PR cli/548
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "symfile.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "solib-svr4.h"
37 #include "osabi.h"
38
39 #include "arm-tdep.h"
40 #include "gdb/sim-arm.h"
41
42 #include "elf-bfd.h"
43 #include "coff/internal.h"
44 #include "elf/arm.h"
45
46 #include "gdb_assert.h"
47
48 static int arm_debug;
49
50 /* Each OS has a different mechanism for accessing the various
51 registers stored in the sigcontext structure.
52
53 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
54 function pointer) which may be used to determine the addresses
55 of the various saved registers in the sigcontext structure.
56
57 For the ARM target, there are three parameters to this function.
58 The first is the pc value of the frame under consideration, the
59 second the stack pointer of this frame, and the last is the
60 register number to fetch.
61
62 If the tm.h file does not define this macro, then it's assumed that
63 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
64 be 0.
65
66 When it comes time to multi-arching this code, see the identically
67 named machinery in ia64-tdep.c for an example of how it could be
68 done. It should not be necessary to modify the code below where
69 this macro is used. */
70
71 #ifdef SIGCONTEXT_REGISTER_ADDRESS
72 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
73 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
74 #endif
75 #else
76 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
77 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
78 #endif
79
80 /* Macros for setting and testing a bit in a minimal symbol that marks
81 it as Thumb function. The MSB of the minimal symbol's "info" field
82 is used for this purpose. This field is already being used to store
83 the symbol size, so the assumption is that the symbol size cannot
84 exceed 2^31.
85
86 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
87 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
88 MSYMBOL_SIZE Returns the size of the minimal symbol,
89 i.e. the "info" field with the "special" bit
90 masked out. */
91
92 #define MSYMBOL_SET_SPECIAL(msym) \
93 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
94 | 0x80000000)
95
96 #define MSYMBOL_IS_SPECIAL(msym) \
97 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
98
99 #define MSYMBOL_SIZE(msym) \
100 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
101
102 /* The list of available "set arm ..." and "show arm ..." commands. */
103 static struct cmd_list_element *setarmcmdlist = NULL;
104 static struct cmd_list_element *showarmcmdlist = NULL;
105
106 /* The type of floating-point to use. Keep this in sync with enum
107 arm_float_model, and the help string in _initialize_arm_tdep. */
108 static const char *fp_model_strings[] =
109 {
110 "auto",
111 "softfpa",
112 "fpa",
113 "softvfp",
114 "vfp"
115 };
116
117 /* A variable that can be configured by the user. */
118 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
119 static const char *current_fp_model = "auto";
120
121 /* Number of different reg name sets (options). */
122 static int num_disassembly_options;
123
124 /* We have more registers than the disassembler as gdb can print the value
125 of special registers as well.
126 The general register names are overwritten by whatever is being used by
127 the disassembler at the moment. We also adjust the case of cpsr and fps. */
128
129 /* Initial value: Register names used in ARM's ISA documentation. */
130 static char * arm_register_name_strings[] =
131 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
132 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
133 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
134 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
135 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
136 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
137 "fps", "cpsr" }; /* 24 25 */
138 static char **arm_register_names = arm_register_name_strings;
139
140 /* Valid register name styles. */
141 static const char **valid_disassembly_styles;
142
143 /* Disassembly style to use. Default to "std" register names. */
144 static const char *disassembly_style;
145 /* Index to that option in the opcodes table. */
146 static int current_option;
147
148 /* This is used to keep the bfd arch_info in sync with the disassembly
149 style. */
150 static void set_disassembly_style_sfunc(char *, int,
151 struct cmd_list_element *);
152 static void set_disassembly_style (void);
153
154 static void convert_from_extended (const struct floatformat *, const void *,
155 void *);
156 static void convert_to_extended (const struct floatformat *, void *,
157 const void *);
158
159 /* Define other aspects of the stack frame. We keep the offsets of
160 all saved registers, 'cause we need 'em a lot! We also keep the
161 current size of the stack frame, and the offset of the frame
162 pointer from the stack pointer (for frameless functions, and when
163 we're still in the prologue of a function with a frame). */
164
165 struct frame_extra_info
166 {
167 int framesize;
168 int frameoffset;
169 int framereg;
170 };
171
172 /* Addresses for calling Thumb functions have the bit 0 set.
173 Here are some macros to test, set, or clear bit 0 of addresses. */
174 #define IS_THUMB_ADDR(addr) ((addr) & 1)
175 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
176 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
177
178 static int
179 arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
180 {
181 return (DEPRECATED_FRAME_SAVED_PC (thisframe) >= LOWEST_PC);
182 }
183
184 /* Set to true if the 32-bit mode is in use. */
185
186 int arm_apcs_32 = 1;
187
188 /* Flag set by arm_fix_call_dummy that tells whether the target
189 function is a Thumb function. This flag is checked by
190 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
191 its use in valops.c) to pass the function address as an additional
192 parameter. */
193
194 static int target_is_thumb;
195
196 /* Flag set by arm_fix_call_dummy that tells whether the calling
197 function is a Thumb function. This flag is checked by
198 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
199
200 static int caller_is_thumb;
201
202 /* Determine if the program counter specified in MEMADDR is in a Thumb
203 function. */
204
205 int
206 arm_pc_is_thumb (CORE_ADDR memaddr)
207 {
208 struct minimal_symbol *sym;
209
210 /* If bit 0 of the address is set, assume this is a Thumb address. */
211 if (IS_THUMB_ADDR (memaddr))
212 return 1;
213
214 /* Thumb functions have a "special" bit set in minimal symbols. */
215 sym = lookup_minimal_symbol_by_pc (memaddr);
216 if (sym)
217 {
218 return (MSYMBOL_IS_SPECIAL (sym));
219 }
220 else
221 {
222 return 0;
223 }
224 }
225
226 /* Determine if the program counter specified in MEMADDR is in a call
227 dummy being called from a Thumb function. */
228
229 int
230 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
231 {
232 CORE_ADDR sp = read_sp ();
233
234 /* FIXME: Until we switch for the new call dummy macros, this heuristic
235 is the best we can do. We are trying to determine if the pc is on
236 the stack, which (hopefully) will only happen in a call dummy.
237 We hope the current stack pointer is not so far alway from the dummy
238 frame location (true if we have not pushed large data structures or
239 gone too many levels deep) and that our 1024 is not enough to consider
240 code regions as part of the stack (true for most practical purposes). */
241 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
242 return caller_is_thumb;
243 else
244 return 0;
245 }
246
247 /* Remove useless bits from addresses in a running program. */
248 static CORE_ADDR
249 arm_addr_bits_remove (CORE_ADDR val)
250 {
251 if (arm_apcs_32)
252 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
253 else
254 return (val & 0x03fffffc);
255 }
256
257 /* When reading symbols, we need to zap the low bit of the address,
258 which may be set to 1 for Thumb functions. */
259 static CORE_ADDR
260 arm_smash_text_address (CORE_ADDR val)
261 {
262 return val & ~1;
263 }
264
265 /* Immediately after a function call, return the saved pc. Can't
266 always go through the frames for this because on some machines the
267 new frame is not set up until the new function executes some
268 instructions. */
269
270 static CORE_ADDR
271 arm_saved_pc_after_call (struct frame_info *frame)
272 {
273 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
274 }
275
276 /* Determine whether the function invocation represented by FI has a
277 frame on the stack associated with it. If it does return zero,
278 otherwise return 1. */
279
280 static int
281 arm_frameless_function_invocation (struct frame_info *fi)
282 {
283 CORE_ADDR func_start, after_prologue;
284 int frameless;
285
286 /* Sometimes we have functions that do a little setup (like saving the
287 vN registers with the stmdb instruction, but DO NOT set up a frame.
288 The symbol table will report this as a prologue. However, it is
289 important not to try to parse these partial frames as frames, or we
290 will get really confused.
291
292 So I will demand 3 instructions between the start & end of the
293 prologue before I call it a real prologue, i.e. at least
294 mov ip, sp,
295 stmdb sp!, {}
296 sub sp, ip, #4. */
297
298 func_start = (get_pc_function_start (get_frame_pc (fi)) + FUNCTION_START_OFFSET);
299 after_prologue = SKIP_PROLOGUE (func_start);
300
301 /* There are some frameless functions whose first two instructions
302 follow the standard APCS form, in which case after_prologue will
303 be func_start + 8. */
304
305 frameless = (after_prologue < func_start + 12);
306 return frameless;
307 }
308
309 /* The address of the arguments in the frame. */
310 static CORE_ADDR
311 arm_frame_args_address (struct frame_info *fi)
312 {
313 return get_frame_base (fi);
314 }
315
316 /* The address of the local variables in the frame. */
317 static CORE_ADDR
318 arm_frame_locals_address (struct frame_info *fi)
319 {
320 return get_frame_base (fi);
321 }
322
323 /* The number of arguments being passed in the frame. */
324 static int
325 arm_frame_num_args (struct frame_info *fi)
326 {
327 /* We have no way of knowing. */
328 return -1;
329 }
330
331 /* A typical Thumb prologue looks like this:
332 push {r7, lr}
333 add sp, sp, #-28
334 add r7, sp, #12
335 Sometimes the latter instruction may be replaced by:
336 mov r7, sp
337
338 or like this:
339 push {r7, lr}
340 mov r7, sp
341 sub sp, #12
342
343 or, on tpcs, like this:
344 sub sp,#16
345 push {r7, lr}
346 (many instructions)
347 mov r7, sp
348 sub sp, #12
349
350 There is always one instruction of three classes:
351 1 - push
352 2 - setting of r7
353 3 - adjusting of sp
354
355 When we have found at least one of each class we are done with the prolog.
356 Note that the "sub sp, #NN" before the push does not count.
357 */
358
359 static CORE_ADDR
360 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
361 {
362 CORE_ADDR current_pc;
363 /* findmask:
364 bit 0 - push { rlist }
365 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
366 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
367 */
368 int findmask = 0;
369
370 for (current_pc = pc;
371 current_pc + 2 < func_end && current_pc < pc + 40;
372 current_pc += 2)
373 {
374 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
375
376 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
377 {
378 findmask |= 1; /* push found */
379 }
380 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
381 sub sp, #simm */
382 {
383 if ((findmask & 1) == 0) /* before push ? */
384 continue;
385 else
386 findmask |= 4; /* add/sub sp found */
387 }
388 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
389 {
390 findmask |= 2; /* setting of r7 found */
391 }
392 else if (insn == 0x466f) /* mov r7, sp */
393 {
394 findmask |= 2; /* setting of r7 found */
395 }
396 else if (findmask == (4+2+1))
397 {
398 /* We have found one of each type of prologue instruction */
399 break;
400 }
401 else
402 /* Something in the prolog that we don't care about or some
403 instruction from outside the prolog scheduled here for
404 optimization. */
405 continue;
406 }
407
408 return current_pc;
409 }
410
411 /* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
413
414 The APCS (ARM Procedure Call Standard) defines the following
415 prologue:
416
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
425
426 static CORE_ADDR
427 arm_skip_prologue (CORE_ADDR pc)
428 {
429 unsigned long inst;
430 CORE_ADDR skip_pc;
431 CORE_ADDR func_addr, func_end = 0;
432 char *func_name;
433 struct symtab_and_line sal;
434
435 /* If we're in a dummy frame, don't even try to skip the prologue. */
436 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
437 return pc;
438
439 /* See what the symbol table says. */
440
441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
442 {
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
449 /* Don't use this trick for assembly source files. */
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
454 }
455
456 /* Check if this is Thumb code. */
457 if (arm_pc_is_thumb (pc))
458 return thumb_skip_prologue (pc, func_end);
459
460 /* Can't find the prologue end in the symbol table, try it the hard way
461 by disassembling the instructions. */
462
463 /* Like arm_scan_prologue, stop no later than pc + 64. */
464 if (func_end == 0 || func_end > pc + 64)
465 func_end = pc + 64;
466
467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
468 {
469 inst = read_memory_integer (skip_pc, 4);
470
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
474
475 /* Some prologues begin with "str lr, [sp, #-4]!". */
476 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
477 continue;
478
479 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
480 continue;
481
482 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
483 continue;
484
485 /* Any insns after this point may float into the code, if it makes
486 for better instruction scheduling, so we skip them only if we
487 find them, but still consider the function to be frame-ful. */
488
489 /* We may have either one sfmfd instruction here, or several stfe
490 insns, depending on the version of floating point code we
491 support. */
492 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
493 continue;
494
495 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
496 continue;
497
498 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
499 continue;
500
501 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
502 continue;
503
504 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
505 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
506 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
507 continue;
508
509 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
510 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
511 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
512 continue;
513
514 /* Un-recognized instruction; stop scanning. */
515 break;
516 }
517
518 return skip_pc; /* End of prologue */
519 }
520
521 /* *INDENT-OFF* */
522 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
523 This function decodes a Thumb function prologue to determine:
524 1) the size of the stack frame
525 2) which registers are saved on it
526 3) the offsets of saved regs
527 4) the offset from the stack pointer to the frame pointer
528 This information is stored in the "extra" fields of the frame_info.
529
530 A typical Thumb function prologue would create this stack frame
531 (offsets relative to FP)
532 old SP -> 24 stack parameters
533 20 LR
534 16 R7
535 R7 -> 0 local variables (16 bytes)
536 SP -> -12 additional stack space (12 bytes)
537 The frame size would thus be 36 bytes, and the frame offset would be
538 12 bytes. The frame register is R7.
539
540 The comments for thumb_skip_prolog() describe the algorithm we use
541 to detect the end of the prolog. */
542 /* *INDENT-ON* */
543
544 static void
545 thumb_scan_prologue (struct frame_info *fi)
546 {
547 CORE_ADDR prologue_start;
548 CORE_ADDR prologue_end;
549 CORE_ADDR current_pc;
550 /* Which register has been copied to register n? */
551 int saved_reg[16];
552 /* findmask:
553 bit 0 - push { rlist }
554 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
555 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
556 */
557 int findmask = 0;
558 int i;
559
560 /* Don't try to scan dummy frames. */
561 if (fi != NULL
562 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
563 return;
564
565 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
569 if (sal.line == 0) /* no line info, use current PC */
570 prologue_end = get_frame_pc (fi);
571 else if (sal.end < prologue_end) /* next line begins after fn end */
572 prologue_end = sal.end; /* (probably means no prologue) */
573 }
574 else
575 /* We're in the boondocks: allow for
576 16 pushes, an add, and "mv fp,sp". */
577 prologue_end = prologue_start + 40;
578
579 prologue_end = min (prologue_end, get_frame_pc (fi));
580
581 /* Initialize the saved register map. When register H is copied to
582 register L, we will put H in saved_reg[L]. */
583 for (i = 0; i < 16; i++)
584 saved_reg[i] = i;
585
586 /* Search the prologue looking for instructions that set up the
587 frame pointer, adjust the stack pointer, and save registers.
588 Do this until all basic prolog instructions are found. */
589
590 get_frame_extra_info (fi)->framesize = 0;
591 for (current_pc = prologue_start;
592 (current_pc < prologue_end) && ((findmask & 7) != 7);
593 current_pc += 2)
594 {
595 unsigned short insn;
596 int regno;
597 int offset;
598
599 insn = read_memory_unsigned_integer (current_pc, 2);
600
601 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
602 {
603 int mask;
604 findmask |= 1; /* push found */
605 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
606 whether to save LR (R14). */
607 mask = (insn & 0xff) | ((insn & 0x100) << 6);
608
609 /* Calculate offsets of saved R0-R7 and LR. */
610 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
611 if (mask & (1 << regno))
612 {
613 get_frame_extra_info (fi)->framesize += 4;
614 get_frame_saved_regs (fi)[saved_reg[regno]] =
615 -(get_frame_extra_info (fi)->framesize);
616 /* Reset saved register map. */
617 saved_reg[regno] = regno;
618 }
619 }
620 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
621 sub sp, #simm */
622 {
623 if ((findmask & 1) == 0) /* before push? */
624 continue;
625 else
626 findmask |= 4; /* add/sub sp found */
627
628 offset = (insn & 0x7f) << 2; /* get scaled offset */
629 if (insn & 0x80) /* is it signed? (==subtracting) */
630 {
631 get_frame_extra_info (fi)->frameoffset += offset;
632 offset = -offset;
633 }
634 get_frame_extra_info (fi)->framesize -= offset;
635 }
636 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
637 {
638 findmask |= 2; /* setting of r7 found */
639 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
640 /* get scaled offset */
641 get_frame_extra_info (fi)->frameoffset = (insn & 0xff) << 2;
642 }
643 else if (insn == 0x466f) /* mov r7, sp */
644 {
645 findmask |= 2; /* setting of r7 found */
646 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
647 get_frame_extra_info (fi)->frameoffset = 0;
648 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
649 }
650 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
651 {
652 int lo_reg = insn & 7; /* dest. register (r0-r7) */
653 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
654 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
655 }
656 else
657 /* Something in the prolog that we don't care about or some
658 instruction from outside the prolog scheduled here for
659 optimization. */
660 continue;
661 }
662 }
663
664 /* This function decodes an ARM function prologue to determine:
665 1) the size of the stack frame
666 2) which registers are saved on it
667 3) the offsets of saved regs
668 4) the offset from the stack pointer to the frame pointer
669 This information is stored in the "extra" fields of the frame_info.
670
671 There are two basic forms for the ARM prologue. The fixed argument
672 function call will look like:
673
674 mov ip, sp
675 stmfd sp!, {fp, ip, lr, pc}
676 sub fp, ip, #4
677 [sub sp, sp, #4]
678
679 Which would create this stack frame (offsets relative to FP):
680 IP -> 4 (caller's stack)
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
686
687 The frame size would thus be 32 bytes, and the frame offset would be
688 28 bytes. The stmfd call can also save any of the vN registers it
689 plans to use, which increases the frame size accordingly.
690
691 Note: The stored PC is 8 off of the STMFD instruction that stored it
692 because the ARM Store instructions always store PC + 8 when you read
693 the PC register.
694
695 A variable argument function call will look like:
696
697 mov ip, sp
698 stmfd sp!, {a1, a2, a3, a4}
699 stmfd sp!, {fp, ip, lr, pc}
700 sub fp, ip, #20
701
702 Which would create this stack frame (offsets relative to FP):
703 IP -> 20 (caller's stack)
704 16 A4
705 12 A3
706 8 A2
707 4 A1
708 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
709 -4 LR (return address in caller)
710 -8 IP (copy of caller's SP)
711 -12 FP (caller's FP)
712 SP -> -28 Local variables
713
714 The frame size would thus be 48 bytes, and the frame offset would be
715 28 bytes.
716
717 There is another potential complication, which is that the optimizer
718 will try to separate the store of fp in the "stmfd" instruction from
719 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
720 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
721
722 Also, note, the original version of the ARM toolchain claimed that there
723 should be an
724
725 instruction at the end of the prologue. I have never seen GCC produce
726 this, and the ARM docs don't mention it. We still test for it below in
727 case it happens...
728
729 */
730
731 static void
732 arm_scan_prologue (struct frame_info *fi)
733 {
734 int regno, sp_offset, fp_offset;
735 LONGEST return_value;
736 CORE_ADDR prologue_start, prologue_end, current_pc;
737
738 /* Assume there is no frame until proven otherwise. */
739 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
740 get_frame_extra_info (fi)->framesize = 0;
741 get_frame_extra_info (fi)->frameoffset = 0;
742
743 /* Check for Thumb prologue. */
744 if (arm_pc_is_thumb (get_frame_pc (fi)))
745 {
746 thumb_scan_prologue (fi);
747 return;
748 }
749
750 /* Find the function prologue. If we can't find the function in
751 the symbol table, peek in the stack frame to find the PC. */
752 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
753 {
754 /* One way to find the end of the prologue (which works well
755 for unoptimized code) is to do the following:
756
757 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
758
759 if (sal.line == 0)
760 prologue_end = get_frame_pc (fi);
761 else if (sal.end < prologue_end)
762 prologue_end = sal.end;
763
764 This mechanism is very accurate so long as the optimizer
765 doesn't move any instructions from the function body into the
766 prologue. If this happens, sal.end will be the last
767 instruction in the first hunk of prologue code just before
768 the first instruction that the scheduler has moved from
769 the body to the prologue.
770
771 In order to make sure that we scan all of the prologue
772 instructions, we use a slightly less accurate mechanism which
773 may scan more than necessary. To help compensate for this
774 lack of accuracy, the prologue scanning loop below contains
775 several clauses which'll cause the loop to terminate early if
776 an implausible prologue instruction is encountered.
777
778 The expression
779
780 prologue_start + 64
781
782 is a suitable endpoint since it accounts for the largest
783 possible prologue plus up to five instructions inserted by
784 the scheduler. */
785
786 if (prologue_end > prologue_start + 64)
787 {
788 prologue_end = prologue_start + 64; /* See above. */
789 }
790 }
791 else
792 {
793 /* Get address of the stmfd in the prologue of the callee;
794 the saved PC is the address of the stmfd + 8. */
795 if (!safe_read_memory_integer (get_frame_base (fi), 4, &return_value))
796 return;
797 else
798 {
799 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
800 prologue_end = prologue_start + 64; /* See above. */
801 }
802 }
803
804 /* Now search the prologue looking for instructions that set up the
805 frame pointer, adjust the stack pointer, and save registers.
806
807 Be careful, however, and if it doesn't look like a prologue,
808 don't try to scan it. If, for instance, a frameless function
809 begins with stmfd sp!, then we will tell ourselves there is
810 a frame, which will confuse stack traceback, as well as "finish"
811 and other operations that rely on a knowledge of the stack
812 traceback.
813
814 In the APCS, the prologue should start with "mov ip, sp" so
815 if we don't see this as the first insn, we will stop.
816
817 [Note: This doesn't seem to be true any longer, so it's now an
818 optional part of the prologue. - Kevin Buettner, 2001-11-20]
819
820 [Note further: The "mov ip,sp" only seems to be missing in
821 frameless functions at optimization level "-O2" or above,
822 in which case it is often (but not always) replaced by
823 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
824
825 sp_offset = fp_offset = 0;
826
827 for (current_pc = prologue_start;
828 current_pc < prologue_end;
829 current_pc += 4)
830 {
831 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
832
833 if (insn == 0xe1a0c00d) /* mov ip, sp */
834 {
835 continue;
836 }
837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
838 {
839 /* Function is frameless: extra_info defaults OK? */
840 continue;
841 }
842 else if ((insn & 0xffff0000) == 0xe92d0000)
843 /* stmfd sp!, {..., fp, ip, lr, pc}
844 or
845 stmfd sp!, {a1, a2, a3, a4} */
846 {
847 int mask = insn & 0xffff;
848
849 /* Calculate offsets of saved registers. */
850 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
851 if (mask & (1 << regno))
852 {
853 sp_offset -= 4;
854 get_frame_saved_regs (fi)[regno] = sp_offset;
855 }
856 }
857 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
858 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
859 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
860 {
861 /* No need to add this to saved_regs -- it's just an arg reg. */
862 continue;
863 }
864 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
865 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
866 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
867 {
868 /* No need to add this to saved_regs -- it's just an arg reg. */
869 continue;
870 }
871 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
872 {
873 unsigned imm = insn & 0xff; /* immediate value */
874 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
875 imm = (imm >> rot) | (imm << (32 - rot));
876 fp_offset = -imm;
877 get_frame_extra_info (fi)->framereg = ARM_FP_REGNUM;
878 }
879 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
880 {
881 unsigned imm = insn & 0xff; /* immediate value */
882 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
883 imm = (imm >> rot) | (imm << (32 - rot));
884 sp_offset -= imm;
885 }
886 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
887 {
888 sp_offset -= 12;
889 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
890 get_frame_saved_regs (fi)[regno] = sp_offset;
891 }
892 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
893 {
894 int n_saved_fp_regs;
895 unsigned int fp_start_reg, fp_bound_reg;
896
897 if ((insn & 0x800) == 0x800) /* N0 is set */
898 {
899 if ((insn & 0x40000) == 0x40000) /* N1 is set */
900 n_saved_fp_regs = 3;
901 else
902 n_saved_fp_regs = 1;
903 }
904 else
905 {
906 if ((insn & 0x40000) == 0x40000) /* N1 is set */
907 n_saved_fp_regs = 2;
908 else
909 n_saved_fp_regs = 4;
910 }
911
912 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
913 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
914 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
915 {
916 sp_offset -= 12;
917 get_frame_saved_regs (fi)[fp_start_reg++] = sp_offset;
918 }
919 }
920 else if ((insn & 0xf0000000) != 0xe0000000)
921 break; /* Condition not true, exit early */
922 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
923 break; /* Don't scan past a block load */
924 else
925 /* The optimizer might shove anything into the prologue,
926 so we just skip what we don't recognize. */
927 continue;
928 }
929
930 /* The frame size is just the negative of the offset (from the
931 original SP) of the last thing thing we pushed on the stack.
932 The frame offset is [new FP] - [new SP]. */
933 get_frame_extra_info (fi)->framesize = -sp_offset;
934 if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM)
935 get_frame_extra_info (fi)->frameoffset = fp_offset - sp_offset;
936 else
937 get_frame_extra_info (fi)->frameoffset = 0;
938 }
939
940 /* Find REGNUM on the stack. Otherwise, it's in an active register.
941 One thing we might want to do here is to check REGNUM against the
942 clobber mask, and somehow flag it as invalid if it isn't saved on
943 the stack somewhere. This would provide a graceful failure mode
944 when trying to get the value of caller-saves registers for an inner
945 frame. */
946
947 static CORE_ADDR
948 arm_find_callers_reg (struct frame_info *fi, int regnum)
949 {
950 /* NOTE: cagney/2002-05-03: This function really shouldn't be
951 needed. Instead the (still being written) register unwind
952 function could be called directly. */
953 for (; fi; fi = get_next_frame (fi))
954 {
955 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
956 {
957 return deprecated_read_register_dummy (get_frame_pc (fi),
958 get_frame_base (fi), regnum);
959 }
960 else if (get_frame_saved_regs (fi)[regnum] != 0)
961 {
962 /* NOTE: cagney/2002-05-03: This would normally need to
963 handle ARM_SP_REGNUM as a special case as, according to
964 the frame.h comments, saved_regs[SP_REGNUM] contains the
965 SP value not its address. It appears that the ARM isn't
966 doing this though. */
967 return read_memory_integer (get_frame_saved_regs (fi)[regnum],
968 REGISTER_RAW_SIZE (regnum));
969 }
970 }
971 return read_register (regnum);
972 }
973 /* Function: frame_chain Given a GDB frame, determine the address of
974 the calling function's frame. This will be used to create a new
975 GDB frame struct, and then DEPRECATED_INIT_EXTRA_FRAME_INFO and
976 DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
977 ARM, we save the frame size when we initialize the frame_info. */
978
979 static CORE_ADDR
980 arm_frame_chain (struct frame_info *fi)
981 {
982 CORE_ADDR caller_pc;
983 int framereg = get_frame_extra_info (fi)->framereg;
984
985 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
986 /* A generic call dummy's frame is the same as caller's. */
987 return get_frame_base (fi);
988
989 if (get_frame_pc (fi) < LOWEST_PC)
990 return 0;
991
992 /* If the caller is the startup code, we're at the end of the chain. */
993 caller_pc = DEPRECATED_FRAME_SAVED_PC (fi);
994
995 /* If the caller is Thumb and the caller is ARM, or vice versa,
996 the frame register of the caller is different from ours.
997 So we must scan the prologue of the caller to determine its
998 frame register number. */
999 /* XXX Fixme, we should try to do this without creating a temporary
1000 caller_fi. */
1001 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (get_frame_pc (fi)))
1002 {
1003 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1004 struct frame_info *caller_fi =
1005 deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
1006 sizeof (struct frame_extra_info));
1007
1008 /* Now, scan the prologue and obtain the frame register. */
1009 deprecated_update_frame_pc_hack (caller_fi, caller_pc);
1010 arm_scan_prologue (caller_fi);
1011 framereg = get_frame_extra_info (caller_fi)->framereg;
1012
1013 /* Deallocate the storage associated with the temporary frame
1014 created above. */
1015 do_cleanups (old_chain);
1016 }
1017
1018 /* If the caller used a frame register, return its value.
1019 Otherwise, return the caller's stack pointer. */
1020 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
1021 return arm_find_callers_reg (fi, framereg);
1022 else
1023 return get_frame_base (fi) + get_frame_extra_info (fi)->framesize;
1024 }
1025
1026 /* This function actually figures out the frame address for a given pc
1027 and sp. This is tricky because we sometimes don't use an explicit
1028 frame pointer, and the previous stack pointer isn't necessarily
1029 recorded on the stack. The only reliable way to get this info is
1030 to examine the prologue. FROMLEAF is a little confusing, it means
1031 this is the next frame up the chain AFTER a frameless function. If
1032 this is true, then the frame value for this frame is still in the
1033 fp register. */
1034
1035 static void
1036 arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1037 {
1038 int reg;
1039 CORE_ADDR sp;
1040
1041 if (get_frame_saved_regs (fi) == NULL)
1042 frame_saved_regs_zalloc (fi);
1043
1044 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1045
1046 get_frame_extra_info (fi)->framesize = 0;
1047 get_frame_extra_info (fi)->frameoffset = 0;
1048 get_frame_extra_info (fi)->framereg = 0;
1049
1050 if (get_next_frame (fi))
1051 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
1052
1053 memset (get_frame_saved_regs (fi), '\000', sizeof get_frame_saved_regs (fi));
1054
1055 /* Compute stack pointer for this frame. We use this value for both
1056 the sigtramp and call dummy cases. */
1057 if (!get_next_frame (fi))
1058 sp = read_sp();
1059 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1060 /* For generic dummy frames, pull the value direct from the frame.
1061 Having an unwind function to do this would be nice. */
1062 sp = deprecated_read_register_dummy (get_frame_pc (get_next_frame (fi)),
1063 get_frame_base (get_next_frame (fi)),
1064 ARM_SP_REGNUM);
1065 else
1066 sp = (get_frame_base (get_next_frame (fi))
1067 - get_frame_extra_info (get_next_frame (fi))->frameoffset
1068 + get_frame_extra_info (get_next_frame (fi))->framesize);
1069
1070 /* Determine whether or not we're in a sigtramp frame.
1071 Unfortunately, it isn't sufficient to test (get_frame_type (fi)
1072 == SIGTRAMP_FRAME) because this value is sometimes set after
1073 invoking DEPRECATED_INIT_EXTRA_FRAME_INFO. So we test *both*
1074 (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
1075 determine if we need to use the sigcontext addresses for the
1076 saved registers.
1077
1078 Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1079 against the name of the function, the code below will have to be
1080 changed to first fetch the name of the function and then pass
1081 this name to PC_IN_SIGTRAMP. */
1082
1083 /* FIXME: cagney/2002-11-18: This problem will go away once
1084 frame.c:get_prev_frame() is modified to set the frame's type
1085 before calling functions like this. */
1086
1087 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1088 && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (get_frame_pc (fi), (char *)0)))
1089 {
1090 for (reg = 0; reg < NUM_REGS; reg++)
1091 get_frame_saved_regs (fi)[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, get_frame_pc (fi), reg);
1092
1093 /* FIXME: What about thumb mode? */
1094 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
1095 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (fi)[get_frame_extra_info (fi)->framereg], REGISTER_RAW_SIZE (get_frame_extra_info (fi)->framereg)));
1096 get_frame_extra_info (fi)->framesize = 0;
1097 get_frame_extra_info (fi)->frameoffset = 0;
1098
1099 }
1100 else
1101 {
1102 arm_scan_prologue (fi);
1103
1104 if (!get_next_frame (fi))
1105 /* This is the innermost frame? */
1106 deprecated_update_frame_base_hack (fi, read_register (get_frame_extra_info (fi)->framereg));
1107 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1108 /* Next inner most frame is a dummy, just grab its frame.
1109 Dummy frames always have the same FP as their caller. */
1110 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
1111 else if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM
1112 || get_frame_extra_info (fi)->framereg == THUMB_FP_REGNUM)
1113 {
1114 /* not the innermost frame */
1115 /* If we have an FP, the callee saved it. */
1116 if (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg] != 0)
1117 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg], 4));
1118 else if (fromleaf)
1119 /* If we were called by a frameless fn. then our frame is
1120 still in the frame pointer register on the board... */
1121 deprecated_update_frame_base_hack (fi, read_fp ());
1122 }
1123
1124 /* Calculate actual addresses of saved registers using offsets
1125 determined by arm_scan_prologue. */
1126 for (reg = 0; reg < NUM_REGS; reg++)
1127 if (get_frame_saved_regs (fi)[reg] != 0)
1128 get_frame_saved_regs (fi)[reg]
1129 += (get_frame_base (fi)
1130 + get_frame_extra_info (fi)->framesize
1131 - get_frame_extra_info (fi)->frameoffset);
1132 }
1133 }
1134
1135
1136 /* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
1137 is saved in the stack anywhere, otherwise we get it from the
1138 registers.
1139
1140 The old definition of this function was a macro:
1141 #define FRAME_SAVED_PC(FRAME) \
1142 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
1143
1144 static CORE_ADDR
1145 arm_frame_saved_pc (struct frame_info *fi)
1146 {
1147 /* If a dummy frame, pull the PC out of the frame's register buffer. */
1148 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
1149 return deprecated_read_register_dummy (get_frame_pc (fi),
1150 get_frame_base (fi), ARM_PC_REGNUM);
1151
1152 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1153 (get_frame_base (fi)
1154 - get_frame_extra_info (fi)->frameoffset),
1155 get_frame_base (fi)))
1156 {
1157 return read_memory_integer (get_frame_saved_regs (fi)[ARM_PC_REGNUM],
1158 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
1159 }
1160 else
1161 {
1162 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
1163 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1164 }
1165 }
1166
1167 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1168 Examine the Program Status Register to decide which state we're in. */
1169
1170 static CORE_ADDR
1171 arm_read_fp (void)
1172 {
1173 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
1174 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1175 else
1176 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
1177 }
1178
1179 /* Store into a struct frame_saved_regs the addresses of the saved
1180 registers of frame described by FRAME_INFO. This includes special
1181 registers such as PC and FP saved in special ways in the stack
1182 frame. SP is even more special: the address we return for it IS
1183 the sp for the next frame. */
1184
1185 static void
1186 arm_frame_init_saved_regs (struct frame_info *fip)
1187 {
1188
1189 if (get_frame_saved_regs (fip))
1190 return;
1191
1192 arm_init_extra_frame_info (0, fip);
1193 }
1194
1195 /* Set the return address for a generic dummy frame. ARM uses the
1196 entry point. */
1197
1198 static CORE_ADDR
1199 arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1200 {
1201 write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1202 return sp;
1203 }
1204
1205 /* Push an empty stack frame, to record the current PC, etc. */
1206
1207 static void
1208 arm_push_dummy_frame (void)
1209 {
1210 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
1211 CORE_ADDR sp = old_sp;
1212 CORE_ADDR fp, prologue_start;
1213 int regnum;
1214
1215 /* Push the two dummy prologue instructions in reverse order,
1216 so that they'll be in the correct low-to-high order in memory. */
1217 /* sub fp, ip, #4 */
1218 sp = push_word (sp, 0xe24cb004);
1219 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1220 prologue_start = sp = push_word (sp, 0xe92ddfff);
1221
1222 /* Push a pointer to the dummy prologue + 12, because when stm
1223 instruction stores the PC, it stores the address of the stm
1224 instruction itself plus 12. */
1225 fp = sp = push_word (sp, prologue_start + 12);
1226
1227 /* Push the processor status. */
1228 sp = push_word (sp, read_register (ARM_PS_REGNUM));
1229
1230 /* Push all 16 registers starting with r15. */
1231 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
1232 sp = push_word (sp, read_register (regnum));
1233
1234 /* Update fp (for both Thumb and ARM) and sp. */
1235 write_register (ARM_FP_REGNUM, fp);
1236 write_register (THUMB_FP_REGNUM, fp);
1237 write_register (ARM_SP_REGNUM, sp);
1238 }
1239
1240 /* CALL_DUMMY_WORDS:
1241 This sequence of words is the instructions
1242
1243 mov lr,pc
1244 mov pc,r4
1245 illegal
1246
1247 Note this is 12 bytes. */
1248
1249 static LONGEST arm_call_dummy_words[] =
1250 {
1251 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1252 };
1253
1254 /* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1255 breakpoint to the proper address in the call dummy, so that
1256 `finish' after a stop in a call dummy works.
1257
1258 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1259 optimal solution, but the call to arm_fix_call_dummy is immediately
1260 followed by a call to run_stack_dummy, which is the only function
1261 where call_dummy_breakpoint_offset is actually used. */
1262
1263
1264 static void
1265 arm_set_call_dummy_breakpoint_offset (void)
1266 {
1267 if (caller_is_thumb)
1268 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1269 else
1270 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1271 }
1272
1273 /* Fix up the call dummy, based on whether the processor is currently
1274 in Thumb or ARM mode, and whether the target function is Thumb or
1275 ARM. There are three different situations requiring three
1276 different dummies:
1277
1278 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
1279 been copied into the dummy parameter to this function.
1280 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
1281 "mov pc,r4" instruction patched to be a "bx r4" instead.
1282 * Thumb calling anything: uses the Thumb dummy defined below, which
1283 works for calling both ARM and Thumb functions.
1284
1285 All three call dummies expect to receive the target function
1286 address in R4, with the low bit set if it's a Thumb function. */
1287
1288 static void
1289 arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1290 struct value **args, struct type *type, int gcc_p)
1291 {
1292 static short thumb_dummy[4] =
1293 {
1294 0xf000, 0xf801, /* bl label */
1295 0xdf18, /* swi 24 */
1296 0x4720, /* label: bx r4 */
1297 };
1298 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1299
1300 /* Set flag indicating whether the current PC is in a Thumb function. */
1301 caller_is_thumb = arm_pc_is_thumb (read_pc ());
1302 arm_set_call_dummy_breakpoint_offset ();
1303
1304 /* If the target function is Thumb, set the low bit of the function
1305 address. And if the CPU is currently in ARM mode, patch the
1306 second instruction of call dummy to use a BX instruction to
1307 switch to Thumb mode. */
1308 target_is_thumb = arm_pc_is_thumb (fun);
1309 if (target_is_thumb)
1310 {
1311 fun |= 1;
1312 if (!caller_is_thumb)
1313 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1314 }
1315
1316 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1317 instead of the ARM one that's already been copied. This will
1318 work for both Thumb and ARM target functions. */
1319 if (caller_is_thumb)
1320 {
1321 int i;
1322 char *p = dummy;
1323 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1324
1325 for (i = 0; i < len; i++)
1326 {
1327 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1328 p += sizeof (thumb_dummy[0]);
1329 }
1330 }
1331
1332 /* Put the target address in r4; the call dummy will copy this to
1333 the PC. */
1334 write_register (4, fun);
1335 }
1336
1337 /* Note: ScottB
1338
1339 This function does not support passing parameters using the FPA
1340 variant of the APCS. It passes any floating point arguments in the
1341 general registers and/or on the stack. */
1342
1343 static CORE_ADDR
1344 arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1345 int struct_return, CORE_ADDR struct_addr)
1346 {
1347 CORE_ADDR fp;
1348 int argnum;
1349 int argreg;
1350 int nstack;
1351 int simd_argreg;
1352 int second_pass;
1353 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1354
1355 /* Walk through the list of args and determine how large a temporary
1356 stack is required. Need to take care here as structs may be
1357 passed on the stack, and we have to to push them. On the second
1358 pass, do the store. */
1359 nstack = 0;
1360 fp = sp;
1361 for (second_pass = 0; second_pass < 2; second_pass++)
1362 {
1363 /* Compute the FP using the information computed during the
1364 first pass. */
1365 if (second_pass)
1366 fp = sp - nstack;
1367
1368 simd_argreg = 0;
1369 argreg = ARM_A1_REGNUM;
1370 nstack = 0;
1371
1372 /* The struct_return pointer occupies the first parameter
1373 passing register. */
1374 if (struct_return)
1375 {
1376 if (second_pass)
1377 {
1378 if (arm_debug)
1379 fprintf_unfiltered (gdb_stdlog,
1380 "struct return in %s = 0x%s\n",
1381 REGISTER_NAME (argreg),
1382 paddr (struct_addr));
1383 write_register (argreg, struct_addr);
1384 }
1385 argreg++;
1386 }
1387
1388 for (argnum = 0; argnum < nargs; argnum++)
1389 {
1390 int len;
1391 struct type *arg_type;
1392 struct type *target_type;
1393 enum type_code typecode;
1394 char *val;
1395
1396 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1397 len = TYPE_LENGTH (arg_type);
1398 target_type = TYPE_TARGET_TYPE (arg_type);
1399 typecode = TYPE_CODE (arg_type);
1400 val = VALUE_CONTENTS (args[argnum]);
1401
1402 /* If the argument is a pointer to a function, and it is a
1403 Thumb function, create a LOCAL copy of the value and set
1404 the THUMB bit in it. */
1405 if (second_pass
1406 && TYPE_CODE_PTR == typecode
1407 && target_type != NULL
1408 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1409 {
1410 CORE_ADDR regval = extract_address (val, len);
1411 if (arm_pc_is_thumb (regval))
1412 {
1413 val = alloca (len);
1414 store_address (val, len, MAKE_THUMB_ADDR (regval));
1415 }
1416 }
1417
1418 /* Copy the argument to general registers or the stack in
1419 register-sized pieces. Large arguments are split between
1420 registers and stack. */
1421 while (len > 0)
1422 {
1423 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1424
1425 if (argreg <= ARM_LAST_ARG_REGNUM)
1426 {
1427 /* The argument is being passed in a general purpose
1428 register. */
1429 if (second_pass)
1430 {
1431 CORE_ADDR regval = extract_address (val,
1432 partial_len);
1433 if (arm_debug)
1434 fprintf_unfiltered (gdb_stdlog,
1435 "arg %d in %s = 0x%s\n",
1436 argnum,
1437 REGISTER_NAME (argreg),
1438 phex (regval, REGISTER_SIZE));
1439 write_register (argreg, regval);
1440 }
1441 argreg++;
1442 }
1443 else
1444 {
1445 if (second_pass)
1446 {
1447 /* Push the arguments onto the stack. */
1448 if (arm_debug)
1449 fprintf_unfiltered (gdb_stdlog,
1450 "arg %d @ 0x%s + %d\n",
1451 argnum, paddr (fp), nstack);
1452 write_memory (fp + nstack, val, REGISTER_SIZE);
1453 }
1454 nstack += REGISTER_SIZE;
1455 }
1456
1457 len -= partial_len;
1458 val += partial_len;
1459 }
1460
1461 }
1462 }
1463
1464 /* Return the bottom of the argument list (pointed to by fp). */
1465 return fp;
1466 }
1467
1468 /* Pop the current frame. So long as the frame info has been
1469 initialized properly (see arm_init_extra_frame_info), this code
1470 works for dummy frames as well as regular frames. I.e, there's no
1471 need to have a special case for dummy frames. */
1472 static void
1473 arm_pop_frame (void)
1474 {
1475 int regnum;
1476 struct frame_info *frame = get_current_frame ();
1477 CORE_ADDR old_SP = (get_frame_base (frame)
1478 - get_frame_extra_info (frame)->frameoffset
1479 + get_frame_extra_info (frame)->framesize);
1480
1481 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1482 get_frame_base (frame),
1483 get_frame_base (frame)))
1484 {
1485 generic_pop_dummy_frame ();
1486 flush_cached_frames ();
1487 return;
1488 }
1489
1490 for (regnum = 0; regnum < NUM_REGS; regnum++)
1491 if (get_frame_saved_regs (frame)[regnum] != 0)
1492 write_register (regnum,
1493 read_memory_integer (get_frame_saved_regs (frame)[regnum],
1494 REGISTER_RAW_SIZE (regnum)));
1495
1496 write_register (ARM_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
1497 write_register (ARM_SP_REGNUM, old_SP);
1498
1499 flush_cached_frames ();
1500 }
1501
1502 static void
1503 print_fpu_flags (int flags)
1504 {
1505 if (flags & (1 << 0))
1506 fputs ("IVO ", stdout);
1507 if (flags & (1 << 1))
1508 fputs ("DVZ ", stdout);
1509 if (flags & (1 << 2))
1510 fputs ("OFL ", stdout);
1511 if (flags & (1 << 3))
1512 fputs ("UFL ", stdout);
1513 if (flags & (1 << 4))
1514 fputs ("INX ", stdout);
1515 putchar ('\n');
1516 }
1517
1518 /* Print interesting information about the floating point processor
1519 (if present) or emulator. */
1520 static void
1521 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1522 struct frame_info *frame, const char *args)
1523 {
1524 register unsigned long status = read_register (ARM_FPS_REGNUM);
1525 int type;
1526
1527 type = (status >> 24) & 127;
1528 printf ("%s FPU type %d\n",
1529 (status & (1 << 31)) ? "Hardware" : "Software",
1530 type);
1531 fputs ("mask: ", stdout);
1532 print_fpu_flags (status >> 16);
1533 fputs ("flags: ", stdout);
1534 print_fpu_flags (status);
1535 }
1536
1537 /* Return the GDB type object for the "standard" data type of data in
1538 register N. */
1539
1540 static struct type *
1541 arm_register_type (int regnum)
1542 {
1543 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1544 {
1545 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1546 return builtin_type_arm_ext_big;
1547 else
1548 return builtin_type_arm_ext_littlebyte_bigword;
1549 }
1550 else
1551 return builtin_type_int32;
1552 }
1553
1554 /* Index within `registers' of the first byte of the space for
1555 register N. */
1556
1557 static int
1558 arm_register_byte (int regnum)
1559 {
1560 if (regnum < ARM_F0_REGNUM)
1561 return regnum * INT_REGISTER_RAW_SIZE;
1562 else if (regnum < ARM_PS_REGNUM)
1563 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1564 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1565 else
1566 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1567 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1568 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1569 }
1570
1571 /* Number of bytes of storage in the actual machine representation for
1572 register N. All registers are 4 bytes, except fp0 - fp7, which are
1573 12 bytes in length. */
1574
1575 static int
1576 arm_register_raw_size (int regnum)
1577 {
1578 if (regnum < ARM_F0_REGNUM)
1579 return INT_REGISTER_RAW_SIZE;
1580 else if (regnum < ARM_FPS_REGNUM)
1581 return FP_REGISTER_RAW_SIZE;
1582 else
1583 return STATUS_REGISTER_SIZE;
1584 }
1585
1586 /* Number of bytes of storage in a program's representation
1587 for register N. */
1588 static int
1589 arm_register_virtual_size (int regnum)
1590 {
1591 if (regnum < ARM_F0_REGNUM)
1592 return INT_REGISTER_VIRTUAL_SIZE;
1593 else if (regnum < ARM_FPS_REGNUM)
1594 return FP_REGISTER_VIRTUAL_SIZE;
1595 else
1596 return STATUS_REGISTER_SIZE;
1597 }
1598
1599 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1600 static int
1601 arm_register_sim_regno (int regnum)
1602 {
1603 int reg = regnum;
1604 gdb_assert (reg >= 0 && reg < NUM_REGS);
1605
1606 if (reg < NUM_GREGS)
1607 return SIM_ARM_R0_REGNUM + reg;
1608 reg -= NUM_GREGS;
1609
1610 if (reg < NUM_FREGS)
1611 return SIM_ARM_FP0_REGNUM + reg;
1612 reg -= NUM_FREGS;
1613
1614 if (reg < NUM_SREGS)
1615 return SIM_ARM_FPS_REGNUM + reg;
1616 reg -= NUM_SREGS;
1617
1618 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1619 }
1620
1621 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1622 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1623 It is thought that this is is the floating-point register format on
1624 little-endian systems. */
1625
1626 static void
1627 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1628 void *dbl)
1629 {
1630 DOUBLEST d;
1631 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1632 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1633 else
1634 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1635 ptr, &d);
1636 floatformat_from_doublest (fmt, &d, dbl);
1637 }
1638
1639 static void
1640 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1641 {
1642 DOUBLEST d;
1643 floatformat_to_doublest (fmt, ptr, &d);
1644 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1645 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1646 else
1647 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1648 &d, dbl);
1649 }
1650
1651 static int
1652 condition_true (unsigned long cond, unsigned long status_reg)
1653 {
1654 if (cond == INST_AL || cond == INST_NV)
1655 return 1;
1656
1657 switch (cond)
1658 {
1659 case INST_EQ:
1660 return ((status_reg & FLAG_Z) != 0);
1661 case INST_NE:
1662 return ((status_reg & FLAG_Z) == 0);
1663 case INST_CS:
1664 return ((status_reg & FLAG_C) != 0);
1665 case INST_CC:
1666 return ((status_reg & FLAG_C) == 0);
1667 case INST_MI:
1668 return ((status_reg & FLAG_N) != 0);
1669 case INST_PL:
1670 return ((status_reg & FLAG_N) == 0);
1671 case INST_VS:
1672 return ((status_reg & FLAG_V) != 0);
1673 case INST_VC:
1674 return ((status_reg & FLAG_V) == 0);
1675 case INST_HI:
1676 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1677 case INST_LS:
1678 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1679 case INST_GE:
1680 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1681 case INST_LT:
1682 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1683 case INST_GT:
1684 return (((status_reg & FLAG_Z) == 0) &&
1685 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1686 case INST_LE:
1687 return (((status_reg & FLAG_Z) != 0) ||
1688 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1689 }
1690 return 1;
1691 }
1692
1693 /* Support routines for single stepping. Calculate the next PC value. */
1694 #define submask(x) ((1L << ((x) + 1)) - 1)
1695 #define bit(obj,st) (((obj) >> (st)) & 1)
1696 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1697 #define sbits(obj,st,fn) \
1698 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1699 #define BranchDest(addr,instr) \
1700 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1701 #define ARM_PC_32 1
1702
1703 static unsigned long
1704 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1705 unsigned long status_reg)
1706 {
1707 unsigned long res, shift;
1708 int rm = bits (inst, 0, 3);
1709 unsigned long shifttype = bits (inst, 5, 6);
1710
1711 if (bit (inst, 4))
1712 {
1713 int rs = bits (inst, 8, 11);
1714 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1715 }
1716 else
1717 shift = bits (inst, 7, 11);
1718
1719 res = (rm == 15
1720 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1721 + (bit (inst, 4) ? 12 : 8))
1722 : read_register (rm));
1723
1724 switch (shifttype)
1725 {
1726 case 0: /* LSL */
1727 res = shift >= 32 ? 0 : res << shift;
1728 break;
1729
1730 case 1: /* LSR */
1731 res = shift >= 32 ? 0 : res >> shift;
1732 break;
1733
1734 case 2: /* ASR */
1735 if (shift >= 32)
1736 shift = 31;
1737 res = ((res & 0x80000000L)
1738 ? ~((~res) >> shift) : res >> shift);
1739 break;
1740
1741 case 3: /* ROR/RRX */
1742 shift &= 31;
1743 if (shift == 0)
1744 res = (res >> 1) | (carry ? 0x80000000L : 0);
1745 else
1746 res = (res >> shift) | (res << (32 - shift));
1747 break;
1748 }
1749
1750 return res & 0xffffffff;
1751 }
1752
1753 /* Return number of 1-bits in VAL. */
1754
1755 static int
1756 bitcount (unsigned long val)
1757 {
1758 int nbits;
1759 for (nbits = 0; val != 0; nbits++)
1760 val &= val - 1; /* delete rightmost 1-bit in val */
1761 return nbits;
1762 }
1763
1764 CORE_ADDR
1765 thumb_get_next_pc (CORE_ADDR pc)
1766 {
1767 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1768 unsigned short inst1 = read_memory_integer (pc, 2);
1769 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1770 unsigned long offset;
1771
1772 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1773 {
1774 CORE_ADDR sp;
1775
1776 /* Fetch the saved PC from the stack. It's stored above
1777 all of the other registers. */
1778 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
1779 sp = read_register (ARM_SP_REGNUM);
1780 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1781 nextpc = ADDR_BITS_REMOVE (nextpc);
1782 if (nextpc == pc)
1783 error ("Infinite loop detected");
1784 }
1785 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1786 {
1787 unsigned long status = read_register (ARM_PS_REGNUM);
1788 unsigned long cond = bits (inst1, 8, 11);
1789 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1790 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1791 }
1792 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1793 {
1794 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1795 }
1796 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1797 {
1798 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1799 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1800 nextpc = pc_val + offset;
1801 }
1802
1803 return nextpc;
1804 }
1805
1806 CORE_ADDR
1807 arm_get_next_pc (CORE_ADDR pc)
1808 {
1809 unsigned long pc_val;
1810 unsigned long this_instr;
1811 unsigned long status;
1812 CORE_ADDR nextpc;
1813
1814 if (arm_pc_is_thumb (pc))
1815 return thumb_get_next_pc (pc);
1816
1817 pc_val = (unsigned long) pc;
1818 this_instr = read_memory_integer (pc, 4);
1819 status = read_register (ARM_PS_REGNUM);
1820 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1821
1822 if (condition_true (bits (this_instr, 28, 31), status))
1823 {
1824 switch (bits (this_instr, 24, 27))
1825 {
1826 case 0x0:
1827 case 0x1: /* data processing */
1828 case 0x2:
1829 case 0x3:
1830 {
1831 unsigned long operand1, operand2, result = 0;
1832 unsigned long rn;
1833 int c;
1834
1835 if (bits (this_instr, 12, 15) != 15)
1836 break;
1837
1838 if (bits (this_instr, 22, 25) == 0
1839 && bits (this_instr, 4, 7) == 9) /* multiply */
1840 error ("Illegal update to pc in instruction");
1841
1842 /* Multiply into PC */
1843 c = (status & FLAG_C) ? 1 : 0;
1844 rn = bits (this_instr, 16, 19);
1845 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1846
1847 if (bit (this_instr, 25))
1848 {
1849 unsigned long immval = bits (this_instr, 0, 7);
1850 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1851 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1852 & 0xffffffff;
1853 }
1854 else /* operand 2 is a shifted register */
1855 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1856
1857 switch (bits (this_instr, 21, 24))
1858 {
1859 case 0x0: /*and */
1860 result = operand1 & operand2;
1861 break;
1862
1863 case 0x1: /*eor */
1864 result = operand1 ^ operand2;
1865 break;
1866
1867 case 0x2: /*sub */
1868 result = operand1 - operand2;
1869 break;
1870
1871 case 0x3: /*rsb */
1872 result = operand2 - operand1;
1873 break;
1874
1875 case 0x4: /*add */
1876 result = operand1 + operand2;
1877 break;
1878
1879 case 0x5: /*adc */
1880 result = operand1 + operand2 + c;
1881 break;
1882
1883 case 0x6: /*sbc */
1884 result = operand1 - operand2 + c;
1885 break;
1886
1887 case 0x7: /*rsc */
1888 result = operand2 - operand1 + c;
1889 break;
1890
1891 case 0x8:
1892 case 0x9:
1893 case 0xa:
1894 case 0xb: /* tst, teq, cmp, cmn */
1895 result = (unsigned long) nextpc;
1896 break;
1897
1898 case 0xc: /*orr */
1899 result = operand1 | operand2;
1900 break;
1901
1902 case 0xd: /*mov */
1903 /* Always step into a function. */
1904 result = operand2;
1905 break;
1906
1907 case 0xe: /*bic */
1908 result = operand1 & ~operand2;
1909 break;
1910
1911 case 0xf: /*mvn */
1912 result = ~operand2;
1913 break;
1914 }
1915 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1916
1917 if (nextpc == pc)
1918 error ("Infinite loop detected");
1919 break;
1920 }
1921
1922 case 0x4:
1923 case 0x5: /* data transfer */
1924 case 0x6:
1925 case 0x7:
1926 if (bit (this_instr, 20))
1927 {
1928 /* load */
1929 if (bits (this_instr, 12, 15) == 15)
1930 {
1931 /* rd == pc */
1932 unsigned long rn;
1933 unsigned long base;
1934
1935 if (bit (this_instr, 22))
1936 error ("Illegal update to pc in instruction");
1937
1938 /* byte write to PC */
1939 rn = bits (this_instr, 16, 19);
1940 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1941 if (bit (this_instr, 24))
1942 {
1943 /* pre-indexed */
1944 int c = (status & FLAG_C) ? 1 : 0;
1945 unsigned long offset =
1946 (bit (this_instr, 25)
1947 ? shifted_reg_val (this_instr, c, pc_val, status)
1948 : bits (this_instr, 0, 11));
1949
1950 if (bit (this_instr, 23))
1951 base += offset;
1952 else
1953 base -= offset;
1954 }
1955 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1956 4);
1957
1958 nextpc = ADDR_BITS_REMOVE (nextpc);
1959
1960 if (nextpc == pc)
1961 error ("Infinite loop detected");
1962 }
1963 }
1964 break;
1965
1966 case 0x8:
1967 case 0x9: /* block transfer */
1968 if (bit (this_instr, 20))
1969 {
1970 /* LDM */
1971 if (bit (this_instr, 15))
1972 {
1973 /* loading pc */
1974 int offset = 0;
1975
1976 if (bit (this_instr, 23))
1977 {
1978 /* up */
1979 unsigned long reglist = bits (this_instr, 0, 14);
1980 offset = bitcount (reglist) * 4;
1981 if (bit (this_instr, 24)) /* pre */
1982 offset += 4;
1983 }
1984 else if (bit (this_instr, 24))
1985 offset = -4;
1986
1987 {
1988 unsigned long rn_val =
1989 read_register (bits (this_instr, 16, 19));
1990 nextpc =
1991 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1992 + offset),
1993 4);
1994 }
1995 nextpc = ADDR_BITS_REMOVE (nextpc);
1996 if (nextpc == pc)
1997 error ("Infinite loop detected");
1998 }
1999 }
2000 break;
2001
2002 case 0xb: /* branch & link */
2003 case 0xa: /* branch */
2004 {
2005 nextpc = BranchDest (pc, this_instr);
2006
2007 nextpc = ADDR_BITS_REMOVE (nextpc);
2008 if (nextpc == pc)
2009 error ("Infinite loop detected");
2010 break;
2011 }
2012
2013 case 0xc:
2014 case 0xd:
2015 case 0xe: /* coproc ops */
2016 case 0xf: /* SWI */
2017 break;
2018
2019 default:
2020 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
2021 return (pc);
2022 }
2023 }
2024
2025 return nextpc;
2026 }
2027
2028 /* single_step() is called just before we want to resume the inferior,
2029 if we want to single-step it but there is no hardware or kernel
2030 single-step support. We find the target of the coming instruction
2031 and breakpoint it.
2032
2033 single_step() is also called just after the inferior stops. If we
2034 had set up a simulated single-step, we undo our damage. */
2035
2036 static void
2037 arm_software_single_step (enum target_signal sig, int insert_bpt)
2038 {
2039 static int next_pc; /* State between setting and unsetting. */
2040 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2041
2042 if (insert_bpt)
2043 {
2044 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
2045 target_insert_breakpoint (next_pc, break_mem);
2046 }
2047 else
2048 target_remove_breakpoint (next_pc, break_mem);
2049 }
2050
2051 #include "bfd-in2.h"
2052 #include "libcoff.h"
2053
2054 static int
2055 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
2056 {
2057 if (arm_pc_is_thumb (memaddr))
2058 {
2059 static asymbol *asym;
2060 static combined_entry_type ce;
2061 static struct coff_symbol_struct csym;
2062 static struct bfd fake_bfd;
2063 static bfd_target fake_target;
2064
2065 if (csym.native == NULL)
2066 {
2067 /* Create a fake symbol vector containing a Thumb symbol.
2068 This is solely so that the code in print_insn_little_arm()
2069 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2070 the presence of a Thumb symbol and switch to decoding
2071 Thumb instructions. */
2072
2073 fake_target.flavour = bfd_target_coff_flavour;
2074 fake_bfd.xvec = &fake_target;
2075 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2076 csym.native = &ce;
2077 csym.symbol.the_bfd = &fake_bfd;
2078 csym.symbol.name = "fake";
2079 asym = (asymbol *) & csym;
2080 }
2081
2082 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2083 info->symbols = &asym;
2084 }
2085 else
2086 info->symbols = NULL;
2087
2088 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2089 return print_insn_big_arm (memaddr, info);
2090 else
2091 return print_insn_little_arm (memaddr, info);
2092 }
2093
2094 /* The following define instruction sequences that will cause ARM
2095 cpu's to take an undefined instruction trap. These are used to
2096 signal a breakpoint to GDB.
2097
2098 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2099 modes. A different instruction is required for each mode. The ARM
2100 cpu's can also be big or little endian. Thus four different
2101 instructions are needed to support all cases.
2102
2103 Note: ARMv4 defines several new instructions that will take the
2104 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2105 not in fact add the new instructions. The new undefined
2106 instructions in ARMv4 are all instructions that had no defined
2107 behaviour in earlier chips. There is no guarantee that they will
2108 raise an exception, but may be treated as NOP's. In practice, it
2109 may only safe to rely on instructions matching:
2110
2111 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2112 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2113 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2114
2115 Even this may only true if the condition predicate is true. The
2116 following use a condition predicate of ALWAYS so it is always TRUE.
2117
2118 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2119 and NetBSD all use a software interrupt rather than an undefined
2120 instruction to force a trap. This can be handled by by the
2121 abi-specific code during establishment of the gdbarch vector. */
2122
2123
2124 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2125 override these definitions. */
2126 #ifndef ARM_LE_BREAKPOINT
2127 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2128 #endif
2129 #ifndef ARM_BE_BREAKPOINT
2130 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2131 #endif
2132 #ifndef THUMB_LE_BREAKPOINT
2133 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2134 #endif
2135 #ifndef THUMB_BE_BREAKPOINT
2136 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2137 #endif
2138
2139 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2140 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2141 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2142 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2143
2144 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2145 the program counter value to determine whether a 16-bit or 32-bit
2146 breakpoint should be used. It returns a pointer to a string of
2147 bytes that encode a breakpoint instruction, stores the length of
2148 the string to *lenptr, and adjusts the program counter (if
2149 necessary) to point to the actual memory location where the
2150 breakpoint should be inserted. */
2151
2152 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2153 breakpoints and storing their handles instread of what was in
2154 memory. It is nice that this is the same size as a handle -
2155 otherwise remote-rdp will have to change. */
2156
2157 static const unsigned char *
2158 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2159 {
2160 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2161
2162 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2163 {
2164 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2165 *lenptr = tdep->thumb_breakpoint_size;
2166 return tdep->thumb_breakpoint;
2167 }
2168 else
2169 {
2170 *lenptr = tdep->arm_breakpoint_size;
2171 return tdep->arm_breakpoint;
2172 }
2173 }
2174
2175 /* Extract from an array REGBUF containing the (raw) register state a
2176 function return value of type TYPE, and copy that, in virtual
2177 format, into VALBUF. */
2178
2179 static void
2180 arm_extract_return_value (struct type *type,
2181 struct regcache *regs,
2182 void *dst)
2183 {
2184 bfd_byte *valbuf = dst;
2185
2186 if (TYPE_CODE_FLT == TYPE_CODE (type))
2187 {
2188 switch (arm_get_fp_model (current_gdbarch))
2189 {
2190 case ARM_FLOAT_FPA:
2191 {
2192 /* The value is in register F0 in internal format. We need to
2193 extract the raw value and then convert it to the desired
2194 internal type. */
2195 bfd_byte tmpbuf[FP_REGISTER_RAW_SIZE];
2196
2197 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2198 convert_from_extended (floatformat_from_type (type), tmpbuf,
2199 valbuf);
2200 }
2201 break;
2202
2203 case ARM_FLOAT_SOFT_FPA:
2204 case ARM_FLOAT_SOFT_VFP:
2205 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2206 if (TYPE_LENGTH (type) > 4)
2207 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2208 valbuf + INT_REGISTER_RAW_SIZE);
2209 break;
2210
2211 default:
2212 internal_error
2213 (__FILE__, __LINE__,
2214 "arm_extract_return_value: Floating point model not supported");
2215 break;
2216 }
2217 }
2218 else if (TYPE_CODE (type) == TYPE_CODE_INT
2219 || TYPE_CODE (type) == TYPE_CODE_CHAR
2220 || TYPE_CODE (type) == TYPE_CODE_BOOL
2221 || TYPE_CODE (type) == TYPE_CODE_PTR
2222 || TYPE_CODE (type) == TYPE_CODE_REF
2223 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2224 {
2225 /* If the the type is a plain integer, then the access is
2226 straight-forward. Otherwise we have to play around a bit more. */
2227 int len = TYPE_LENGTH (type);
2228 int regno = ARM_A1_REGNUM;
2229 ULONGEST tmp;
2230
2231 while (len > 0)
2232 {
2233 /* By using store_unsigned_integer we avoid having to do
2234 anything special for small big-endian values. */
2235 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2236 store_unsigned_integer (valbuf,
2237 (len > INT_REGISTER_RAW_SIZE
2238 ? INT_REGISTER_RAW_SIZE : len),
2239 tmp);
2240 len -= INT_REGISTER_RAW_SIZE;
2241 valbuf += INT_REGISTER_RAW_SIZE;
2242 }
2243 }
2244 else
2245 {
2246 /* For a structure or union the behaviour is as if the value had
2247 been stored to word-aligned memory and then loaded into
2248 registers with 32-bit load instruction(s). */
2249 int len = TYPE_LENGTH (type);
2250 int regno = ARM_A1_REGNUM;
2251 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2252
2253 while (len > 0)
2254 {
2255 regcache_cooked_read (regs, regno++, tmpbuf);
2256 memcpy (valbuf, tmpbuf,
2257 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2258 len -= INT_REGISTER_RAW_SIZE;
2259 valbuf += INT_REGISTER_RAW_SIZE;
2260 }
2261 }
2262 }
2263
2264 /* Extract from an array REGBUF containing the (raw) register state
2265 the address in which a function should return its structure value. */
2266
2267 static CORE_ADDR
2268 arm_extract_struct_value_address (struct regcache *regcache)
2269 {
2270 ULONGEST ret;
2271
2272 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2273 return ret;
2274 }
2275
2276 /* Will a function return an aggregate type in memory or in a
2277 register? Return 0 if an aggregate type can be returned in a
2278 register, 1 if it must be returned in memory. */
2279
2280 static int
2281 arm_use_struct_convention (int gcc_p, struct type *type)
2282 {
2283 int nRc;
2284 register enum type_code code;
2285
2286 /* In the ARM ABI, "integer" like aggregate types are returned in
2287 registers. For an aggregate type to be integer like, its size
2288 must be less than or equal to REGISTER_SIZE and the offset of
2289 each addressable subfield must be zero. Note that bit fields are
2290 not addressable, and all addressable subfields of unions always
2291 start at offset zero.
2292
2293 This function is based on the behaviour of GCC 2.95.1.
2294 See: gcc/arm.c: arm_return_in_memory() for details.
2295
2296 Note: All versions of GCC before GCC 2.95.2 do not set up the
2297 parameters correctly for a function returning the following
2298 structure: struct { float f;}; This should be returned in memory,
2299 not a register. Richard Earnshaw sent me a patch, but I do not
2300 know of any way to detect if a function like the above has been
2301 compiled with the correct calling convention. */
2302
2303 /* All aggregate types that won't fit in a register must be returned
2304 in memory. */
2305 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2306 {
2307 return 1;
2308 }
2309
2310 /* The only aggregate types that can be returned in a register are
2311 structs and unions. Arrays must be returned in memory. */
2312 code = TYPE_CODE (type);
2313 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2314 {
2315 return 1;
2316 }
2317
2318 /* Assume all other aggregate types can be returned in a register.
2319 Run a check for structures, unions and arrays. */
2320 nRc = 0;
2321
2322 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2323 {
2324 int i;
2325 /* Need to check if this struct/union is "integer" like. For
2326 this to be true, its size must be less than or equal to
2327 REGISTER_SIZE and the offset of each addressable subfield
2328 must be zero. Note that bit fields are not addressable, and
2329 unions always start at offset zero. If any of the subfields
2330 is a floating point type, the struct/union cannot be an
2331 integer type. */
2332
2333 /* For each field in the object, check:
2334 1) Is it FP? --> yes, nRc = 1;
2335 2) Is it addressable (bitpos != 0) and
2336 not packed (bitsize == 0)?
2337 --> yes, nRc = 1
2338 */
2339
2340 for (i = 0; i < TYPE_NFIELDS (type); i++)
2341 {
2342 enum type_code field_type_code;
2343 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2344
2345 /* Is it a floating point type field? */
2346 if (field_type_code == TYPE_CODE_FLT)
2347 {
2348 nRc = 1;
2349 break;
2350 }
2351
2352 /* If bitpos != 0, then we have to care about it. */
2353 if (TYPE_FIELD_BITPOS (type, i) != 0)
2354 {
2355 /* Bitfields are not addressable. If the field bitsize is
2356 zero, then the field is not packed. Hence it cannot be
2357 a bitfield or any other packed type. */
2358 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2359 {
2360 nRc = 1;
2361 break;
2362 }
2363 }
2364 }
2365 }
2366
2367 return nRc;
2368 }
2369
2370 /* Write into appropriate registers a function return value of type
2371 TYPE, given in virtual format. */
2372
2373 static void
2374 arm_store_return_value (struct type *type, struct regcache *regs,
2375 const void *src)
2376 {
2377 const bfd_byte *valbuf = src;
2378
2379 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2380 {
2381 char buf[ARM_MAX_REGISTER_RAW_SIZE];
2382
2383 switch (arm_get_fp_model (current_gdbarch))
2384 {
2385 case ARM_FLOAT_FPA:
2386
2387 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2388 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2389 break;
2390
2391 case ARM_FLOAT_SOFT_FPA:
2392 case ARM_FLOAT_SOFT_VFP:
2393 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2394 if (TYPE_LENGTH (type) > 4)
2395 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2396 valbuf + INT_REGISTER_RAW_SIZE);
2397 break;
2398
2399 default:
2400 internal_error
2401 (__FILE__, __LINE__,
2402 "arm_store_return_value: Floating point model not supported");
2403 break;
2404 }
2405 }
2406 else if (TYPE_CODE (type) == TYPE_CODE_INT
2407 || TYPE_CODE (type) == TYPE_CODE_CHAR
2408 || TYPE_CODE (type) == TYPE_CODE_BOOL
2409 || TYPE_CODE (type) == TYPE_CODE_PTR
2410 || TYPE_CODE (type) == TYPE_CODE_REF
2411 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2412 {
2413 if (TYPE_LENGTH (type) <= 4)
2414 {
2415 /* Values of one word or less are zero/sign-extended and
2416 returned in r0. */
2417 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2418 LONGEST val = unpack_long (type, valbuf);
2419
2420 store_signed_integer (tmpbuf, INT_REGISTER_RAW_SIZE, val);
2421 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2422 }
2423 else
2424 {
2425 /* Integral values greater than one word are stored in consecutive
2426 registers starting with r0. This will always be a multiple of
2427 the regiser size. */
2428 int len = TYPE_LENGTH (type);
2429 int regno = ARM_A1_REGNUM;
2430
2431 while (len > 0)
2432 {
2433 regcache_cooked_write (regs, regno++, valbuf);
2434 len -= INT_REGISTER_RAW_SIZE;
2435 valbuf += INT_REGISTER_RAW_SIZE;
2436 }
2437 }
2438 }
2439 else
2440 {
2441 /* For a structure or union the behaviour is as if the value had
2442 been stored to word-aligned memory and then loaded into
2443 registers with 32-bit load instruction(s). */
2444 int len = TYPE_LENGTH (type);
2445 int regno = ARM_A1_REGNUM;
2446 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2447
2448 while (len > 0)
2449 {
2450 memcpy (tmpbuf, valbuf,
2451 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2452 regcache_cooked_write (regs, regno++, tmpbuf);
2453 len -= INT_REGISTER_RAW_SIZE;
2454 valbuf += INT_REGISTER_RAW_SIZE;
2455 }
2456 }
2457 }
2458
2459 /* Store the address of the place in which to copy the structure the
2460 subroutine will return. This is called from call_function. */
2461
2462 static void
2463 arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2464 {
2465 write_register (ARM_A1_REGNUM, addr);
2466 }
2467
2468 static int
2469 arm_get_longjmp_target (CORE_ADDR *pc)
2470 {
2471 CORE_ADDR jb_addr;
2472 char buf[INT_REGISTER_RAW_SIZE];
2473 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2474
2475 jb_addr = read_register (ARM_A1_REGNUM);
2476
2477 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2478 INT_REGISTER_RAW_SIZE))
2479 return 0;
2480
2481 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2482 return 1;
2483 }
2484
2485 /* Return non-zero if the PC is inside a thumb call thunk. */
2486
2487 int
2488 arm_in_call_stub (CORE_ADDR pc, char *name)
2489 {
2490 CORE_ADDR start_addr;
2491
2492 /* Find the starting address of the function containing the PC. If
2493 the caller didn't give us a name, look it up at the same time. */
2494 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2495 &start_addr, NULL))
2496 return 0;
2497
2498 return strncmp (name, "_call_via_r", 11) == 0;
2499 }
2500
2501 /* If PC is in a Thumb call or return stub, return the address of the
2502 target PC, which is in a register. The thunk functions are called
2503 _called_via_xx, where x is the register name. The possible names
2504 are r0-r9, sl, fp, ip, sp, and lr. */
2505
2506 CORE_ADDR
2507 arm_skip_stub (CORE_ADDR pc)
2508 {
2509 char *name;
2510 CORE_ADDR start_addr;
2511
2512 /* Find the starting address and name of the function containing the PC. */
2513 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2514 return 0;
2515
2516 /* Call thunks always start with "_call_via_". */
2517 if (strncmp (name, "_call_via_", 10) == 0)
2518 {
2519 /* Use the name suffix to determine which register contains the
2520 target PC. */
2521 static char *table[15] =
2522 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2523 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2524 };
2525 int regno;
2526
2527 for (regno = 0; regno <= 14; regno++)
2528 if (strcmp (&name[10], table[regno]) == 0)
2529 return read_register (regno);
2530 }
2531
2532 return 0; /* not a stub */
2533 }
2534
2535 static void
2536 set_arm_command (char *args, int from_tty)
2537 {
2538 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2539 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2540 }
2541
2542 static void
2543 show_arm_command (char *args, int from_tty)
2544 {
2545 cmd_show_list (showarmcmdlist, from_tty, "");
2546 }
2547
2548 enum arm_float_model
2549 arm_get_fp_model (struct gdbarch *gdbarch)
2550 {
2551 if (arm_fp_model == ARM_FLOAT_AUTO)
2552 return gdbarch_tdep (gdbarch)->fp_model;
2553
2554 return arm_fp_model;
2555 }
2556
2557 static void
2558 arm_set_fp (struct gdbarch *gdbarch)
2559 {
2560 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2561
2562 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2563 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2564 {
2565 set_gdbarch_double_format (gdbarch,
2566 &floatformat_ieee_double_littlebyte_bigword);
2567 set_gdbarch_long_double_format
2568 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2569 }
2570 else
2571 {
2572 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2573 set_gdbarch_long_double_format (gdbarch,
2574 &floatformat_ieee_double_little);
2575 }
2576 }
2577
2578 static void
2579 set_fp_model_sfunc (char *args, int from_tty,
2580 struct cmd_list_element *c)
2581 {
2582 enum arm_float_model fp_model;
2583
2584 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2585 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2586 {
2587 arm_fp_model = fp_model;
2588 break;
2589 }
2590
2591 if (fp_model == ARM_FLOAT_LAST)
2592 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2593 current_fp_model);
2594
2595 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2596 arm_set_fp (current_gdbarch);
2597 }
2598
2599 static void
2600 show_fp_model (char *args, int from_tty,
2601 struct cmd_list_element *c)
2602 {
2603 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2604
2605 if (arm_fp_model == ARM_FLOAT_AUTO
2606 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2607 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2608 fp_model_strings[tdep->fp_model]);
2609 }
2610
2611 /* If the user changes the register disassembly style used for info
2612 register and other commands, we have to also switch the style used
2613 in opcodes for disassembly output. This function is run in the "set
2614 arm disassembly" command, and does that. */
2615
2616 static void
2617 set_disassembly_style_sfunc (char *args, int from_tty,
2618 struct cmd_list_element *c)
2619 {
2620 set_disassembly_style ();
2621 }
2622 \f
2623 /* Return the ARM register name corresponding to register I. */
2624 static const char *
2625 arm_register_name (int i)
2626 {
2627 return arm_register_names[i];
2628 }
2629
2630 static void
2631 set_disassembly_style (void)
2632 {
2633 const char *setname, *setdesc, **regnames;
2634 int numregs, j;
2635
2636 /* Find the style that the user wants in the opcodes table. */
2637 int current = 0;
2638 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2639 while ((disassembly_style != setname)
2640 && (current < num_disassembly_options))
2641 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2642 current_option = current;
2643
2644 /* Fill our copy. */
2645 for (j = 0; j < numregs; j++)
2646 arm_register_names[j] = (char *) regnames[j];
2647
2648 /* Adjust case. */
2649 if (isupper (*regnames[ARM_PC_REGNUM]))
2650 {
2651 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2652 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2653 }
2654 else
2655 {
2656 arm_register_names[ARM_FPS_REGNUM] = "fps";
2657 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2658 }
2659
2660 /* Synchronize the disassembler. */
2661 set_arm_regname_option (current);
2662 }
2663
2664 /* arm_othernames implements the "othernames" command. This is deprecated
2665 by the "set arm disassembly" command. */
2666
2667 static void
2668 arm_othernames (char *names, int n)
2669 {
2670 /* Circle through the various flavors. */
2671 current_option = (current_option + 1) % num_disassembly_options;
2672
2673 disassembly_style = valid_disassembly_styles[current_option];
2674 set_disassembly_style ();
2675 }
2676
2677 /* Fetch, and possibly build, an appropriate link_map_offsets structure
2678 for ARM linux targets using the struct offsets defined in <link.h>.
2679 Note, however, that link.h is not actually referred to in this file.
2680 Instead, the relevant structs offsets were obtained from examining
2681 link.h. (We can't refer to link.h from this file because the host
2682 system won't necessarily have it, or if it does, the structs which
2683 it defines will refer to the host system, not the target). */
2684
2685 struct link_map_offsets *
2686 arm_linux_svr4_fetch_link_map_offsets (void)
2687 {
2688 static struct link_map_offsets lmo;
2689 static struct link_map_offsets *lmp = 0;
2690
2691 if (lmp == 0)
2692 {
2693 lmp = &lmo;
2694
2695 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2696 need. */
2697
2698 lmo.r_map_offset = 4;
2699 lmo.r_map_size = 4;
2700
2701 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2702 need. */
2703
2704 lmo.l_addr_offset = 0;
2705 lmo.l_addr_size = 4;
2706
2707 lmo.l_name_offset = 4;
2708 lmo.l_name_size = 4;
2709
2710 lmo.l_next_offset = 12;
2711 lmo.l_next_size = 4;
2712
2713 lmo.l_prev_offset = 16;
2714 lmo.l_prev_size = 4;
2715 }
2716
2717 return lmp;
2718 }
2719
2720 /* Test whether the coff symbol specific value corresponds to a Thumb
2721 function. */
2722
2723 static int
2724 coff_sym_is_thumb (int val)
2725 {
2726 return (val == C_THUMBEXT ||
2727 val == C_THUMBSTAT ||
2728 val == C_THUMBEXTFUNC ||
2729 val == C_THUMBSTATFUNC ||
2730 val == C_THUMBLABEL);
2731 }
2732
2733 /* arm_coff_make_msymbol_special()
2734 arm_elf_make_msymbol_special()
2735
2736 These functions test whether the COFF or ELF symbol corresponds to
2737 an address in thumb code, and set a "special" bit in a minimal
2738 symbol to indicate that it does. */
2739
2740 static void
2741 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2742 {
2743 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2744 STT_ARM_TFUNC). */
2745 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2746 == STT_LOPROC)
2747 MSYMBOL_SET_SPECIAL (msym);
2748 }
2749
2750 static void
2751 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2752 {
2753 if (coff_sym_is_thumb (val))
2754 MSYMBOL_SET_SPECIAL (msym);
2755 }
2756
2757 \f
2758 static enum gdb_osabi
2759 arm_elf_osabi_sniffer (bfd *abfd)
2760 {
2761 unsigned int elfosabi, eflags;
2762 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2763
2764 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2765
2766 switch (elfosabi)
2767 {
2768 case ELFOSABI_NONE:
2769 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2770 file are conforming to the base specification for that machine
2771 (there are no OS-specific extensions). In order to determine the
2772 real OS in use we must look for OS notes that have been added. */
2773 bfd_map_over_sections (abfd,
2774 generic_elf_osabi_sniff_abi_tag_sections,
2775 &osabi);
2776 if (osabi == GDB_OSABI_UNKNOWN)
2777 {
2778 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2779 field for more information. */
2780 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2781 switch (eflags)
2782 {
2783 case EF_ARM_EABI_VER1:
2784 osabi = GDB_OSABI_ARM_EABI_V1;
2785 break;
2786
2787 case EF_ARM_EABI_VER2:
2788 osabi = GDB_OSABI_ARM_EABI_V2;
2789 break;
2790
2791 case EF_ARM_EABI_UNKNOWN:
2792 /* Assume GNU tools. */
2793 osabi = GDB_OSABI_ARM_APCS;
2794 break;
2795
2796 default:
2797 internal_error (__FILE__, __LINE__,
2798 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2799 "version 0x%x", eflags);
2800 }
2801 }
2802 break;
2803
2804 case ELFOSABI_ARM:
2805 /* GNU tools use this value. Check note sections in this case,
2806 as well. */
2807 bfd_map_over_sections (abfd,
2808 generic_elf_osabi_sniff_abi_tag_sections,
2809 &osabi);
2810 if (osabi == GDB_OSABI_UNKNOWN)
2811 {
2812 /* Assume APCS ABI. */
2813 osabi = GDB_OSABI_ARM_APCS;
2814 }
2815 break;
2816
2817 case ELFOSABI_FREEBSD:
2818 osabi = GDB_OSABI_FREEBSD_ELF;
2819 break;
2820
2821 case ELFOSABI_NETBSD:
2822 osabi = GDB_OSABI_NETBSD_ELF;
2823 break;
2824
2825 case ELFOSABI_LINUX:
2826 osabi = GDB_OSABI_LINUX;
2827 break;
2828 }
2829
2830 return osabi;
2831 }
2832
2833 \f
2834 /* Initialize the current architecture based on INFO. If possible,
2835 re-use an architecture from ARCHES, which is a list of
2836 architectures already created during this debugging session.
2837
2838 Called e.g. at program startup, when reading a core file, and when
2839 reading a binary file. */
2840
2841 static struct gdbarch *
2842 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2843 {
2844 struct gdbarch_tdep *tdep;
2845 struct gdbarch *gdbarch;
2846
2847 /* Try to deterimine the ABI of the object we are loading. */
2848
2849 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2850 {
2851 switch (bfd_get_flavour (info.abfd))
2852 {
2853 case bfd_target_aout_flavour:
2854 /* Assume it's an old APCS-style ABI. */
2855 info.osabi = GDB_OSABI_ARM_APCS;
2856 break;
2857
2858 case bfd_target_coff_flavour:
2859 /* Assume it's an old APCS-style ABI. */
2860 /* XXX WinCE? */
2861 info.osabi = GDB_OSABI_ARM_APCS;
2862 break;
2863
2864 default:
2865 /* Leave it as "unknown". */
2866 break;
2867 }
2868 }
2869
2870 /* If there is already a candidate, use it. */
2871 arches = gdbarch_list_lookup_by_info (arches, &info);
2872 if (arches != NULL)
2873 return arches->gdbarch;
2874
2875 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2876 gdbarch = gdbarch_alloc (&info, tdep);
2877
2878 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2879 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2880 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
2881
2882 /* We used to default to FPA for generic ARM, but almost nobody uses that
2883 now, and we now provide a way for the user to force the model. So
2884 default to the most useful variant. */
2885 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
2886
2887 /* Breakpoints. */
2888 switch (info.byte_order)
2889 {
2890 case BFD_ENDIAN_BIG:
2891 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2892 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2893 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2894 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2895
2896 break;
2897
2898 case BFD_ENDIAN_LITTLE:
2899 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2900 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2901 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2902 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2903
2904 break;
2905
2906 default:
2907 internal_error (__FILE__, __LINE__,
2908 "arm_gdbarch_init: bad byte order for float format");
2909 }
2910
2911 /* On ARM targets char defaults to unsigned. */
2912 set_gdbarch_char_signed (gdbarch, 0);
2913
2914 /* This should be low enough for everything. */
2915 tdep->lowest_pc = 0x20;
2916 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2917
2918 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2919 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2920
2921 set_gdbarch_call_dummy_p (gdbarch, 1);
2922 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2923
2924 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2925 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2926 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2927 set_gdbarch_call_dummy_length (gdbarch, 0);
2928
2929 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
2930
2931 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2932 set_gdbarch_push_return_address (gdbarch, arm_push_return_address);
2933
2934 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
2935
2936 /* Frame handling. */
2937 set_gdbarch_deprecated_frame_chain_valid (gdbarch, arm_frame_chain_valid);
2938 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2939 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2940 set_gdbarch_deprecated_frame_chain (gdbarch, arm_frame_chain);
2941 set_gdbarch_frameless_function_invocation
2942 (gdbarch, arm_frameless_function_invocation);
2943 set_gdbarch_deprecated_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2944 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2945 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2946 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2947 set_gdbarch_frame_args_skip (gdbarch, 0);
2948 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
2949 set_gdbarch_deprecated_pop_frame (gdbarch, arm_pop_frame);
2950
2951 /* Address manipulation. */
2952 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2953 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2954
2955 /* Offset from address of function to start of its code. */
2956 set_gdbarch_function_start_offset (gdbarch, 0);
2957
2958 /* Advance PC across function entry code. */
2959 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2960
2961 /* Get the PC when a frame might not be available. */
2962 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2963
2964 /* The stack grows downward. */
2965 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2966
2967 /* Breakpoint manipulation. */
2968 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2969 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2970
2971 /* Information about registers, etc. */
2972 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2973 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2974 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2975 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2976 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2977 set_gdbarch_register_bytes (gdbarch,
2978 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2979 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2980 + NUM_SREGS * STATUS_REGISTER_SIZE));
2981 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2982 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2983 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2984 set_gdbarch_deprecated_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2985 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2986 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2987
2988 /* Internal <-> external register number maps. */
2989 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2990
2991 /* Integer registers are 4 bytes. */
2992 set_gdbarch_register_size (gdbarch, 4);
2993 set_gdbarch_register_name (gdbarch, arm_register_name);
2994
2995 /* Returning results. */
2996 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2997 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2998 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
2999 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
3000 set_gdbarch_extract_struct_value_address (gdbarch,
3001 arm_extract_struct_value_address);
3002
3003 /* Single stepping. */
3004 /* XXX For an RDI target we should ask the target if it can single-step. */
3005 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
3006
3007 /* Disassembly. */
3008 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3009
3010 /* Minsymbol frobbing. */
3011 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3012 set_gdbarch_coff_make_msymbol_special (gdbarch,
3013 arm_coff_make_msymbol_special);
3014
3015 /* Hook in the ABI-specific overrides, if they have been registered. */
3016 gdbarch_init_osabi (info, gdbarch);
3017
3018 /* Now we have tuned the configuration, set a few final things,
3019 based on what the OS ABI has told us. */
3020
3021 if (tdep->jb_pc >= 0)
3022 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3023
3024 /* Floating point sizes and format. */
3025 switch (info.byte_order)
3026 {
3027 case BFD_ENDIAN_BIG:
3028 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
3029 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
3030 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
3031
3032 break;
3033
3034 case BFD_ENDIAN_LITTLE:
3035 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
3036 arm_set_fp (gdbarch);
3037 break;
3038
3039 default:
3040 internal_error (__FILE__, __LINE__,
3041 "arm_gdbarch_init: bad byte order for float format");
3042 }
3043
3044 return gdbarch;
3045 }
3046
3047 static void
3048 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3049 {
3050 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3051
3052 if (tdep == NULL)
3053 return;
3054
3055 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
3056 (unsigned long) tdep->lowest_pc);
3057 }
3058
3059 static void
3060 arm_init_abi_eabi_v1 (struct gdbarch_info info,
3061 struct gdbarch *gdbarch)
3062 {
3063 /* Place-holder. */
3064 }
3065
3066 static void
3067 arm_init_abi_eabi_v2 (struct gdbarch_info info,
3068 struct gdbarch *gdbarch)
3069 {
3070 /* Place-holder. */
3071 }
3072
3073 static void
3074 arm_init_abi_apcs (struct gdbarch_info info,
3075 struct gdbarch *gdbarch)
3076 {
3077 /* Place-holder. */
3078 }
3079
3080 void
3081 _initialize_arm_tdep (void)
3082 {
3083 struct ui_file *stb;
3084 long length;
3085 struct cmd_list_element *new_set, *new_show;
3086 const char *setname;
3087 const char *setdesc;
3088 const char **regnames;
3089 int numregs, i, j;
3090 static char *helptext;
3091
3092 if (GDB_MULTI_ARCH)
3093 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3094
3095 /* Register an ELF OS ABI sniffer for ARM binaries. */
3096 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3097 bfd_target_elf_flavour,
3098 arm_elf_osabi_sniffer);
3099
3100 /* Register some ABI variants for embedded systems. */
3101 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
3102 arm_init_abi_eabi_v1);
3103 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
3104 arm_init_abi_eabi_v2);
3105 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
3106 arm_init_abi_apcs);
3107
3108 /* Get the number of possible sets of register names defined in opcodes. */
3109 num_disassembly_options = get_arm_regname_num_options ();
3110
3111 /* Add root prefix command for all "set arm"/"show arm" commands. */
3112 add_prefix_cmd ("arm", no_class, set_arm_command,
3113 "Various ARM-specific commands.",
3114 &setarmcmdlist, "set arm ", 0, &setlist);
3115
3116 add_prefix_cmd ("arm", no_class, show_arm_command,
3117 "Various ARM-specific commands.",
3118 &showarmcmdlist, "show arm ", 0, &showlist);
3119
3120 /* Sync the opcode insn printer with our register viewer. */
3121 parse_arm_disassembler_option ("reg-names-std");
3122
3123 /* Begin creating the help text. */
3124 stb = mem_fileopen ();
3125 fprintf_unfiltered (stb, "Set the disassembly style.\n"
3126 "The valid values are:\n");
3127
3128 /* Initialize the array that will be passed to add_set_enum_cmd(). */
3129 valid_disassembly_styles
3130 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3131 for (i = 0; i < num_disassembly_options; i++)
3132 {
3133 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3134 valid_disassembly_styles[i] = setname;
3135 fprintf_unfiltered (stb, "%s - %s\n", setname,
3136 setdesc);
3137 /* Copy the default names (if found) and synchronize disassembler. */
3138 if (!strcmp (setname, "std"))
3139 {
3140 disassembly_style = setname;
3141 current_option = i;
3142 for (j = 0; j < numregs; j++)
3143 arm_register_names[j] = (char *) regnames[j];
3144 set_arm_regname_option (i);
3145 }
3146 }
3147 /* Mark the end of valid options. */
3148 valid_disassembly_styles[num_disassembly_options] = NULL;
3149
3150 /* Finish the creation of the help text. */
3151 fprintf_unfiltered (stb, "The default is \"std\".");
3152 helptext = ui_file_xstrdup (stb, &length);
3153 ui_file_delete (stb);
3154
3155 /* Add the deprecated disassembly-flavor command. */
3156 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
3157 valid_disassembly_styles,
3158 &disassembly_style,
3159 helptext,
3160 &setlist);
3161 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
3162 deprecate_cmd (new_set, "set arm disassembly");
3163 deprecate_cmd (add_show_from_set (new_set, &showlist),
3164 "show arm disassembly");
3165
3166 /* And now add the new interface. */
3167 new_set = add_set_enum_cmd ("disassembler", no_class,
3168 valid_disassembly_styles, &disassembly_style,
3169 helptext, &setarmcmdlist);
3170
3171 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
3172 add_show_from_set (new_set, &showarmcmdlist);
3173
3174 add_setshow_cmd_full ("apcs32", no_class,
3175 var_boolean, (char *) &arm_apcs_32,
3176 "Set usage of ARM 32-bit mode.",
3177 "Show usage of ARM 32-bit mode.",
3178 NULL, NULL,
3179 &setlist, &showlist, &new_set, &new_show);
3180 deprecate_cmd (new_set, "set arm apcs32");
3181 deprecate_cmd (new_show, "show arm apcs32");
3182
3183 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3184 "Set usage of ARM 32-bit mode. "
3185 "When off, a 26-bit PC will be used.",
3186 "Show usage of ARM 32-bit mode. "
3187 "When off, a 26-bit PC will be used.",
3188 NULL, NULL,
3189 &setarmcmdlist, &showarmcmdlist);
3190
3191 /* Add a command to allow the user to force the FPU model. */
3192 new_set = add_set_enum_cmd
3193 ("fpu", no_class, fp_model_strings, &current_fp_model,
3194 "Set the floating point type.\n"
3195 "auto - Determine the FP typefrom the OS-ABI.\n"
3196 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
3197 "fpa - FPA co-processor (GCC compiled).\n"
3198 "softvfp - Software FP with pure-endian doubles.\n"
3199 "vfp - VFP co-processor.",
3200 &setarmcmdlist);
3201 set_cmd_sfunc (new_set, set_fp_model_sfunc);
3202 set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
3203
3204 /* Add the deprecated "othernames" command. */
3205 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
3206 "Switch to the next set of register names."),
3207 "set arm disassembly");
3208
3209 /* Debugging flag. */
3210 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3211 "Set ARM debugging. "
3212 "When on, arm-specific debugging is enabled.",
3213 "Show ARM debugging. "
3214 "When on, arm-specific debugging is enabled.",
3215 NULL, NULL,
3216 &setdebuglist, &showdebuglist);
3217 }
This page took 0.096928 seconds and 4 git commands to generate.