* breakpoint.c:
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <ctype.h> /* XXX for isupper () */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42
43 #include "arm-tdep.h"
44 #include "gdb/sim-arm.h"
45
46 #include "elf-bfd.h"
47 #include "coff/internal.h"
48 #include "elf/arm.h"
49
50 #include "gdb_assert.h"
51
52 static int arm_debug;
53
54 /* Each OS has a different mechanism for accessing the various
55 registers stored in the sigcontext structure.
56
57 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
58 function pointer) which may be used to determine the addresses
59 of the various saved registers in the sigcontext structure.
60
61 For the ARM target, there are three parameters to this function.
62 The first is the pc value of the frame under consideration, the
63 second the stack pointer of this frame, and the last is the
64 register number to fetch.
65
66 If the tm.h file does not define this macro, then it's assumed that
67 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
68 be 0.
69
70 When it comes time to multi-arching this code, see the identically
71 named machinery in ia64-tdep.c for an example of how it could be
72 done. It should not be necessary to modify the code below where
73 this macro is used. */
74
75 #ifdef SIGCONTEXT_REGISTER_ADDRESS
76 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
77 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
78 #endif
79 #else
80 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
81 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
82 #endif
83
84 /* Macros for setting and testing a bit in a minimal symbol that marks
85 it as Thumb function. The MSB of the minimal symbol's "info" field
86 is used for this purpose.
87
88 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
89 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
90
91 #define MSYMBOL_SET_SPECIAL(msym) \
92 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
93 | 0x80000000)
94
95 #define MSYMBOL_IS_SPECIAL(msym) \
96 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
97
98 /* The list of available "set arm ..." and "show arm ..." commands. */
99 static struct cmd_list_element *setarmcmdlist = NULL;
100 static struct cmd_list_element *showarmcmdlist = NULL;
101
102 /* The type of floating-point to use. Keep this in sync with enum
103 arm_float_model, and the help string in _initialize_arm_tdep. */
104 static const char *fp_model_strings[] =
105 {
106 "auto",
107 "softfpa",
108 "fpa",
109 "softvfp",
110 "vfp",
111 NULL
112 };
113
114 /* A variable that can be configured by the user. */
115 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
116 static const char *current_fp_model = "auto";
117
118 /* The ABI to use. Keep this in sync with arm_abi_kind. */
119 static const char *arm_abi_strings[] =
120 {
121 "auto",
122 "APCS",
123 "AAPCS",
124 NULL
125 };
126
127 /* A variable that can be configured by the user. */
128 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
129 static const char *arm_abi_string = "auto";
130
131 /* Number of different reg name sets (options). */
132 static int num_disassembly_options;
133
134 /* We have more registers than the disassembler as gdb can print the value
135 of special registers as well.
136 The general register names are overwritten by whatever is being used by
137 the disassembler at the moment. We also adjust the case of cpsr and fps. */
138
139 /* Initial value: Register names used in ARM's ISA documentation. */
140 static char * arm_register_name_strings[] =
141 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
142 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
143 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
144 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
145 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
146 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
147 "fps", "cpsr" }; /* 24 25 */
148 static char **arm_register_names = arm_register_name_strings;
149
150 /* Valid register name styles. */
151 static const char **valid_disassembly_styles;
152
153 /* Disassembly style to use. Default to "std" register names. */
154 static const char *disassembly_style;
155 /* Index to that option in the opcodes table. */
156 static int current_option;
157
158 /* This is used to keep the bfd arch_info in sync with the disassembly
159 style. */
160 static void set_disassembly_style_sfunc(char *, int,
161 struct cmd_list_element *);
162 static void set_disassembly_style (void);
163
164 static void convert_from_extended (const struct floatformat *, const void *,
165 void *);
166 static void convert_to_extended (const struct floatformat *, void *,
167 const void *);
168
169 struct arm_prologue_cache
170 {
171 /* The stack pointer at the time this frame was created; i.e. the
172 caller's stack pointer when this function was called. It is used
173 to identify this frame. */
174 CORE_ADDR prev_sp;
175
176 /* The frame base for this frame is just prev_sp + frame offset -
177 frame size. FRAMESIZE is the size of this stack frame, and
178 FRAMEOFFSET if the initial offset from the stack pointer (this
179 frame's stack pointer, not PREV_SP) to the frame base. */
180
181 int framesize;
182 int frameoffset;
183
184 /* The register used to hold the frame pointer for this frame. */
185 int framereg;
186
187 /* Saved register offsets. */
188 struct trad_frame_saved_reg *saved_regs;
189 };
190
191 /* Addresses for calling Thumb functions have the bit 0 set.
192 Here are some macros to test, set, or clear bit 0 of addresses. */
193 #define IS_THUMB_ADDR(addr) ((addr) & 1)
194 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
195 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
196
197 /* Set to true if the 32-bit mode is in use. */
198
199 int arm_apcs_32 = 1;
200
201 /* Determine if the program counter specified in MEMADDR is in a Thumb
202 function. */
203
204 int
205 arm_pc_is_thumb (CORE_ADDR memaddr)
206 {
207 struct minimal_symbol *sym;
208
209 /* If bit 0 of the address is set, assume this is a Thumb address. */
210 if (IS_THUMB_ADDR (memaddr))
211 return 1;
212
213 /* Thumb functions have a "special" bit set in minimal symbols. */
214 sym = lookup_minimal_symbol_by_pc (memaddr);
215 if (sym)
216 {
217 return (MSYMBOL_IS_SPECIAL (sym));
218 }
219 else
220 {
221 return 0;
222 }
223 }
224
225 /* Remove useless bits from addresses in a running program. */
226 static CORE_ADDR
227 arm_addr_bits_remove (CORE_ADDR val)
228 {
229 if (arm_apcs_32)
230 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
231 else
232 return (val & 0x03fffffc);
233 }
234
235 /* When reading symbols, we need to zap the low bit of the address,
236 which may be set to 1 for Thumb functions. */
237 static CORE_ADDR
238 arm_smash_text_address (CORE_ADDR val)
239 {
240 return val & ~1;
241 }
242
243 /* Immediately after a function call, return the saved pc. Can't
244 always go through the frames for this because on some machines the
245 new frame is not set up until the new function executes some
246 instructions. */
247
248 static CORE_ADDR
249 arm_saved_pc_after_call (struct frame_info *frame)
250 {
251 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
252 }
253
254 /* A typical Thumb prologue looks like this:
255 push {r7, lr}
256 add sp, sp, #-28
257 add r7, sp, #12
258 Sometimes the latter instruction may be replaced by:
259 mov r7, sp
260
261 or like this:
262 push {r7, lr}
263 mov r7, sp
264 sub sp, #12
265
266 or, on tpcs, like this:
267 sub sp,#16
268 push {r7, lr}
269 (many instructions)
270 mov r7, sp
271 sub sp, #12
272
273 There is always one instruction of three classes:
274 1 - push
275 2 - setting of r7
276 3 - adjusting of sp
277
278 When we have found at least one of each class we are done with the prolog.
279 Note that the "sub sp, #NN" before the push does not count.
280 */
281
282 static CORE_ADDR
283 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
284 {
285 CORE_ADDR current_pc;
286 /* findmask:
287 bit 0 - push { rlist }
288 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
289 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
290 */
291 int findmask = 0;
292
293 for (current_pc = pc;
294 current_pc + 2 < func_end && current_pc < pc + 40;
295 current_pc += 2)
296 {
297 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
298
299 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
300 {
301 findmask |= 1; /* push found */
302 }
303 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
304 sub sp, #simm */
305 {
306 if ((findmask & 1) == 0) /* before push ? */
307 continue;
308 else
309 findmask |= 4; /* add/sub sp found */
310 }
311 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
312 {
313 findmask |= 2; /* setting of r7 found */
314 }
315 else if (insn == 0x466f) /* mov r7, sp */
316 {
317 findmask |= 2; /* setting of r7 found */
318 }
319 else if (findmask == (4+2+1))
320 {
321 /* We have found one of each type of prologue instruction */
322 break;
323 }
324 else
325 /* Something in the prolog that we don't care about or some
326 instruction from outside the prolog scheduled here for
327 optimization. */
328 continue;
329 }
330
331 return current_pc;
332 }
333
334 /* Advance the PC across any function entry prologue instructions to
335 reach some "real" code.
336
337 The APCS (ARM Procedure Call Standard) defines the following
338 prologue:
339
340 mov ip, sp
341 [stmfd sp!, {a1,a2,a3,a4}]
342 stmfd sp!, {...,fp,ip,lr,pc}
343 [stfe f7, [sp, #-12]!]
344 [stfe f6, [sp, #-12]!]
345 [stfe f5, [sp, #-12]!]
346 [stfe f4, [sp, #-12]!]
347 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
348
349 static CORE_ADDR
350 arm_skip_prologue (CORE_ADDR pc)
351 {
352 unsigned long inst;
353 CORE_ADDR skip_pc;
354 CORE_ADDR func_addr, func_end = 0;
355 char *func_name;
356 struct symtab_and_line sal;
357
358 /* If we're in a dummy frame, don't even try to skip the prologue. */
359 if (deprecated_pc_in_call_dummy (pc))
360 return pc;
361
362 /* See what the symbol table says. */
363
364 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
365 {
366 struct symbol *sym;
367
368 /* Found a function. */
369 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
370 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
371 {
372 /* Don't use this trick for assembly source files. */
373 sal = find_pc_line (func_addr, 0);
374 if ((sal.line != 0) && (sal.end < func_end))
375 return sal.end;
376 }
377 }
378
379 /* Check if this is Thumb code. */
380 if (arm_pc_is_thumb (pc))
381 return thumb_skip_prologue (pc, func_end);
382
383 /* Can't find the prologue end in the symbol table, try it the hard way
384 by disassembling the instructions. */
385
386 /* Like arm_scan_prologue, stop no later than pc + 64. */
387 if (func_end == 0 || func_end > pc + 64)
388 func_end = pc + 64;
389
390 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
391 {
392 inst = read_memory_integer (skip_pc, 4);
393
394 /* "mov ip, sp" is no longer a required part of the prologue. */
395 if (inst == 0xe1a0c00d) /* mov ip, sp */
396 continue;
397
398 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
399 continue;
400
401 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
402 continue;
403
404 /* Some prologues begin with "str lr, [sp, #-4]!". */
405 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
406 continue;
407
408 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
409 continue;
410
411 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
412 continue;
413
414 /* Any insns after this point may float into the code, if it makes
415 for better instruction scheduling, so we skip them only if we
416 find them, but still consider the function to be frame-ful. */
417
418 /* We may have either one sfmfd instruction here, or several stfe
419 insns, depending on the version of floating point code we
420 support. */
421 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
422 continue;
423
424 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
425 continue;
426
427 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
428 continue;
429
430 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
431 continue;
432
433 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
434 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
435 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
436 continue;
437
438 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
439 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
440 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
441 continue;
442
443 /* Un-recognized instruction; stop scanning. */
444 break;
445 }
446
447 return skip_pc; /* End of prologue */
448 }
449
450 /* *INDENT-OFF* */
451 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
452 This function decodes a Thumb function prologue to determine:
453 1) the size of the stack frame
454 2) which registers are saved on it
455 3) the offsets of saved regs
456 4) the offset from the stack pointer to the frame pointer
457
458 A typical Thumb function prologue would create this stack frame
459 (offsets relative to FP)
460 old SP -> 24 stack parameters
461 20 LR
462 16 R7
463 R7 -> 0 local variables (16 bytes)
464 SP -> -12 additional stack space (12 bytes)
465 The frame size would thus be 36 bytes, and the frame offset would be
466 12 bytes. The frame register is R7.
467
468 The comments for thumb_skip_prolog() describe the algorithm we use
469 to detect the end of the prolog. */
470 /* *INDENT-ON* */
471
472 static void
473 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
474 {
475 CORE_ADDR prologue_start;
476 CORE_ADDR prologue_end;
477 CORE_ADDR current_pc;
478 /* Which register has been copied to register n? */
479 int saved_reg[16];
480 /* findmask:
481 bit 0 - push { rlist }
482 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
483 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
484 */
485 int findmask = 0;
486 int i;
487
488 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
489 {
490 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
491
492 if (sal.line == 0) /* no line info, use current PC */
493 prologue_end = prev_pc;
494 else if (sal.end < prologue_end) /* next line begins after fn end */
495 prologue_end = sal.end; /* (probably means no prologue) */
496 }
497 else
498 /* We're in the boondocks: allow for
499 16 pushes, an add, and "mv fp,sp". */
500 prologue_end = prologue_start + 40;
501
502 prologue_end = min (prologue_end, prev_pc);
503
504 /* Initialize the saved register map. When register H is copied to
505 register L, we will put H in saved_reg[L]. */
506 for (i = 0; i < 16; i++)
507 saved_reg[i] = i;
508
509 /* Search the prologue looking for instructions that set up the
510 frame pointer, adjust the stack pointer, and save registers.
511 Do this until all basic prolog instructions are found. */
512
513 cache->framesize = 0;
514 for (current_pc = prologue_start;
515 (current_pc < prologue_end) && ((findmask & 7) != 7);
516 current_pc += 2)
517 {
518 unsigned short insn;
519 int regno;
520 int offset;
521
522 insn = read_memory_unsigned_integer (current_pc, 2);
523
524 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
525 {
526 int mask;
527 findmask |= 1; /* push found */
528 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
529 whether to save LR (R14). */
530 mask = (insn & 0xff) | ((insn & 0x100) << 6);
531
532 /* Calculate offsets of saved R0-R7 and LR. */
533 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
534 if (mask & (1 << regno))
535 {
536 cache->framesize += 4;
537 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
538 /* Reset saved register map. */
539 saved_reg[regno] = regno;
540 }
541 }
542 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
543 sub sp, #simm */
544 {
545 if ((findmask & 1) == 0) /* before push? */
546 continue;
547 else
548 findmask |= 4; /* add/sub sp found */
549
550 offset = (insn & 0x7f) << 2; /* get scaled offset */
551 if (insn & 0x80) /* is it signed? (==subtracting) */
552 {
553 cache->frameoffset += offset;
554 offset = -offset;
555 }
556 cache->framesize -= offset;
557 }
558 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
559 {
560 findmask |= 2; /* setting of r7 found */
561 cache->framereg = THUMB_FP_REGNUM;
562 /* get scaled offset */
563 cache->frameoffset = (insn & 0xff) << 2;
564 }
565 else if (insn == 0x466f) /* mov r7, sp */
566 {
567 findmask |= 2; /* setting of r7 found */
568 cache->framereg = THUMB_FP_REGNUM;
569 cache->frameoffset = 0;
570 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
571 }
572 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
573 {
574 int lo_reg = insn & 7; /* dest. register (r0-r7) */
575 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
576 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
577 }
578 else
579 /* Something in the prolog that we don't care about or some
580 instruction from outside the prolog scheduled here for
581 optimization. */
582 continue;
583 }
584 }
585
586 /* This function decodes an ARM function prologue to determine:
587 1) the size of the stack frame
588 2) which registers are saved on it
589 3) the offsets of saved regs
590 4) the offset from the stack pointer to the frame pointer
591 This information is stored in the "extra" fields of the frame_info.
592
593 There are two basic forms for the ARM prologue. The fixed argument
594 function call will look like:
595
596 mov ip, sp
597 stmfd sp!, {fp, ip, lr, pc}
598 sub fp, ip, #4
599 [sub sp, sp, #4]
600
601 Which would create this stack frame (offsets relative to FP):
602 IP -> 4 (caller's stack)
603 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
604 -4 LR (return address in caller)
605 -8 IP (copy of caller's SP)
606 -12 FP (caller's FP)
607 SP -> -28 Local variables
608
609 The frame size would thus be 32 bytes, and the frame offset would be
610 28 bytes. The stmfd call can also save any of the vN registers it
611 plans to use, which increases the frame size accordingly.
612
613 Note: The stored PC is 8 off of the STMFD instruction that stored it
614 because the ARM Store instructions always store PC + 8 when you read
615 the PC register.
616
617 A variable argument function call will look like:
618
619 mov ip, sp
620 stmfd sp!, {a1, a2, a3, a4}
621 stmfd sp!, {fp, ip, lr, pc}
622 sub fp, ip, #20
623
624 Which would create this stack frame (offsets relative to FP):
625 IP -> 20 (caller's stack)
626 16 A4
627 12 A3
628 8 A2
629 4 A1
630 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
631 -4 LR (return address in caller)
632 -8 IP (copy of caller's SP)
633 -12 FP (caller's FP)
634 SP -> -28 Local variables
635
636 The frame size would thus be 48 bytes, and the frame offset would be
637 28 bytes.
638
639 There is another potential complication, which is that the optimizer
640 will try to separate the store of fp in the "stmfd" instruction from
641 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
642 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
643
644 Also, note, the original version of the ARM toolchain claimed that there
645 should be an
646
647 instruction at the end of the prologue. I have never seen GCC produce
648 this, and the ARM docs don't mention it. We still test for it below in
649 case it happens...
650
651 */
652
653 static void
654 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
655 {
656 int regno, sp_offset, fp_offset, ip_offset;
657 CORE_ADDR prologue_start, prologue_end, current_pc;
658 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
659
660 /* Assume there is no frame until proven otherwise. */
661 cache->framereg = ARM_SP_REGNUM;
662 cache->framesize = 0;
663 cache->frameoffset = 0;
664
665 /* Check for Thumb prologue. */
666 if (arm_pc_is_thumb (prev_pc))
667 {
668 thumb_scan_prologue (prev_pc, cache);
669 return;
670 }
671
672 /* Find the function prologue. If we can't find the function in
673 the symbol table, peek in the stack frame to find the PC. */
674 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
675 {
676 /* One way to find the end of the prologue (which works well
677 for unoptimized code) is to do the following:
678
679 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
680
681 if (sal.line == 0)
682 prologue_end = prev_pc;
683 else if (sal.end < prologue_end)
684 prologue_end = sal.end;
685
686 This mechanism is very accurate so long as the optimizer
687 doesn't move any instructions from the function body into the
688 prologue. If this happens, sal.end will be the last
689 instruction in the first hunk of prologue code just before
690 the first instruction that the scheduler has moved from
691 the body to the prologue.
692
693 In order to make sure that we scan all of the prologue
694 instructions, we use a slightly less accurate mechanism which
695 may scan more than necessary. To help compensate for this
696 lack of accuracy, the prologue scanning loop below contains
697 several clauses which'll cause the loop to terminate early if
698 an implausible prologue instruction is encountered.
699
700 The expression
701
702 prologue_start + 64
703
704 is a suitable endpoint since it accounts for the largest
705 possible prologue plus up to five instructions inserted by
706 the scheduler. */
707
708 if (prologue_end > prologue_start + 64)
709 {
710 prologue_end = prologue_start + 64; /* See above. */
711 }
712 }
713 else
714 {
715 /* We have no symbol information. Our only option is to assume this
716 function has a standard stack frame and the normal frame register.
717 Then, we can find the value of our frame pointer on entrance to
718 the callee (or at the present moment if this is the innermost frame).
719 The value stored there should be the address of the stmfd + 8. */
720 CORE_ADDR frame_loc;
721 LONGEST return_value;
722
723 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
724 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
725 return;
726 else
727 {
728 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
729 prologue_end = prologue_start + 64; /* See above. */
730 }
731 }
732
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
735
736 /* Now search the prologue looking for instructions that set up the
737 frame pointer, adjust the stack pointer, and save registers.
738
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
742 a frame, which will confuse stack traceback, as well as "finish"
743 and other operations that rely on a knowledge of the stack
744 traceback.
745
746 In the APCS, the prologue should start with "mov ip, sp" so
747 if we don't see this as the first insn, we will stop.
748
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
751
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
756
757 sp_offset = fp_offset = ip_offset = 0;
758
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
761 current_pc += 4)
762 {
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
764
765 if (insn == 0xe1a0c00d) /* mov ip, sp */
766 {
767 ip_offset = 0;
768 continue;
769 }
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
771 {
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
775 ip_offset = imm;
776 continue;
777 }
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
779 {
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
783 ip_offset = -imm;
784 continue;
785 }
786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
787 {
788 sp_offset -= 4;
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
790 continue;
791 }
792 else if ((insn & 0xffff0000) == 0xe92d0000)
793 /* stmfd sp!, {..., fp, ip, lr, pc}
794 or
795 stmfd sp!, {a1, a2, a3, a4} */
796 {
797 int mask = insn & 0xffff;
798
799 /* Calculate offsets of saved registers. */
800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
801 if (mask & (1 << regno))
802 {
803 sp_offset -= 4;
804 cache->saved_regs[regno].addr = sp_offset;
805 }
806 }
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
810 {
811 /* No need to add this to saved_regs -- it's just an arg reg. */
812 continue;
813 }
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
817 {
818 /* No need to add this to saved_regs -- it's just an arg reg. */
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 fp_offset = -imm + ip_offset;
827 cache->framereg = ARM_FP_REGNUM;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 sp_offset -= imm;
835 }
836 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
837 {
838 sp_offset -= 12;
839 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
840 cache->saved_regs[regno].addr = sp_offset;
841 }
842 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
843 {
844 int n_saved_fp_regs;
845 unsigned int fp_start_reg, fp_bound_reg;
846
847 if ((insn & 0x800) == 0x800) /* N0 is set */
848 {
849 if ((insn & 0x40000) == 0x40000) /* N1 is set */
850 n_saved_fp_regs = 3;
851 else
852 n_saved_fp_regs = 1;
853 }
854 else
855 {
856 if ((insn & 0x40000) == 0x40000) /* N1 is set */
857 n_saved_fp_regs = 2;
858 else
859 n_saved_fp_regs = 4;
860 }
861
862 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
863 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
864 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
865 {
866 sp_offset -= 12;
867 cache->saved_regs[fp_start_reg++].addr = sp_offset;
868 }
869 }
870 else if ((insn & 0xf0000000) != 0xe0000000)
871 break; /* Condition not true, exit early */
872 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
873 break; /* Don't scan past a block load */
874 else
875 /* The optimizer might shove anything into the prologue,
876 so we just skip what we don't recognize. */
877 continue;
878 }
879
880 /* The frame size is just the negative of the offset (from the
881 original SP) of the last thing thing we pushed on the stack.
882 The frame offset is [new FP] - [new SP]. */
883 cache->framesize = -sp_offset;
884 if (cache->framereg == ARM_FP_REGNUM)
885 cache->frameoffset = fp_offset - sp_offset;
886 else
887 cache->frameoffset = 0;
888 }
889
890 static struct arm_prologue_cache *
891 arm_make_prologue_cache (struct frame_info *next_frame)
892 {
893 int reg;
894 struct arm_prologue_cache *cache;
895 CORE_ADDR unwound_fp;
896
897 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
898 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
899
900 arm_scan_prologue (next_frame, cache);
901
902 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
903 if (unwound_fp == 0)
904 return cache;
905
906 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
907
908 /* Calculate actual addresses of saved registers using offsets
909 determined by arm_scan_prologue. */
910 for (reg = 0; reg < NUM_REGS; reg++)
911 if (trad_frame_addr_p (cache->saved_regs, reg))
912 cache->saved_regs[reg].addr += cache->prev_sp;
913
914 return cache;
915 }
916
917 /* Our frame ID for a normal frame is the current function's starting PC
918 and the caller's SP when we were called. */
919
920 static void
921 arm_prologue_this_id (struct frame_info *next_frame,
922 void **this_cache,
923 struct frame_id *this_id)
924 {
925 struct arm_prologue_cache *cache;
926 struct frame_id id;
927 CORE_ADDR func;
928
929 if (*this_cache == NULL)
930 *this_cache = arm_make_prologue_cache (next_frame);
931 cache = *this_cache;
932
933 func = frame_func_unwind (next_frame);
934
935 /* This is meant to halt the backtrace at "_start". Make sure we
936 don't halt it at a generic dummy frame. */
937 if (func <= LOWEST_PC)
938 return;
939
940 /* If we've hit a wall, stop. */
941 if (cache->prev_sp == 0)
942 return;
943
944 id = frame_id_build (cache->prev_sp, func);
945 *this_id = id;
946 }
947
948 static void
949 arm_prologue_prev_register (struct frame_info *next_frame,
950 void **this_cache,
951 int prev_regnum,
952 int *optimized,
953 enum lval_type *lvalp,
954 CORE_ADDR *addrp,
955 int *realnump,
956 gdb_byte *valuep)
957 {
958 struct arm_prologue_cache *cache;
959
960 if (*this_cache == NULL)
961 *this_cache = arm_make_prologue_cache (next_frame);
962 cache = *this_cache;
963
964 /* If we are asked to unwind the PC, then we need to return the LR
965 instead. The saved value of PC points into this frame's
966 prologue, not the next frame's resume location. */
967 if (prev_regnum == ARM_PC_REGNUM)
968 prev_regnum = ARM_LR_REGNUM;
969
970 /* SP is generally not saved to the stack, but this frame is
971 identified by NEXT_FRAME's stack pointer at the time of the call.
972 The value was already reconstructed into PREV_SP. */
973 if (prev_regnum == ARM_SP_REGNUM)
974 {
975 *lvalp = not_lval;
976 if (valuep)
977 store_unsigned_integer (valuep, 4, cache->prev_sp);
978 return;
979 }
980
981 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
982 optimized, lvalp, addrp, realnump, valuep);
983 }
984
985 struct frame_unwind arm_prologue_unwind = {
986 NORMAL_FRAME,
987 arm_prologue_this_id,
988 arm_prologue_prev_register
989 };
990
991 static const struct frame_unwind *
992 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
993 {
994 return &arm_prologue_unwind;
995 }
996
997 static struct arm_prologue_cache *
998 arm_make_stub_cache (struct frame_info *next_frame)
999 {
1000 int reg;
1001 struct arm_prologue_cache *cache;
1002 CORE_ADDR unwound_fp;
1003
1004 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1005 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1006
1007 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1008
1009 return cache;
1010 }
1011
1012 /* Our frame ID for a stub frame is the current SP and LR. */
1013
1014 static void
1015 arm_stub_this_id (struct frame_info *next_frame,
1016 void **this_cache,
1017 struct frame_id *this_id)
1018 {
1019 struct arm_prologue_cache *cache;
1020
1021 if (*this_cache == NULL)
1022 *this_cache = arm_make_stub_cache (next_frame);
1023 cache = *this_cache;
1024
1025 *this_id = frame_id_build (cache->prev_sp,
1026 frame_pc_unwind (next_frame));
1027 }
1028
1029 struct frame_unwind arm_stub_unwind = {
1030 NORMAL_FRAME,
1031 arm_stub_this_id,
1032 arm_prologue_prev_register
1033 };
1034
1035 static const struct frame_unwind *
1036 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1037 {
1038 char dummy[4];
1039
1040 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
1041 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1042 return &arm_stub_unwind;
1043
1044 return NULL;
1045 }
1046
1047 static CORE_ADDR
1048 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1049 {
1050 struct arm_prologue_cache *cache;
1051
1052 if (*this_cache == NULL)
1053 *this_cache = arm_make_prologue_cache (next_frame);
1054 cache = *this_cache;
1055
1056 return cache->prev_sp + cache->frameoffset - cache->framesize;
1057 }
1058
1059 struct frame_base arm_normal_base = {
1060 &arm_prologue_unwind,
1061 arm_normal_frame_base,
1062 arm_normal_frame_base,
1063 arm_normal_frame_base
1064 };
1065
1066 static struct arm_prologue_cache *
1067 arm_make_sigtramp_cache (struct frame_info *next_frame)
1068 {
1069 struct arm_prologue_cache *cache;
1070 int reg;
1071
1072 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1073
1074 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1075
1076 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1077
1078 for (reg = 0; reg < NUM_REGS; reg++)
1079 cache->saved_regs[reg].addr
1080 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1081 frame_pc_unwind (next_frame), reg);
1082
1083 /* FIXME: What about thumb mode? */
1084 cache->framereg = ARM_SP_REGNUM;
1085 cache->prev_sp
1086 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
1087 register_size (current_gdbarch, cache->framereg));
1088
1089 return cache;
1090 }
1091
1092 static void
1093 arm_sigtramp_this_id (struct frame_info *next_frame,
1094 void **this_cache,
1095 struct frame_id *this_id)
1096 {
1097 struct arm_prologue_cache *cache;
1098
1099 if (*this_cache == NULL)
1100 *this_cache = arm_make_sigtramp_cache (next_frame);
1101 cache = *this_cache;
1102
1103 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1104 the sigtramp frame; the PC should be the beginning of the trampoline. */
1105 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1106 }
1107
1108 static void
1109 arm_sigtramp_prev_register (struct frame_info *next_frame,
1110 void **this_cache,
1111 int prev_regnum,
1112 int *optimized,
1113 enum lval_type *lvalp,
1114 CORE_ADDR *addrp,
1115 int *realnump,
1116 gdb_byte *valuep)
1117 {
1118 struct arm_prologue_cache *cache;
1119
1120 if (*this_cache == NULL)
1121 *this_cache = arm_make_sigtramp_cache (next_frame);
1122 cache = *this_cache;
1123
1124 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1125 optimized, lvalp, addrp, realnump, valuep);
1126 }
1127
1128 struct frame_unwind arm_sigtramp_unwind = {
1129 SIGTRAMP_FRAME,
1130 arm_sigtramp_this_id,
1131 arm_sigtramp_prev_register
1132 };
1133
1134 static const struct frame_unwind *
1135 arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
1136 {
1137 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1138 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame), (char *) 0))
1139 return &arm_sigtramp_unwind;
1140
1141 return NULL;
1142 }
1143
1144 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1145 dummy frame. The frame ID's base needs to match the TOS value
1146 saved by save_dummy_frame_tos() and returned from
1147 arm_push_dummy_call, and the PC needs to match the dummy frame's
1148 breakpoint. */
1149
1150 static struct frame_id
1151 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1152 {
1153 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1154 frame_pc_unwind (next_frame));
1155 }
1156
1157 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1158 be used to construct the previous frame's ID, after looking up the
1159 containing function). */
1160
1161 static CORE_ADDR
1162 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1163 {
1164 CORE_ADDR pc;
1165 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1166 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1167 }
1168
1169 static CORE_ADDR
1170 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1171 {
1172 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1173 }
1174
1175 /* When arguments must be pushed onto the stack, they go on in reverse
1176 order. The code below implements a FILO (stack) to do this. */
1177
1178 struct stack_item
1179 {
1180 int len;
1181 struct stack_item *prev;
1182 void *data;
1183 };
1184
1185 static struct stack_item *
1186 push_stack_item (struct stack_item *prev, void *contents, int len)
1187 {
1188 struct stack_item *si;
1189 si = xmalloc (sizeof (struct stack_item));
1190 si->data = xmalloc (len);
1191 si->len = len;
1192 si->prev = prev;
1193 memcpy (si->data, contents, len);
1194 return si;
1195 }
1196
1197 static struct stack_item *
1198 pop_stack_item (struct stack_item *si)
1199 {
1200 struct stack_item *dead = si;
1201 si = si->prev;
1202 xfree (dead->data);
1203 xfree (dead);
1204 return si;
1205 }
1206
1207
1208 /* Return the alignment (in bytes) of the given type. */
1209
1210 static int
1211 arm_type_align (struct type *t)
1212 {
1213 int n;
1214 int align;
1215 int falign;
1216
1217 t = check_typedef (t);
1218 switch (TYPE_CODE (t))
1219 {
1220 default:
1221 /* Should never happen. */
1222 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1223 return 4;
1224
1225 case TYPE_CODE_PTR:
1226 case TYPE_CODE_ENUM:
1227 case TYPE_CODE_INT:
1228 case TYPE_CODE_FLT:
1229 case TYPE_CODE_SET:
1230 case TYPE_CODE_RANGE:
1231 case TYPE_CODE_BITSTRING:
1232 case TYPE_CODE_REF:
1233 case TYPE_CODE_CHAR:
1234 case TYPE_CODE_BOOL:
1235 return TYPE_LENGTH (t);
1236
1237 case TYPE_CODE_ARRAY:
1238 case TYPE_CODE_COMPLEX:
1239 /* TODO: What about vector types? */
1240 return arm_type_align (TYPE_TARGET_TYPE (t));
1241
1242 case TYPE_CODE_STRUCT:
1243 case TYPE_CODE_UNION:
1244 align = 1;
1245 for (n = 0; n < TYPE_NFIELDS (t); n++)
1246 {
1247 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1248 if (falign > align)
1249 align = falign;
1250 }
1251 return align;
1252 }
1253 }
1254
1255 /* We currently only support passing parameters in integer registers. This
1256 conforms with GCC's default model. Several other variants exist and
1257 we should probably support some of them based on the selected ABI. */
1258
1259 static CORE_ADDR
1260 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1261 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1262 struct value **args, CORE_ADDR sp, int struct_return,
1263 CORE_ADDR struct_addr)
1264 {
1265 int argnum;
1266 int argreg;
1267 int nstack;
1268 struct stack_item *si = NULL;
1269
1270 /* Set the return address. For the ARM, the return breakpoint is
1271 always at BP_ADDR. */
1272 /* XXX Fix for Thumb. */
1273 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1274
1275 /* Walk through the list of args and determine how large a temporary
1276 stack is required. Need to take care here as structs may be
1277 passed on the stack, and we have to to push them. */
1278 nstack = 0;
1279
1280 argreg = ARM_A1_REGNUM;
1281 nstack = 0;
1282
1283 /* Some platforms require a double-word aligned stack. Make sure sp
1284 is correctly aligned before we start. We always do this even if
1285 it isn't really needed -- it can never hurt things. */
1286 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1287
1288 /* The struct_return pointer occupies the first parameter
1289 passing register. */
1290 if (struct_return)
1291 {
1292 if (arm_debug)
1293 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1294 REGISTER_NAME (argreg), paddr (struct_addr));
1295 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1296 argreg++;
1297 }
1298
1299 for (argnum = 0; argnum < nargs; argnum++)
1300 {
1301 int len;
1302 struct type *arg_type;
1303 struct type *target_type;
1304 enum type_code typecode;
1305 bfd_byte *val;
1306 int align;
1307
1308 arg_type = check_typedef (value_type (args[argnum]));
1309 len = TYPE_LENGTH (arg_type);
1310 target_type = TYPE_TARGET_TYPE (arg_type);
1311 typecode = TYPE_CODE (arg_type);
1312 val = value_contents_writeable (args[argnum]);
1313
1314 align = arm_type_align (arg_type);
1315 /* Round alignment up to a whole number of words. */
1316 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1317 /* Different ABIs have different maximum alignments. */
1318 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1319 {
1320 /* The APCS ABI only requires word alignment. */
1321 align = INT_REGISTER_SIZE;
1322 }
1323 else
1324 {
1325 /* The AAPCS requires at most doubleword alignment. */
1326 if (align > INT_REGISTER_SIZE * 2)
1327 align = INT_REGISTER_SIZE * 2;
1328 }
1329
1330 /* Push stack padding for dowubleword alignment. */
1331 if (nstack & (align - 1))
1332 {
1333 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1334 nstack += INT_REGISTER_SIZE;
1335 }
1336
1337 /* Doubleword aligned quantities must go in even register pairs. */
1338 if (argreg <= ARM_LAST_ARG_REGNUM
1339 && align > INT_REGISTER_SIZE
1340 && argreg & 1)
1341 argreg++;
1342
1343 /* If the argument is a pointer to a function, and it is a
1344 Thumb function, create a LOCAL copy of the value and set
1345 the THUMB bit in it. */
1346 if (TYPE_CODE_PTR == typecode
1347 && target_type != NULL
1348 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1349 {
1350 CORE_ADDR regval = extract_unsigned_integer (val, len);
1351 if (arm_pc_is_thumb (regval))
1352 {
1353 val = alloca (len);
1354 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1355 }
1356 }
1357
1358 /* Copy the argument to general registers or the stack in
1359 register-sized pieces. Large arguments are split between
1360 registers and stack. */
1361 while (len > 0)
1362 {
1363 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1364
1365 if (argreg <= ARM_LAST_ARG_REGNUM)
1366 {
1367 /* The argument is being passed in a general purpose
1368 register. */
1369 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1370 if (arm_debug)
1371 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1372 argnum, REGISTER_NAME (argreg),
1373 phex (regval, DEPRECATED_REGISTER_SIZE));
1374 regcache_cooked_write_unsigned (regcache, argreg, regval);
1375 argreg++;
1376 }
1377 else
1378 {
1379 /* Push the arguments onto the stack. */
1380 if (arm_debug)
1381 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1382 argnum, nstack);
1383 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1384 nstack += DEPRECATED_REGISTER_SIZE;
1385 }
1386
1387 len -= partial_len;
1388 val += partial_len;
1389 }
1390 }
1391 /* If we have an odd number of words to push, then decrement the stack
1392 by one word now, so first stack argument will be dword aligned. */
1393 if (nstack & 4)
1394 sp -= 4;
1395
1396 while (si)
1397 {
1398 sp -= si->len;
1399 write_memory (sp, si->data, si->len);
1400 si = pop_stack_item (si);
1401 }
1402
1403 /* Finally, update teh SP register. */
1404 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1405
1406 return sp;
1407 }
1408
1409 static void
1410 print_fpu_flags (int flags)
1411 {
1412 if (flags & (1 << 0))
1413 fputs ("IVO ", stdout);
1414 if (flags & (1 << 1))
1415 fputs ("DVZ ", stdout);
1416 if (flags & (1 << 2))
1417 fputs ("OFL ", stdout);
1418 if (flags & (1 << 3))
1419 fputs ("UFL ", stdout);
1420 if (flags & (1 << 4))
1421 fputs ("INX ", stdout);
1422 putchar ('\n');
1423 }
1424
1425 /* Print interesting information about the floating point processor
1426 (if present) or emulator. */
1427 static void
1428 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1429 struct frame_info *frame, const char *args)
1430 {
1431 unsigned long status = read_register (ARM_FPS_REGNUM);
1432 int type;
1433
1434 type = (status >> 24) & 127;
1435 if (status & (1 << 31))
1436 printf (_("Hardware FPU type %d\n"), type);
1437 else
1438 printf (_("Software FPU type %d\n"), type);
1439 /* i18n: [floating point unit] mask */
1440 fputs (_("mask: "), stdout);
1441 print_fpu_flags (status >> 16);
1442 /* i18n: [floating point unit] flags */
1443 fputs (_("flags: "), stdout);
1444 print_fpu_flags (status);
1445 }
1446
1447 /* Return the GDB type object for the "standard" data type of data in
1448 register N. */
1449
1450 static struct type *
1451 arm_register_type (struct gdbarch *gdbarch, int regnum)
1452 {
1453 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1454 {
1455 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1456 return builtin_type_arm_ext_big;
1457 else
1458 return builtin_type_arm_ext_littlebyte_bigword;
1459 }
1460 else
1461 return builtin_type_int32;
1462 }
1463
1464 /* Index within `registers' of the first byte of the space for
1465 register N. */
1466
1467 static int
1468 arm_register_byte (int regnum)
1469 {
1470 if (regnum < ARM_F0_REGNUM)
1471 return regnum * INT_REGISTER_SIZE;
1472 else if (regnum < ARM_PS_REGNUM)
1473 return (NUM_GREGS * INT_REGISTER_SIZE
1474 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
1475 else
1476 return (NUM_GREGS * INT_REGISTER_SIZE
1477 + NUM_FREGS * FP_REGISTER_SIZE
1478 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1479 }
1480
1481 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1482 static int
1483 arm_register_sim_regno (int regnum)
1484 {
1485 int reg = regnum;
1486 gdb_assert (reg >= 0 && reg < NUM_REGS);
1487
1488 if (reg < NUM_GREGS)
1489 return SIM_ARM_R0_REGNUM + reg;
1490 reg -= NUM_GREGS;
1491
1492 if (reg < NUM_FREGS)
1493 return SIM_ARM_FP0_REGNUM + reg;
1494 reg -= NUM_FREGS;
1495
1496 if (reg < NUM_SREGS)
1497 return SIM_ARM_FPS_REGNUM + reg;
1498 reg -= NUM_SREGS;
1499
1500 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1501 }
1502
1503 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1504 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1505 It is thought that this is is the floating-point register format on
1506 little-endian systems. */
1507
1508 static void
1509 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1510 void *dbl)
1511 {
1512 DOUBLEST d;
1513 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1514 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1515 else
1516 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1517 ptr, &d);
1518 floatformat_from_doublest (fmt, &d, dbl);
1519 }
1520
1521 static void
1522 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1523 {
1524 DOUBLEST d;
1525 floatformat_to_doublest (fmt, ptr, &d);
1526 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1527 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1528 else
1529 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1530 &d, dbl);
1531 }
1532
1533 static int
1534 condition_true (unsigned long cond, unsigned long status_reg)
1535 {
1536 if (cond == INST_AL || cond == INST_NV)
1537 return 1;
1538
1539 switch (cond)
1540 {
1541 case INST_EQ:
1542 return ((status_reg & FLAG_Z) != 0);
1543 case INST_NE:
1544 return ((status_reg & FLAG_Z) == 0);
1545 case INST_CS:
1546 return ((status_reg & FLAG_C) != 0);
1547 case INST_CC:
1548 return ((status_reg & FLAG_C) == 0);
1549 case INST_MI:
1550 return ((status_reg & FLAG_N) != 0);
1551 case INST_PL:
1552 return ((status_reg & FLAG_N) == 0);
1553 case INST_VS:
1554 return ((status_reg & FLAG_V) != 0);
1555 case INST_VC:
1556 return ((status_reg & FLAG_V) == 0);
1557 case INST_HI:
1558 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1559 case INST_LS:
1560 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1561 case INST_GE:
1562 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1563 case INST_LT:
1564 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1565 case INST_GT:
1566 return (((status_reg & FLAG_Z) == 0) &&
1567 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1568 case INST_LE:
1569 return (((status_reg & FLAG_Z) != 0) ||
1570 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1571 }
1572 return 1;
1573 }
1574
1575 /* Support routines for single stepping. Calculate the next PC value. */
1576 #define submask(x) ((1L << ((x) + 1)) - 1)
1577 #define bit(obj,st) (((obj) >> (st)) & 1)
1578 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1579 #define sbits(obj,st,fn) \
1580 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1581 #define BranchDest(addr,instr) \
1582 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1583 #define ARM_PC_32 1
1584
1585 static unsigned long
1586 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1587 unsigned long status_reg)
1588 {
1589 unsigned long res, shift;
1590 int rm = bits (inst, 0, 3);
1591 unsigned long shifttype = bits (inst, 5, 6);
1592
1593 if (bit (inst, 4))
1594 {
1595 int rs = bits (inst, 8, 11);
1596 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1597 }
1598 else
1599 shift = bits (inst, 7, 11);
1600
1601 res = (rm == 15
1602 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1603 + (bit (inst, 4) ? 12 : 8))
1604 : read_register (rm));
1605
1606 switch (shifttype)
1607 {
1608 case 0: /* LSL */
1609 res = shift >= 32 ? 0 : res << shift;
1610 break;
1611
1612 case 1: /* LSR */
1613 res = shift >= 32 ? 0 : res >> shift;
1614 break;
1615
1616 case 2: /* ASR */
1617 if (shift >= 32)
1618 shift = 31;
1619 res = ((res & 0x80000000L)
1620 ? ~((~res) >> shift) : res >> shift);
1621 break;
1622
1623 case 3: /* ROR/RRX */
1624 shift &= 31;
1625 if (shift == 0)
1626 res = (res >> 1) | (carry ? 0x80000000L : 0);
1627 else
1628 res = (res >> shift) | (res << (32 - shift));
1629 break;
1630 }
1631
1632 return res & 0xffffffff;
1633 }
1634
1635 /* Return number of 1-bits in VAL. */
1636
1637 static int
1638 bitcount (unsigned long val)
1639 {
1640 int nbits;
1641 for (nbits = 0; val != 0; nbits++)
1642 val &= val - 1; /* delete rightmost 1-bit in val */
1643 return nbits;
1644 }
1645
1646 CORE_ADDR
1647 thumb_get_next_pc (CORE_ADDR pc)
1648 {
1649 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1650 unsigned short inst1 = read_memory_integer (pc, 2);
1651 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1652 unsigned long offset;
1653
1654 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1655 {
1656 CORE_ADDR sp;
1657
1658 /* Fetch the saved PC from the stack. It's stored above
1659 all of the other registers. */
1660 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1661 sp = read_register (ARM_SP_REGNUM);
1662 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1663 nextpc = ADDR_BITS_REMOVE (nextpc);
1664 if (nextpc == pc)
1665 error (_("Infinite loop detected"));
1666 }
1667 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1668 {
1669 unsigned long status = read_register (ARM_PS_REGNUM);
1670 unsigned long cond = bits (inst1, 8, 11);
1671 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1672 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1673 }
1674 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1675 {
1676 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1677 }
1678 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1679 {
1680 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1681 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1682 nextpc = pc_val + offset;
1683 /* For BLX make sure to clear the low bits. */
1684 if (bits (inst2, 11, 12) == 1)
1685 nextpc = nextpc & 0xfffffffc;
1686 }
1687 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1688 {
1689 if (bits (inst1, 3, 6) == 0x0f)
1690 nextpc = pc_val;
1691 else
1692 nextpc = read_register (bits (inst1, 3, 6));
1693
1694 nextpc = ADDR_BITS_REMOVE (nextpc);
1695 if (nextpc == pc)
1696 error (_("Infinite loop detected"));
1697 }
1698
1699 return nextpc;
1700 }
1701
1702 CORE_ADDR
1703 arm_get_next_pc (CORE_ADDR pc)
1704 {
1705 unsigned long pc_val;
1706 unsigned long this_instr;
1707 unsigned long status;
1708 CORE_ADDR nextpc;
1709
1710 if (arm_pc_is_thumb (pc))
1711 return thumb_get_next_pc (pc);
1712
1713 pc_val = (unsigned long) pc;
1714 this_instr = read_memory_integer (pc, 4);
1715 status = read_register (ARM_PS_REGNUM);
1716 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1717
1718 if (condition_true (bits (this_instr, 28, 31), status))
1719 {
1720 switch (bits (this_instr, 24, 27))
1721 {
1722 case 0x0:
1723 case 0x1: /* data processing */
1724 case 0x2:
1725 case 0x3:
1726 {
1727 unsigned long operand1, operand2, result = 0;
1728 unsigned long rn;
1729 int c;
1730
1731 if (bits (this_instr, 12, 15) != 15)
1732 break;
1733
1734 if (bits (this_instr, 22, 25) == 0
1735 && bits (this_instr, 4, 7) == 9) /* multiply */
1736 error (_("Invalid update to pc in instruction"));
1737
1738 /* BX <reg>, BLX <reg> */
1739 if (bits (this_instr, 4, 28) == 0x12fff1
1740 || bits (this_instr, 4, 28) == 0x12fff3)
1741 {
1742 rn = bits (this_instr, 0, 3);
1743 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1744 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1745
1746 if (nextpc == pc)
1747 error (_("Infinite loop detected"));
1748
1749 return nextpc;
1750 }
1751
1752 /* Multiply into PC */
1753 c = (status & FLAG_C) ? 1 : 0;
1754 rn = bits (this_instr, 16, 19);
1755 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1756
1757 if (bit (this_instr, 25))
1758 {
1759 unsigned long immval = bits (this_instr, 0, 7);
1760 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1761 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1762 & 0xffffffff;
1763 }
1764 else /* operand 2 is a shifted register */
1765 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1766
1767 switch (bits (this_instr, 21, 24))
1768 {
1769 case 0x0: /*and */
1770 result = operand1 & operand2;
1771 break;
1772
1773 case 0x1: /*eor */
1774 result = operand1 ^ operand2;
1775 break;
1776
1777 case 0x2: /*sub */
1778 result = operand1 - operand2;
1779 break;
1780
1781 case 0x3: /*rsb */
1782 result = operand2 - operand1;
1783 break;
1784
1785 case 0x4: /*add */
1786 result = operand1 + operand2;
1787 break;
1788
1789 case 0x5: /*adc */
1790 result = operand1 + operand2 + c;
1791 break;
1792
1793 case 0x6: /*sbc */
1794 result = operand1 - operand2 + c;
1795 break;
1796
1797 case 0x7: /*rsc */
1798 result = operand2 - operand1 + c;
1799 break;
1800
1801 case 0x8:
1802 case 0x9:
1803 case 0xa:
1804 case 0xb: /* tst, teq, cmp, cmn */
1805 result = (unsigned long) nextpc;
1806 break;
1807
1808 case 0xc: /*orr */
1809 result = operand1 | operand2;
1810 break;
1811
1812 case 0xd: /*mov */
1813 /* Always step into a function. */
1814 result = operand2;
1815 break;
1816
1817 case 0xe: /*bic */
1818 result = operand1 & ~operand2;
1819 break;
1820
1821 case 0xf: /*mvn */
1822 result = ~operand2;
1823 break;
1824 }
1825 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1826
1827 if (nextpc == pc)
1828 error (_("Infinite loop detected"));
1829 break;
1830 }
1831
1832 case 0x4:
1833 case 0x5: /* data transfer */
1834 case 0x6:
1835 case 0x7:
1836 if (bit (this_instr, 20))
1837 {
1838 /* load */
1839 if (bits (this_instr, 12, 15) == 15)
1840 {
1841 /* rd == pc */
1842 unsigned long rn;
1843 unsigned long base;
1844
1845 if (bit (this_instr, 22))
1846 error (_("Invalid update to pc in instruction"));
1847
1848 /* byte write to PC */
1849 rn = bits (this_instr, 16, 19);
1850 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1851 if (bit (this_instr, 24))
1852 {
1853 /* pre-indexed */
1854 int c = (status & FLAG_C) ? 1 : 0;
1855 unsigned long offset =
1856 (bit (this_instr, 25)
1857 ? shifted_reg_val (this_instr, c, pc_val, status)
1858 : bits (this_instr, 0, 11));
1859
1860 if (bit (this_instr, 23))
1861 base += offset;
1862 else
1863 base -= offset;
1864 }
1865 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1866 4);
1867
1868 nextpc = ADDR_BITS_REMOVE (nextpc);
1869
1870 if (nextpc == pc)
1871 error (_("Infinite loop detected"));
1872 }
1873 }
1874 break;
1875
1876 case 0x8:
1877 case 0x9: /* block transfer */
1878 if (bit (this_instr, 20))
1879 {
1880 /* LDM */
1881 if (bit (this_instr, 15))
1882 {
1883 /* loading pc */
1884 int offset = 0;
1885
1886 if (bit (this_instr, 23))
1887 {
1888 /* up */
1889 unsigned long reglist = bits (this_instr, 0, 14);
1890 offset = bitcount (reglist) * 4;
1891 if (bit (this_instr, 24)) /* pre */
1892 offset += 4;
1893 }
1894 else if (bit (this_instr, 24))
1895 offset = -4;
1896
1897 {
1898 unsigned long rn_val =
1899 read_register (bits (this_instr, 16, 19));
1900 nextpc =
1901 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1902 + offset),
1903 4);
1904 }
1905 nextpc = ADDR_BITS_REMOVE (nextpc);
1906 if (nextpc == pc)
1907 error (_("Infinite loop detected"));
1908 }
1909 }
1910 break;
1911
1912 case 0xb: /* branch & link */
1913 case 0xa: /* branch */
1914 {
1915 nextpc = BranchDest (pc, this_instr);
1916
1917 /* BLX */
1918 if (bits (this_instr, 28, 31) == INST_NV)
1919 nextpc |= bit (this_instr, 24) << 1;
1920
1921 nextpc = ADDR_BITS_REMOVE (nextpc);
1922 if (nextpc == pc)
1923 error (_("Infinite loop detected"));
1924 break;
1925 }
1926
1927 case 0xc:
1928 case 0xd:
1929 case 0xe: /* coproc ops */
1930 case 0xf: /* SWI */
1931 break;
1932
1933 default:
1934 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1935 return (pc);
1936 }
1937 }
1938
1939 return nextpc;
1940 }
1941
1942 /* single_step() is called just before we want to resume the inferior,
1943 if we want to single-step it but there is no hardware or kernel
1944 single-step support. We find the target of the coming instruction
1945 and breakpoint it.
1946
1947 single_step() is also called just after the inferior stops. If we
1948 had set up a simulated single-step, we undo our damage. */
1949
1950 static void
1951 arm_software_single_step (enum target_signal sig, int insert_bpt)
1952 {
1953 static int next_pc; /* State between setting and unsetting. */
1954 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1955
1956 if (insert_bpt)
1957 {
1958 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1959 target_insert_breakpoint (next_pc, break_mem);
1960 }
1961 else
1962 target_remove_breakpoint (next_pc, break_mem);
1963 }
1964
1965 #include "bfd-in2.h"
1966 #include "libcoff.h"
1967
1968 static int
1969 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1970 {
1971 if (arm_pc_is_thumb (memaddr))
1972 {
1973 static asymbol *asym;
1974 static combined_entry_type ce;
1975 static struct coff_symbol_struct csym;
1976 static struct bfd fake_bfd;
1977 static bfd_target fake_target;
1978
1979 if (csym.native == NULL)
1980 {
1981 /* Create a fake symbol vector containing a Thumb symbol.
1982 This is solely so that the code in print_insn_little_arm()
1983 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1984 the presence of a Thumb symbol and switch to decoding
1985 Thumb instructions. */
1986
1987 fake_target.flavour = bfd_target_coff_flavour;
1988 fake_bfd.xvec = &fake_target;
1989 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1990 csym.native = &ce;
1991 csym.symbol.the_bfd = &fake_bfd;
1992 csym.symbol.name = "fake";
1993 asym = (asymbol *) & csym;
1994 }
1995
1996 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1997 info->symbols = &asym;
1998 }
1999 else
2000 info->symbols = NULL;
2001
2002 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2003 return print_insn_big_arm (memaddr, info);
2004 else
2005 return print_insn_little_arm (memaddr, info);
2006 }
2007
2008 /* The following define instruction sequences that will cause ARM
2009 cpu's to take an undefined instruction trap. These are used to
2010 signal a breakpoint to GDB.
2011
2012 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2013 modes. A different instruction is required for each mode. The ARM
2014 cpu's can also be big or little endian. Thus four different
2015 instructions are needed to support all cases.
2016
2017 Note: ARMv4 defines several new instructions that will take the
2018 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2019 not in fact add the new instructions. The new undefined
2020 instructions in ARMv4 are all instructions that had no defined
2021 behaviour in earlier chips. There is no guarantee that they will
2022 raise an exception, but may be treated as NOP's. In practice, it
2023 may only safe to rely on instructions matching:
2024
2025 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2026 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2027 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2028
2029 Even this may only true if the condition predicate is true. The
2030 following use a condition predicate of ALWAYS so it is always TRUE.
2031
2032 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2033 and NetBSD all use a software interrupt rather than an undefined
2034 instruction to force a trap. This can be handled by by the
2035 abi-specific code during establishment of the gdbarch vector. */
2036
2037
2038 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2039 override these definitions. */
2040 #ifndef ARM_LE_BREAKPOINT
2041 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2042 #endif
2043 #ifndef ARM_BE_BREAKPOINT
2044 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2045 #endif
2046 #ifndef THUMB_LE_BREAKPOINT
2047 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2048 #endif
2049 #ifndef THUMB_BE_BREAKPOINT
2050 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2051 #endif
2052
2053 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2054 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2055 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2056 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2057
2058 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2059 the program counter value to determine whether a 16-bit or 32-bit
2060 breakpoint should be used. It returns a pointer to a string of
2061 bytes that encode a breakpoint instruction, stores the length of
2062 the string to *lenptr, and adjusts the program counter (if
2063 necessary) to point to the actual memory location where the
2064 breakpoint should be inserted. */
2065
2066 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2067 breakpoints and storing their handles instread of what was in
2068 memory. It is nice that this is the same size as a handle -
2069 otherwise remote-rdp will have to change. */
2070
2071 static const unsigned char *
2072 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2073 {
2074 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2075
2076 if (arm_pc_is_thumb (*pcptr))
2077 {
2078 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2079 *lenptr = tdep->thumb_breakpoint_size;
2080 return tdep->thumb_breakpoint;
2081 }
2082 else
2083 {
2084 *lenptr = tdep->arm_breakpoint_size;
2085 return tdep->arm_breakpoint;
2086 }
2087 }
2088
2089 /* Extract from an array REGBUF containing the (raw) register state a
2090 function return value of type TYPE, and copy that, in virtual
2091 format, into VALBUF. */
2092
2093 static void
2094 arm_extract_return_value (struct type *type, struct regcache *regs,
2095 gdb_byte *valbuf)
2096 {
2097 if (TYPE_CODE_FLT == TYPE_CODE (type))
2098 {
2099 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2100 {
2101 case ARM_FLOAT_FPA:
2102 {
2103 /* The value is in register F0 in internal format. We need to
2104 extract the raw value and then convert it to the desired
2105 internal type. */
2106 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2107
2108 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2109 convert_from_extended (floatformat_from_type (type), tmpbuf,
2110 valbuf);
2111 }
2112 break;
2113
2114 case ARM_FLOAT_SOFT_FPA:
2115 case ARM_FLOAT_SOFT_VFP:
2116 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2117 if (TYPE_LENGTH (type) > 4)
2118 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2119 valbuf + INT_REGISTER_SIZE);
2120 break;
2121
2122 default:
2123 internal_error
2124 (__FILE__, __LINE__,
2125 _("arm_extract_return_value: Floating point model not supported"));
2126 break;
2127 }
2128 }
2129 else if (TYPE_CODE (type) == TYPE_CODE_INT
2130 || TYPE_CODE (type) == TYPE_CODE_CHAR
2131 || TYPE_CODE (type) == TYPE_CODE_BOOL
2132 || TYPE_CODE (type) == TYPE_CODE_PTR
2133 || TYPE_CODE (type) == TYPE_CODE_REF
2134 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2135 {
2136 /* If the the type is a plain integer, then the access is
2137 straight-forward. Otherwise we have to play around a bit more. */
2138 int len = TYPE_LENGTH (type);
2139 int regno = ARM_A1_REGNUM;
2140 ULONGEST tmp;
2141
2142 while (len > 0)
2143 {
2144 /* By using store_unsigned_integer we avoid having to do
2145 anything special for small big-endian values. */
2146 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2147 store_unsigned_integer (valbuf,
2148 (len > INT_REGISTER_SIZE
2149 ? INT_REGISTER_SIZE : len),
2150 tmp);
2151 len -= INT_REGISTER_SIZE;
2152 valbuf += INT_REGISTER_SIZE;
2153 }
2154 }
2155 else
2156 {
2157 /* For a structure or union the behaviour is as if the value had
2158 been stored to word-aligned memory and then loaded into
2159 registers with 32-bit load instruction(s). */
2160 int len = TYPE_LENGTH (type);
2161 int regno = ARM_A1_REGNUM;
2162 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2163
2164 while (len > 0)
2165 {
2166 regcache_cooked_read (regs, regno++, tmpbuf);
2167 memcpy (valbuf, tmpbuf,
2168 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2169 len -= INT_REGISTER_SIZE;
2170 valbuf += INT_REGISTER_SIZE;
2171 }
2172 }
2173 }
2174
2175
2176 /* Will a function return an aggregate type in memory or in a
2177 register? Return 0 if an aggregate type can be returned in a
2178 register, 1 if it must be returned in memory. */
2179
2180 static int
2181 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2182 {
2183 int nRc;
2184 enum type_code code;
2185
2186 CHECK_TYPEDEF (type);
2187
2188 /* In the ARM ABI, "integer" like aggregate types are returned in
2189 registers. For an aggregate type to be integer like, its size
2190 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2191 offset of each addressable subfield must be zero. Note that bit
2192 fields are not addressable, and all addressable subfields of
2193 unions always start at offset zero.
2194
2195 This function is based on the behaviour of GCC 2.95.1.
2196 See: gcc/arm.c: arm_return_in_memory() for details.
2197
2198 Note: All versions of GCC before GCC 2.95.2 do not set up the
2199 parameters correctly for a function returning the following
2200 structure: struct { float f;}; This should be returned in memory,
2201 not a register. Richard Earnshaw sent me a patch, but I do not
2202 know of any way to detect if a function like the above has been
2203 compiled with the correct calling convention. */
2204
2205 /* All aggregate types that won't fit in a register must be returned
2206 in memory. */
2207 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2208 {
2209 return 1;
2210 }
2211
2212 /* The AAPCS says all aggregates not larger than a word are returned
2213 in a register. */
2214 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2215 return 0;
2216
2217 /* The only aggregate types that can be returned in a register are
2218 structs and unions. Arrays must be returned in memory. */
2219 code = TYPE_CODE (type);
2220 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2221 {
2222 return 1;
2223 }
2224
2225 /* Assume all other aggregate types can be returned in a register.
2226 Run a check for structures, unions and arrays. */
2227 nRc = 0;
2228
2229 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2230 {
2231 int i;
2232 /* Need to check if this struct/union is "integer" like. For
2233 this to be true, its size must be less than or equal to
2234 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2235 subfield must be zero. Note that bit fields are not
2236 addressable, and unions always start at offset zero. If any
2237 of the subfields is a floating point type, the struct/union
2238 cannot be an integer type. */
2239
2240 /* For each field in the object, check:
2241 1) Is it FP? --> yes, nRc = 1;
2242 2) Is it addressable (bitpos != 0) and
2243 not packed (bitsize == 0)?
2244 --> yes, nRc = 1
2245 */
2246
2247 for (i = 0; i < TYPE_NFIELDS (type); i++)
2248 {
2249 enum type_code field_type_code;
2250 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2251
2252 /* Is it a floating point type field? */
2253 if (field_type_code == TYPE_CODE_FLT)
2254 {
2255 nRc = 1;
2256 break;
2257 }
2258
2259 /* If bitpos != 0, then we have to care about it. */
2260 if (TYPE_FIELD_BITPOS (type, i) != 0)
2261 {
2262 /* Bitfields are not addressable. If the field bitsize is
2263 zero, then the field is not packed. Hence it cannot be
2264 a bitfield or any other packed type. */
2265 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2266 {
2267 nRc = 1;
2268 break;
2269 }
2270 }
2271 }
2272 }
2273
2274 return nRc;
2275 }
2276
2277 /* Write into appropriate registers a function return value of type
2278 TYPE, given in virtual format. */
2279
2280 static void
2281 arm_store_return_value (struct type *type, struct regcache *regs,
2282 const gdb_byte *valbuf)
2283 {
2284 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2285 {
2286 char buf[MAX_REGISTER_SIZE];
2287
2288 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2289 {
2290 case ARM_FLOAT_FPA:
2291
2292 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2293 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2294 break;
2295
2296 case ARM_FLOAT_SOFT_FPA:
2297 case ARM_FLOAT_SOFT_VFP:
2298 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2299 if (TYPE_LENGTH (type) > 4)
2300 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2301 valbuf + INT_REGISTER_SIZE);
2302 break;
2303
2304 default:
2305 internal_error
2306 (__FILE__, __LINE__,
2307 _("arm_store_return_value: Floating point model not supported"));
2308 break;
2309 }
2310 }
2311 else if (TYPE_CODE (type) == TYPE_CODE_INT
2312 || TYPE_CODE (type) == TYPE_CODE_CHAR
2313 || TYPE_CODE (type) == TYPE_CODE_BOOL
2314 || TYPE_CODE (type) == TYPE_CODE_PTR
2315 || TYPE_CODE (type) == TYPE_CODE_REF
2316 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2317 {
2318 if (TYPE_LENGTH (type) <= 4)
2319 {
2320 /* Values of one word or less are zero/sign-extended and
2321 returned in r0. */
2322 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2323 LONGEST val = unpack_long (type, valbuf);
2324
2325 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2326 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2327 }
2328 else
2329 {
2330 /* Integral values greater than one word are stored in consecutive
2331 registers starting with r0. This will always be a multiple of
2332 the regiser size. */
2333 int len = TYPE_LENGTH (type);
2334 int regno = ARM_A1_REGNUM;
2335
2336 while (len > 0)
2337 {
2338 regcache_cooked_write (regs, regno++, valbuf);
2339 len -= INT_REGISTER_SIZE;
2340 valbuf += INT_REGISTER_SIZE;
2341 }
2342 }
2343 }
2344 else
2345 {
2346 /* For a structure or union the behaviour is as if the value had
2347 been stored to word-aligned memory and then loaded into
2348 registers with 32-bit load instruction(s). */
2349 int len = TYPE_LENGTH (type);
2350 int regno = ARM_A1_REGNUM;
2351 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2352
2353 while (len > 0)
2354 {
2355 memcpy (tmpbuf, valbuf,
2356 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2357 regcache_cooked_write (regs, regno++, tmpbuf);
2358 len -= INT_REGISTER_SIZE;
2359 valbuf += INT_REGISTER_SIZE;
2360 }
2361 }
2362 }
2363
2364
2365 /* Handle function return values. */
2366
2367 static enum return_value_convention
2368 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2369 struct regcache *regcache, void *readbuf,
2370 const void *writebuf)
2371 {
2372 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2373 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2374 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2375 {
2376 if (arm_return_in_memory (gdbarch, valtype))
2377 return RETURN_VALUE_STRUCT_CONVENTION;
2378 }
2379
2380 if (writebuf)
2381 arm_store_return_value (valtype, regcache, writebuf);
2382
2383 if (readbuf)
2384 arm_extract_return_value (valtype, regcache, readbuf);
2385
2386 return RETURN_VALUE_REGISTER_CONVENTION;
2387 }
2388
2389
2390 static int
2391 arm_get_longjmp_target (CORE_ADDR *pc)
2392 {
2393 CORE_ADDR jb_addr;
2394 char buf[INT_REGISTER_SIZE];
2395 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2396
2397 jb_addr = read_register (ARM_A1_REGNUM);
2398
2399 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2400 INT_REGISTER_SIZE))
2401 return 0;
2402
2403 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2404 return 1;
2405 }
2406
2407 /* Return non-zero if the PC is inside a thumb call thunk. */
2408
2409 int
2410 arm_in_call_stub (CORE_ADDR pc, char *name)
2411 {
2412 CORE_ADDR start_addr;
2413
2414 /* Find the starting address of the function containing the PC. If
2415 the caller didn't give us a name, look it up at the same time. */
2416 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2417 &start_addr, NULL))
2418 return 0;
2419
2420 return strncmp (name, "_call_via_r", 11) == 0;
2421 }
2422
2423 /* If PC is in a Thumb call or return stub, return the address of the
2424 target PC, which is in a register. The thunk functions are called
2425 _called_via_xx, where x is the register name. The possible names
2426 are r0-r9, sl, fp, ip, sp, and lr. */
2427
2428 CORE_ADDR
2429 arm_skip_stub (CORE_ADDR pc)
2430 {
2431 char *name;
2432 CORE_ADDR start_addr;
2433
2434 /* Find the starting address and name of the function containing the PC. */
2435 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2436 return 0;
2437
2438 /* Call thunks always start with "_call_via_". */
2439 if (strncmp (name, "_call_via_", 10) == 0)
2440 {
2441 /* Use the name suffix to determine which register contains the
2442 target PC. */
2443 static char *table[15] =
2444 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2445 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2446 };
2447 int regno;
2448
2449 for (regno = 0; regno <= 14; regno++)
2450 if (strcmp (&name[10], table[regno]) == 0)
2451 return read_register (regno);
2452 }
2453
2454 return 0; /* not a stub */
2455 }
2456
2457 static void
2458 set_arm_command (char *args, int from_tty)
2459 {
2460 printf_unfiltered (_("\
2461 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2462 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2463 }
2464
2465 static void
2466 show_arm_command (char *args, int from_tty)
2467 {
2468 cmd_show_list (showarmcmdlist, from_tty, "");
2469 }
2470
2471 static void
2472 arm_update_current_architecture (void)
2473 {
2474 struct gdbarch_info info;
2475
2476 /* If the current architecture is not ARM, we have nothing to do. */
2477 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2478 return;
2479
2480 /* Update the architecture. */
2481 gdbarch_info_init (&info);
2482
2483 if (!gdbarch_update_p (info))
2484 internal_error (__FILE__, __LINE__, "could not update architecture");
2485 }
2486
2487 static void
2488 set_fp_model_sfunc (char *args, int from_tty,
2489 struct cmd_list_element *c)
2490 {
2491 enum arm_float_model fp_model;
2492
2493 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2494 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2495 {
2496 arm_fp_model = fp_model;
2497 break;
2498 }
2499
2500 if (fp_model == ARM_FLOAT_LAST)
2501 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2502 current_fp_model);
2503
2504 arm_update_current_architecture ();
2505 }
2506
2507 static void
2508 show_fp_model (struct ui_file *file, int from_tty,
2509 struct cmd_list_element *c, const char *value)
2510 {
2511 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2512
2513 if (arm_fp_model == ARM_FLOAT_AUTO
2514 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2515 fprintf_filtered (file, _("\
2516 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2517 fp_model_strings[tdep->fp_model]);
2518 else
2519 fprintf_filtered (file, _("\
2520 The current ARM floating point model is \"%s\".\n"),
2521 fp_model_strings[arm_fp_model]);
2522 }
2523
2524 static void
2525 arm_set_abi (char *args, int from_tty,
2526 struct cmd_list_element *c)
2527 {
2528 enum arm_abi_kind arm_abi;
2529
2530 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2531 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2532 {
2533 arm_abi_global = arm_abi;
2534 break;
2535 }
2536
2537 if (arm_abi == ARM_ABI_LAST)
2538 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2539 arm_abi_string);
2540
2541 arm_update_current_architecture ();
2542 }
2543
2544 static void
2545 arm_show_abi (struct ui_file *file, int from_tty,
2546 struct cmd_list_element *c, const char *value)
2547 {
2548 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2549
2550 if (arm_abi_global == ARM_ABI_AUTO
2551 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2552 fprintf_filtered (file, _("\
2553 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2554 arm_abi_strings[tdep->arm_abi]);
2555 else
2556 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2557 arm_abi_string);
2558 }
2559
2560 /* If the user changes the register disassembly style used for info
2561 register and other commands, we have to also switch the style used
2562 in opcodes for disassembly output. This function is run in the "set
2563 arm disassembly" command, and does that. */
2564
2565 static void
2566 set_disassembly_style_sfunc (char *args, int from_tty,
2567 struct cmd_list_element *c)
2568 {
2569 set_disassembly_style ();
2570 }
2571 \f
2572 /* Return the ARM register name corresponding to register I. */
2573 static const char *
2574 arm_register_name (int i)
2575 {
2576 return arm_register_names[i];
2577 }
2578
2579 static void
2580 set_disassembly_style (void)
2581 {
2582 const char *setname, *setdesc, *const *regnames;
2583 int numregs, j;
2584
2585 /* Find the style that the user wants in the opcodes table. */
2586 int current = 0;
2587 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2588 while ((disassembly_style != setname)
2589 && (current < num_disassembly_options))
2590 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2591 current_option = current;
2592
2593 /* Fill our copy. */
2594 for (j = 0; j < numregs; j++)
2595 arm_register_names[j] = (char *) regnames[j];
2596
2597 /* Adjust case. */
2598 if (isupper (*regnames[ARM_PC_REGNUM]))
2599 {
2600 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2601 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2602 }
2603 else
2604 {
2605 arm_register_names[ARM_FPS_REGNUM] = "fps";
2606 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2607 }
2608
2609 /* Synchronize the disassembler. */
2610 set_arm_regname_option (current);
2611 }
2612
2613 /* Test whether the coff symbol specific value corresponds to a Thumb
2614 function. */
2615
2616 static int
2617 coff_sym_is_thumb (int val)
2618 {
2619 return (val == C_THUMBEXT ||
2620 val == C_THUMBSTAT ||
2621 val == C_THUMBEXTFUNC ||
2622 val == C_THUMBSTATFUNC ||
2623 val == C_THUMBLABEL);
2624 }
2625
2626 /* arm_coff_make_msymbol_special()
2627 arm_elf_make_msymbol_special()
2628
2629 These functions test whether the COFF or ELF symbol corresponds to
2630 an address in thumb code, and set a "special" bit in a minimal
2631 symbol to indicate that it does. */
2632
2633 static void
2634 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2635 {
2636 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2637 STT_ARM_TFUNC). */
2638 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2639 == STT_LOPROC)
2640 MSYMBOL_SET_SPECIAL (msym);
2641 }
2642
2643 static void
2644 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2645 {
2646 if (coff_sym_is_thumb (val))
2647 MSYMBOL_SET_SPECIAL (msym);
2648 }
2649
2650 static void
2651 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2652 {
2653 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2654
2655 /* If necessary, set the T bit. */
2656 if (arm_apcs_32)
2657 {
2658 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2659 if (arm_pc_is_thumb (pc))
2660 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2661 else
2662 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2663 }
2664 }
2665 \f
2666 static enum gdb_osabi
2667 arm_elf_osabi_sniffer (bfd *abfd)
2668 {
2669 unsigned int elfosabi;
2670 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2671
2672 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2673
2674 if (elfosabi == ELFOSABI_ARM)
2675 /* GNU tools use this value. Check note sections in this case,
2676 as well. */
2677 bfd_map_over_sections (abfd,
2678 generic_elf_osabi_sniff_abi_tag_sections,
2679 &osabi);
2680
2681 /* Anything else will be handled by the generic ELF sniffer. */
2682 return osabi;
2683 }
2684
2685 \f
2686 /* Initialize the current architecture based on INFO. If possible,
2687 re-use an architecture from ARCHES, which is a list of
2688 architectures already created during this debugging session.
2689
2690 Called e.g. at program startup, when reading a core file, and when
2691 reading a binary file. */
2692
2693 static struct gdbarch *
2694 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2695 {
2696 struct gdbarch_tdep *tdep;
2697 struct gdbarch *gdbarch;
2698 struct gdbarch_list *best_arch;
2699 enum arm_abi_kind arm_abi = arm_abi_global;
2700 enum arm_float_model fp_model = arm_fp_model;
2701
2702 /* If we have an object to base this architecture on, try to determine
2703 its ABI. */
2704
2705 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2706 {
2707 int ei_osabi;
2708
2709 switch (bfd_get_flavour (info.abfd))
2710 {
2711 case bfd_target_aout_flavour:
2712 /* Assume it's an old APCS-style ABI. */
2713 arm_abi = ARM_ABI_APCS;
2714 break;
2715
2716 case bfd_target_coff_flavour:
2717 /* Assume it's an old APCS-style ABI. */
2718 /* XXX WinCE? */
2719 arm_abi = ARM_ABI_APCS;
2720 break;
2721
2722 case bfd_target_elf_flavour:
2723 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2724 if (ei_osabi == ELFOSABI_ARM)
2725 {
2726 /* GNU tools used to use this value, but do not for EABI
2727 objects. There's nowhere to tag an EABI version anyway,
2728 so assume APCS. */
2729 arm_abi = ARM_ABI_APCS;
2730 }
2731 else if (ei_osabi == ELFOSABI_NONE)
2732 {
2733 int e_flags, eabi_ver;
2734
2735 e_flags = elf_elfheader (info.abfd)->e_flags;
2736 eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2737
2738 switch (eabi_ver)
2739 {
2740 case EF_ARM_EABI_UNKNOWN:
2741 /* Assume GNU tools. */
2742 arm_abi = ARM_ABI_APCS;
2743 break;
2744
2745 case EF_ARM_EABI_VER4:
2746 arm_abi = ARM_ABI_AAPCS;
2747 /* EABI binaries default to VFP float ordering. */
2748 if (fp_model == ARM_FLOAT_AUTO)
2749 fp_model = ARM_FLOAT_SOFT_VFP;
2750 break;
2751
2752 default:
2753 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2754 arm_abi = ARM_ABI_APCS;
2755 break;
2756 }
2757 }
2758 break;
2759
2760 default:
2761 /* Leave it as "auto". */
2762 break;
2763 }
2764 }
2765
2766 /* Now that we have inferred any architecture settings that we
2767 can, try to inherit from the last ARM ABI. */
2768 if (arches != NULL)
2769 {
2770 if (arm_abi == ARM_ABI_AUTO)
2771 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2772
2773 if (fp_model == ARM_FLOAT_AUTO)
2774 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2775 }
2776 else
2777 {
2778 /* There was no prior ARM architecture; fill in default values. */
2779
2780 if (arm_abi == ARM_ABI_AUTO)
2781 arm_abi = ARM_ABI_APCS;
2782
2783 /* We used to default to FPA for generic ARM, but almost nobody
2784 uses that now, and we now provide a way for the user to force
2785 the model. So default to the most useful variant. */
2786 if (fp_model == ARM_FLOAT_AUTO)
2787 fp_model = ARM_FLOAT_SOFT_FPA;
2788 }
2789
2790 /* If there is already a candidate, use it. */
2791 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2792 best_arch != NULL;
2793 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2794 {
2795 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2796 continue;
2797
2798 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2799 continue;
2800
2801 /* Found a match. */
2802 break;
2803 }
2804
2805 if (best_arch != NULL)
2806 return best_arch->gdbarch;
2807
2808 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2809 gdbarch = gdbarch_alloc (&info, tdep);
2810
2811 /* Record additional information about the architecture we are defining.
2812 These are gdbarch discriminators, like the OSABI. */
2813 tdep->arm_abi = arm_abi;
2814 tdep->fp_model = fp_model;
2815
2816 /* Breakpoints. */
2817 switch (info.byte_order)
2818 {
2819 case BFD_ENDIAN_BIG:
2820 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2821 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2822 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2823 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2824
2825 break;
2826
2827 case BFD_ENDIAN_LITTLE:
2828 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2829 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2830 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2831 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2832
2833 break;
2834
2835 default:
2836 internal_error (__FILE__, __LINE__,
2837 _("arm_gdbarch_init: bad byte order for float format"));
2838 }
2839
2840 /* On ARM targets char defaults to unsigned. */
2841 set_gdbarch_char_signed (gdbarch, 0);
2842
2843 /* This should be low enough for everything. */
2844 tdep->lowest_pc = 0x20;
2845 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2846
2847 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2848
2849 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2850
2851 /* Frame handling. */
2852 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2853 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2854 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2855
2856 frame_base_set_default (gdbarch, &arm_normal_base);
2857
2858 /* Address manipulation. */
2859 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2860 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2861
2862 /* Advance PC across function entry code. */
2863 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2864
2865 /* Get the PC when a frame might not be available. */
2866 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2867
2868 /* The stack grows downward. */
2869 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2870
2871 /* Breakpoint manipulation. */
2872 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2873
2874 /* Information about registers, etc. */
2875 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2876 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2877 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2878 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2879 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2880 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2881 set_gdbarch_register_type (gdbarch, arm_register_type);
2882
2883 /* Internal <-> external register number maps. */
2884 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2885
2886 /* Integer registers are 4 bytes. */
2887 set_gdbarch_deprecated_register_size (gdbarch, 4);
2888 set_gdbarch_register_name (gdbarch, arm_register_name);
2889
2890 /* Returning results. */
2891 set_gdbarch_return_value (gdbarch, arm_return_value);
2892
2893 /* Single stepping. */
2894 /* XXX For an RDI target we should ask the target if it can single-step. */
2895 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2896
2897 /* Disassembly. */
2898 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2899
2900 /* Minsymbol frobbing. */
2901 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2902 set_gdbarch_coff_make_msymbol_special (gdbarch,
2903 arm_coff_make_msymbol_special);
2904
2905 /* Hook in the ABI-specific overrides, if they have been registered. */
2906 gdbarch_init_osabi (info, gdbarch);
2907
2908 /* Add some default predicates. */
2909 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2910 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2911 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2912 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2913
2914 /* Now we have tuned the configuration, set a few final things,
2915 based on what the OS ABI has told us. */
2916
2917 if (tdep->jb_pc >= 0)
2918 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2919
2920 /* Floating point sizes and format. */
2921 switch (info.byte_order)
2922 {
2923 case BFD_ENDIAN_BIG:
2924 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2925 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2926 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2927 break;
2928
2929 case BFD_ENDIAN_LITTLE:
2930 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2931 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
2932 {
2933 set_gdbarch_double_format
2934 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2935 set_gdbarch_long_double_format
2936 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2937 }
2938 else
2939 {
2940 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2941 set_gdbarch_long_double_format (gdbarch,
2942 &floatformat_ieee_double_little);
2943 }
2944 break;
2945
2946 default:
2947 internal_error (__FILE__, __LINE__,
2948 _("arm_gdbarch_init: bad byte order for float format"));
2949 }
2950
2951 return gdbarch;
2952 }
2953
2954 static void
2955 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2956 {
2957 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2958
2959 if (tdep == NULL)
2960 return;
2961
2962 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
2963 (unsigned long) tdep->lowest_pc);
2964 }
2965
2966 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2967
2968 void
2969 _initialize_arm_tdep (void)
2970 {
2971 struct ui_file *stb;
2972 long length;
2973 struct cmd_list_element *new_set, *new_show;
2974 const char *setname;
2975 const char *setdesc;
2976 const char *const *regnames;
2977 int numregs, i, j;
2978 static char *helptext;
2979 char regdesc[1024], *rdptr = regdesc;
2980 size_t rest = sizeof (regdesc);
2981
2982 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2983
2984 /* Register an ELF OS ABI sniffer for ARM binaries. */
2985 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2986 bfd_target_elf_flavour,
2987 arm_elf_osabi_sniffer);
2988
2989 /* Get the number of possible sets of register names defined in opcodes. */
2990 num_disassembly_options = get_arm_regname_num_options ();
2991
2992 /* Add root prefix command for all "set arm"/"show arm" commands. */
2993 add_prefix_cmd ("arm", no_class, set_arm_command,
2994 _("Various ARM-specific commands."),
2995 &setarmcmdlist, "set arm ", 0, &setlist);
2996
2997 add_prefix_cmd ("arm", no_class, show_arm_command,
2998 _("Various ARM-specific commands."),
2999 &showarmcmdlist, "show arm ", 0, &showlist);
3000
3001 /* Sync the opcode insn printer with our register viewer. */
3002 parse_arm_disassembler_option ("reg-names-std");
3003
3004 /* Initialize the array that will be passed to
3005 add_setshow_enum_cmd(). */
3006 valid_disassembly_styles
3007 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3008 for (i = 0; i < num_disassembly_options; i++)
3009 {
3010 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3011 valid_disassembly_styles[i] = setname;
3012 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3013 rdptr += length;
3014 rest -= length;
3015 /* Copy the default names (if found) and synchronize disassembler. */
3016 if (!strcmp (setname, "std"))
3017 {
3018 disassembly_style = setname;
3019 current_option = i;
3020 for (j = 0; j < numregs; j++)
3021 arm_register_names[j] = (char *) regnames[j];
3022 set_arm_regname_option (i);
3023 }
3024 }
3025 /* Mark the end of valid options. */
3026 valid_disassembly_styles[num_disassembly_options] = NULL;
3027
3028 /* Create the help text. */
3029 stb = mem_fileopen ();
3030 fprintf_unfiltered (stb, "%s%s%s",
3031 _("The valid values are:\n"),
3032 regdesc,
3033 _("The default is \"std\"."));
3034 helptext = ui_file_xstrdup (stb, &length);
3035 ui_file_delete (stb);
3036
3037 add_setshow_enum_cmd("disassembler", no_class,
3038 valid_disassembly_styles, &disassembly_style,
3039 _("Set the disassembly style."),
3040 _("Show the disassembly style."),
3041 helptext,
3042 set_disassembly_style_sfunc,
3043 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3044 &setarmcmdlist, &showarmcmdlist);
3045
3046 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3047 _("Set usage of ARM 32-bit mode."),
3048 _("Show usage of ARM 32-bit mode."),
3049 _("When off, a 26-bit PC will be used."),
3050 NULL,
3051 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3052 &setarmcmdlist, &showarmcmdlist);
3053
3054 /* Add a command to allow the user to force the FPU model. */
3055 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3056 _("Set the floating point type."),
3057 _("Show the floating point type."),
3058 _("auto - Determine the FP typefrom the OS-ABI.\n\
3059 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3060 fpa - FPA co-processor (GCC compiled).\n\
3061 softvfp - Software FP with pure-endian doubles.\n\
3062 vfp - VFP co-processor."),
3063 set_fp_model_sfunc, show_fp_model,
3064 &setarmcmdlist, &showarmcmdlist);
3065
3066 /* Add a command to allow the user to force the ABI. */
3067 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3068 _("Set the ABI."),
3069 _("Show the ABI."),
3070 NULL, arm_set_abi, arm_show_abi,
3071 &setarmcmdlist, &showarmcmdlist);
3072
3073 /* Debugging flag. */
3074 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3075 _("Set ARM debugging."),
3076 _("Show ARM debugging."),
3077 _("When on, arm-specific debugging is enabled."),
3078 NULL,
3079 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3080 &setdebuglist, &showdebuglist);
3081 }
This page took 0.088787 seconds and 5 git commands to generate.