961 override these definitions. */
1962 #ifndef ARM_LE_BREAKPOINT
1963 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1964 #endif
1965 #ifndef ARM_BE_BREAKPOINT
1966 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1967 #endif
1968 #ifndef THUMB_LE_BREAKPOINT
1969 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1970 #endif
1971 #ifndef THUMB_BE_BREAKPOINT
1972 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1973 #endif
1974
1975 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1976 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1977 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1978 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1979
1980 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
1981 the program counter value to determine whether a 16-bit or 32-bit
1982 breakpoint should be used. It returns a pointer to a string of
1983 bytes that encode a breakpoint instruction, stores the length of
1984 the string to *lenptr, and adjusts the program counter (if
1985 necessary) to point to the actual memory location where the
1986 breakpoint should be inserted. */
1987
1988 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1989 breakpoints and storing their handles instread of what was in
1990 memory. It is nice that this is the same size as a handle -
1991 otherwise remote-rdp will have to change. */
1992
1993 static const unsigned char *
1994 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1995 {
1996 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1997
1998 if (arm_pc_is_thumb (*pcptr))
1999 {
2000 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2001 *lenptr = tdep->thumb_breakpoint_size;
2002 return tdep->thumb_breakpoint;
2003 }
2004 else
2005 {
2006 *lenptr = tdep->arm_breakpoint_size;
2007 return tdep->arm_breakpoint;
2008 }
2009 }
2010
2011 /* Extract from an array REGBUF containing the (raw) register state a
2012 function return value of type TYPE, and copy that, in virtual
2013 format, into VALBUF. */
2014
2015 static void
2016 arm_extract_return_value (struct type *type, struct regcache *regs,
2017 gdb_byte *valbuf)
2018 {
2019 if (TYPE_CODE_FLT == TYPE_CODE (type))
2020 {
2021 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2022 {
2023 case ARM_FLOAT_FPA:
2024 {
2025 /* The value is in register F0 in internal format. We need to
2026 extract the raw value and then convert it to the desired
2027 internal type. */
2028 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2029
2030 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2031 convert_from_extended (floatformat_from_type (type), tmpbuf,
2032 valbuf);
2033 }
2034 break;
2035
2036 case ARM_FLOAT_SOFT_FPA:
2037 case ARM_FLOAT_SOFT_VFP:
2038 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2039 if (TYPE_LENGTH (type) > 4)
2040 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2041 valbuf + INT_REGISTER_SIZE);
2042 break;
2043
2044 default:
2045 internal_error
2046 (__FILE__, __LINE__,
2047 _("arm_extract_return_value: Floating point model not supported"));
2048 break;
2049 }
2050 }
2051 else if (TYPE_CODE (type) == TYPE_CODE_INT
2052 || TYPE_CODE (type) == TYPE_CODE_CHAR
2053 || TYPE_CODE (type) == TYPE_CODE_BOOL
2054 || TYPE_CODE (type) == TYPE_CODE_PTR
2055 || TYPE_CODE (type) == TYPE_CODE_REF
2056 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2057 {
2058 /* If the the type is a plain integer, then the access is
2059 straight-forward. Otherwise we have to play around a bit more. */
2060 int len = TYPE_LENGTH (type);
2061 int regno = ARM_A1_REGNUM;
2062 ULONGEST tmp;
2063
2064 while (len > 0)
2065 {
2066 /* By using store_unsigned_integer we avoid having to do
2067 anything special for small big-endian values. */
2068 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2069 store_unsigned_integer (valbuf,
2070 (len > INT_REGISTER_SIZE
2071 ? INT_REGISTER_SIZE : len),
2072 tmp);
2073 len -= INT_REGISTER_SIZE;
2074 valbuf += INT_REGISTER_SIZE;
2075 }
2076 }
2077 else
2078 {
2079 /* For a structure or union the behaviour is as if the value had
2080 been stored to word-aligned memory and then loaded into
2081 registers with 32-bit load instruction(s). */
2082 int len = TYPE_LENGTH (type);
2083 int regno = ARM_A1_REGNUM;
2084 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2085
2086 while (len > 0)
2087 {
2088 regcache_cooked_read (regs, regno++, tmpbuf);
2089 memcpy (valbuf, tmpbuf,
2090 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2091 len -= INT_REGISTER_SIZE;
2092 valbuf += INT_REGISTER_SIZE;
2093 }
2094 }
2095 }
2096
2097 /* Extract from an array REGBUF containing the (raw) register state
2098 the address in which a function should return its structure value. */
2099
2100 static CORE_ADDR
2101 arm_extract_struct_value_address (struct regcache *regcache)
2102 {
2103 ULONGEST ret;
2104
2105 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2106 return ret;
2107 }
2108
2109 /* Will a function return an aggregate type in memory or in a
2110 register? Return 0 if an aggregate type can be returned in a
2111 register, 1 if it must be returned in memory. */
2112
2113 static int
2114 arm_use_struct_convention (int gcc_p, struct type *type)
2115 {
2116 int nRc;
2117 enum type_code code;
2118
2119 CHECK_TYPEDEF (type);
2120
2121 /* In the ARM ABI, "integer" like aggregate types are returned in
2122 registers. For an aggregate type to be integer like, its size
2123 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2124 offset of each addressable subfield must be zero. Note that bit
2125 fields are not addressable, and all addressable subfields of
2126 unions always start at offset zero.
2127
2128 This function is based on the behaviour of GCC 2.95.1.
2129 See: gcc/arm.c: arm_return_in_memory() for details.
2130
2131 Note: All versions of GCC before GCC 2.95.2 do not set up the
2132 parameters correctly for a function returning the following
2133 structure: struct { float f;}; This should be returned in memory,
2134 not a register. Richard Earnshaw sent me a patch, but I do not
2135 know of any way to detect if a function like the above has been
2136 compiled with the correct calling convention. */
2137
2138 /* All aggregate types that won't fit in a register must be returned
2139 in memory. */
2140 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2141 {
2142 return 1;
2143 }
2144
2145 /* The only aggregate types that can be returned in a register are
2146 structs and unions. Arrays must be returned in memory. */
2147 code = TYPE_CODE (type);
2148 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2149 {
2150 return 1;
2151 }
2152
2153 /* Assume all other aggregate types can be returned in a register.
2154 Run a check for structures, unions and arrays. */
2155 nRc = 0;
2156
2157 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2158 {
2159 int i;
2160 /* Need to check if this struct/union is "integer" like. For
2161 this to be true, its size must be less than or equal to
2162 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2163 subfield must be zero. Note that bit fields are not
2164 addressable, and unions always start at offset zero. If any
2165 of the subfields is a floating point type, the struct/union
2166 cannot be an integer type. */
2167
2168 /* For each field in the object, check:
2169 1) Is it FP? --> yes, nRc = 1;
2170 2) Is it addressable (bitpos != 0) and
2171 not packed (bitsize == 0)?
2172 --> yes, nRc = 1
2173 */
2174
2175 for (i = 0; i < TYPE_NFIELDS (type); i++)
2176 {
2177 enum type_code field_type_code;
2178 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2179
2180 /* Is it a floating point type field? */
2181 if (field_type_code == TYPE_CODE_FLT)
2182 {
2183 nRc = 1;
2184 break;
2185 }
2186
2187 /* If bitpos != 0, then we have to care about it. */
2188 if (TYPE_FIELD_BITPOS (type, i) != 0)
2189 {
2190 /* Bitfields are not addressable. If the field bitsize is
2191 zero, then the field is not packed. Hence it cannot be
2192 a bitfield or any other packed type. */
2193 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2194 {
2195 nRc = 1;
2196 break;
2197 }
2198 }
2199 }
2200 }
2201
2202 return nRc;
2203 }
2204
2205 /* Write into appropriate registers a function return value of type
2206 TYPE, given in virtual format. */
2207
2208 static void
2209 arm_store_return_value (struct type *type, struct regcache *regs,
2210 const gdb_byte *valbuf)
2211 {
2212 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2213 {
2214 char buf[MAX_REGISTER_SIZE];
2215
2216 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2217 {
2218 case ARM_FLOAT_FPA:
2219
2220 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2221 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2222 break;
2223
2224 case ARM_FLOAT_SOFT_FPA:
2225 case ARM_FLOAT_SOFT_VFP:
2226 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2227 if (TYPE_LENGTH (type) > 4)
2228 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2229 valbuf + INT_REGISTER_SIZE);
2230 break;
2231
2232 default:
2233 internal_error
2234 (__FILE__, __LINE__,
2235 _("arm_store_return_value: Floating point model not supported"));
2236 break;
2237 }
2238 }
2239 else if (TYPE_CODE (type) == TYPE_CODE_INT
2240 || TYPE_CODE (type) == TYPE_CODE_CHAR
2241 || TYPE_CODE (type) == TYPE_CODE_BOOL
2242 || TYPE_CODE (type) == TYPE_CODE_PTR
2243 || TYPE_CODE (type) == TYPE_CODE_REF
2244 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2245 {
2246 if (TYPE_LENGTH (type) <= 4)
2247 {
2248 /* Values of one word or less are zero/sign-extended and
2249 returned in r0. */
2250 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2251 LONGEST val = unpack_long (type, valbuf);
2252
2253 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2254 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2255 }
2256 else
2257 {
2258 /* Integral values greater than one word are stored in consecutive
2259 registers starting with r0. This will always be a multiple of
2260 the regiser size. */
2261 int len = TYPE_LENGTH (type);
2262 int regno = ARM_A1_REGNUM;
2263
2264 while (len > 0)
2265 {
2266 regcache_cooked_write (regs, regno++, valbuf);
2267 len -= INT_REGISTER_SIZE;
2268 valbuf += INT_REGISTER_SIZE;
2269 }
2270 }
2271 }
2272 else
2273 {
2274 /* For a structure or union the behaviour is as if the value had
2275 been stored to word-aligned memory and then loaded into
2276 registers with 32-bit load instruction(s). */
2277 int len = TYPE_LENGTH (type);
2278 int regno = ARM_A1_REGNUM;
2279 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2280
2281 while (len > 0)
2282 {
2283 memcpy (tmpbuf, valbuf,
2284 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2285 regcache_cooked_write (regs, regno++, tmpbuf);
2286 len -= INT_REGISTER_SIZE;
2287 valbuf += INT_REGISTER_SIZE;
2288 }
2289 }
2290 }
2291
2292 static int
2293 arm_get_longjmp_target (CORE_ADDR *pc)
2294 {
2295 CORE_ADDR jb_addr;
2296 char buf[INT_REGISTER_SIZE];
2297 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2298
2299 jb_addr = read_register (ARM_A1_REGNUM);
2300
2301 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2302 INT_REGISTER_SIZE))
2303 return 0;
2304
2305 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2306 return 1;
2307 }
2308
2309 /* Return non-zero if the PC is inside a thumb call thunk. */
2310
2311 int
2312 arm_in_call_stub (CORE_ADDR pc, char *name)
2313 {
2314 CORE_ADDR start_addr;
2315
2316 /* Find the starting address of the function containing the PC. If
2317 the caller didn't give us a name, look it up at the same time. */
2318 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2319 &start_addr, NULL))
2320 return 0;
2321
2322 return strncmp (name, "_call_via_r", 11) == 0;
2323 }
2324
2325 /* If PC is in a Thumb call or return stub, return the address of the
2326 target PC, which is in a register. The thunk functions are called
2327 _called_via_xx, where x is the register name. The possible names
2328 are r0-r9, sl, fp, ip, sp, and lr. */
2329
2330 CORE_ADDR
2331 arm_skip_stub (CORE_ADDR pc)
2332 {
2333 char *name;
2334 CORE_ADDR start_addr;
2335
2336 /* Find the starting address and name of the function containing the PC. */
2337 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2338 return 0;
2339
2340 /* Call thunks always start with "_call_via_". */
2341 if (strncmp (name, "_call_via_", 10) == 0)
2342 {
2343 /* Use the name suffix to determine which register contains the
2344 target PC. */
2345 static char *table[15] =
2346 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2347 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2348 };
2349 int regno;
2350
2351 for (regno = 0; regno <= 14; regno++)
2352 if (strcmp (&name[10], table[regno]) == 0)
2353 return read_register (regno);
2354 }
2355
2356 return 0; /* not a stub */
2357 }
2358
2359 static void
2360 set_arm_command (char *args, int from_tty)
2361 {
2362 printf_unfiltered (_("\
2363 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2364 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2365 }
2366
2367 static void
2368 show_arm_command (char *args, int from_tty)
2369 {
2370 cmd_show_list (showarmcmdlist, from_tty, "");
2371 }
2372
2373 static void
2374 arm_update_current_architecture (void)
2375 {
2376 struct gdbarch_info info;
2377
2378 /* If the current architecture is not ARM, we have nothing to do. */
2379 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2380 return;
2381
2382 /* Update the architecture. */
2383 gdbarch_info_init (&info);
2384
2385 if (!gdbarch_update_p (info))
2386 internal_error (__FILE__, __LINE__, "could not update architecture");
2387 }
2388
2389 static void
2390 set_fp_model_sfunc (char *args, int from_tty,
2391 struct cmd_list_element *c)
2392 {
2393 enum arm_float_model fp_model;
2394
2395 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2396 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2397 {
2398 arm_fp_model = fp_model;
2399 break;
2400 }
2401
2402 if (fp_model == ARM_FLOAT_LAST)
2403 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2404 current_fp_model);
2405
2406 arm_update_current_architecture ();
2407 }
2408
2409 static void
2410 show_fp_model (struct ui_file *file, int from_tty,
2411 struct cmd_list_element *c, const char *value)
2412 {
2413 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2414
2415 if (arm_fp_model == ARM_FLOAT_AUTO
2416 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2417 fprintf_filtered (file, _("\
2418 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2419 fp_model_strings[tdep->fp_model]);
2420 else
2421 fprintf_filtered (file, _("\
2422 The current ARM floating point model is \"%s\".\n"),
2423 fp_model_strings[arm_fp_model]);
2424 }
2425
2426 static void
2427 arm_set_abi (char *args, int from_tty,
2428 struct cmd_list_element *c)
2429 {
2430 enum arm_abi_kind arm_abi;
2431
2432 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2433 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2434 {
2435 arm_abi_global = arm_abi;
2436 break;
2437 }
2438
2439 if (arm_abi == ARM_ABI_LAST)
2440 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2441 arm_abi_string);
2442
2443 arm_update_current_architecture ();
2444 }
2445
2446 static void
2447 arm_show_abi (struct ui_file *file, int from_tty,
2448 struct cmd_list_element *c, const char *value)
2449 {
2450 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2451
2452 if (arm_abi_global == ARM_ABI_AUTO
2453 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2454 fprintf_filtered (file, _("\
2455 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2456 arm_abi_strings[tdep->arm_abi]);
2457 else
2458 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2459 arm_abi_string);
2460 }
2461
2462 /* If the user changes the register disassembly style used for info
2463 register and other commands, we have to also switch the style used
2464 in opcodes for disassembly output. This function is run in the "set
2465 arm disassembly" command, and does that. */
2466
2467 static void
2468 set_disassembly_style_sfunc (char *args, int from_tty,
2469 struct cmd_list_element *c)
2470 {
2471 set_disassembly_style ();
2472 }
2473 \f
2474 /* Return the ARM register name corresponding to register I. */
2475 static const char *
2476 arm_register_name (int i)
2477 {
2478 return arm_register_names[i];
2479 }
2480
2481 static void
2482 set_disassembly_style (void)
2483 {
2484 const char *setname, *setdesc, *const *regnames;
2485 int numregs, j;
2486
2487 /* Find the style that the user wants in the opcodes table. */
2488 int current = 0;
2489 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2490 while ((disassembly_style != setname)
2491 && (current < num_disassembly_options))
2492 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2493 current_option = current;
2494
2495 /* Fill our copy. */
2496 for (j = 0; j < numregs; j++)
2497 arm_register_names[j] = (char *) regnames[j];
2498
2499 /* Adjust case. */
2500 if (isupper (*regnames[ARM_PC_REGNUM]))
2501 {
2502 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2503 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2504 }
2505 else
2506 {
2507 arm_register_names[ARM_FPS_REGNUM] = "fps";
2508 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2509 }
2510
2511 /* Synchronize the disassembler. */
2512 set_arm_regname_option (current);
2513 }
2514
2515 /* Test whether the coff symbol specific value corresponds to a Thumb
2516 function. */
2517
2518 static int
2519 coff_sym_is_thumb (int val)
2520 {
2521 return (val == C_THUMBEXT ||
2522 val == C_THUMBSTAT ||
2523 val == C_THUMBEXTFUNC ||
2524 val == C_THUMBSTATFUNC ||
2525 val == C_THUMBLABEL);
2526 }
2527
2528 /* arm_coff_make_msymbol_special()
2529 arm_elf_make_msymbol_special()
2530
2531 These functions test whether the COFF or ELF symbol corresponds to
2532 an address in thumb code, and set a "special" bit in a minimal
2533 symbol to indicate that it does. */
2534
2535 static void
2536 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2537 {
2538 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2539 STT_ARM_TFUNC). */
2540 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2541 == STT_LOPROC)
2542 MSYMBOL_SET_SPECIAL (msym);
2543 }
2544
2545 static void
2546 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2547 {
2548 if (coff_sym_is_thumb (val))
2549 MSYMBOL_SET_SPECIAL (msym);
2550 }
2551
2552 static void
2553 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2554 {
2555 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2556
2557 /* If necessary, set the T bit. */
2558 if (arm_apcs_32)
2559 {
2560 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2561 if (arm_pc_is_thumb (pc))
2562 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2563 else
2564 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2565 }
2566 }
2567 \f
2568 static enum gdb_osabi
2569 arm_elf_osabi_sniffer (bfd *abfd)
2570 {
2571 unsigned int elfosabi, eflags;
2572 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2573
2574 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2575
2576 if (elfosabi == ELFOSABI_ARM)
2577 /* GNU tools use this value. Check note sections in this case,
2578 as well. */
2579 bfd_map_over_sections (abfd,
2580 generic_elf_osabi_sniff_abi_tag_sections,
2581 &osabi);
2582
2583 /* Anything else will be handled by the generic ELF sniffer. */
2584 return osabi;
2585 }
2586
2587 \f
2588 /* Initialize the current architecture based on INFO. If possible,
2589 re-use an architecture from ARCHES, which is a list of
2590 architectures already created during this debugging session.
2591
2592 Called e.g. at program startup, when reading a core file, and when
2593 reading a binary file. */
2594
2595 static struct gdbarch *
2596 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2597 {
2598 struct gdbarch_tdep *tdep;
2599 struct gdbarch *gdbarch;
2600 struct gdbarch_list *best_arch;
2601 enum arm_abi_kind arm_abi = arm_abi_global;
2602 enum arm_float_model fp_model = arm_fp_model;
2603
2604 /* If we have an object to base this architecture on, try to determine
2605 its ABI. */
2606
2607 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2608 {
2609 int ei_osabi;
2610
2611 switch (bfd_get_flavour (info.abfd))
2612 {
2613 case bfd_target_aout_flavour:
2614 /* Assume it's an old APCS-style ABI. */
2615 arm_abi = ARM_ABI_APCS;
2616 break;
2617
2618 case bfd_target_coff_flavour:
2619 /* Assume it's an old APCS-style ABI. */
2620 /* XXX WinCE? */
2621 arm_abi = ARM_ABI_APCS;
2622 break;
2623
2624 case bfd_target_elf_flavour:
2625 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2626 if (ei_osabi == ELFOSABI_ARM)
2627 {
2628 /* GNU tools used to use this value, but do not for EABI
2629 objects. There's nowhere to tag an EABI version anyway,
2630 so assume APCS. */
2631 arm_abi = ARM_ABI_APCS;
2632 }
2633 else if (ei_osabi == ELFOSABI_NONE)
2634 {
2635 int e_flags, eabi_ver;
2636
2637 e_flags = elf_elfheader (info.abfd)->e_flags;
2638 eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2639
2640 switch (eabi_ver)
2641 {
2642 case EF_ARM_EABI_UNKNOWN:
2643 /* Assume GNU tools. */
2644 arm_abi = ARM_ABI_APCS;
2645 break;
2646
2647 case EF_ARM_EABI_VER4:
2648 arm_abi = ARM_ABI_AAPCS;
2649 break;
2650
2651 default:
2652 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2653 arm_abi = ARM_ABI_APCS;
2654 break;
2655 }
2656 }
2657 break;
2658
2659 default:
2660 /* Leave it as "auto". */
2661 break;
2662 }
2663 }
2664
2665 /* Now that we have inferred any architecture settings that we
2666 can, try to inherit from the last ARM ABI. */
2667 if (arches != NULL)
2668 {
2669 if (arm_abi == ARM_ABI_AUTO)
2670 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2671
2672 if (fp_model == ARM_FLOAT_AUTO)
2673 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2674 }
2675 else
2676 {
2677 /* There was no prior ARM architecture; fill in default values. */
2678
2679 if (arm_abi == ARM_ABI_AUTO)
2680 arm_abi = ARM_ABI_APCS;
2681
2682 /* We used to default to FPA for generic ARM, but almost nobody
2683 uses that now, and we now provide a way for the user to force
2684 the model. So default to the most useful variant. */
2685 if (fp_model == ARM_FLOAT_AUTO)
2686 fp_model = ARM_FLOAT_SOFT_FPA;
2687 }
2688
2689 /* If there is already a candidate, use it. */
2690 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2691 best_arch != NULL;
2692 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2693 {
2694 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2695 continue;
2696
2697 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2698 continue;
2699
2700 /* Found a match. */
2701 break;
2702 }
2703
2704 if (best_arch != NULL)
2705 return best_arch->gdbarch;
2706
2707 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2708 gdbarch = gdbarch_alloc (&info, tdep);
2709
2710 /* Record additional information about the architecture we are defining.
2711 These are gdbarch discriminators, like the OSABI. */
2712 tdep->arm_abi = arm_abi;
2713 tdep->fp_model = fp_model;
2714
2715 /* Breakpoints. */
2716 switch (info.byte_order)
2717 {
2718 case BFD_ENDIAN_BIG:
2719 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2720 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2721 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2722 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2723
2724 break;
2725
2726 case BFD_ENDIAN_LITTLE:
2727 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2728 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2729 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2730 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2731
2732 break;
2733
2734 default:
2735 internal_error (__FILE__, __LINE__,
2736 _("arm_gdbarch_init: bad byte order for float format"));
2737 }
2738
2739 /* On ARM targets char defaults to unsigned. */
2740 set_gdbarch_char_signed (gdbarch, 0);
2741
2742 /* This should be low enough for everything. */
2743 tdep->lowest_pc = 0x20;
2744 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2745
2746 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2747
2748 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2749
2750 /* Frame handling. */
2751 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2752 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2753 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2754
2755 frame_base_set_default (gdbarch, &arm_normal_base);
2756
2757 /* Address manipulation. */
2758 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2759 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2760
2761 /* Advance PC across function entry code. */
2762 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2763
2764 /* Get the PC when a frame might not be available. */
2765 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2766
2767 /* The stack grows downward. */
2768 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2769
2770 /* Breakpoint manipulation. */
2771 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2772
2773 /* Information about registers, etc. */
2774 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2775 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2776 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2777 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2778 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2779 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2780 set_gdbarch_register_type (gdbarch, arm_register_type);
2781
2782 /* Internal <-> external register number maps. */
2783 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2784
2785 /* Integer registers are 4 bytes. */
2786 set_gdbarch_deprecated_register_size (gdbarch, 4);
2787 set_gdbarch_register_name (gdbarch, arm_register_name);
2788
2789 /* Returning results. */
2790 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2791 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2792 set_gdbarch_deprecated_use_struct_convention (gdbarch, arm_use_struct_convention);
2793 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
2794
2795 /* Single stepping. */
2796 /* XXX For an RDI target we should ask the target if it can single-step. */
2797 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2798
2799 /* Disassembly. */
2800 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2801
2802 /* Minsymbol frobbing. */
2803 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2804 set_gdbarch_coff_make_msymbol_special (gdbarch,
2805 arm_coff_make_msymbol_special);
2806
2807 /* Hook in the ABI-specific overrides, if they have been registered. */
2808 gdbarch_init_osabi (info, gdbarch);
2809
2810 /* Add some default predicates. */
2811 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2812 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2813 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2814 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2815
2816 /* Now we have tuned the configuration, set a few final things,
2817 based on what the OS ABI has told us. */
2818
2819 if (tdep->jb_pc >= 0)
2820 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2821
2822 /* Floating point sizes and format. */
2823 switch (info.byte_order)
2824 {
2825 case BFD_ENDIAN_BIG:
2826 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2827 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2828 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2829 break;
2830
2831 case BFD_ENDIAN_LITTLE:
2832 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2833 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
2834 {
2835 set_gdbarch_double_format
2836 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2837 set_gdbarch_long_double_format
2838 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2839 }
2840 else
2841 {
2842 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2843 set_gdbarch_long_double_format (gdbarch,
2844 &floatformat_ieee_double_little);
2845 }
2846 break;
2847
2848 default:
2849 internal_error (__FILE__, __LINE__,
2850 _("arm_gdbarch_init: bad byte order for float format"));
2851 }
2852
2853 return gdbarch;
2854 }
2855
2856 static void
2857 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2858 {
2859 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2860
2861 if (tdep == NULL)
2862 return;
2863
2864 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
2865 (unsigned long) tdep->lowest_pc);
2866 }
2867
2868 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2869
2870 void
2871 _initialize_arm_tdep (void)
2872 {
2873 struct ui_file *stb;
2874 long length;
2875 struct cmd_list_element *new_set, *new_show;
2876 const char *setname;
2877 const char *setdesc;
2878 const char *const *regnames;
2879 int numregs, i, j;
2880 static char *helptext;
2881 char regdesc[1024], *rdptr = regdesc;
2882 size_t rest = sizeof (regdesc);
2883
2884 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2885
2886 /* Register an ELF OS ABI sniffer for ARM binaries. */
2887 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2888 bfd_target_elf_flavour,
2889 arm_elf_osabi_sniffer);
2890
2891 /* Get the number of possible sets of register names defined in opcodes. */
2892 num_disassembly_options = get_arm_regname_num_options ();
2893
2894 /* Add root prefix command for all "set arm"/"show arm" commands. */
2895 add_prefix_cmd ("arm", no_class, set_arm_command,
2896 _("Various ARM-specific commands."),
2897 &setarmcmdlist, "set arm ", 0, &setlist);
2898
2899 add_prefix_cmd ("arm", no_class, show_arm_command,
2900 _("Various ARM-specific commands."),
2901 &showarmcmdlist, "show arm ", 0, &showlist);
2902
2903 /* Sync the opcode insn printer with our register viewer. */
2904 parse_arm_disassembler_option ("reg-names-std");
2905
2906 /* Initialize the array that will be passed to
2907 add_setshow_enum_cmd(). */
2908 valid_disassembly_styles
2909 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2910 for (i = 0; i < num_disassembly_options; i++)
2911 {
2912 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2913 valid_disassembly_styles[i] = setname;
2914 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
2915 rdptr += length;
2916 rest -= length;
2917 /* Copy the default names (if found) and synchronize disassembler. */
2918 if (!strcmp (setname, "std"))
2919 {
2920 disassembly_style = setname;
2921 current_option = i;
2922 for (j = 0; j < numregs; j++)
2923 arm_register_names[j] = (char *) regnames[j];
2924 set_arm_regname_option (i);
2925 }
2926 }
2927 /* Mark the end of valid options. */
2928 valid_disassembly_styles[num_disassembly_options] = NULL;
2929
2930 /* Create the help text. */
2931 stb = mem_fileopen ();
2932 fprintf_unfiltered (stb, "%s%s%s",
2933 _("The valid values are:\n"),
2934 regdesc,
2935 _("The default is \"std\"."));
2936 helptext = ui_file_xstrdup (stb, &length);
2937 ui_file_delete (stb);
2938
2939 add_setshow_enum_cmd("disassembler", no_class,
2940 valid_disassembly_styles, &disassembly_style,
2941 _("Set the disassembly style."),
2942 _("Show the disassembly style."),
2943 helptext,
2944 set_disassembly_style_sfunc,
2945 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
2946 &setarmcmdlist, &showarmcmdlist);
2947
2948 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2949 _("Set usage of ARM 32-bit mode."),
2950 _("Show usage of ARM 32-bit mode."),
2951 _("When off, a 26-bit PC will be used."),
2952 NULL,
2953 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
2954 &setarmcmdlist, &showarmcmdlist);
2955
2956 /* Add a command to allow the user to force the FPU model. */
2957 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
2958 _("Set the floating point type."),
2959 _("Show the floating point type."),
2960 _("auto - Determine the FP typefrom the OS-ABI.\n\
2961 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
2962 fpa - FPA co-processor (GCC compiled).\n\
2963 softvfp - Software FP with pure-endian doubles.\n\
2964 vfp - VFP co-processor."),
2965 set_fp_model_sfunc, show_fp_model,
2966 &setarmcmdlist, &showarmcmdlist);
2967
2968 /* Add a command to allow the user to force the ABI. */
2969 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
2970 _("Set the ABI."),
2971 _("Show the ABI."),
2972 NULL, arm_set_abi, arm_show_abi,
2973 &setarmcmdlist, &showarmcmdlist);
2974
2975 /* Debugging flag. */
2976 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2977 _("Set ARM debugging."),
2978 _("Show ARM debugging."),
2979 _("When on, arm-specific debugging is enabled."),
2980 NULL,
2981 NULL, /* FIXME: i18n: "ARM debugging is %s. */
2982 &setdebuglist, &showdebuglist);
2983 }
This page took 0.102245 seconds and 4 git commands to generate.