Eliminate make_cleanup_ui_file_delete / make ui_file a class hierarchy
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <ctype.h> /* XXX for isupper (). */
23
24 #include "frame.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h" /* For register styles. */
30 #include "disasm.h"
31 #include "regcache.h"
32 #include "reggroups.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42 #include "gdbtypes.h"
43 #include "prologue-value.h"
44 #include "remote.h"
45 #include "target-descriptions.h"
46 #include "user-regs.h"
47 #include "observer.h"
48
49 #include "arch/arm.h"
50 #include "arch/arm-get-next-pcs.h"
51 #include "arm-tdep.h"
52 #include "gdb/sim-arm.h"
53
54 #include "elf-bfd.h"
55 #include "coff/internal.h"
56 #include "elf/arm.h"
57
58 #include "vec.h"
59
60 #include "record.h"
61 #include "record-full.h"
62 #include <algorithm>
63
64 #include "features/arm/arm-with-m.c"
65 #include "features/arm/arm-with-m-fpa-layout.c"
66 #include "features/arm/arm-with-m-vfp-d16.c"
67 #include "features/arm/arm-with-iwmmxt.c"
68 #include "features/arm/arm-with-vfpv2.c"
69 #include "features/arm/arm-with-vfpv3.c"
70 #include "features/arm/arm-with-neon.c"
71
72 static int arm_debug;
73
74 /* Macros for setting and testing a bit in a minimal symbol that marks
75 it as Thumb function. The MSB of the minimal symbol's "info" field
76 is used for this purpose.
77
78 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
79 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
80
81 #define MSYMBOL_SET_SPECIAL(msym) \
82 MSYMBOL_TARGET_FLAG_1 (msym) = 1
83
84 #define MSYMBOL_IS_SPECIAL(msym) \
85 MSYMBOL_TARGET_FLAG_1 (msym)
86
87 /* Per-objfile data used for mapping symbols. */
88 static const struct objfile_data *arm_objfile_data_key;
89
90 struct arm_mapping_symbol
91 {
92 bfd_vma value;
93 char type;
94 };
95 typedef struct arm_mapping_symbol arm_mapping_symbol_s;
96 DEF_VEC_O(arm_mapping_symbol_s);
97
98 struct arm_per_objfile
99 {
100 VEC(arm_mapping_symbol_s) **section_maps;
101 };
102
103 /* The list of available "set arm ..." and "show arm ..." commands. */
104 static struct cmd_list_element *setarmcmdlist = NULL;
105 static struct cmd_list_element *showarmcmdlist = NULL;
106
107 /* The type of floating-point to use. Keep this in sync with enum
108 arm_float_model, and the help string in _initialize_arm_tdep. */
109 static const char *const fp_model_strings[] =
110 {
111 "auto",
112 "softfpa",
113 "fpa",
114 "softvfp",
115 "vfp",
116 NULL
117 };
118
119 /* A variable that can be configured by the user. */
120 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
121 static const char *current_fp_model = "auto";
122
123 /* The ABI to use. Keep this in sync with arm_abi_kind. */
124 static const char *const arm_abi_strings[] =
125 {
126 "auto",
127 "APCS",
128 "AAPCS",
129 NULL
130 };
131
132 /* A variable that can be configured by the user. */
133 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
134 static const char *arm_abi_string = "auto";
135
136 /* The execution mode to assume. */
137 static const char *const arm_mode_strings[] =
138 {
139 "auto",
140 "arm",
141 "thumb",
142 NULL
143 };
144
145 static const char *arm_fallback_mode_string = "auto";
146 static const char *arm_force_mode_string = "auto";
147
148 /* Number of different reg name sets (options). */
149 static int num_disassembly_options;
150
151 /* The standard register names, and all the valid aliases for them. Note
152 that `fp', `sp' and `pc' are not added in this alias list, because they
153 have been added as builtin user registers in
154 std-regs.c:_initialize_frame_reg. */
155 static const struct
156 {
157 const char *name;
158 int regnum;
159 } arm_register_aliases[] = {
160 /* Basic register numbers. */
161 { "r0", 0 },
162 { "r1", 1 },
163 { "r2", 2 },
164 { "r3", 3 },
165 { "r4", 4 },
166 { "r5", 5 },
167 { "r6", 6 },
168 { "r7", 7 },
169 { "r8", 8 },
170 { "r9", 9 },
171 { "r10", 10 },
172 { "r11", 11 },
173 { "r12", 12 },
174 { "r13", 13 },
175 { "r14", 14 },
176 { "r15", 15 },
177 /* Synonyms (argument and variable registers). */
178 { "a1", 0 },
179 { "a2", 1 },
180 { "a3", 2 },
181 { "a4", 3 },
182 { "v1", 4 },
183 { "v2", 5 },
184 { "v3", 6 },
185 { "v4", 7 },
186 { "v5", 8 },
187 { "v6", 9 },
188 { "v7", 10 },
189 { "v8", 11 },
190 /* Other platform-specific names for r9. */
191 { "sb", 9 },
192 { "tr", 9 },
193 /* Special names. */
194 { "ip", 12 },
195 { "lr", 14 },
196 /* Names used by GCC (not listed in the ARM EABI). */
197 { "sl", 10 },
198 /* A special name from the older ATPCS. */
199 { "wr", 7 },
200 };
201
202 static const char *const arm_register_names[] =
203 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
204 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
205 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
206 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
207 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
208 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
209 "fps", "cpsr" }; /* 24 25 */
210
211 /* Valid register name styles. */
212 static const char **valid_disassembly_styles;
213
214 /* Disassembly style to use. Default to "std" register names. */
215 static const char *disassembly_style;
216
217 /* This is used to keep the bfd arch_info in sync with the disassembly
218 style. */
219 static void set_disassembly_style_sfunc(char *, int,
220 struct cmd_list_element *);
221 static void set_disassembly_style (void);
222
223 static void convert_from_extended (const struct floatformat *, const void *,
224 void *, int);
225 static void convert_to_extended (const struct floatformat *, void *,
226 const void *, int);
227
228 static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
229 struct regcache *regcache,
230 int regnum, gdb_byte *buf);
231 static void arm_neon_quad_write (struct gdbarch *gdbarch,
232 struct regcache *regcache,
233 int regnum, const gdb_byte *buf);
234
235 static CORE_ADDR
236 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
237
238
239 /* get_next_pcs operations. */
240 static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
241 arm_get_next_pcs_read_memory_unsigned_integer,
242 arm_get_next_pcs_syscall_next_pc,
243 arm_get_next_pcs_addr_bits_remove,
244 arm_get_next_pcs_is_thumb,
245 NULL,
246 };
247
248 struct arm_prologue_cache
249 {
250 /* The stack pointer at the time this frame was created; i.e. the
251 caller's stack pointer when this function was called. It is used
252 to identify this frame. */
253 CORE_ADDR prev_sp;
254
255 /* The frame base for this frame is just prev_sp - frame size.
256 FRAMESIZE is the distance from the frame pointer to the
257 initial stack pointer. */
258
259 int framesize;
260
261 /* The register used to hold the frame pointer for this frame. */
262 int framereg;
263
264 /* Saved register offsets. */
265 struct trad_frame_saved_reg *saved_regs;
266 };
267
268 static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
269 CORE_ADDR prologue_start,
270 CORE_ADDR prologue_end,
271 struct arm_prologue_cache *cache);
272
273 /* Architecture version for displaced stepping. This effects the behaviour of
274 certain instructions, and really should not be hard-wired. */
275
276 #define DISPLACED_STEPPING_ARCH_VERSION 5
277
278 /* Set to true if the 32-bit mode is in use. */
279
280 int arm_apcs_32 = 1;
281
282 /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
283
284 int
285 arm_psr_thumb_bit (struct gdbarch *gdbarch)
286 {
287 if (gdbarch_tdep (gdbarch)->is_m)
288 return XPSR_T;
289 else
290 return CPSR_T;
291 }
292
293 /* Determine if the processor is currently executing in Thumb mode. */
294
295 int
296 arm_is_thumb (struct regcache *regcache)
297 {
298 ULONGEST cpsr;
299 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
300
301 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
302
303 return (cpsr & t_bit) != 0;
304 }
305
306 /* Determine if FRAME is executing in Thumb mode. */
307
308 int
309 arm_frame_is_thumb (struct frame_info *frame)
310 {
311 CORE_ADDR cpsr;
312 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
313
314 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
315 directly (from a signal frame or dummy frame) or by interpreting
316 the saved LR (from a prologue or DWARF frame). So consult it and
317 trust the unwinders. */
318 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
319
320 return (cpsr & t_bit) != 0;
321 }
322
323 /* Callback for VEC_lower_bound. */
324
325 static inline int
326 arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
327 const struct arm_mapping_symbol *rhs)
328 {
329 return lhs->value < rhs->value;
330 }
331
332 /* Search for the mapping symbol covering MEMADDR. If one is found,
333 return its type. Otherwise, return 0. If START is non-NULL,
334 set *START to the location of the mapping symbol. */
335
336 static char
337 arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
338 {
339 struct obj_section *sec;
340
341 /* If there are mapping symbols, consult them. */
342 sec = find_pc_section (memaddr);
343 if (sec != NULL)
344 {
345 struct arm_per_objfile *data;
346 VEC(arm_mapping_symbol_s) *map;
347 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
348 0 };
349 unsigned int idx;
350
351 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
352 arm_objfile_data_key);
353 if (data != NULL)
354 {
355 map = data->section_maps[sec->the_bfd_section->index];
356 if (!VEC_empty (arm_mapping_symbol_s, map))
357 {
358 struct arm_mapping_symbol *map_sym;
359
360 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
361 arm_compare_mapping_symbols);
362
363 /* VEC_lower_bound finds the earliest ordered insertion
364 point. If the following symbol starts at this exact
365 address, we use that; otherwise, the preceding
366 mapping symbol covers this address. */
367 if (idx < VEC_length (arm_mapping_symbol_s, map))
368 {
369 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
370 if (map_sym->value == map_key.value)
371 {
372 if (start)
373 *start = map_sym->value + obj_section_addr (sec);
374 return map_sym->type;
375 }
376 }
377
378 if (idx > 0)
379 {
380 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
381 if (start)
382 *start = map_sym->value + obj_section_addr (sec);
383 return map_sym->type;
384 }
385 }
386 }
387 }
388
389 return 0;
390 }
391
392 /* Determine if the program counter specified in MEMADDR is in a Thumb
393 function. This function should be called for addresses unrelated to
394 any executing frame; otherwise, prefer arm_frame_is_thumb. */
395
396 int
397 arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
398 {
399 struct bound_minimal_symbol sym;
400 char type;
401 struct displaced_step_closure* dsc
402 = get_displaced_step_closure_by_addr(memaddr);
403
404 /* If checking the mode of displaced instruction in copy area, the mode
405 should be determined by instruction on the original address. */
406 if (dsc)
407 {
408 if (debug_displaced)
409 fprintf_unfiltered (gdb_stdlog,
410 "displaced: check mode of %.8lx instead of %.8lx\n",
411 (unsigned long) dsc->insn_addr,
412 (unsigned long) memaddr);
413 memaddr = dsc->insn_addr;
414 }
415
416 /* If bit 0 of the address is set, assume this is a Thumb address. */
417 if (IS_THUMB_ADDR (memaddr))
418 return 1;
419
420 /* If the user wants to override the symbol table, let him. */
421 if (strcmp (arm_force_mode_string, "arm") == 0)
422 return 0;
423 if (strcmp (arm_force_mode_string, "thumb") == 0)
424 return 1;
425
426 /* ARM v6-M and v7-M are always in Thumb mode. */
427 if (gdbarch_tdep (gdbarch)->is_m)
428 return 1;
429
430 /* If there are mapping symbols, consult them. */
431 type = arm_find_mapping_symbol (memaddr, NULL);
432 if (type)
433 return type == 't';
434
435 /* Thumb functions have a "special" bit set in minimal symbols. */
436 sym = lookup_minimal_symbol_by_pc (memaddr);
437 if (sym.minsym)
438 return (MSYMBOL_IS_SPECIAL (sym.minsym));
439
440 /* If the user wants to override the fallback mode, let them. */
441 if (strcmp (arm_fallback_mode_string, "arm") == 0)
442 return 0;
443 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
444 return 1;
445
446 /* If we couldn't find any symbol, but we're talking to a running
447 target, then trust the current value of $cpsr. This lets
448 "display/i $pc" always show the correct mode (though if there is
449 a symbol table we will not reach here, so it still may not be
450 displayed in the mode it will be executed). */
451 if (target_has_registers)
452 return arm_frame_is_thumb (get_current_frame ());
453
454 /* Otherwise we're out of luck; we assume ARM. */
455 return 0;
456 }
457
458 /* Determine if the address specified equals any of these magic return
459 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
460 architectures.
461
462 From ARMv6-M Reference Manual B1.5.8
463 Table B1-5 Exception return behavior
464
465 EXC_RETURN Return To Return Stack
466 0xFFFFFFF1 Handler mode Main
467 0xFFFFFFF9 Thread mode Main
468 0xFFFFFFFD Thread mode Process
469
470 From ARMv7-M Reference Manual B1.5.8
471 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
472
473 EXC_RETURN Return To Return Stack
474 0xFFFFFFF1 Handler mode Main
475 0xFFFFFFF9 Thread mode Main
476 0xFFFFFFFD Thread mode Process
477
478 Table B1-9 EXC_RETURN definition of exception return behavior, with
479 FP
480
481 EXC_RETURN Return To Return Stack Frame Type
482 0xFFFFFFE1 Handler mode Main Extended
483 0xFFFFFFE9 Thread mode Main Extended
484 0xFFFFFFED Thread mode Process Extended
485 0xFFFFFFF1 Handler mode Main Basic
486 0xFFFFFFF9 Thread mode Main Basic
487 0xFFFFFFFD Thread mode Process Basic
488
489 For more details see "B1.5.8 Exception return behavior"
490 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
491
492 static int
493 arm_m_addr_is_magic (CORE_ADDR addr)
494 {
495 switch (addr)
496 {
497 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
498 the exception return behavior. */
499 case 0xffffffe1:
500 case 0xffffffe9:
501 case 0xffffffed:
502 case 0xfffffff1:
503 case 0xfffffff9:
504 case 0xfffffffd:
505 /* Address is magic. */
506 return 1;
507
508 default:
509 /* Address is not magic. */
510 return 0;
511 }
512 }
513
514 /* Remove useless bits from addresses in a running program. */
515 static CORE_ADDR
516 arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
517 {
518 /* On M-profile devices, do not strip the low bit from EXC_RETURN
519 (the magic exception return address). */
520 if (gdbarch_tdep (gdbarch)->is_m
521 && arm_m_addr_is_magic (val))
522 return val;
523
524 if (arm_apcs_32)
525 return UNMAKE_THUMB_ADDR (val);
526 else
527 return (val & 0x03fffffc);
528 }
529
530 /* Return 1 if PC is the start of a compiler helper function which
531 can be safely ignored during prologue skipping. IS_THUMB is true
532 if the function is known to be a Thumb function due to the way it
533 is being called. */
534 static int
535 skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
536 {
537 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
538 struct bound_minimal_symbol msym;
539
540 msym = lookup_minimal_symbol_by_pc (pc);
541 if (msym.minsym != NULL
542 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
543 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
544 {
545 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
546
547 /* The GNU linker's Thumb call stub to foo is named
548 __foo_from_thumb. */
549 if (strstr (name, "_from_thumb") != NULL)
550 name += 2;
551
552 /* On soft-float targets, __truncdfsf2 is called to convert promoted
553 arguments to their argument types in non-prototyped
554 functions. */
555 if (startswith (name, "__truncdfsf2"))
556 return 1;
557 if (startswith (name, "__aeabi_d2f"))
558 return 1;
559
560 /* Internal functions related to thread-local storage. */
561 if (startswith (name, "__tls_get_addr"))
562 return 1;
563 if (startswith (name, "__aeabi_read_tp"))
564 return 1;
565 }
566 else
567 {
568 /* If we run against a stripped glibc, we may be unable to identify
569 special functions by name. Check for one important case,
570 __aeabi_read_tp, by comparing the *code* against the default
571 implementation (this is hand-written ARM assembler in glibc). */
572
573 if (!is_thumb
574 && read_code_unsigned_integer (pc, 4, byte_order_for_code)
575 == 0xe3e00a0f /* mov r0, #0xffff0fff */
576 && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code)
577 == 0xe240f01f) /* sub pc, r0, #31 */
578 return 1;
579 }
580
581 return 0;
582 }
583
584 /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
585 the first 16-bit of instruction, and INSN2 is the second 16-bit of
586 instruction. */
587 #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
588 ((bits ((insn1), 0, 3) << 12) \
589 | (bits ((insn1), 10, 10) << 11) \
590 | (bits ((insn2), 12, 14) << 8) \
591 | bits ((insn2), 0, 7))
592
593 /* Extract the immediate from instruction movw/movt of encoding A. INSN is
594 the 32-bit instruction. */
595 #define EXTRACT_MOVW_MOVT_IMM_A(insn) \
596 ((bits ((insn), 16, 19) << 12) \
597 | bits ((insn), 0, 11))
598
599 /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
600
601 static unsigned int
602 thumb_expand_immediate (unsigned int imm)
603 {
604 unsigned int count = imm >> 7;
605
606 if (count < 8)
607 switch (count / 2)
608 {
609 case 0:
610 return imm & 0xff;
611 case 1:
612 return (imm & 0xff) | ((imm & 0xff) << 16);
613 case 2:
614 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
615 case 3:
616 return (imm & 0xff) | ((imm & 0xff) << 8)
617 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
618 }
619
620 return (0x80 | (imm & 0x7f)) << (32 - count);
621 }
622
623 /* Return 1 if the 16-bit Thumb instruction INSN restores SP in
624 epilogue, 0 otherwise. */
625
626 static int
627 thumb_instruction_restores_sp (unsigned short insn)
628 {
629 return (insn == 0x46bd /* mov sp, r7 */
630 || (insn & 0xff80) == 0xb000 /* add sp, imm */
631 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
632 }
633
634 /* Analyze a Thumb prologue, looking for a recognizable stack frame
635 and frame pointer. Scan until we encounter a store that could
636 clobber the stack frame unexpectedly, or an unknown instruction.
637 Return the last address which is definitely safe to skip for an
638 initial breakpoint. */
639
640 static CORE_ADDR
641 thumb_analyze_prologue (struct gdbarch *gdbarch,
642 CORE_ADDR start, CORE_ADDR limit,
643 struct arm_prologue_cache *cache)
644 {
645 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
646 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
647 int i;
648 pv_t regs[16];
649 struct pv_area *stack;
650 struct cleanup *back_to;
651 CORE_ADDR offset;
652 CORE_ADDR unrecognized_pc = 0;
653
654 for (i = 0; i < 16; i++)
655 regs[i] = pv_register (i, 0);
656 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
657 back_to = make_cleanup_free_pv_area (stack);
658
659 while (start < limit)
660 {
661 unsigned short insn;
662
663 insn = read_code_unsigned_integer (start, 2, byte_order_for_code);
664
665 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
666 {
667 int regno;
668 int mask;
669
670 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
671 break;
672
673 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
674 whether to save LR (R14). */
675 mask = (insn & 0xff) | ((insn & 0x100) << 6);
676
677 /* Calculate offsets of saved R0-R7 and LR. */
678 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
679 if (mask & (1 << regno))
680 {
681 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
682 -4);
683 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
684 }
685 }
686 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
687 {
688 offset = (insn & 0x7f) << 2; /* get scaled offset */
689 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
690 -offset);
691 }
692 else if (thumb_instruction_restores_sp (insn))
693 {
694 /* Don't scan past the epilogue. */
695 break;
696 }
697 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
698 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
699 (insn & 0xff) << 2);
700 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
701 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
702 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
703 bits (insn, 6, 8));
704 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
705 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
706 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
707 bits (insn, 0, 7));
708 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
709 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
710 && pv_is_constant (regs[bits (insn, 3, 5)]))
711 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
712 regs[bits (insn, 6, 8)]);
713 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
714 && pv_is_constant (regs[bits (insn, 3, 6)]))
715 {
716 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
717 int rm = bits (insn, 3, 6);
718 regs[rd] = pv_add (regs[rd], regs[rm]);
719 }
720 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
721 {
722 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
723 int src_reg = (insn & 0x78) >> 3;
724 regs[dst_reg] = regs[src_reg];
725 }
726 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
727 {
728 /* Handle stores to the stack. Normally pushes are used,
729 but with GCC -mtpcs-frame, there may be other stores
730 in the prologue to create the frame. */
731 int regno = (insn >> 8) & 0x7;
732 pv_t addr;
733
734 offset = (insn & 0xff) << 2;
735 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
736
737 if (pv_area_store_would_trash (stack, addr))
738 break;
739
740 pv_area_store (stack, addr, 4, regs[regno]);
741 }
742 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
743 {
744 int rd = bits (insn, 0, 2);
745 int rn = bits (insn, 3, 5);
746 pv_t addr;
747
748 offset = bits (insn, 6, 10) << 2;
749 addr = pv_add_constant (regs[rn], offset);
750
751 if (pv_area_store_would_trash (stack, addr))
752 break;
753
754 pv_area_store (stack, addr, 4, regs[rd]);
755 }
756 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
757 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
758 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
759 /* Ignore stores of argument registers to the stack. */
760 ;
761 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
762 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
763 /* Ignore block loads from the stack, potentially copying
764 parameters from memory. */
765 ;
766 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
767 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
768 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
769 /* Similarly ignore single loads from the stack. */
770 ;
771 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
772 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
773 /* Skip register copies, i.e. saves to another register
774 instead of the stack. */
775 ;
776 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
777 /* Recognize constant loads; even with small stacks these are necessary
778 on Thumb. */
779 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
780 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
781 {
782 /* Constant pool loads, for the same reason. */
783 unsigned int constant;
784 CORE_ADDR loc;
785
786 loc = start + 4 + bits (insn, 0, 7) * 4;
787 constant = read_memory_unsigned_integer (loc, 4, byte_order);
788 regs[bits (insn, 8, 10)] = pv_constant (constant);
789 }
790 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
791 {
792 unsigned short inst2;
793
794 inst2 = read_code_unsigned_integer (start + 2, 2,
795 byte_order_for_code);
796
797 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
798 {
799 /* BL, BLX. Allow some special function calls when
800 skipping the prologue; GCC generates these before
801 storing arguments to the stack. */
802 CORE_ADDR nextpc;
803 int j1, j2, imm1, imm2;
804
805 imm1 = sbits (insn, 0, 10);
806 imm2 = bits (inst2, 0, 10);
807 j1 = bit (inst2, 13);
808 j2 = bit (inst2, 11);
809
810 offset = ((imm1 << 12) + (imm2 << 1));
811 offset ^= ((!j2) << 22) | ((!j1) << 23);
812
813 nextpc = start + 4 + offset;
814 /* For BLX make sure to clear the low bits. */
815 if (bit (inst2, 12) == 0)
816 nextpc = nextpc & 0xfffffffc;
817
818 if (!skip_prologue_function (gdbarch, nextpc,
819 bit (inst2, 12) != 0))
820 break;
821 }
822
823 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
824 { registers } */
825 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
826 {
827 pv_t addr = regs[bits (insn, 0, 3)];
828 int regno;
829
830 if (pv_area_store_would_trash (stack, addr))
831 break;
832
833 /* Calculate offsets of saved registers. */
834 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
835 if (inst2 & (1 << regno))
836 {
837 addr = pv_add_constant (addr, -4);
838 pv_area_store (stack, addr, 4, regs[regno]);
839 }
840
841 if (insn & 0x0020)
842 regs[bits (insn, 0, 3)] = addr;
843 }
844
845 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
846 [Rn, #+/-imm]{!} */
847 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
848 {
849 int regno1 = bits (inst2, 12, 15);
850 int regno2 = bits (inst2, 8, 11);
851 pv_t addr = regs[bits (insn, 0, 3)];
852
853 offset = inst2 & 0xff;
854 if (insn & 0x0080)
855 addr = pv_add_constant (addr, offset);
856 else
857 addr = pv_add_constant (addr, -offset);
858
859 if (pv_area_store_would_trash (stack, addr))
860 break;
861
862 pv_area_store (stack, addr, 4, regs[regno1]);
863 pv_area_store (stack, pv_add_constant (addr, 4),
864 4, regs[regno2]);
865
866 if (insn & 0x0020)
867 regs[bits (insn, 0, 3)] = addr;
868 }
869
870 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
871 && (inst2 & 0x0c00) == 0x0c00
872 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
873 {
874 int regno = bits (inst2, 12, 15);
875 pv_t addr = regs[bits (insn, 0, 3)];
876
877 offset = inst2 & 0xff;
878 if (inst2 & 0x0200)
879 addr = pv_add_constant (addr, offset);
880 else
881 addr = pv_add_constant (addr, -offset);
882
883 if (pv_area_store_would_trash (stack, addr))
884 break;
885
886 pv_area_store (stack, addr, 4, regs[regno]);
887
888 if (inst2 & 0x0100)
889 regs[bits (insn, 0, 3)] = addr;
890 }
891
892 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
893 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
894 {
895 int regno = bits (inst2, 12, 15);
896 pv_t addr;
897
898 offset = inst2 & 0xfff;
899 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
900
901 if (pv_area_store_would_trash (stack, addr))
902 break;
903
904 pv_area_store (stack, addr, 4, regs[regno]);
905 }
906
907 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
908 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
909 /* Ignore stores of argument registers to the stack. */
910 ;
911
912 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
913 && (inst2 & 0x0d00) == 0x0c00
914 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
915 /* Ignore stores of argument registers to the stack. */
916 ;
917
918 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
919 { registers } */
920 && (inst2 & 0x8000) == 0x0000
921 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
922 /* Ignore block loads from the stack, potentially copying
923 parameters from memory. */
924 ;
925
926 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
927 [Rn, #+/-imm] */
928 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
929 /* Similarly ignore dual loads from the stack. */
930 ;
931
932 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
933 && (inst2 & 0x0d00) == 0x0c00
934 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
935 /* Similarly ignore single loads from the stack. */
936 ;
937
938 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
939 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
940 /* Similarly ignore single loads from the stack. */
941 ;
942
943 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
944 && (inst2 & 0x8000) == 0x0000)
945 {
946 unsigned int imm = ((bits (insn, 10, 10) << 11)
947 | (bits (inst2, 12, 14) << 8)
948 | bits (inst2, 0, 7));
949
950 regs[bits (inst2, 8, 11)]
951 = pv_add_constant (regs[bits (insn, 0, 3)],
952 thumb_expand_immediate (imm));
953 }
954
955 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
956 && (inst2 & 0x8000) == 0x0000)
957 {
958 unsigned int imm = ((bits (insn, 10, 10) << 11)
959 | (bits (inst2, 12, 14) << 8)
960 | bits (inst2, 0, 7));
961
962 regs[bits (inst2, 8, 11)]
963 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
964 }
965
966 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
967 && (inst2 & 0x8000) == 0x0000)
968 {
969 unsigned int imm = ((bits (insn, 10, 10) << 11)
970 | (bits (inst2, 12, 14) << 8)
971 | bits (inst2, 0, 7));
972
973 regs[bits (inst2, 8, 11)]
974 = pv_add_constant (regs[bits (insn, 0, 3)],
975 - (CORE_ADDR) thumb_expand_immediate (imm));
976 }
977
978 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
979 && (inst2 & 0x8000) == 0x0000)
980 {
981 unsigned int imm = ((bits (insn, 10, 10) << 11)
982 | (bits (inst2, 12, 14) << 8)
983 | bits (inst2, 0, 7));
984
985 regs[bits (inst2, 8, 11)]
986 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
987 }
988
989 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
990 {
991 unsigned int imm = ((bits (insn, 10, 10) << 11)
992 | (bits (inst2, 12, 14) << 8)
993 | bits (inst2, 0, 7));
994
995 regs[bits (inst2, 8, 11)]
996 = pv_constant (thumb_expand_immediate (imm));
997 }
998
999 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1000 {
1001 unsigned int imm
1002 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
1003
1004 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1005 }
1006
1007 else if (insn == 0xea5f /* mov.w Rd,Rm */
1008 && (inst2 & 0xf0f0) == 0)
1009 {
1010 int dst_reg = (inst2 & 0x0f00) >> 8;
1011 int src_reg = inst2 & 0xf;
1012 regs[dst_reg] = regs[src_reg];
1013 }
1014
1015 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1016 {
1017 /* Constant pool loads. */
1018 unsigned int constant;
1019 CORE_ADDR loc;
1020
1021 offset = bits (inst2, 0, 11);
1022 if (insn & 0x0080)
1023 loc = start + 4 + offset;
1024 else
1025 loc = start + 4 - offset;
1026
1027 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1028 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1029 }
1030
1031 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1032 {
1033 /* Constant pool loads. */
1034 unsigned int constant;
1035 CORE_ADDR loc;
1036
1037 offset = bits (inst2, 0, 7) << 2;
1038 if (insn & 0x0080)
1039 loc = start + 4 + offset;
1040 else
1041 loc = start + 4 - offset;
1042
1043 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1044 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1045
1046 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1047 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1048 }
1049
1050 else if (thumb2_instruction_changes_pc (insn, inst2))
1051 {
1052 /* Don't scan past anything that might change control flow. */
1053 break;
1054 }
1055 else
1056 {
1057 /* The optimizer might shove anything into the prologue,
1058 so we just skip what we don't recognize. */
1059 unrecognized_pc = start;
1060 }
1061
1062 start += 2;
1063 }
1064 else if (thumb_instruction_changes_pc (insn))
1065 {
1066 /* Don't scan past anything that might change control flow. */
1067 break;
1068 }
1069 else
1070 {
1071 /* The optimizer might shove anything into the prologue,
1072 so we just skip what we don't recognize. */
1073 unrecognized_pc = start;
1074 }
1075
1076 start += 2;
1077 }
1078
1079 if (arm_debug)
1080 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1081 paddress (gdbarch, start));
1082
1083 if (unrecognized_pc == 0)
1084 unrecognized_pc = start;
1085
1086 if (cache == NULL)
1087 {
1088 do_cleanups (back_to);
1089 return unrecognized_pc;
1090 }
1091
1092 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1093 {
1094 /* Frame pointer is fp. Frame size is constant. */
1095 cache->framereg = ARM_FP_REGNUM;
1096 cache->framesize = -regs[ARM_FP_REGNUM].k;
1097 }
1098 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1099 {
1100 /* Frame pointer is r7. Frame size is constant. */
1101 cache->framereg = THUMB_FP_REGNUM;
1102 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1103 }
1104 else
1105 {
1106 /* Try the stack pointer... this is a bit desperate. */
1107 cache->framereg = ARM_SP_REGNUM;
1108 cache->framesize = -regs[ARM_SP_REGNUM].k;
1109 }
1110
1111 for (i = 0; i < 16; i++)
1112 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1113 cache->saved_regs[i].addr = offset;
1114
1115 do_cleanups (back_to);
1116 return unrecognized_pc;
1117 }
1118
1119
1120 /* Try to analyze the instructions starting from PC, which load symbol
1121 __stack_chk_guard. Return the address of instruction after loading this
1122 symbol, set the dest register number to *BASEREG, and set the size of
1123 instructions for loading symbol in OFFSET. Return 0 if instructions are
1124 not recognized. */
1125
1126 static CORE_ADDR
1127 arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1128 unsigned int *destreg, int *offset)
1129 {
1130 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1131 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1132 unsigned int low, high, address;
1133
1134 address = 0;
1135 if (is_thumb)
1136 {
1137 unsigned short insn1
1138 = read_code_unsigned_integer (pc, 2, byte_order_for_code);
1139
1140 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1141 {
1142 *destreg = bits (insn1, 8, 10);
1143 *offset = 2;
1144 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1145 address = read_memory_unsigned_integer (address, 4,
1146 byte_order_for_code);
1147 }
1148 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1149 {
1150 unsigned short insn2
1151 = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code);
1152
1153 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1154
1155 insn1
1156 = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code);
1157 insn2
1158 = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code);
1159
1160 /* movt Rd, #const */
1161 if ((insn1 & 0xfbc0) == 0xf2c0)
1162 {
1163 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1164 *destreg = bits (insn2, 8, 11);
1165 *offset = 8;
1166 address = (high << 16 | low);
1167 }
1168 }
1169 }
1170 else
1171 {
1172 unsigned int insn
1173 = read_code_unsigned_integer (pc, 4, byte_order_for_code);
1174
1175 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
1176 {
1177 address = bits (insn, 0, 11) + pc + 8;
1178 address = read_memory_unsigned_integer (address, 4,
1179 byte_order_for_code);
1180
1181 *destreg = bits (insn, 12, 15);
1182 *offset = 4;
1183 }
1184 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1185 {
1186 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1187
1188 insn
1189 = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code);
1190
1191 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1192 {
1193 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1194 *destreg = bits (insn, 12, 15);
1195 *offset = 8;
1196 address = (high << 16 | low);
1197 }
1198 }
1199 }
1200
1201 return address;
1202 }
1203
1204 /* Try to skip a sequence of instructions used for stack protector. If PC
1205 points to the first instruction of this sequence, return the address of
1206 first instruction after this sequence, otherwise, return original PC.
1207
1208 On arm, this sequence of instructions is composed of mainly three steps,
1209 Step 1: load symbol __stack_chk_guard,
1210 Step 2: load from address of __stack_chk_guard,
1211 Step 3: store it to somewhere else.
1212
1213 Usually, instructions on step 2 and step 3 are the same on various ARM
1214 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1215 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1216 instructions in step 1 vary from different ARM architectures. On ARMv7,
1217 they are,
1218
1219 movw Rn, #:lower16:__stack_chk_guard
1220 movt Rn, #:upper16:__stack_chk_guard
1221
1222 On ARMv5t, it is,
1223
1224 ldr Rn, .Label
1225 ....
1226 .Lable:
1227 .word __stack_chk_guard
1228
1229 Since ldr/str is a very popular instruction, we can't use them as
1230 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1231 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1232 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1233
1234 static CORE_ADDR
1235 arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1236 {
1237 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1238 unsigned int basereg;
1239 struct bound_minimal_symbol stack_chk_guard;
1240 int offset;
1241 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1242 CORE_ADDR addr;
1243
1244 /* Try to parse the instructions in Step 1. */
1245 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1246 &basereg, &offset);
1247 if (!addr)
1248 return pc;
1249
1250 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1251 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1252 Otherwise, this sequence cannot be for stack protector. */
1253 if (stack_chk_guard.minsym == NULL
1254 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
1255 return pc;
1256
1257 if (is_thumb)
1258 {
1259 unsigned int destreg;
1260 unsigned short insn
1261 = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code);
1262
1263 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1264 if ((insn & 0xf800) != 0x6800)
1265 return pc;
1266 if (bits (insn, 3, 5) != basereg)
1267 return pc;
1268 destreg = bits (insn, 0, 2);
1269
1270 insn = read_code_unsigned_integer (pc + offset + 2, 2,
1271 byte_order_for_code);
1272 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1273 if ((insn & 0xf800) != 0x6000)
1274 return pc;
1275 if (destreg != bits (insn, 0, 2))
1276 return pc;
1277 }
1278 else
1279 {
1280 unsigned int destreg;
1281 unsigned int insn
1282 = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code);
1283
1284 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1285 if ((insn & 0x0e500000) != 0x04100000)
1286 return pc;
1287 if (bits (insn, 16, 19) != basereg)
1288 return pc;
1289 destreg = bits (insn, 12, 15);
1290 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1291 insn = read_code_unsigned_integer (pc + offset + 4,
1292 4, byte_order_for_code);
1293 if ((insn & 0x0e500000) != 0x04000000)
1294 return pc;
1295 if (bits (insn, 12, 15) != destreg)
1296 return pc;
1297 }
1298 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1299 on arm. */
1300 if (is_thumb)
1301 return pc + offset + 4;
1302 else
1303 return pc + offset + 8;
1304 }
1305
1306 /* Advance the PC across any function entry prologue instructions to
1307 reach some "real" code.
1308
1309 The APCS (ARM Procedure Call Standard) defines the following
1310 prologue:
1311
1312 mov ip, sp
1313 [stmfd sp!, {a1,a2,a3,a4}]
1314 stmfd sp!, {...,fp,ip,lr,pc}
1315 [stfe f7, [sp, #-12]!]
1316 [stfe f6, [sp, #-12]!]
1317 [stfe f5, [sp, #-12]!]
1318 [stfe f4, [sp, #-12]!]
1319 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
1320
1321 static CORE_ADDR
1322 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1323 {
1324 CORE_ADDR func_addr, limit_pc;
1325
1326 /* See if we can determine the end of the prologue via the symbol table.
1327 If so, then return either PC, or the PC after the prologue, whichever
1328 is greater. */
1329 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1330 {
1331 CORE_ADDR post_prologue_pc
1332 = skip_prologue_using_sal (gdbarch, func_addr);
1333 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1334
1335 if (post_prologue_pc)
1336 post_prologue_pc
1337 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1338
1339
1340 /* GCC always emits a line note before the prologue and another
1341 one after, even if the two are at the same address or on the
1342 same line. Take advantage of this so that we do not need to
1343 know every instruction that might appear in the prologue. We
1344 will have producer information for most binaries; if it is
1345 missing (e.g. for -gstabs), assuming the GNU tools. */
1346 if (post_prologue_pc
1347 && (cust == NULL
1348 || COMPUNIT_PRODUCER (cust) == NULL
1349 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1350 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1351 return post_prologue_pc;
1352
1353 if (post_prologue_pc != 0)
1354 {
1355 CORE_ADDR analyzed_limit;
1356
1357 /* For non-GCC compilers, make sure the entire line is an
1358 acceptable prologue; GDB will round this function's
1359 return value up to the end of the following line so we
1360 can not skip just part of a line (and we do not want to).
1361
1362 RealView does not treat the prologue specially, but does
1363 associate prologue code with the opening brace; so this
1364 lets us skip the first line if we think it is the opening
1365 brace. */
1366 if (arm_pc_is_thumb (gdbarch, func_addr))
1367 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1368 post_prologue_pc, NULL);
1369 else
1370 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1371 post_prologue_pc, NULL);
1372
1373 if (analyzed_limit != post_prologue_pc)
1374 return func_addr;
1375
1376 return post_prologue_pc;
1377 }
1378 }
1379
1380 /* Can't determine prologue from the symbol table, need to examine
1381 instructions. */
1382
1383 /* Find an upper limit on the function prologue using the debug
1384 information. If the debug information could not be used to provide
1385 that bound, then use an arbitrary large number as the upper bound. */
1386 /* Like arm_scan_prologue, stop no later than pc + 64. */
1387 limit_pc = skip_prologue_using_sal (gdbarch, pc);
1388 if (limit_pc == 0)
1389 limit_pc = pc + 64; /* Magic. */
1390
1391
1392 /* Check if this is Thumb code. */
1393 if (arm_pc_is_thumb (gdbarch, pc))
1394 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1395 else
1396 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1397 }
1398
1399 /* *INDENT-OFF* */
1400 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1401 This function decodes a Thumb function prologue to determine:
1402 1) the size of the stack frame
1403 2) which registers are saved on it
1404 3) the offsets of saved regs
1405 4) the offset from the stack pointer to the frame pointer
1406
1407 A typical Thumb function prologue would create this stack frame
1408 (offsets relative to FP)
1409 old SP -> 24 stack parameters
1410 20 LR
1411 16 R7
1412 R7 -> 0 local variables (16 bytes)
1413 SP -> -12 additional stack space (12 bytes)
1414 The frame size would thus be 36 bytes, and the frame offset would be
1415 12 bytes. The frame register is R7.
1416
1417 The comments for thumb_skip_prolog() describe the algorithm we use
1418 to detect the end of the prolog. */
1419 /* *INDENT-ON* */
1420
1421 static void
1422 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
1423 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
1424 {
1425 CORE_ADDR prologue_start;
1426 CORE_ADDR prologue_end;
1427
1428 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1429 &prologue_end))
1430 {
1431 /* See comment in arm_scan_prologue for an explanation of
1432 this heuristics. */
1433 if (prologue_end > prologue_start + 64)
1434 {
1435 prologue_end = prologue_start + 64;
1436 }
1437 }
1438 else
1439 /* We're in the boondocks: we have no idea where the start of the
1440 function is. */
1441 return;
1442
1443 prologue_end = std::min (prologue_end, prev_pc);
1444
1445 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1446 }
1447
1448 /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1449 otherwise. */
1450
1451 static int
1452 arm_instruction_restores_sp (unsigned int insn)
1453 {
1454 if (bits (insn, 28, 31) != INST_NV)
1455 {
1456 if ((insn & 0x0df0f000) == 0x0080d000
1457 /* ADD SP (register or immediate). */
1458 || (insn & 0x0df0f000) == 0x0040d000
1459 /* SUB SP (register or immediate). */
1460 || (insn & 0x0ffffff0) == 0x01a0d000
1461 /* MOV SP. */
1462 || (insn & 0x0fff0000) == 0x08bd0000
1463 /* POP (LDMIA). */
1464 || (insn & 0x0fff0000) == 0x049d0000)
1465 /* POP of a single register. */
1466 return 1;
1467 }
1468
1469 return 0;
1470 }
1471
1472 /* Analyze an ARM mode prologue starting at PROLOGUE_START and
1473 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1474 fill it in. Return the first address not recognized as a prologue
1475 instruction.
1476
1477 We recognize all the instructions typically found in ARM prologues,
1478 plus harmless instructions which can be skipped (either for analysis
1479 purposes, or a more restrictive set that can be skipped when finding
1480 the end of the prologue). */
1481
1482 static CORE_ADDR
1483 arm_analyze_prologue (struct gdbarch *gdbarch,
1484 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1485 struct arm_prologue_cache *cache)
1486 {
1487 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1488 int regno;
1489 CORE_ADDR offset, current_pc;
1490 pv_t regs[ARM_FPS_REGNUM];
1491 struct pv_area *stack;
1492 struct cleanup *back_to;
1493 CORE_ADDR unrecognized_pc = 0;
1494
1495 /* Search the prologue looking for instructions that set up the
1496 frame pointer, adjust the stack pointer, and save registers.
1497
1498 Be careful, however, and if it doesn't look like a prologue,
1499 don't try to scan it. If, for instance, a frameless function
1500 begins with stmfd sp!, then we will tell ourselves there is
1501 a frame, which will confuse stack traceback, as well as "finish"
1502 and other operations that rely on a knowledge of the stack
1503 traceback. */
1504
1505 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1506 regs[regno] = pv_register (regno, 0);
1507 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1508 back_to = make_cleanup_free_pv_area (stack);
1509
1510 for (current_pc = prologue_start;
1511 current_pc < prologue_end;
1512 current_pc += 4)
1513 {
1514 unsigned int insn
1515 = read_code_unsigned_integer (current_pc, 4, byte_order_for_code);
1516
1517 if (insn == 0xe1a0c00d) /* mov ip, sp */
1518 {
1519 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
1520 continue;
1521 }
1522 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1523 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1524 {
1525 unsigned imm = insn & 0xff; /* immediate value */
1526 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1527 int rd = bits (insn, 12, 15);
1528 imm = (imm >> rot) | (imm << (32 - rot));
1529 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
1530 continue;
1531 }
1532 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1533 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1534 {
1535 unsigned imm = insn & 0xff; /* immediate value */
1536 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1537 int rd = bits (insn, 12, 15);
1538 imm = (imm >> rot) | (imm << (32 - rot));
1539 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
1540 continue;
1541 }
1542 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1543 [sp, #-4]! */
1544 {
1545 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1546 break;
1547 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1548 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1549 regs[bits (insn, 12, 15)]);
1550 continue;
1551 }
1552 else if ((insn & 0xffff0000) == 0xe92d0000)
1553 /* stmfd sp!, {..., fp, ip, lr, pc}
1554 or
1555 stmfd sp!, {a1, a2, a3, a4} */
1556 {
1557 int mask = insn & 0xffff;
1558
1559 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1560 break;
1561
1562 /* Calculate offsets of saved registers. */
1563 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
1564 if (mask & (1 << regno))
1565 {
1566 regs[ARM_SP_REGNUM]
1567 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1568 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
1569 }
1570 }
1571 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1572 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
1573 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
1574 {
1575 /* No need to add this to saved_regs -- it's just an arg reg. */
1576 continue;
1577 }
1578 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1579 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
1580 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
1581 {
1582 /* No need to add this to saved_regs -- it's just an arg reg. */
1583 continue;
1584 }
1585 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1586 { registers } */
1587 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1588 {
1589 /* No need to add this to saved_regs -- it's just arg regs. */
1590 continue;
1591 }
1592 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1593 {
1594 unsigned imm = insn & 0xff; /* immediate value */
1595 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1596 imm = (imm >> rot) | (imm << (32 - rot));
1597 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
1598 }
1599 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1600 {
1601 unsigned imm = insn & 0xff; /* immediate value */
1602 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1603 imm = (imm >> rot) | (imm << (32 - rot));
1604 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
1605 }
1606 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1607 [sp, -#c]! */
1608 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1609 {
1610 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1611 break;
1612
1613 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1614 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
1615 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
1616 }
1617 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1618 [sp!] */
1619 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1620 {
1621 int n_saved_fp_regs;
1622 unsigned int fp_start_reg, fp_bound_reg;
1623
1624 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1625 break;
1626
1627 if ((insn & 0x800) == 0x800) /* N0 is set */
1628 {
1629 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1630 n_saved_fp_regs = 3;
1631 else
1632 n_saved_fp_regs = 1;
1633 }
1634 else
1635 {
1636 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1637 n_saved_fp_regs = 2;
1638 else
1639 n_saved_fp_regs = 4;
1640 }
1641
1642 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
1643 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1644 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
1645 {
1646 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1647 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1648 regs[fp_start_reg++]);
1649 }
1650 }
1651 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1652 {
1653 /* Allow some special function calls when skipping the
1654 prologue; GCC generates these before storing arguments to
1655 the stack. */
1656 CORE_ADDR dest = BranchDest (current_pc, insn);
1657
1658 if (skip_prologue_function (gdbarch, dest, 0))
1659 continue;
1660 else
1661 break;
1662 }
1663 else if ((insn & 0xf0000000) != 0xe0000000)
1664 break; /* Condition not true, exit early. */
1665 else if (arm_instruction_changes_pc (insn))
1666 /* Don't scan past anything that might change control flow. */
1667 break;
1668 else if (arm_instruction_restores_sp (insn))
1669 {
1670 /* Don't scan past the epilogue. */
1671 break;
1672 }
1673 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1674 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1675 /* Ignore block loads from the stack, potentially copying
1676 parameters from memory. */
1677 continue;
1678 else if ((insn & 0xfc500000) == 0xe4100000
1679 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1680 /* Similarly ignore single loads from the stack. */
1681 continue;
1682 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1683 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1684 register instead of the stack. */
1685 continue;
1686 else
1687 {
1688 /* The optimizer might shove anything into the prologue, if
1689 we build up cache (cache != NULL) from scanning prologue,
1690 we just skip what we don't recognize and scan further to
1691 make cache as complete as possible. However, if we skip
1692 prologue, we'll stop immediately on unrecognized
1693 instruction. */
1694 unrecognized_pc = current_pc;
1695 if (cache != NULL)
1696 continue;
1697 else
1698 break;
1699 }
1700 }
1701
1702 if (unrecognized_pc == 0)
1703 unrecognized_pc = current_pc;
1704
1705 if (cache)
1706 {
1707 int framereg, framesize;
1708
1709 /* The frame size is just the distance from the frame register
1710 to the original stack pointer. */
1711 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1712 {
1713 /* Frame pointer is fp. */
1714 framereg = ARM_FP_REGNUM;
1715 framesize = -regs[ARM_FP_REGNUM].k;
1716 }
1717 else
1718 {
1719 /* Try the stack pointer... this is a bit desperate. */
1720 framereg = ARM_SP_REGNUM;
1721 framesize = -regs[ARM_SP_REGNUM].k;
1722 }
1723
1724 cache->framereg = framereg;
1725 cache->framesize = framesize;
1726
1727 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1728 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1729 cache->saved_regs[regno].addr = offset;
1730 }
1731
1732 if (arm_debug)
1733 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1734 paddress (gdbarch, unrecognized_pc));
1735
1736 do_cleanups (back_to);
1737 return unrecognized_pc;
1738 }
1739
1740 static void
1741 arm_scan_prologue (struct frame_info *this_frame,
1742 struct arm_prologue_cache *cache)
1743 {
1744 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1745 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1746 CORE_ADDR prologue_start, prologue_end;
1747 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1748 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1749
1750 /* Assume there is no frame until proven otherwise. */
1751 cache->framereg = ARM_SP_REGNUM;
1752 cache->framesize = 0;
1753
1754 /* Check for Thumb prologue. */
1755 if (arm_frame_is_thumb (this_frame))
1756 {
1757 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1758 return;
1759 }
1760
1761 /* Find the function prologue. If we can't find the function in
1762 the symbol table, peek in the stack frame to find the PC. */
1763 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1764 &prologue_end))
1765 {
1766 /* One way to find the end of the prologue (which works well
1767 for unoptimized code) is to do the following:
1768
1769 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1770
1771 if (sal.line == 0)
1772 prologue_end = prev_pc;
1773 else if (sal.end < prologue_end)
1774 prologue_end = sal.end;
1775
1776 This mechanism is very accurate so long as the optimizer
1777 doesn't move any instructions from the function body into the
1778 prologue. If this happens, sal.end will be the last
1779 instruction in the first hunk of prologue code just before
1780 the first instruction that the scheduler has moved from
1781 the body to the prologue.
1782
1783 In order to make sure that we scan all of the prologue
1784 instructions, we use a slightly less accurate mechanism which
1785 may scan more than necessary. To help compensate for this
1786 lack of accuracy, the prologue scanning loop below contains
1787 several clauses which'll cause the loop to terminate early if
1788 an implausible prologue instruction is encountered.
1789
1790 The expression
1791
1792 prologue_start + 64
1793
1794 is a suitable endpoint since it accounts for the largest
1795 possible prologue plus up to five instructions inserted by
1796 the scheduler. */
1797
1798 if (prologue_end > prologue_start + 64)
1799 {
1800 prologue_end = prologue_start + 64; /* See above. */
1801 }
1802 }
1803 else
1804 {
1805 /* We have no symbol information. Our only option is to assume this
1806 function has a standard stack frame and the normal frame register.
1807 Then, we can find the value of our frame pointer on entrance to
1808 the callee (or at the present moment if this is the innermost frame).
1809 The value stored there should be the address of the stmfd + 8. */
1810 CORE_ADDR frame_loc;
1811 ULONGEST return_value;
1812
1813 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1814 if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order,
1815 &return_value))
1816 return;
1817 else
1818 {
1819 prologue_start = gdbarch_addr_bits_remove
1820 (gdbarch, return_value) - 8;
1821 prologue_end = prologue_start + 64; /* See above. */
1822 }
1823 }
1824
1825 if (prev_pc < prologue_end)
1826 prologue_end = prev_pc;
1827
1828 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1829 }
1830
1831 static struct arm_prologue_cache *
1832 arm_make_prologue_cache (struct frame_info *this_frame)
1833 {
1834 int reg;
1835 struct arm_prologue_cache *cache;
1836 CORE_ADDR unwound_fp;
1837
1838 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1839 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1840
1841 arm_scan_prologue (this_frame, cache);
1842
1843 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1844 if (unwound_fp == 0)
1845 return cache;
1846
1847 cache->prev_sp = unwound_fp + cache->framesize;
1848
1849 /* Calculate actual addresses of saved registers using offsets
1850 determined by arm_scan_prologue. */
1851 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1852 if (trad_frame_addr_p (cache->saved_regs, reg))
1853 cache->saved_regs[reg].addr += cache->prev_sp;
1854
1855 return cache;
1856 }
1857
1858 /* Implementation of the stop_reason hook for arm_prologue frames. */
1859
1860 static enum unwind_stop_reason
1861 arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1862 void **this_cache)
1863 {
1864 struct arm_prologue_cache *cache;
1865 CORE_ADDR pc;
1866
1867 if (*this_cache == NULL)
1868 *this_cache = arm_make_prologue_cache (this_frame);
1869 cache = (struct arm_prologue_cache *) *this_cache;
1870
1871 /* This is meant to halt the backtrace at "_start". */
1872 pc = get_frame_pc (this_frame);
1873 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1874 return UNWIND_OUTERMOST;
1875
1876 /* If we've hit a wall, stop. */
1877 if (cache->prev_sp == 0)
1878 return UNWIND_OUTERMOST;
1879
1880 return UNWIND_NO_REASON;
1881 }
1882
1883 /* Our frame ID for a normal frame is the current function's starting PC
1884 and the caller's SP when we were called. */
1885
1886 static void
1887 arm_prologue_this_id (struct frame_info *this_frame,
1888 void **this_cache,
1889 struct frame_id *this_id)
1890 {
1891 struct arm_prologue_cache *cache;
1892 struct frame_id id;
1893 CORE_ADDR pc, func;
1894
1895 if (*this_cache == NULL)
1896 *this_cache = arm_make_prologue_cache (this_frame);
1897 cache = (struct arm_prologue_cache *) *this_cache;
1898
1899 /* Use function start address as part of the frame ID. If we cannot
1900 identify the start address (due to missing symbol information),
1901 fall back to just using the current PC. */
1902 pc = get_frame_pc (this_frame);
1903 func = get_frame_func (this_frame);
1904 if (!func)
1905 func = pc;
1906
1907 id = frame_id_build (cache->prev_sp, func);
1908 *this_id = id;
1909 }
1910
1911 static struct value *
1912 arm_prologue_prev_register (struct frame_info *this_frame,
1913 void **this_cache,
1914 int prev_regnum)
1915 {
1916 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1917 struct arm_prologue_cache *cache;
1918
1919 if (*this_cache == NULL)
1920 *this_cache = arm_make_prologue_cache (this_frame);
1921 cache = (struct arm_prologue_cache *) *this_cache;
1922
1923 /* If we are asked to unwind the PC, then we need to return the LR
1924 instead. The prologue may save PC, but it will point into this
1925 frame's prologue, not the next frame's resume location. Also
1926 strip the saved T bit. A valid LR may have the low bit set, but
1927 a valid PC never does. */
1928 if (prev_regnum == ARM_PC_REGNUM)
1929 {
1930 CORE_ADDR lr;
1931
1932 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1933 return frame_unwind_got_constant (this_frame, prev_regnum,
1934 arm_addr_bits_remove (gdbarch, lr));
1935 }
1936
1937 /* SP is generally not saved to the stack, but this frame is
1938 identified by the next frame's stack pointer at the time of the call.
1939 The value was already reconstructed into PREV_SP. */
1940 if (prev_regnum == ARM_SP_REGNUM)
1941 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1942
1943 /* The CPSR may have been changed by the call instruction and by the
1944 called function. The only bit we can reconstruct is the T bit,
1945 by checking the low bit of LR as of the call. This is a reliable
1946 indicator of Thumb-ness except for some ARM v4T pre-interworking
1947 Thumb code, which could get away with a clear low bit as long as
1948 the called function did not use bx. Guess that all other
1949 bits are unchanged; the condition flags are presumably lost,
1950 but the processor status is likely valid. */
1951 if (prev_regnum == ARM_PS_REGNUM)
1952 {
1953 CORE_ADDR lr, cpsr;
1954 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
1955
1956 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1957 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1958 if (IS_THUMB_ADDR (lr))
1959 cpsr |= t_bit;
1960 else
1961 cpsr &= ~t_bit;
1962 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1963 }
1964
1965 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1966 prev_regnum);
1967 }
1968
1969 struct frame_unwind arm_prologue_unwind = {
1970 NORMAL_FRAME,
1971 arm_prologue_unwind_stop_reason,
1972 arm_prologue_this_id,
1973 arm_prologue_prev_register,
1974 NULL,
1975 default_frame_sniffer
1976 };
1977
1978 /* Maintain a list of ARM exception table entries per objfile, similar to the
1979 list of mapping symbols. We only cache entries for standard ARM-defined
1980 personality routines; the cache will contain only the frame unwinding
1981 instructions associated with the entry (not the descriptors). */
1982
1983 static const struct objfile_data *arm_exidx_data_key;
1984
1985 struct arm_exidx_entry
1986 {
1987 bfd_vma addr;
1988 gdb_byte *entry;
1989 };
1990 typedef struct arm_exidx_entry arm_exidx_entry_s;
1991 DEF_VEC_O(arm_exidx_entry_s);
1992
1993 struct arm_exidx_data
1994 {
1995 VEC(arm_exidx_entry_s) **section_maps;
1996 };
1997
1998 static void
1999 arm_exidx_data_free (struct objfile *objfile, void *arg)
2000 {
2001 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
2002 unsigned int i;
2003
2004 for (i = 0; i < objfile->obfd->section_count; i++)
2005 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2006 }
2007
2008 static inline int
2009 arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2010 const struct arm_exidx_entry *rhs)
2011 {
2012 return lhs->addr < rhs->addr;
2013 }
2014
2015 static struct obj_section *
2016 arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2017 {
2018 struct obj_section *osect;
2019
2020 ALL_OBJFILE_OSECTIONS (objfile, osect)
2021 if (bfd_get_section_flags (objfile->obfd,
2022 osect->the_bfd_section) & SEC_ALLOC)
2023 {
2024 bfd_vma start, size;
2025 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2026 size = bfd_get_section_size (osect->the_bfd_section);
2027
2028 if (start <= vma && vma < start + size)
2029 return osect;
2030 }
2031
2032 return NULL;
2033 }
2034
2035 /* Parse contents of exception table and exception index sections
2036 of OBJFILE, and fill in the exception table entry cache.
2037
2038 For each entry that refers to a standard ARM-defined personality
2039 routine, extract the frame unwinding instructions (from either
2040 the index or the table section). The unwinding instructions
2041 are normalized by:
2042 - extracting them from the rest of the table data
2043 - converting to host endianness
2044 - appending the implicit 0xb0 ("Finish") code
2045
2046 The extracted and normalized instructions are stored for later
2047 retrieval by the arm_find_exidx_entry routine. */
2048
2049 static void
2050 arm_exidx_new_objfile (struct objfile *objfile)
2051 {
2052 struct cleanup *cleanups;
2053 struct arm_exidx_data *data;
2054 asection *exidx, *extab;
2055 bfd_vma exidx_vma = 0, extab_vma = 0;
2056 bfd_size_type exidx_size = 0, extab_size = 0;
2057 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2058 LONGEST i;
2059
2060 /* If we've already touched this file, do nothing. */
2061 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2062 return;
2063 cleanups = make_cleanup (null_cleanup, NULL);
2064
2065 /* Read contents of exception table and index. */
2066 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
2067 if (exidx)
2068 {
2069 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2070 exidx_size = bfd_get_section_size (exidx);
2071 exidx_data = (gdb_byte *) xmalloc (exidx_size);
2072 make_cleanup (xfree, exidx_data);
2073
2074 if (!bfd_get_section_contents (objfile->obfd, exidx,
2075 exidx_data, 0, exidx_size))
2076 {
2077 do_cleanups (cleanups);
2078 return;
2079 }
2080 }
2081
2082 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2083 if (extab)
2084 {
2085 extab_vma = bfd_section_vma (objfile->obfd, extab);
2086 extab_size = bfd_get_section_size (extab);
2087 extab_data = (gdb_byte *) xmalloc (extab_size);
2088 make_cleanup (xfree, extab_data);
2089
2090 if (!bfd_get_section_contents (objfile->obfd, extab,
2091 extab_data, 0, extab_size))
2092 {
2093 do_cleanups (cleanups);
2094 return;
2095 }
2096 }
2097
2098 /* Allocate exception table data structure. */
2099 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2100 set_objfile_data (objfile, arm_exidx_data_key, data);
2101 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2102 objfile->obfd->section_count,
2103 VEC(arm_exidx_entry_s) *);
2104
2105 /* Fill in exception table. */
2106 for (i = 0; i < exidx_size / 8; i++)
2107 {
2108 struct arm_exidx_entry new_exidx_entry;
2109 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2110 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2111 bfd_vma addr = 0, word = 0;
2112 int n_bytes = 0, n_words = 0;
2113 struct obj_section *sec;
2114 gdb_byte *entry = NULL;
2115
2116 /* Extract address of start of function. */
2117 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2118 idx += exidx_vma + i * 8;
2119
2120 /* Find section containing function and compute section offset. */
2121 sec = arm_obj_section_from_vma (objfile, idx);
2122 if (sec == NULL)
2123 continue;
2124 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2125
2126 /* Determine address of exception table entry. */
2127 if (val == 1)
2128 {
2129 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2130 }
2131 else if ((val & 0xff000000) == 0x80000000)
2132 {
2133 /* Exception table entry embedded in .ARM.exidx
2134 -- must be short form. */
2135 word = val;
2136 n_bytes = 3;
2137 }
2138 else if (!(val & 0x80000000))
2139 {
2140 /* Exception table entry in .ARM.extab. */
2141 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2142 addr += exidx_vma + i * 8 + 4;
2143
2144 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2145 {
2146 word = bfd_h_get_32 (objfile->obfd,
2147 extab_data + addr - extab_vma);
2148 addr += 4;
2149
2150 if ((word & 0xff000000) == 0x80000000)
2151 {
2152 /* Short form. */
2153 n_bytes = 3;
2154 }
2155 else if ((word & 0xff000000) == 0x81000000
2156 || (word & 0xff000000) == 0x82000000)
2157 {
2158 /* Long form. */
2159 n_bytes = 2;
2160 n_words = ((word >> 16) & 0xff);
2161 }
2162 else if (!(word & 0x80000000))
2163 {
2164 bfd_vma pers;
2165 struct obj_section *pers_sec;
2166 int gnu_personality = 0;
2167
2168 /* Custom personality routine. */
2169 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2170 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2171
2172 /* Check whether we've got one of the variants of the
2173 GNU personality routines. */
2174 pers_sec = arm_obj_section_from_vma (objfile, pers);
2175 if (pers_sec)
2176 {
2177 static const char *personality[] =
2178 {
2179 "__gcc_personality_v0",
2180 "__gxx_personality_v0",
2181 "__gcj_personality_v0",
2182 "__gnu_objc_personality_v0",
2183 NULL
2184 };
2185
2186 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2187 int k;
2188
2189 for (k = 0; personality[k]; k++)
2190 if (lookup_minimal_symbol_by_pc_name
2191 (pc, personality[k], objfile))
2192 {
2193 gnu_personality = 1;
2194 break;
2195 }
2196 }
2197
2198 /* If so, the next word contains a word count in the high
2199 byte, followed by the same unwind instructions as the
2200 pre-defined forms. */
2201 if (gnu_personality
2202 && addr + 4 <= extab_vma + extab_size)
2203 {
2204 word = bfd_h_get_32 (objfile->obfd,
2205 extab_data + addr - extab_vma);
2206 addr += 4;
2207 n_bytes = 3;
2208 n_words = ((word >> 24) & 0xff);
2209 }
2210 }
2211 }
2212 }
2213
2214 /* Sanity check address. */
2215 if (n_words)
2216 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2217 n_words = n_bytes = 0;
2218
2219 /* The unwind instructions reside in WORD (only the N_BYTES least
2220 significant bytes are valid), followed by N_WORDS words in the
2221 extab section starting at ADDR. */
2222 if (n_bytes || n_words)
2223 {
2224 gdb_byte *p = entry
2225 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2226 n_bytes + n_words * 4 + 1);
2227
2228 while (n_bytes--)
2229 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2230
2231 while (n_words--)
2232 {
2233 word = bfd_h_get_32 (objfile->obfd,
2234 extab_data + addr - extab_vma);
2235 addr += 4;
2236
2237 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2238 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2239 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2240 *p++ = (gdb_byte) (word & 0xff);
2241 }
2242
2243 /* Implied "Finish" to terminate the list. */
2244 *p++ = 0xb0;
2245 }
2246
2247 /* Push entry onto vector. They are guaranteed to always
2248 appear in order of increasing addresses. */
2249 new_exidx_entry.addr = idx;
2250 new_exidx_entry.entry = entry;
2251 VEC_safe_push (arm_exidx_entry_s,
2252 data->section_maps[sec->the_bfd_section->index],
2253 &new_exidx_entry);
2254 }
2255
2256 do_cleanups (cleanups);
2257 }
2258
2259 /* Search for the exception table entry covering MEMADDR. If one is found,
2260 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2261 set *START to the start of the region covered by this entry. */
2262
2263 static gdb_byte *
2264 arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2265 {
2266 struct obj_section *sec;
2267
2268 sec = find_pc_section (memaddr);
2269 if (sec != NULL)
2270 {
2271 struct arm_exidx_data *data;
2272 VEC(arm_exidx_entry_s) *map;
2273 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2274 unsigned int idx;
2275
2276 data = ((struct arm_exidx_data *)
2277 objfile_data (sec->objfile, arm_exidx_data_key));
2278 if (data != NULL)
2279 {
2280 map = data->section_maps[sec->the_bfd_section->index];
2281 if (!VEC_empty (arm_exidx_entry_s, map))
2282 {
2283 struct arm_exidx_entry *map_sym;
2284
2285 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2286 arm_compare_exidx_entries);
2287
2288 /* VEC_lower_bound finds the earliest ordered insertion
2289 point. If the following symbol starts at this exact
2290 address, we use that; otherwise, the preceding
2291 exception table entry covers this address. */
2292 if (idx < VEC_length (arm_exidx_entry_s, map))
2293 {
2294 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2295 if (map_sym->addr == map_key.addr)
2296 {
2297 if (start)
2298 *start = map_sym->addr + obj_section_addr (sec);
2299 return map_sym->entry;
2300 }
2301 }
2302
2303 if (idx > 0)
2304 {
2305 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2306 if (start)
2307 *start = map_sym->addr + obj_section_addr (sec);
2308 return map_sym->entry;
2309 }
2310 }
2311 }
2312 }
2313
2314 return NULL;
2315 }
2316
2317 /* Given the current frame THIS_FRAME, and its associated frame unwinding
2318 instruction list from the ARM exception table entry ENTRY, allocate and
2319 return a prologue cache structure describing how to unwind this frame.
2320
2321 Return NULL if the unwinding instruction list contains a "spare",
2322 "reserved" or "refuse to unwind" instruction as defined in section
2323 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2324 for the ARM Architecture" document. */
2325
2326 static struct arm_prologue_cache *
2327 arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2328 {
2329 CORE_ADDR vsp = 0;
2330 int vsp_valid = 0;
2331
2332 struct arm_prologue_cache *cache;
2333 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2334 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2335
2336 for (;;)
2337 {
2338 gdb_byte insn;
2339
2340 /* Whenever we reload SP, we actually have to retrieve its
2341 actual value in the current frame. */
2342 if (!vsp_valid)
2343 {
2344 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2345 {
2346 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2347 vsp = get_frame_register_unsigned (this_frame, reg);
2348 }
2349 else
2350 {
2351 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2352 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2353 }
2354
2355 vsp_valid = 1;
2356 }
2357
2358 /* Decode next unwind instruction. */
2359 insn = *entry++;
2360
2361 if ((insn & 0xc0) == 0)
2362 {
2363 int offset = insn & 0x3f;
2364 vsp += (offset << 2) + 4;
2365 }
2366 else if ((insn & 0xc0) == 0x40)
2367 {
2368 int offset = insn & 0x3f;
2369 vsp -= (offset << 2) + 4;
2370 }
2371 else if ((insn & 0xf0) == 0x80)
2372 {
2373 int mask = ((insn & 0xf) << 8) | *entry++;
2374 int i;
2375
2376 /* The special case of an all-zero mask identifies
2377 "Refuse to unwind". We return NULL to fall back
2378 to the prologue analyzer. */
2379 if (mask == 0)
2380 return NULL;
2381
2382 /* Pop registers r4..r15 under mask. */
2383 for (i = 0; i < 12; i++)
2384 if (mask & (1 << i))
2385 {
2386 cache->saved_regs[4 + i].addr = vsp;
2387 vsp += 4;
2388 }
2389
2390 /* Special-case popping SP -- we need to reload vsp. */
2391 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2392 vsp_valid = 0;
2393 }
2394 else if ((insn & 0xf0) == 0x90)
2395 {
2396 int reg = insn & 0xf;
2397
2398 /* Reserved cases. */
2399 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2400 return NULL;
2401
2402 /* Set SP from another register and mark VSP for reload. */
2403 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2404 vsp_valid = 0;
2405 }
2406 else if ((insn & 0xf0) == 0xa0)
2407 {
2408 int count = insn & 0x7;
2409 int pop_lr = (insn & 0x8) != 0;
2410 int i;
2411
2412 /* Pop r4..r[4+count]. */
2413 for (i = 0; i <= count; i++)
2414 {
2415 cache->saved_regs[4 + i].addr = vsp;
2416 vsp += 4;
2417 }
2418
2419 /* If indicated by flag, pop LR as well. */
2420 if (pop_lr)
2421 {
2422 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2423 vsp += 4;
2424 }
2425 }
2426 else if (insn == 0xb0)
2427 {
2428 /* We could only have updated PC by popping into it; if so, it
2429 will show up as address. Otherwise, copy LR into PC. */
2430 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2431 cache->saved_regs[ARM_PC_REGNUM]
2432 = cache->saved_regs[ARM_LR_REGNUM];
2433
2434 /* We're done. */
2435 break;
2436 }
2437 else if (insn == 0xb1)
2438 {
2439 int mask = *entry++;
2440 int i;
2441
2442 /* All-zero mask and mask >= 16 is "spare". */
2443 if (mask == 0 || mask >= 16)
2444 return NULL;
2445
2446 /* Pop r0..r3 under mask. */
2447 for (i = 0; i < 4; i++)
2448 if (mask & (1 << i))
2449 {
2450 cache->saved_regs[i].addr = vsp;
2451 vsp += 4;
2452 }
2453 }
2454 else if (insn == 0xb2)
2455 {
2456 ULONGEST offset = 0;
2457 unsigned shift = 0;
2458
2459 do
2460 {
2461 offset |= (*entry & 0x7f) << shift;
2462 shift += 7;
2463 }
2464 while (*entry++ & 0x80);
2465
2466 vsp += 0x204 + (offset << 2);
2467 }
2468 else if (insn == 0xb3)
2469 {
2470 int start = *entry >> 4;
2471 int count = (*entry++) & 0xf;
2472 int i;
2473
2474 /* Only registers D0..D15 are valid here. */
2475 if (start + count >= 16)
2476 return NULL;
2477
2478 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2479 for (i = 0; i <= count; i++)
2480 {
2481 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2482 vsp += 8;
2483 }
2484
2485 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2486 vsp += 4;
2487 }
2488 else if ((insn & 0xf8) == 0xb8)
2489 {
2490 int count = insn & 0x7;
2491 int i;
2492
2493 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2494 for (i = 0; i <= count; i++)
2495 {
2496 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2497 vsp += 8;
2498 }
2499
2500 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2501 vsp += 4;
2502 }
2503 else if (insn == 0xc6)
2504 {
2505 int start = *entry >> 4;
2506 int count = (*entry++) & 0xf;
2507 int i;
2508
2509 /* Only registers WR0..WR15 are valid. */
2510 if (start + count >= 16)
2511 return NULL;
2512
2513 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2514 for (i = 0; i <= count; i++)
2515 {
2516 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2517 vsp += 8;
2518 }
2519 }
2520 else if (insn == 0xc7)
2521 {
2522 int mask = *entry++;
2523 int i;
2524
2525 /* All-zero mask and mask >= 16 is "spare". */
2526 if (mask == 0 || mask >= 16)
2527 return NULL;
2528
2529 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2530 for (i = 0; i < 4; i++)
2531 if (mask & (1 << i))
2532 {
2533 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2534 vsp += 4;
2535 }
2536 }
2537 else if ((insn & 0xf8) == 0xc0)
2538 {
2539 int count = insn & 0x7;
2540 int i;
2541
2542 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2543 for (i = 0; i <= count; i++)
2544 {
2545 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2546 vsp += 8;
2547 }
2548 }
2549 else if (insn == 0xc8)
2550 {
2551 int start = *entry >> 4;
2552 int count = (*entry++) & 0xf;
2553 int i;
2554
2555 /* Only registers D0..D31 are valid. */
2556 if (start + count >= 16)
2557 return NULL;
2558
2559 /* Pop VFP double-precision registers
2560 D[16+start]..D[16+start+count]. */
2561 for (i = 0; i <= count; i++)
2562 {
2563 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2564 vsp += 8;
2565 }
2566 }
2567 else if (insn == 0xc9)
2568 {
2569 int start = *entry >> 4;
2570 int count = (*entry++) & 0xf;
2571 int i;
2572
2573 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2574 for (i = 0; i <= count; i++)
2575 {
2576 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2577 vsp += 8;
2578 }
2579 }
2580 else if ((insn & 0xf8) == 0xd0)
2581 {
2582 int count = insn & 0x7;
2583 int i;
2584
2585 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2586 for (i = 0; i <= count; i++)
2587 {
2588 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2589 vsp += 8;
2590 }
2591 }
2592 else
2593 {
2594 /* Everything else is "spare". */
2595 return NULL;
2596 }
2597 }
2598
2599 /* If we restore SP from a register, assume this was the frame register.
2600 Otherwise just fall back to SP as frame register. */
2601 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2602 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2603 else
2604 cache->framereg = ARM_SP_REGNUM;
2605
2606 /* Determine offset to previous frame. */
2607 cache->framesize
2608 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2609
2610 /* We already got the previous SP. */
2611 cache->prev_sp = vsp;
2612
2613 return cache;
2614 }
2615
2616 /* Unwinding via ARM exception table entries. Note that the sniffer
2617 already computes a filled-in prologue cache, which is then used
2618 with the same arm_prologue_this_id and arm_prologue_prev_register
2619 routines also used for prologue-parsing based unwinding. */
2620
2621 static int
2622 arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2623 struct frame_info *this_frame,
2624 void **this_prologue_cache)
2625 {
2626 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2627 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2628 CORE_ADDR addr_in_block, exidx_region, func_start;
2629 struct arm_prologue_cache *cache;
2630 gdb_byte *entry;
2631
2632 /* See if we have an ARM exception table entry covering this address. */
2633 addr_in_block = get_frame_address_in_block (this_frame);
2634 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2635 if (!entry)
2636 return 0;
2637
2638 /* The ARM exception table does not describe unwind information
2639 for arbitrary PC values, but is guaranteed to be correct only
2640 at call sites. We have to decide here whether we want to use
2641 ARM exception table information for this frame, or fall back
2642 to using prologue parsing. (Note that if we have DWARF CFI,
2643 this sniffer isn't even called -- CFI is always preferred.)
2644
2645 Before we make this decision, however, we check whether we
2646 actually have *symbol* information for the current frame.
2647 If not, prologue parsing would not work anyway, so we might
2648 as well use the exception table and hope for the best. */
2649 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2650 {
2651 int exc_valid = 0;
2652
2653 /* If the next frame is "normal", we are at a call site in this
2654 frame, so exception information is guaranteed to be valid. */
2655 if (get_next_frame (this_frame)
2656 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2657 exc_valid = 1;
2658
2659 /* We also assume exception information is valid if we're currently
2660 blocked in a system call. The system library is supposed to
2661 ensure this, so that e.g. pthread cancellation works. */
2662 if (arm_frame_is_thumb (this_frame))
2663 {
2664 ULONGEST insn;
2665
2666 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2,
2667 2, byte_order_for_code, &insn)
2668 && (insn & 0xff00) == 0xdf00 /* svc */)
2669 exc_valid = 1;
2670 }
2671 else
2672 {
2673 ULONGEST insn;
2674
2675 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4,
2676 4, byte_order_for_code, &insn)
2677 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2678 exc_valid = 1;
2679 }
2680
2681 /* Bail out if we don't know that exception information is valid. */
2682 if (!exc_valid)
2683 return 0;
2684
2685 /* The ARM exception index does not mark the *end* of the region
2686 covered by the entry, and some functions will not have any entry.
2687 To correctly recognize the end of the covered region, the linker
2688 should have inserted dummy records with a CANTUNWIND marker.
2689
2690 Unfortunately, current versions of GNU ld do not reliably do
2691 this, and thus we may have found an incorrect entry above.
2692 As a (temporary) sanity check, we only use the entry if it
2693 lies *within* the bounds of the function. Note that this check
2694 might reject perfectly valid entries that just happen to cover
2695 multiple functions; therefore this check ought to be removed
2696 once the linker is fixed. */
2697 if (func_start > exidx_region)
2698 return 0;
2699 }
2700
2701 /* Decode the list of unwinding instructions into a prologue cache.
2702 Note that this may fail due to e.g. a "refuse to unwind" code. */
2703 cache = arm_exidx_fill_cache (this_frame, entry);
2704 if (!cache)
2705 return 0;
2706
2707 *this_prologue_cache = cache;
2708 return 1;
2709 }
2710
2711 struct frame_unwind arm_exidx_unwind = {
2712 NORMAL_FRAME,
2713 default_frame_unwind_stop_reason,
2714 arm_prologue_this_id,
2715 arm_prologue_prev_register,
2716 NULL,
2717 arm_exidx_unwind_sniffer
2718 };
2719
2720 static struct arm_prologue_cache *
2721 arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2722 {
2723 struct arm_prologue_cache *cache;
2724 int reg;
2725
2726 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2727 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2728
2729 /* Still rely on the offset calculated from prologue. */
2730 arm_scan_prologue (this_frame, cache);
2731
2732 /* Since we are in epilogue, the SP has been restored. */
2733 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2734
2735 /* Calculate actual addresses of saved registers using offsets
2736 determined by arm_scan_prologue. */
2737 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2738 if (trad_frame_addr_p (cache->saved_regs, reg))
2739 cache->saved_regs[reg].addr += cache->prev_sp;
2740
2741 return cache;
2742 }
2743
2744 /* Implementation of function hook 'this_id' in
2745 'struct frame_uwnind' for epilogue unwinder. */
2746
2747 static void
2748 arm_epilogue_frame_this_id (struct frame_info *this_frame,
2749 void **this_cache,
2750 struct frame_id *this_id)
2751 {
2752 struct arm_prologue_cache *cache;
2753 CORE_ADDR pc, func;
2754
2755 if (*this_cache == NULL)
2756 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2757 cache = (struct arm_prologue_cache *) *this_cache;
2758
2759 /* Use function start address as part of the frame ID. If we cannot
2760 identify the start address (due to missing symbol information),
2761 fall back to just using the current PC. */
2762 pc = get_frame_pc (this_frame);
2763 func = get_frame_func (this_frame);
2764 if (func == 0)
2765 func = pc;
2766
2767 (*this_id) = frame_id_build (cache->prev_sp, pc);
2768 }
2769
2770 /* Implementation of function hook 'prev_register' in
2771 'struct frame_uwnind' for epilogue unwinder. */
2772
2773 static struct value *
2774 arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2775 void **this_cache, int regnum)
2776 {
2777 if (*this_cache == NULL)
2778 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2779
2780 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2781 }
2782
2783 static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2784 CORE_ADDR pc);
2785 static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2786 CORE_ADDR pc);
2787
2788 /* Implementation of function hook 'sniffer' in
2789 'struct frame_uwnind' for epilogue unwinder. */
2790
2791 static int
2792 arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2793 struct frame_info *this_frame,
2794 void **this_prologue_cache)
2795 {
2796 if (frame_relative_level (this_frame) == 0)
2797 {
2798 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2799 CORE_ADDR pc = get_frame_pc (this_frame);
2800
2801 if (arm_frame_is_thumb (this_frame))
2802 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2803 else
2804 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2805 }
2806 else
2807 return 0;
2808 }
2809
2810 /* Frame unwinder from epilogue. */
2811
2812 static const struct frame_unwind arm_epilogue_frame_unwind =
2813 {
2814 NORMAL_FRAME,
2815 default_frame_unwind_stop_reason,
2816 arm_epilogue_frame_this_id,
2817 arm_epilogue_frame_prev_register,
2818 NULL,
2819 arm_epilogue_frame_sniffer,
2820 };
2821
2822 /* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2823 trampoline, return the target PC. Otherwise return 0.
2824
2825 void call0a (char c, short s, int i, long l) {}
2826
2827 int main (void)
2828 {
2829 (*pointer_to_call0a) (c, s, i, l);
2830 }
2831
2832 Instead of calling a stub library function _call_via_xx (xx is
2833 the register name), GCC may inline the trampoline in the object
2834 file as below (register r2 has the address of call0a).
2835
2836 .global main
2837 .type main, %function
2838 ...
2839 bl .L1
2840 ...
2841 .size main, .-main
2842
2843 .L1:
2844 bx r2
2845
2846 The trampoline 'bx r2' doesn't belong to main. */
2847
2848 static CORE_ADDR
2849 arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2850 {
2851 /* The heuristics of recognizing such trampoline is that FRAME is
2852 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2853 if (arm_frame_is_thumb (frame))
2854 {
2855 gdb_byte buf[2];
2856
2857 if (target_read_memory (pc, buf, 2) == 0)
2858 {
2859 struct gdbarch *gdbarch = get_frame_arch (frame);
2860 enum bfd_endian byte_order_for_code
2861 = gdbarch_byte_order_for_code (gdbarch);
2862 uint16_t insn
2863 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2864
2865 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2866 {
2867 CORE_ADDR dest
2868 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2869
2870 /* Clear the LSB so that gdb core sets step-resume
2871 breakpoint at the right address. */
2872 return UNMAKE_THUMB_ADDR (dest);
2873 }
2874 }
2875 }
2876
2877 return 0;
2878 }
2879
2880 static struct arm_prologue_cache *
2881 arm_make_stub_cache (struct frame_info *this_frame)
2882 {
2883 struct arm_prologue_cache *cache;
2884
2885 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2886 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2887
2888 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2889
2890 return cache;
2891 }
2892
2893 /* Our frame ID for a stub frame is the current SP and LR. */
2894
2895 static void
2896 arm_stub_this_id (struct frame_info *this_frame,
2897 void **this_cache,
2898 struct frame_id *this_id)
2899 {
2900 struct arm_prologue_cache *cache;
2901
2902 if (*this_cache == NULL)
2903 *this_cache = arm_make_stub_cache (this_frame);
2904 cache = (struct arm_prologue_cache *) *this_cache;
2905
2906 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
2907 }
2908
2909 static int
2910 arm_stub_unwind_sniffer (const struct frame_unwind *self,
2911 struct frame_info *this_frame,
2912 void **this_prologue_cache)
2913 {
2914 CORE_ADDR addr_in_block;
2915 gdb_byte dummy[4];
2916 CORE_ADDR pc, start_addr;
2917 const char *name;
2918
2919 addr_in_block = get_frame_address_in_block (this_frame);
2920 pc = get_frame_pc (this_frame);
2921 if (in_plt_section (addr_in_block)
2922 /* We also use the stub winder if the target memory is unreadable
2923 to avoid having the prologue unwinder trying to read it. */
2924 || target_read_memory (pc, dummy, 4) != 0)
2925 return 1;
2926
2927 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2928 && arm_skip_bx_reg (this_frame, pc) != 0)
2929 return 1;
2930
2931 return 0;
2932 }
2933
2934 struct frame_unwind arm_stub_unwind = {
2935 NORMAL_FRAME,
2936 default_frame_unwind_stop_reason,
2937 arm_stub_this_id,
2938 arm_prologue_prev_register,
2939 NULL,
2940 arm_stub_unwind_sniffer
2941 };
2942
2943 /* Put here the code to store, into CACHE->saved_regs, the addresses
2944 of the saved registers of frame described by THIS_FRAME. CACHE is
2945 returned. */
2946
2947 static struct arm_prologue_cache *
2948 arm_m_exception_cache (struct frame_info *this_frame)
2949 {
2950 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2952 struct arm_prologue_cache *cache;
2953 CORE_ADDR unwound_sp;
2954 LONGEST xpsr;
2955
2956 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2957 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2958
2959 unwound_sp = get_frame_register_unsigned (this_frame,
2960 ARM_SP_REGNUM);
2961
2962 /* The hardware saves eight 32-bit words, comprising xPSR,
2963 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2964 "B1.5.6 Exception entry behavior" in
2965 "ARMv7-M Architecture Reference Manual". */
2966 cache->saved_regs[0].addr = unwound_sp;
2967 cache->saved_regs[1].addr = unwound_sp + 4;
2968 cache->saved_regs[2].addr = unwound_sp + 8;
2969 cache->saved_regs[3].addr = unwound_sp + 12;
2970 cache->saved_regs[12].addr = unwound_sp + 16;
2971 cache->saved_regs[14].addr = unwound_sp + 20;
2972 cache->saved_regs[15].addr = unwound_sp + 24;
2973 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2974
2975 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2976 aligner between the top of the 32-byte stack frame and the
2977 previous context's stack pointer. */
2978 cache->prev_sp = unwound_sp + 32;
2979 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2980 && (xpsr & (1 << 9)) != 0)
2981 cache->prev_sp += 4;
2982
2983 return cache;
2984 }
2985
2986 /* Implementation of function hook 'this_id' in
2987 'struct frame_uwnind'. */
2988
2989 static void
2990 arm_m_exception_this_id (struct frame_info *this_frame,
2991 void **this_cache,
2992 struct frame_id *this_id)
2993 {
2994 struct arm_prologue_cache *cache;
2995
2996 if (*this_cache == NULL)
2997 *this_cache = arm_m_exception_cache (this_frame);
2998 cache = (struct arm_prologue_cache *) *this_cache;
2999
3000 /* Our frame ID for a stub frame is the current SP and LR. */
3001 *this_id = frame_id_build (cache->prev_sp,
3002 get_frame_pc (this_frame));
3003 }
3004
3005 /* Implementation of function hook 'prev_register' in
3006 'struct frame_uwnind'. */
3007
3008 static struct value *
3009 arm_m_exception_prev_register (struct frame_info *this_frame,
3010 void **this_cache,
3011 int prev_regnum)
3012 {
3013 struct arm_prologue_cache *cache;
3014
3015 if (*this_cache == NULL)
3016 *this_cache = arm_m_exception_cache (this_frame);
3017 cache = (struct arm_prologue_cache *) *this_cache;
3018
3019 /* The value was already reconstructed into PREV_SP. */
3020 if (prev_regnum == ARM_SP_REGNUM)
3021 return frame_unwind_got_constant (this_frame, prev_regnum,
3022 cache->prev_sp);
3023
3024 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3025 prev_regnum);
3026 }
3027
3028 /* Implementation of function hook 'sniffer' in
3029 'struct frame_uwnind'. */
3030
3031 static int
3032 arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3033 struct frame_info *this_frame,
3034 void **this_prologue_cache)
3035 {
3036 CORE_ADDR this_pc = get_frame_pc (this_frame);
3037
3038 /* No need to check is_m; this sniffer is only registered for
3039 M-profile architectures. */
3040
3041 /* Check if exception frame returns to a magic PC value. */
3042 return arm_m_addr_is_magic (this_pc);
3043 }
3044
3045 /* Frame unwinder for M-profile exceptions. */
3046
3047 struct frame_unwind arm_m_exception_unwind =
3048 {
3049 SIGTRAMP_FRAME,
3050 default_frame_unwind_stop_reason,
3051 arm_m_exception_this_id,
3052 arm_m_exception_prev_register,
3053 NULL,
3054 arm_m_exception_unwind_sniffer
3055 };
3056
3057 static CORE_ADDR
3058 arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
3059 {
3060 struct arm_prologue_cache *cache;
3061
3062 if (*this_cache == NULL)
3063 *this_cache = arm_make_prologue_cache (this_frame);
3064 cache = (struct arm_prologue_cache *) *this_cache;
3065
3066 return cache->prev_sp - cache->framesize;
3067 }
3068
3069 struct frame_base arm_normal_base = {
3070 &arm_prologue_unwind,
3071 arm_normal_frame_base,
3072 arm_normal_frame_base,
3073 arm_normal_frame_base
3074 };
3075
3076 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
3077 dummy frame. The frame ID's base needs to match the TOS value
3078 saved by save_dummy_frame_tos() and returned from
3079 arm_push_dummy_call, and the PC needs to match the dummy frame's
3080 breakpoint. */
3081
3082 static struct frame_id
3083 arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3084 {
3085 return frame_id_build (get_frame_register_unsigned (this_frame,
3086 ARM_SP_REGNUM),
3087 get_frame_pc (this_frame));
3088 }
3089
3090 /* Given THIS_FRAME, find the previous frame's resume PC (which will
3091 be used to construct the previous frame's ID, after looking up the
3092 containing function). */
3093
3094 static CORE_ADDR
3095 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3096 {
3097 CORE_ADDR pc;
3098 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
3099 return arm_addr_bits_remove (gdbarch, pc);
3100 }
3101
3102 static CORE_ADDR
3103 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3104 {
3105 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
3106 }
3107
3108 static struct value *
3109 arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3110 int regnum)
3111 {
3112 struct gdbarch * gdbarch = get_frame_arch (this_frame);
3113 CORE_ADDR lr, cpsr;
3114 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
3115
3116 switch (regnum)
3117 {
3118 case ARM_PC_REGNUM:
3119 /* The PC is normally copied from the return column, which
3120 describes saves of LR. However, that version may have an
3121 extra bit set to indicate Thumb state. The bit is not
3122 part of the PC. */
3123 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3124 return frame_unwind_got_constant (this_frame, regnum,
3125 arm_addr_bits_remove (gdbarch, lr));
3126
3127 case ARM_PS_REGNUM:
3128 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3129 cpsr = get_frame_register_unsigned (this_frame, regnum);
3130 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3131 if (IS_THUMB_ADDR (lr))
3132 cpsr |= t_bit;
3133 else
3134 cpsr &= ~t_bit;
3135 return frame_unwind_got_constant (this_frame, regnum, cpsr);
3136
3137 default:
3138 internal_error (__FILE__, __LINE__,
3139 _("Unexpected register %d"), regnum);
3140 }
3141 }
3142
3143 static void
3144 arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3145 struct dwarf2_frame_state_reg *reg,
3146 struct frame_info *this_frame)
3147 {
3148 switch (regnum)
3149 {
3150 case ARM_PC_REGNUM:
3151 case ARM_PS_REGNUM:
3152 reg->how = DWARF2_FRAME_REG_FN;
3153 reg->loc.fn = arm_dwarf2_prev_register;
3154 break;
3155 case ARM_SP_REGNUM:
3156 reg->how = DWARF2_FRAME_REG_CFA;
3157 break;
3158 }
3159 }
3160
3161 /* Implement the stack_frame_destroyed_p gdbarch method. */
3162
3163 static int
3164 thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3165 {
3166 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3167 unsigned int insn, insn2;
3168 int found_return = 0, found_stack_adjust = 0;
3169 CORE_ADDR func_start, func_end;
3170 CORE_ADDR scan_pc;
3171 gdb_byte buf[4];
3172
3173 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3174 return 0;
3175
3176 /* The epilogue is a sequence of instructions along the following lines:
3177
3178 - add stack frame size to SP or FP
3179 - [if frame pointer used] restore SP from FP
3180 - restore registers from SP [may include PC]
3181 - a return-type instruction [if PC wasn't already restored]
3182
3183 In a first pass, we scan forward from the current PC and verify the
3184 instructions we find as compatible with this sequence, ending in a
3185 return instruction.
3186
3187 However, this is not sufficient to distinguish indirect function calls
3188 within a function from indirect tail calls in the epilogue in some cases.
3189 Therefore, if we didn't already find any SP-changing instruction during
3190 forward scan, we add a backward scanning heuristic to ensure we actually
3191 are in the epilogue. */
3192
3193 scan_pc = pc;
3194 while (scan_pc < func_end && !found_return)
3195 {
3196 if (target_read_memory (scan_pc, buf, 2))
3197 break;
3198
3199 scan_pc += 2;
3200 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3201
3202 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3203 found_return = 1;
3204 else if (insn == 0x46f7) /* mov pc, lr */
3205 found_return = 1;
3206 else if (thumb_instruction_restores_sp (insn))
3207 {
3208 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
3209 found_return = 1;
3210 }
3211 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
3212 {
3213 if (target_read_memory (scan_pc, buf, 2))
3214 break;
3215
3216 scan_pc += 2;
3217 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3218
3219 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3220 {
3221 if (insn2 & 0x8000) /* <registers> include PC. */
3222 found_return = 1;
3223 }
3224 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3225 && (insn2 & 0x0fff) == 0x0b04)
3226 {
3227 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3228 found_return = 1;
3229 }
3230 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3231 && (insn2 & 0x0e00) == 0x0a00)
3232 ;
3233 else
3234 break;
3235 }
3236 else
3237 break;
3238 }
3239
3240 if (!found_return)
3241 return 0;
3242
3243 /* Since any instruction in the epilogue sequence, with the possible
3244 exception of return itself, updates the stack pointer, we need to
3245 scan backwards for at most one instruction. Try either a 16-bit or
3246 a 32-bit instruction. This is just a heuristic, so we do not worry
3247 too much about false positives. */
3248
3249 if (pc - 4 < func_start)
3250 return 0;
3251 if (target_read_memory (pc - 4, buf, 4))
3252 return 0;
3253
3254 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3255 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3256
3257 if (thumb_instruction_restores_sp (insn2))
3258 found_stack_adjust = 1;
3259 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3260 found_stack_adjust = 1;
3261 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3262 && (insn2 & 0x0fff) == 0x0b04)
3263 found_stack_adjust = 1;
3264 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3265 && (insn2 & 0x0e00) == 0x0a00)
3266 found_stack_adjust = 1;
3267
3268 return found_stack_adjust;
3269 }
3270
3271 static int
3272 arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
3273 {
3274 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3275 unsigned int insn;
3276 int found_return;
3277 CORE_ADDR func_start, func_end;
3278
3279 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3280 return 0;
3281
3282 /* We are in the epilogue if the previous instruction was a stack
3283 adjustment and the next instruction is a possible return (bx, mov
3284 pc, or pop). We could have to scan backwards to find the stack
3285 adjustment, or forwards to find the return, but this is a decent
3286 approximation. First scan forwards. */
3287
3288 found_return = 0;
3289 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3290 if (bits (insn, 28, 31) != INST_NV)
3291 {
3292 if ((insn & 0x0ffffff0) == 0x012fff10)
3293 /* BX. */
3294 found_return = 1;
3295 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3296 /* MOV PC. */
3297 found_return = 1;
3298 else if ((insn & 0x0fff0000) == 0x08bd0000
3299 && (insn & 0x0000c000) != 0)
3300 /* POP (LDMIA), including PC or LR. */
3301 found_return = 1;
3302 }
3303
3304 if (!found_return)
3305 return 0;
3306
3307 /* Scan backwards. This is just a heuristic, so do not worry about
3308 false positives from mode changes. */
3309
3310 if (pc < func_start + 4)
3311 return 0;
3312
3313 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3314 if (arm_instruction_restores_sp (insn))
3315 return 1;
3316
3317 return 0;
3318 }
3319
3320 /* Implement the stack_frame_destroyed_p gdbarch method. */
3321
3322 static int
3323 arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3324 {
3325 if (arm_pc_is_thumb (gdbarch, pc))
3326 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3327 else
3328 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3329 }
3330
3331 /* When arguments must be pushed onto the stack, they go on in reverse
3332 order. The code below implements a FILO (stack) to do this. */
3333
3334 struct stack_item
3335 {
3336 int len;
3337 struct stack_item *prev;
3338 gdb_byte *data;
3339 };
3340
3341 static struct stack_item *
3342 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
3343 {
3344 struct stack_item *si;
3345 si = XNEW (struct stack_item);
3346 si->data = (gdb_byte *) xmalloc (len);
3347 si->len = len;
3348 si->prev = prev;
3349 memcpy (si->data, contents, len);
3350 return si;
3351 }
3352
3353 static struct stack_item *
3354 pop_stack_item (struct stack_item *si)
3355 {
3356 struct stack_item *dead = si;
3357 si = si->prev;
3358 xfree (dead->data);
3359 xfree (dead);
3360 return si;
3361 }
3362
3363
3364 /* Return the alignment (in bytes) of the given type. */
3365
3366 static int
3367 arm_type_align (struct type *t)
3368 {
3369 int n;
3370 int align;
3371 int falign;
3372
3373 t = check_typedef (t);
3374 switch (TYPE_CODE (t))
3375 {
3376 default:
3377 /* Should never happen. */
3378 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3379 return 4;
3380
3381 case TYPE_CODE_PTR:
3382 case TYPE_CODE_ENUM:
3383 case TYPE_CODE_INT:
3384 case TYPE_CODE_FLT:
3385 case TYPE_CODE_SET:
3386 case TYPE_CODE_RANGE:
3387 case TYPE_CODE_REF:
3388 case TYPE_CODE_CHAR:
3389 case TYPE_CODE_BOOL:
3390 return TYPE_LENGTH (t);
3391
3392 case TYPE_CODE_ARRAY:
3393 if (TYPE_VECTOR (t))
3394 {
3395 /* Use the natural alignment for vector types (the same for
3396 scalar type), but the maximum alignment is 64-bit. */
3397 if (TYPE_LENGTH (t) > 8)
3398 return 8;
3399 else
3400 return TYPE_LENGTH (t);
3401 }
3402 else
3403 return arm_type_align (TYPE_TARGET_TYPE (t));
3404 case TYPE_CODE_COMPLEX:
3405 return arm_type_align (TYPE_TARGET_TYPE (t));
3406
3407 case TYPE_CODE_STRUCT:
3408 case TYPE_CODE_UNION:
3409 align = 1;
3410 for (n = 0; n < TYPE_NFIELDS (t); n++)
3411 {
3412 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3413 if (falign > align)
3414 align = falign;
3415 }
3416 return align;
3417 }
3418 }
3419
3420 /* Possible base types for a candidate for passing and returning in
3421 VFP registers. */
3422
3423 enum arm_vfp_cprc_base_type
3424 {
3425 VFP_CPRC_UNKNOWN,
3426 VFP_CPRC_SINGLE,
3427 VFP_CPRC_DOUBLE,
3428 VFP_CPRC_VEC64,
3429 VFP_CPRC_VEC128
3430 };
3431
3432 /* The length of one element of base type B. */
3433
3434 static unsigned
3435 arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3436 {
3437 switch (b)
3438 {
3439 case VFP_CPRC_SINGLE:
3440 return 4;
3441 case VFP_CPRC_DOUBLE:
3442 return 8;
3443 case VFP_CPRC_VEC64:
3444 return 8;
3445 case VFP_CPRC_VEC128:
3446 return 16;
3447 default:
3448 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3449 (int) b);
3450 }
3451 }
3452
3453 /* The character ('s', 'd' or 'q') for the type of VFP register used
3454 for passing base type B. */
3455
3456 static int
3457 arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3458 {
3459 switch (b)
3460 {
3461 case VFP_CPRC_SINGLE:
3462 return 's';
3463 case VFP_CPRC_DOUBLE:
3464 return 'd';
3465 case VFP_CPRC_VEC64:
3466 return 'd';
3467 case VFP_CPRC_VEC128:
3468 return 'q';
3469 default:
3470 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3471 (int) b);
3472 }
3473 }
3474
3475 /* Determine whether T may be part of a candidate for passing and
3476 returning in VFP registers, ignoring the limit on the total number
3477 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3478 classification of the first valid component found; if it is not
3479 VFP_CPRC_UNKNOWN, all components must have the same classification
3480 as *BASE_TYPE. If it is found that T contains a type not permitted
3481 for passing and returning in VFP registers, a type differently
3482 classified from *BASE_TYPE, or two types differently classified
3483 from each other, return -1, otherwise return the total number of
3484 base-type elements found (possibly 0 in an empty structure or
3485 array). Vector types are not currently supported, matching the
3486 generic AAPCS support. */
3487
3488 static int
3489 arm_vfp_cprc_sub_candidate (struct type *t,
3490 enum arm_vfp_cprc_base_type *base_type)
3491 {
3492 t = check_typedef (t);
3493 switch (TYPE_CODE (t))
3494 {
3495 case TYPE_CODE_FLT:
3496 switch (TYPE_LENGTH (t))
3497 {
3498 case 4:
3499 if (*base_type == VFP_CPRC_UNKNOWN)
3500 *base_type = VFP_CPRC_SINGLE;
3501 else if (*base_type != VFP_CPRC_SINGLE)
3502 return -1;
3503 return 1;
3504
3505 case 8:
3506 if (*base_type == VFP_CPRC_UNKNOWN)
3507 *base_type = VFP_CPRC_DOUBLE;
3508 else if (*base_type != VFP_CPRC_DOUBLE)
3509 return -1;
3510 return 1;
3511
3512 default:
3513 return -1;
3514 }
3515 break;
3516
3517 case TYPE_CODE_COMPLEX:
3518 /* Arguments of complex T where T is one of the types float or
3519 double get treated as if they are implemented as:
3520
3521 struct complexT
3522 {
3523 T real;
3524 T imag;
3525 };
3526
3527 */
3528 switch (TYPE_LENGTH (t))
3529 {
3530 case 8:
3531 if (*base_type == VFP_CPRC_UNKNOWN)
3532 *base_type = VFP_CPRC_SINGLE;
3533 else if (*base_type != VFP_CPRC_SINGLE)
3534 return -1;
3535 return 2;
3536
3537 case 16:
3538 if (*base_type == VFP_CPRC_UNKNOWN)
3539 *base_type = VFP_CPRC_DOUBLE;
3540 else if (*base_type != VFP_CPRC_DOUBLE)
3541 return -1;
3542 return 2;
3543
3544 default:
3545 return -1;
3546 }
3547 break;
3548
3549 case TYPE_CODE_ARRAY:
3550 {
3551 if (TYPE_VECTOR (t))
3552 {
3553 /* A 64-bit or 128-bit containerized vector type are VFP
3554 CPRCs. */
3555 switch (TYPE_LENGTH (t))
3556 {
3557 case 8:
3558 if (*base_type == VFP_CPRC_UNKNOWN)
3559 *base_type = VFP_CPRC_VEC64;
3560 return 1;
3561 case 16:
3562 if (*base_type == VFP_CPRC_UNKNOWN)
3563 *base_type = VFP_CPRC_VEC128;
3564 return 1;
3565 default:
3566 return -1;
3567 }
3568 }
3569 else
3570 {
3571 int count;
3572 unsigned unitlen;
3573
3574 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3575 base_type);
3576 if (count == -1)
3577 return -1;
3578 if (TYPE_LENGTH (t) == 0)
3579 {
3580 gdb_assert (count == 0);
3581 return 0;
3582 }
3583 else if (count == 0)
3584 return -1;
3585 unitlen = arm_vfp_cprc_unit_length (*base_type);
3586 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3587 return TYPE_LENGTH (t) / unitlen;
3588 }
3589 }
3590 break;
3591
3592 case TYPE_CODE_STRUCT:
3593 {
3594 int count = 0;
3595 unsigned unitlen;
3596 int i;
3597 for (i = 0; i < TYPE_NFIELDS (t); i++)
3598 {
3599 int sub_count = 0;
3600
3601 if (!field_is_static (&TYPE_FIELD (t, i)))
3602 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3603 base_type);
3604 if (sub_count == -1)
3605 return -1;
3606 count += sub_count;
3607 }
3608 if (TYPE_LENGTH (t) == 0)
3609 {
3610 gdb_assert (count == 0);
3611 return 0;
3612 }
3613 else if (count == 0)
3614 return -1;
3615 unitlen = arm_vfp_cprc_unit_length (*base_type);
3616 if (TYPE_LENGTH (t) != unitlen * count)
3617 return -1;
3618 return count;
3619 }
3620
3621 case TYPE_CODE_UNION:
3622 {
3623 int count = 0;
3624 unsigned unitlen;
3625 int i;
3626 for (i = 0; i < TYPE_NFIELDS (t); i++)
3627 {
3628 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3629 base_type);
3630 if (sub_count == -1)
3631 return -1;
3632 count = (count > sub_count ? count : sub_count);
3633 }
3634 if (TYPE_LENGTH (t) == 0)
3635 {
3636 gdb_assert (count == 0);
3637 return 0;
3638 }
3639 else if (count == 0)
3640 return -1;
3641 unitlen = arm_vfp_cprc_unit_length (*base_type);
3642 if (TYPE_LENGTH (t) != unitlen * count)
3643 return -1;
3644 return count;
3645 }
3646
3647 default:
3648 break;
3649 }
3650
3651 return -1;
3652 }
3653
3654 /* Determine whether T is a VFP co-processor register candidate (CPRC)
3655 if passed to or returned from a non-variadic function with the VFP
3656 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3657 *BASE_TYPE to the base type for T and *COUNT to the number of
3658 elements of that base type before returning. */
3659
3660 static int
3661 arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3662 int *count)
3663 {
3664 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3665 int c = arm_vfp_cprc_sub_candidate (t, &b);
3666 if (c <= 0 || c > 4)
3667 return 0;
3668 *base_type = b;
3669 *count = c;
3670 return 1;
3671 }
3672
3673 /* Return 1 if the VFP ABI should be used for passing arguments to and
3674 returning values from a function of type FUNC_TYPE, 0
3675 otherwise. */
3676
3677 static int
3678 arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3679 {
3680 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3681 /* Variadic functions always use the base ABI. Assume that functions
3682 without debug info are not variadic. */
3683 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3684 return 0;
3685 /* The VFP ABI is only supported as a variant of AAPCS. */
3686 if (tdep->arm_abi != ARM_ABI_AAPCS)
3687 return 0;
3688 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3689 }
3690
3691 /* We currently only support passing parameters in integer registers, which
3692 conforms with GCC's default model, and VFP argument passing following
3693 the VFP variant of AAPCS. Several other variants exist and
3694 we should probably support some of them based on the selected ABI. */
3695
3696 static CORE_ADDR
3697 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3698 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3699 struct value **args, CORE_ADDR sp, int struct_return,
3700 CORE_ADDR struct_addr)
3701 {
3702 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3703 int argnum;
3704 int argreg;
3705 int nstack;
3706 struct stack_item *si = NULL;
3707 int use_vfp_abi;
3708 struct type *ftype;
3709 unsigned vfp_regs_free = (1 << 16) - 1;
3710
3711 /* Determine the type of this function and whether the VFP ABI
3712 applies. */
3713 ftype = check_typedef (value_type (function));
3714 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3715 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3716 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
3717
3718 /* Set the return address. For the ARM, the return breakpoint is
3719 always at BP_ADDR. */
3720 if (arm_pc_is_thumb (gdbarch, bp_addr))
3721 bp_addr |= 1;
3722 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
3723
3724 /* Walk through the list of args and determine how large a temporary
3725 stack is required. Need to take care here as structs may be
3726 passed on the stack, and we have to push them. */
3727 nstack = 0;
3728
3729 argreg = ARM_A1_REGNUM;
3730 nstack = 0;
3731
3732 /* The struct_return pointer occupies the first parameter
3733 passing register. */
3734 if (struct_return)
3735 {
3736 if (arm_debug)
3737 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
3738 gdbarch_register_name (gdbarch, argreg),
3739 paddress (gdbarch, struct_addr));
3740 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3741 argreg++;
3742 }
3743
3744 for (argnum = 0; argnum < nargs; argnum++)
3745 {
3746 int len;
3747 struct type *arg_type;
3748 struct type *target_type;
3749 enum type_code typecode;
3750 const bfd_byte *val;
3751 int align;
3752 enum arm_vfp_cprc_base_type vfp_base_type;
3753 int vfp_base_count;
3754 int may_use_core_reg = 1;
3755
3756 arg_type = check_typedef (value_type (args[argnum]));
3757 len = TYPE_LENGTH (arg_type);
3758 target_type = TYPE_TARGET_TYPE (arg_type);
3759 typecode = TYPE_CODE (arg_type);
3760 val = value_contents (args[argnum]);
3761
3762 align = arm_type_align (arg_type);
3763 /* Round alignment up to a whole number of words. */
3764 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3765 /* Different ABIs have different maximum alignments. */
3766 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3767 {
3768 /* The APCS ABI only requires word alignment. */
3769 align = INT_REGISTER_SIZE;
3770 }
3771 else
3772 {
3773 /* The AAPCS requires at most doubleword alignment. */
3774 if (align > INT_REGISTER_SIZE * 2)
3775 align = INT_REGISTER_SIZE * 2;
3776 }
3777
3778 if (use_vfp_abi
3779 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3780 &vfp_base_count))
3781 {
3782 int regno;
3783 int unit_length;
3784 int shift;
3785 unsigned mask;
3786
3787 /* Because this is a CPRC it cannot go in a core register or
3788 cause a core register to be skipped for alignment.
3789 Either it goes in VFP registers and the rest of this loop
3790 iteration is skipped for this argument, or it goes on the
3791 stack (and the stack alignment code is correct for this
3792 case). */
3793 may_use_core_reg = 0;
3794
3795 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3796 shift = unit_length / 4;
3797 mask = (1 << (shift * vfp_base_count)) - 1;
3798 for (regno = 0; regno < 16; regno += shift)
3799 if (((vfp_regs_free >> regno) & mask) == mask)
3800 break;
3801
3802 if (regno < 16)
3803 {
3804 int reg_char;
3805 int reg_scaled;
3806 int i;
3807
3808 vfp_regs_free &= ~(mask << regno);
3809 reg_scaled = regno / shift;
3810 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3811 for (i = 0; i < vfp_base_count; i++)
3812 {
3813 char name_buf[4];
3814 int regnum;
3815 if (reg_char == 'q')
3816 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
3817 val + i * unit_length);
3818 else
3819 {
3820 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3821 reg_char, reg_scaled + i);
3822 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3823 strlen (name_buf));
3824 regcache_cooked_write (regcache, regnum,
3825 val + i * unit_length);
3826 }
3827 }
3828 continue;
3829 }
3830 else
3831 {
3832 /* This CPRC could not go in VFP registers, so all VFP
3833 registers are now marked as used. */
3834 vfp_regs_free = 0;
3835 }
3836 }
3837
3838 /* Push stack padding for dowubleword alignment. */
3839 if (nstack & (align - 1))
3840 {
3841 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3842 nstack += INT_REGISTER_SIZE;
3843 }
3844
3845 /* Doubleword aligned quantities must go in even register pairs. */
3846 if (may_use_core_reg
3847 && argreg <= ARM_LAST_ARG_REGNUM
3848 && align > INT_REGISTER_SIZE
3849 && argreg & 1)
3850 argreg++;
3851
3852 /* If the argument is a pointer to a function, and it is a
3853 Thumb function, create a LOCAL copy of the value and set
3854 the THUMB bit in it. */
3855 if (TYPE_CODE_PTR == typecode
3856 && target_type != NULL
3857 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
3858 {
3859 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
3860 if (arm_pc_is_thumb (gdbarch, regval))
3861 {
3862 bfd_byte *copy = (bfd_byte *) alloca (len);
3863 store_unsigned_integer (copy, len, byte_order,
3864 MAKE_THUMB_ADDR (regval));
3865 val = copy;
3866 }
3867 }
3868
3869 /* Copy the argument to general registers or the stack in
3870 register-sized pieces. Large arguments are split between
3871 registers and stack. */
3872 while (len > 0)
3873 {
3874 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
3875 CORE_ADDR regval
3876 = extract_unsigned_integer (val, partial_len, byte_order);
3877
3878 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
3879 {
3880 /* The argument is being passed in a general purpose
3881 register. */
3882 if (byte_order == BFD_ENDIAN_BIG)
3883 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
3884 if (arm_debug)
3885 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
3886 argnum,
3887 gdbarch_register_name
3888 (gdbarch, argreg),
3889 phex (regval, INT_REGISTER_SIZE));
3890 regcache_cooked_write_unsigned (regcache, argreg, regval);
3891 argreg++;
3892 }
3893 else
3894 {
3895 gdb_byte buf[INT_REGISTER_SIZE];
3896
3897 memset (buf, 0, sizeof (buf));
3898 store_unsigned_integer (buf, partial_len, byte_order, regval);
3899
3900 /* Push the arguments onto the stack. */
3901 if (arm_debug)
3902 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3903 argnum, nstack);
3904 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
3905 nstack += INT_REGISTER_SIZE;
3906 }
3907
3908 len -= partial_len;
3909 val += partial_len;
3910 }
3911 }
3912 /* If we have an odd number of words to push, then decrement the stack
3913 by one word now, so first stack argument will be dword aligned. */
3914 if (nstack & 4)
3915 sp -= 4;
3916
3917 while (si)
3918 {
3919 sp -= si->len;
3920 write_memory (sp, si->data, si->len);
3921 si = pop_stack_item (si);
3922 }
3923
3924 /* Finally, update teh SP register. */
3925 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3926
3927 return sp;
3928 }
3929
3930
3931 /* Always align the frame to an 8-byte boundary. This is required on
3932 some platforms and harmless on the rest. */
3933
3934 static CORE_ADDR
3935 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3936 {
3937 /* Align the stack to eight bytes. */
3938 return sp & ~ (CORE_ADDR) 7;
3939 }
3940
3941 static void
3942 print_fpu_flags (struct ui_file *file, int flags)
3943 {
3944 if (flags & (1 << 0))
3945 fputs_filtered ("IVO ", file);
3946 if (flags & (1 << 1))
3947 fputs_filtered ("DVZ ", file);
3948 if (flags & (1 << 2))
3949 fputs_filtered ("OFL ", file);
3950 if (flags & (1 << 3))
3951 fputs_filtered ("UFL ", file);
3952 if (flags & (1 << 4))
3953 fputs_filtered ("INX ", file);
3954 fputc_filtered ('\n', file);
3955 }
3956
3957 /* Print interesting information about the floating point processor
3958 (if present) or emulator. */
3959 static void
3960 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
3961 struct frame_info *frame, const char *args)
3962 {
3963 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
3964 int type;
3965
3966 type = (status >> 24) & 127;
3967 if (status & (1 << 31))
3968 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
3969 else
3970 fprintf_filtered (file, _("Software FPU type %d\n"), type);
3971 /* i18n: [floating point unit] mask */
3972 fputs_filtered (_("mask: "), file);
3973 print_fpu_flags (file, status >> 16);
3974 /* i18n: [floating point unit] flags */
3975 fputs_filtered (_("flags: "), file);
3976 print_fpu_flags (file, status);
3977 }
3978
3979 /* Construct the ARM extended floating point type. */
3980 static struct type *
3981 arm_ext_type (struct gdbarch *gdbarch)
3982 {
3983 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3984
3985 if (!tdep->arm_ext_type)
3986 tdep->arm_ext_type
3987 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
3988 floatformats_arm_ext);
3989
3990 return tdep->arm_ext_type;
3991 }
3992
3993 static struct type *
3994 arm_neon_double_type (struct gdbarch *gdbarch)
3995 {
3996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3997
3998 if (tdep->neon_double_type == NULL)
3999 {
4000 struct type *t, *elem;
4001
4002 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4003 TYPE_CODE_UNION);
4004 elem = builtin_type (gdbarch)->builtin_uint8;
4005 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4006 elem = builtin_type (gdbarch)->builtin_uint16;
4007 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4008 elem = builtin_type (gdbarch)->builtin_uint32;
4009 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4010 elem = builtin_type (gdbarch)->builtin_uint64;
4011 append_composite_type_field (t, "u64", elem);
4012 elem = builtin_type (gdbarch)->builtin_float;
4013 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4014 elem = builtin_type (gdbarch)->builtin_double;
4015 append_composite_type_field (t, "f64", elem);
4016
4017 TYPE_VECTOR (t) = 1;
4018 TYPE_NAME (t) = "neon_d";
4019 tdep->neon_double_type = t;
4020 }
4021
4022 return tdep->neon_double_type;
4023 }
4024
4025 /* FIXME: The vector types are not correctly ordered on big-endian
4026 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4027 bits of d0 - regardless of what unit size is being held in d0. So
4028 the offset of the first uint8 in d0 is 7, but the offset of the
4029 first float is 4. This code works as-is for little-endian
4030 targets. */
4031
4032 static struct type *
4033 arm_neon_quad_type (struct gdbarch *gdbarch)
4034 {
4035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4036
4037 if (tdep->neon_quad_type == NULL)
4038 {
4039 struct type *t, *elem;
4040
4041 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4042 TYPE_CODE_UNION);
4043 elem = builtin_type (gdbarch)->builtin_uint8;
4044 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4045 elem = builtin_type (gdbarch)->builtin_uint16;
4046 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4047 elem = builtin_type (gdbarch)->builtin_uint32;
4048 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4049 elem = builtin_type (gdbarch)->builtin_uint64;
4050 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4051 elem = builtin_type (gdbarch)->builtin_float;
4052 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4053 elem = builtin_type (gdbarch)->builtin_double;
4054 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4055
4056 TYPE_VECTOR (t) = 1;
4057 TYPE_NAME (t) = "neon_q";
4058 tdep->neon_quad_type = t;
4059 }
4060
4061 return tdep->neon_quad_type;
4062 }
4063
4064 /* Return the GDB type object for the "standard" data type of data in
4065 register N. */
4066
4067 static struct type *
4068 arm_register_type (struct gdbarch *gdbarch, int regnum)
4069 {
4070 int num_regs = gdbarch_num_regs (gdbarch);
4071
4072 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4073 && regnum >= num_regs && regnum < num_regs + 32)
4074 return builtin_type (gdbarch)->builtin_float;
4075
4076 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4077 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4078 return arm_neon_quad_type (gdbarch);
4079
4080 /* If the target description has register information, we are only
4081 in this function so that we can override the types of
4082 double-precision registers for NEON. */
4083 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4084 {
4085 struct type *t = tdesc_register_type (gdbarch, regnum);
4086
4087 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4088 && TYPE_CODE (t) == TYPE_CODE_FLT
4089 && gdbarch_tdep (gdbarch)->have_neon)
4090 return arm_neon_double_type (gdbarch);
4091 else
4092 return t;
4093 }
4094
4095 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
4096 {
4097 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4098 return builtin_type (gdbarch)->builtin_void;
4099
4100 return arm_ext_type (gdbarch);
4101 }
4102 else if (regnum == ARM_SP_REGNUM)
4103 return builtin_type (gdbarch)->builtin_data_ptr;
4104 else if (regnum == ARM_PC_REGNUM)
4105 return builtin_type (gdbarch)->builtin_func_ptr;
4106 else if (regnum >= ARRAY_SIZE (arm_register_names))
4107 /* These registers are only supported on targets which supply
4108 an XML description. */
4109 return builtin_type (gdbarch)->builtin_int0;
4110 else
4111 return builtin_type (gdbarch)->builtin_uint32;
4112 }
4113
4114 /* Map a DWARF register REGNUM onto the appropriate GDB register
4115 number. */
4116
4117 static int
4118 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
4119 {
4120 /* Core integer regs. */
4121 if (reg >= 0 && reg <= 15)
4122 return reg;
4123
4124 /* Legacy FPA encoding. These were once used in a way which
4125 overlapped with VFP register numbering, so their use is
4126 discouraged, but GDB doesn't support the ARM toolchain
4127 which used them for VFP. */
4128 if (reg >= 16 && reg <= 23)
4129 return ARM_F0_REGNUM + reg - 16;
4130
4131 /* New assignments for the FPA registers. */
4132 if (reg >= 96 && reg <= 103)
4133 return ARM_F0_REGNUM + reg - 96;
4134
4135 /* WMMX register assignments. */
4136 if (reg >= 104 && reg <= 111)
4137 return ARM_WCGR0_REGNUM + reg - 104;
4138
4139 if (reg >= 112 && reg <= 127)
4140 return ARM_WR0_REGNUM + reg - 112;
4141
4142 if (reg >= 192 && reg <= 199)
4143 return ARM_WC0_REGNUM + reg - 192;
4144
4145 /* VFP v2 registers. A double precision value is actually
4146 in d1 rather than s2, but the ABI only defines numbering
4147 for the single precision registers. This will "just work"
4148 in GDB for little endian targets (we'll read eight bytes,
4149 starting in s0 and then progressing to s1), but will be
4150 reversed on big endian targets with VFP. This won't
4151 be a problem for the new Neon quad registers; you're supposed
4152 to use DW_OP_piece for those. */
4153 if (reg >= 64 && reg <= 95)
4154 {
4155 char name_buf[4];
4156
4157 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
4158 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4159 strlen (name_buf));
4160 }
4161
4162 /* VFP v3 / Neon registers. This range is also used for VFP v2
4163 registers, except that it now describes d0 instead of s0. */
4164 if (reg >= 256 && reg <= 287)
4165 {
4166 char name_buf[4];
4167
4168 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
4169 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4170 strlen (name_buf));
4171 }
4172
4173 return -1;
4174 }
4175
4176 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4177 static int
4178 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
4179 {
4180 int reg = regnum;
4181 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
4182
4183 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4184 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4185
4186 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4187 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4188
4189 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4190 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4191
4192 if (reg < NUM_GREGS)
4193 return SIM_ARM_R0_REGNUM + reg;
4194 reg -= NUM_GREGS;
4195
4196 if (reg < NUM_FREGS)
4197 return SIM_ARM_FP0_REGNUM + reg;
4198 reg -= NUM_FREGS;
4199
4200 if (reg < NUM_SREGS)
4201 return SIM_ARM_FPS_REGNUM + reg;
4202 reg -= NUM_SREGS;
4203
4204 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
4205 }
4206
4207 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4208 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4209 It is thought that this is is the floating-point register format on
4210 little-endian systems. */
4211
4212 static void
4213 convert_from_extended (const struct floatformat *fmt, const void *ptr,
4214 void *dbl, int endianess)
4215 {
4216 DOUBLEST d;
4217
4218 if (endianess == BFD_ENDIAN_BIG)
4219 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4220 else
4221 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4222 ptr, &d);
4223 floatformat_from_doublest (fmt, &d, dbl);
4224 }
4225
4226 static void
4227 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4228 int endianess)
4229 {
4230 DOUBLEST d;
4231
4232 floatformat_to_doublest (fmt, ptr, &d);
4233 if (endianess == BFD_ENDIAN_BIG)
4234 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4235 else
4236 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4237 &d, dbl);
4238 }
4239
4240 /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4241 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4242 NULL if an error occurs. BUF is freed. */
4243
4244 static gdb_byte *
4245 extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4246 int old_len, int new_len)
4247 {
4248 gdb_byte *new_buf;
4249 int bytes_to_read = new_len - old_len;
4250
4251 new_buf = (gdb_byte *) xmalloc (new_len);
4252 memcpy (new_buf + bytes_to_read, buf, old_len);
4253 xfree (buf);
4254 if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0)
4255 {
4256 xfree (new_buf);
4257 return NULL;
4258 }
4259 return new_buf;
4260 }
4261
4262 /* An IT block is at most the 2-byte IT instruction followed by
4263 four 4-byte instructions. The furthest back we must search to
4264 find an IT block that affects the current instruction is thus
4265 2 + 3 * 4 == 14 bytes. */
4266 #define MAX_IT_BLOCK_PREFIX 14
4267
4268 /* Use a quick scan if there are more than this many bytes of
4269 code. */
4270 #define IT_SCAN_THRESHOLD 32
4271
4272 /* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4273 A breakpoint in an IT block may not be hit, depending on the
4274 condition flags. */
4275 static CORE_ADDR
4276 arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4277 {
4278 gdb_byte *buf;
4279 char map_type;
4280 CORE_ADDR boundary, func_start;
4281 int buf_len;
4282 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4283 int i, any, last_it, last_it_count;
4284
4285 /* If we are using BKPT breakpoints, none of this is necessary. */
4286 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4287 return bpaddr;
4288
4289 /* ARM mode does not have this problem. */
4290 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4291 return bpaddr;
4292
4293 /* We are setting a breakpoint in Thumb code that could potentially
4294 contain an IT block. The first step is to find how much Thumb
4295 code there is; we do not need to read outside of known Thumb
4296 sequences. */
4297 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4298 if (map_type == 0)
4299 /* Thumb-2 code must have mapping symbols to have a chance. */
4300 return bpaddr;
4301
4302 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4303
4304 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4305 && func_start > boundary)
4306 boundary = func_start;
4307
4308 /* Search for a candidate IT instruction. We have to do some fancy
4309 footwork to distinguish a real IT instruction from the second
4310 half of a 32-bit instruction, but there is no need for that if
4311 there's no candidate. */
4312 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
4313 if (buf_len == 0)
4314 /* No room for an IT instruction. */
4315 return bpaddr;
4316
4317 buf = (gdb_byte *) xmalloc (buf_len);
4318 if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0)
4319 return bpaddr;
4320 any = 0;
4321 for (i = 0; i < buf_len; i += 2)
4322 {
4323 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4324 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4325 {
4326 any = 1;
4327 break;
4328 }
4329 }
4330
4331 if (any == 0)
4332 {
4333 xfree (buf);
4334 return bpaddr;
4335 }
4336
4337 /* OK, the code bytes before this instruction contain at least one
4338 halfword which resembles an IT instruction. We know that it's
4339 Thumb code, but there are still two possibilities. Either the
4340 halfword really is an IT instruction, or it is the second half of
4341 a 32-bit Thumb instruction. The only way we can tell is to
4342 scan forwards from a known instruction boundary. */
4343 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4344 {
4345 int definite;
4346
4347 /* There's a lot of code before this instruction. Start with an
4348 optimistic search; it's easy to recognize halfwords that can
4349 not be the start of a 32-bit instruction, and use that to
4350 lock on to the instruction boundaries. */
4351 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4352 if (buf == NULL)
4353 return bpaddr;
4354 buf_len = IT_SCAN_THRESHOLD;
4355
4356 definite = 0;
4357 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4358 {
4359 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4360 if (thumb_insn_size (inst1) == 2)
4361 {
4362 definite = 1;
4363 break;
4364 }
4365 }
4366
4367 /* At this point, if DEFINITE, BUF[I] is the first place we
4368 are sure that we know the instruction boundaries, and it is far
4369 enough from BPADDR that we could not miss an IT instruction
4370 affecting BPADDR. If ! DEFINITE, give up - start from a
4371 known boundary. */
4372 if (! definite)
4373 {
4374 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4375 bpaddr - boundary);
4376 if (buf == NULL)
4377 return bpaddr;
4378 buf_len = bpaddr - boundary;
4379 i = 0;
4380 }
4381 }
4382 else
4383 {
4384 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4385 if (buf == NULL)
4386 return bpaddr;
4387 buf_len = bpaddr - boundary;
4388 i = 0;
4389 }
4390
4391 /* Scan forwards. Find the last IT instruction before BPADDR. */
4392 last_it = -1;
4393 last_it_count = 0;
4394 while (i < buf_len)
4395 {
4396 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4397 last_it_count--;
4398 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4399 {
4400 last_it = i;
4401 if (inst1 & 0x0001)
4402 last_it_count = 4;
4403 else if (inst1 & 0x0002)
4404 last_it_count = 3;
4405 else if (inst1 & 0x0004)
4406 last_it_count = 2;
4407 else
4408 last_it_count = 1;
4409 }
4410 i += thumb_insn_size (inst1);
4411 }
4412
4413 xfree (buf);
4414
4415 if (last_it == -1)
4416 /* There wasn't really an IT instruction after all. */
4417 return bpaddr;
4418
4419 if (last_it_count < 1)
4420 /* It was too far away. */
4421 return bpaddr;
4422
4423 /* This really is a trouble spot. Move the breakpoint to the IT
4424 instruction. */
4425 return bpaddr - buf_len + last_it;
4426 }
4427
4428 /* ARM displaced stepping support.
4429
4430 Generally ARM displaced stepping works as follows:
4431
4432 1. When an instruction is to be single-stepped, it is first decoded by
4433 arm_process_displaced_insn. Depending on the type of instruction, it is
4434 then copied to a scratch location, possibly in a modified form. The
4435 copy_* set of functions performs such modification, as necessary. A
4436 breakpoint is placed after the modified instruction in the scratch space
4437 to return control to GDB. Note in particular that instructions which
4438 modify the PC will no longer do so after modification.
4439
4440 2. The instruction is single-stepped, by setting the PC to the scratch
4441 location address, and resuming. Control returns to GDB when the
4442 breakpoint is hit.
4443
4444 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4445 function used for the current instruction. This function's job is to
4446 put the CPU/memory state back to what it would have been if the
4447 instruction had been executed unmodified in its original location. */
4448
4449 /* NOP instruction (mov r0, r0). */
4450 #define ARM_NOP 0xe1a00000
4451 #define THUMB_NOP 0x4600
4452
4453 /* Helper for register reads for displaced stepping. In particular, this
4454 returns the PC as it would be seen by the instruction at its original
4455 location. */
4456
4457 ULONGEST
4458 displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4459 int regno)
4460 {
4461 ULONGEST ret;
4462 CORE_ADDR from = dsc->insn_addr;
4463
4464 if (regno == ARM_PC_REGNUM)
4465 {
4466 /* Compute pipeline offset:
4467 - When executing an ARM instruction, PC reads as the address of the
4468 current instruction plus 8.
4469 - When executing a Thumb instruction, PC reads as the address of the
4470 current instruction plus 4. */
4471
4472 if (!dsc->is_thumb)
4473 from += 8;
4474 else
4475 from += 4;
4476
4477 if (debug_displaced)
4478 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4479 (unsigned long) from);
4480 return (ULONGEST) from;
4481 }
4482 else
4483 {
4484 regcache_cooked_read_unsigned (regs, regno, &ret);
4485 if (debug_displaced)
4486 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4487 regno, (unsigned long) ret);
4488 return ret;
4489 }
4490 }
4491
4492 static int
4493 displaced_in_arm_mode (struct regcache *regs)
4494 {
4495 ULONGEST ps;
4496 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4497
4498 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4499
4500 return (ps & t_bit) == 0;
4501 }
4502
4503 /* Write to the PC as from a branch instruction. */
4504
4505 static void
4506 branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4507 ULONGEST val)
4508 {
4509 if (!dsc->is_thumb)
4510 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4511 architecture versions < 6. */
4512 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4513 val & ~(ULONGEST) 0x3);
4514 else
4515 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4516 val & ~(ULONGEST) 0x1);
4517 }
4518
4519 /* Write to the PC as from a branch-exchange instruction. */
4520
4521 static void
4522 bx_write_pc (struct regcache *regs, ULONGEST val)
4523 {
4524 ULONGEST ps;
4525 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4526
4527 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4528
4529 if ((val & 1) == 1)
4530 {
4531 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
4532 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4533 }
4534 else if ((val & 2) == 0)
4535 {
4536 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4537 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
4538 }
4539 else
4540 {
4541 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4542 mode, align dest to 4 bytes). */
4543 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
4544 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4545 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
4546 }
4547 }
4548
4549 /* Write to the PC as if from a load instruction. */
4550
4551 static void
4552 load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4553 ULONGEST val)
4554 {
4555 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4556 bx_write_pc (regs, val);
4557 else
4558 branch_write_pc (regs, dsc, val);
4559 }
4560
4561 /* Write to the PC as if from an ALU instruction. */
4562
4563 static void
4564 alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4565 ULONGEST val)
4566 {
4567 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
4568 bx_write_pc (regs, val);
4569 else
4570 branch_write_pc (regs, dsc, val);
4571 }
4572
4573 /* Helper for writing to registers for displaced stepping. Writing to the PC
4574 has a varying effects depending on the instruction which does the write:
4575 this is controlled by the WRITE_PC argument. */
4576
4577 void
4578 displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4579 int regno, ULONGEST val, enum pc_write_style write_pc)
4580 {
4581 if (regno == ARM_PC_REGNUM)
4582 {
4583 if (debug_displaced)
4584 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4585 (unsigned long) val);
4586 switch (write_pc)
4587 {
4588 case BRANCH_WRITE_PC:
4589 branch_write_pc (regs, dsc, val);
4590 break;
4591
4592 case BX_WRITE_PC:
4593 bx_write_pc (regs, val);
4594 break;
4595
4596 case LOAD_WRITE_PC:
4597 load_write_pc (regs, dsc, val);
4598 break;
4599
4600 case ALU_WRITE_PC:
4601 alu_write_pc (regs, dsc, val);
4602 break;
4603
4604 case CANNOT_WRITE_PC:
4605 warning (_("Instruction wrote to PC in an unexpected way when "
4606 "single-stepping"));
4607 break;
4608
4609 default:
4610 internal_error (__FILE__, __LINE__,
4611 _("Invalid argument to displaced_write_reg"));
4612 }
4613
4614 dsc->wrote_to_pc = 1;
4615 }
4616 else
4617 {
4618 if (debug_displaced)
4619 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4620 regno, (unsigned long) val);
4621 regcache_cooked_write_unsigned (regs, regno, val);
4622 }
4623 }
4624
4625 /* This function is used to concisely determine if an instruction INSN
4626 references PC. Register fields of interest in INSN should have the
4627 corresponding fields of BITMASK set to 0b1111. The function
4628 returns return 1 if any of these fields in INSN reference the PC
4629 (also 0b1111, r15), else it returns 0. */
4630
4631 static int
4632 insn_references_pc (uint32_t insn, uint32_t bitmask)
4633 {
4634 uint32_t lowbit = 1;
4635
4636 while (bitmask != 0)
4637 {
4638 uint32_t mask;
4639
4640 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4641 ;
4642
4643 if (!lowbit)
4644 break;
4645
4646 mask = lowbit * 0xf;
4647
4648 if ((insn & mask) == mask)
4649 return 1;
4650
4651 bitmask &= ~mask;
4652 }
4653
4654 return 0;
4655 }
4656
4657 /* The simplest copy function. Many instructions have the same effect no
4658 matter what address they are executed at: in those cases, use this. */
4659
4660 static int
4661 arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4662 const char *iname, struct displaced_step_closure *dsc)
4663 {
4664 if (debug_displaced)
4665 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4666 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4667 iname);
4668
4669 dsc->modinsn[0] = insn;
4670
4671 return 0;
4672 }
4673
4674 static int
4675 thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4676 uint16_t insn2, const char *iname,
4677 struct displaced_step_closure *dsc)
4678 {
4679 if (debug_displaced)
4680 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4681 "opcode/class '%s' unmodified\n", insn1, insn2,
4682 iname);
4683
4684 dsc->modinsn[0] = insn1;
4685 dsc->modinsn[1] = insn2;
4686 dsc->numinsns = 2;
4687
4688 return 0;
4689 }
4690
4691 /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4692 modification. */
4693 static int
4694 thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
4695 const char *iname,
4696 struct displaced_step_closure *dsc)
4697 {
4698 if (debug_displaced)
4699 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4700 "opcode/class '%s' unmodified\n", insn,
4701 iname);
4702
4703 dsc->modinsn[0] = insn;
4704
4705 return 0;
4706 }
4707
4708 /* Preload instructions with immediate offset. */
4709
4710 static void
4711 cleanup_preload (struct gdbarch *gdbarch,
4712 struct regcache *regs, struct displaced_step_closure *dsc)
4713 {
4714 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4715 if (!dsc->u.preload.immed)
4716 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4717 }
4718
4719 static void
4720 install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4721 struct displaced_step_closure *dsc, unsigned int rn)
4722 {
4723 ULONGEST rn_val;
4724 /* Preload instructions:
4725
4726 {pli/pld} [rn, #+/-imm]
4727 ->
4728 {pli/pld} [r0, #+/-imm]. */
4729
4730 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4731 rn_val = displaced_read_reg (regs, dsc, rn);
4732 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4733 dsc->u.preload.immed = 1;
4734
4735 dsc->cleanup = &cleanup_preload;
4736 }
4737
4738 static int
4739 arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
4740 struct displaced_step_closure *dsc)
4741 {
4742 unsigned int rn = bits (insn, 16, 19);
4743
4744 if (!insn_references_pc (insn, 0x000f0000ul))
4745 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
4746
4747 if (debug_displaced)
4748 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4749 (unsigned long) insn);
4750
4751 dsc->modinsn[0] = insn & 0xfff0ffff;
4752
4753 install_preload (gdbarch, regs, dsc, rn);
4754
4755 return 0;
4756 }
4757
4758 static int
4759 thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4760 struct regcache *regs, struct displaced_step_closure *dsc)
4761 {
4762 unsigned int rn = bits (insn1, 0, 3);
4763 unsigned int u_bit = bit (insn1, 7);
4764 int imm12 = bits (insn2, 0, 11);
4765 ULONGEST pc_val;
4766
4767 if (rn != ARM_PC_REGNUM)
4768 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4769
4770 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4771 PLD (literal) Encoding T1. */
4772 if (debug_displaced)
4773 fprintf_unfiltered (gdb_stdlog,
4774 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4775 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4776 imm12);
4777
4778 if (!u_bit)
4779 imm12 = -1 * imm12;
4780
4781 /* Rewrite instruction {pli/pld} PC imm12 into:
4782 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4783
4784 {pli/pld} [r0, r1]
4785
4786 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4787
4788 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4789 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4790
4791 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4792
4793 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4794 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4795 dsc->u.preload.immed = 0;
4796
4797 /* {pli/pld} [r0, r1] */
4798 dsc->modinsn[0] = insn1 & 0xfff0;
4799 dsc->modinsn[1] = 0xf001;
4800 dsc->numinsns = 2;
4801
4802 dsc->cleanup = &cleanup_preload;
4803 return 0;
4804 }
4805
4806 /* Preload instructions with register offset. */
4807
4808 static void
4809 install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4810 struct displaced_step_closure *dsc, unsigned int rn,
4811 unsigned int rm)
4812 {
4813 ULONGEST rn_val, rm_val;
4814
4815 /* Preload register-offset instructions:
4816
4817 {pli/pld} [rn, rm {, shift}]
4818 ->
4819 {pli/pld} [r0, r1 {, shift}]. */
4820
4821 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4822 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4823 rn_val = displaced_read_reg (regs, dsc, rn);
4824 rm_val = displaced_read_reg (regs, dsc, rm);
4825 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4826 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
4827 dsc->u.preload.immed = 0;
4828
4829 dsc->cleanup = &cleanup_preload;
4830 }
4831
4832 static int
4833 arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4834 struct regcache *regs,
4835 struct displaced_step_closure *dsc)
4836 {
4837 unsigned int rn = bits (insn, 16, 19);
4838 unsigned int rm = bits (insn, 0, 3);
4839
4840
4841 if (!insn_references_pc (insn, 0x000f000ful))
4842 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4843
4844 if (debug_displaced)
4845 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4846 (unsigned long) insn);
4847
4848 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
4849
4850 install_preload_reg (gdbarch, regs, dsc, rn, rm);
4851 return 0;
4852 }
4853
4854 /* Copy/cleanup coprocessor load and store instructions. */
4855
4856 static void
4857 cleanup_copro_load_store (struct gdbarch *gdbarch,
4858 struct regcache *regs,
4859 struct displaced_step_closure *dsc)
4860 {
4861 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
4862
4863 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4864
4865 if (dsc->u.ldst.writeback)
4866 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4867 }
4868
4869 static void
4870 install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4871 struct displaced_step_closure *dsc,
4872 int writeback, unsigned int rn)
4873 {
4874 ULONGEST rn_val;
4875
4876 /* Coprocessor load/store instructions:
4877
4878 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4879 ->
4880 {stc/stc2} [r0, #+/-imm].
4881
4882 ldc/ldc2 are handled identically. */
4883
4884 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4885 rn_val = displaced_read_reg (regs, dsc, rn);
4886 /* PC should be 4-byte aligned. */
4887 rn_val = rn_val & 0xfffffffc;
4888 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4889
4890 dsc->u.ldst.writeback = writeback;
4891 dsc->u.ldst.rn = rn;
4892
4893 dsc->cleanup = &cleanup_copro_load_store;
4894 }
4895
4896 static int
4897 arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4898 struct regcache *regs,
4899 struct displaced_step_closure *dsc)
4900 {
4901 unsigned int rn = bits (insn, 16, 19);
4902
4903 if (!insn_references_pc (insn, 0x000f0000ul))
4904 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4905
4906 if (debug_displaced)
4907 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4908 "load/store insn %.8lx\n", (unsigned long) insn);
4909
4910 dsc->modinsn[0] = insn & 0xfff0ffff;
4911
4912 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
4913
4914 return 0;
4915 }
4916
4917 static int
4918 thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4919 uint16_t insn2, struct regcache *regs,
4920 struct displaced_step_closure *dsc)
4921 {
4922 unsigned int rn = bits (insn1, 0, 3);
4923
4924 if (rn != ARM_PC_REGNUM)
4925 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4926 "copro load/store", dsc);
4927
4928 if (debug_displaced)
4929 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4930 "load/store insn %.4x%.4x\n", insn1, insn2);
4931
4932 dsc->modinsn[0] = insn1 & 0xfff0;
4933 dsc->modinsn[1] = insn2;
4934 dsc->numinsns = 2;
4935
4936 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4937 doesn't support writeback, so pass 0. */
4938 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4939
4940 return 0;
4941 }
4942
4943 /* Clean up branch instructions (actually perform the branch, by setting
4944 PC). */
4945
4946 static void
4947 cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
4948 struct displaced_step_closure *dsc)
4949 {
4950 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
4951 int branch_taken = condition_true (dsc->u.branch.cond, status);
4952 enum pc_write_style write_pc = dsc->u.branch.exchange
4953 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4954
4955 if (!branch_taken)
4956 return;
4957
4958 if (dsc->u.branch.link)
4959 {
4960 /* The value of LR should be the next insn of current one. In order
4961 not to confuse logic hanlding later insn `bx lr', if current insn mode
4962 is Thumb, the bit 0 of LR value should be set to 1. */
4963 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4964
4965 if (dsc->is_thumb)
4966 next_insn_addr |= 0x1;
4967
4968 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4969 CANNOT_WRITE_PC);
4970 }
4971
4972 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
4973 }
4974
4975 /* Copy B/BL/BLX instructions with immediate destinations. */
4976
4977 static void
4978 install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
4979 struct displaced_step_closure *dsc,
4980 unsigned int cond, int exchange, int link, long offset)
4981 {
4982 /* Implement "BL<cond> <label>" as:
4983
4984 Preparation: cond <- instruction condition
4985 Insn: mov r0, r0 (nop)
4986 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
4987
4988 B<cond> similar, but don't set r14 in cleanup. */
4989
4990 dsc->u.branch.cond = cond;
4991 dsc->u.branch.link = link;
4992 dsc->u.branch.exchange = exchange;
4993
4994 dsc->u.branch.dest = dsc->insn_addr;
4995 if (link && exchange)
4996 /* For BLX, offset is computed from the Align (PC, 4). */
4997 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
4998
4999 if (dsc->is_thumb)
5000 dsc->u.branch.dest += 4 + offset;
5001 else
5002 dsc->u.branch.dest += 8 + offset;
5003
5004 dsc->cleanup = &cleanup_branch;
5005 }
5006 static int
5007 arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5008 struct regcache *regs, struct displaced_step_closure *dsc)
5009 {
5010 unsigned int cond = bits (insn, 28, 31);
5011 int exchange = (cond == 0xf);
5012 int link = exchange || bit (insn, 24);
5013 long offset;
5014
5015 if (debug_displaced)
5016 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5017 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5018 (unsigned long) insn);
5019 if (exchange)
5020 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5021 then arrange the switch into Thumb mode. */
5022 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5023 else
5024 offset = bits (insn, 0, 23) << 2;
5025
5026 if (bit (offset, 25))
5027 offset = offset | ~0x3ffffff;
5028
5029 dsc->modinsn[0] = ARM_NOP;
5030
5031 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5032 return 0;
5033 }
5034
5035 static int
5036 thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
5037 uint16_t insn2, struct regcache *regs,
5038 struct displaced_step_closure *dsc)
5039 {
5040 int link = bit (insn2, 14);
5041 int exchange = link && !bit (insn2, 12);
5042 int cond = INST_AL;
5043 long offset = 0;
5044 int j1 = bit (insn2, 13);
5045 int j2 = bit (insn2, 11);
5046 int s = sbits (insn1, 10, 10);
5047 int i1 = !(j1 ^ bit (insn1, 10));
5048 int i2 = !(j2 ^ bit (insn1, 10));
5049
5050 if (!link && !exchange) /* B */
5051 {
5052 offset = (bits (insn2, 0, 10) << 1);
5053 if (bit (insn2, 12)) /* Encoding T4 */
5054 {
5055 offset |= (bits (insn1, 0, 9) << 12)
5056 | (i2 << 22)
5057 | (i1 << 23)
5058 | (s << 24);
5059 cond = INST_AL;
5060 }
5061 else /* Encoding T3 */
5062 {
5063 offset |= (bits (insn1, 0, 5) << 12)
5064 | (j1 << 18)
5065 | (j2 << 19)
5066 | (s << 20);
5067 cond = bits (insn1, 6, 9);
5068 }
5069 }
5070 else
5071 {
5072 offset = (bits (insn1, 0, 9) << 12);
5073 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
5074 offset |= exchange ?
5075 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
5076 }
5077
5078 if (debug_displaced)
5079 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5080 "%.4x %.4x with offset %.8lx\n",
5081 link ? (exchange) ? "blx" : "bl" : "b",
5082 insn1, insn2, offset);
5083
5084 dsc->modinsn[0] = THUMB_NOP;
5085
5086 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5087 return 0;
5088 }
5089
5090 /* Copy B Thumb instructions. */
5091 static int
5092 thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
5093 struct displaced_step_closure *dsc)
5094 {
5095 unsigned int cond = 0;
5096 int offset = 0;
5097 unsigned short bit_12_15 = bits (insn, 12, 15);
5098 CORE_ADDR from = dsc->insn_addr;
5099
5100 if (bit_12_15 == 0xd)
5101 {
5102 /* offset = SignExtend (imm8:0, 32) */
5103 offset = sbits ((insn << 1), 0, 8);
5104 cond = bits (insn, 8, 11);
5105 }
5106 else if (bit_12_15 == 0xe) /* Encoding T2 */
5107 {
5108 offset = sbits ((insn << 1), 0, 11);
5109 cond = INST_AL;
5110 }
5111
5112 if (debug_displaced)
5113 fprintf_unfiltered (gdb_stdlog,
5114 "displaced: copying b immediate insn %.4x "
5115 "with offset %d\n", insn, offset);
5116
5117 dsc->u.branch.cond = cond;
5118 dsc->u.branch.link = 0;
5119 dsc->u.branch.exchange = 0;
5120 dsc->u.branch.dest = from + 4 + offset;
5121
5122 dsc->modinsn[0] = THUMB_NOP;
5123
5124 dsc->cleanup = &cleanup_branch;
5125
5126 return 0;
5127 }
5128
5129 /* Copy BX/BLX with register-specified destinations. */
5130
5131 static void
5132 install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5133 struct displaced_step_closure *dsc, int link,
5134 unsigned int cond, unsigned int rm)
5135 {
5136 /* Implement {BX,BLX}<cond> <reg>" as:
5137
5138 Preparation: cond <- instruction condition
5139 Insn: mov r0, r0 (nop)
5140 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5141
5142 Don't set r14 in cleanup for BX. */
5143
5144 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
5145
5146 dsc->u.branch.cond = cond;
5147 dsc->u.branch.link = link;
5148
5149 dsc->u.branch.exchange = 1;
5150
5151 dsc->cleanup = &cleanup_branch;
5152 }
5153
5154 static int
5155 arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5156 struct regcache *regs, struct displaced_step_closure *dsc)
5157 {
5158 unsigned int cond = bits (insn, 28, 31);
5159 /* BX: x12xxx1x
5160 BLX: x12xxx3x. */
5161 int link = bit (insn, 5);
5162 unsigned int rm = bits (insn, 0, 3);
5163
5164 if (debug_displaced)
5165 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5166 (unsigned long) insn);
5167
5168 dsc->modinsn[0] = ARM_NOP;
5169
5170 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
5171 return 0;
5172 }
5173
5174 static int
5175 thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5176 struct regcache *regs,
5177 struct displaced_step_closure *dsc)
5178 {
5179 int link = bit (insn, 7);
5180 unsigned int rm = bits (insn, 3, 6);
5181
5182 if (debug_displaced)
5183 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5184 (unsigned short) insn);
5185
5186 dsc->modinsn[0] = THUMB_NOP;
5187
5188 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5189
5190 return 0;
5191 }
5192
5193
5194 /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
5195
5196 static void
5197 cleanup_alu_imm (struct gdbarch *gdbarch,
5198 struct regcache *regs, struct displaced_step_closure *dsc)
5199 {
5200 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5201 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5202 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5203 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5204 }
5205
5206 static int
5207 arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5208 struct displaced_step_closure *dsc)
5209 {
5210 unsigned int rn = bits (insn, 16, 19);
5211 unsigned int rd = bits (insn, 12, 15);
5212 unsigned int op = bits (insn, 21, 24);
5213 int is_mov = (op == 0xd);
5214 ULONGEST rd_val, rn_val;
5215
5216 if (!insn_references_pc (insn, 0x000ff000ul))
5217 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5218
5219 if (debug_displaced)
5220 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5221 "%.8lx\n", is_mov ? "move" : "ALU",
5222 (unsigned long) insn);
5223
5224 /* Instruction is of form:
5225
5226 <op><cond> rd, [rn,] #imm
5227
5228 Rewrite as:
5229
5230 Preparation: tmp1, tmp2 <- r0, r1;
5231 r0, r1 <- rd, rn
5232 Insn: <op><cond> r0, r1, #imm
5233 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5234 */
5235
5236 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5237 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5238 rn_val = displaced_read_reg (regs, dsc, rn);
5239 rd_val = displaced_read_reg (regs, dsc, rd);
5240 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5241 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5242 dsc->rd = rd;
5243
5244 if (is_mov)
5245 dsc->modinsn[0] = insn & 0xfff00fff;
5246 else
5247 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5248
5249 dsc->cleanup = &cleanup_alu_imm;
5250
5251 return 0;
5252 }
5253
5254 static int
5255 thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5256 uint16_t insn2, struct regcache *regs,
5257 struct displaced_step_closure *dsc)
5258 {
5259 unsigned int op = bits (insn1, 5, 8);
5260 unsigned int rn, rm, rd;
5261 ULONGEST rd_val, rn_val;
5262
5263 rn = bits (insn1, 0, 3); /* Rn */
5264 rm = bits (insn2, 0, 3); /* Rm */
5265 rd = bits (insn2, 8, 11); /* Rd */
5266
5267 /* This routine is only called for instruction MOV. */
5268 gdb_assert (op == 0x2 && rn == 0xf);
5269
5270 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5271 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5272
5273 if (debug_displaced)
5274 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5275 "ALU", insn1, insn2);
5276
5277 /* Instruction is of form:
5278
5279 <op><cond> rd, [rn,] #imm
5280
5281 Rewrite as:
5282
5283 Preparation: tmp1, tmp2 <- r0, r1;
5284 r0, r1 <- rd, rn
5285 Insn: <op><cond> r0, r1, #imm
5286 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5287 */
5288
5289 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5290 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5291 rn_val = displaced_read_reg (regs, dsc, rn);
5292 rd_val = displaced_read_reg (regs, dsc, rd);
5293 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5294 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5295 dsc->rd = rd;
5296
5297 dsc->modinsn[0] = insn1;
5298 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5299 dsc->numinsns = 2;
5300
5301 dsc->cleanup = &cleanup_alu_imm;
5302
5303 return 0;
5304 }
5305
5306 /* Copy/cleanup arithmetic/logic insns with register RHS. */
5307
5308 static void
5309 cleanup_alu_reg (struct gdbarch *gdbarch,
5310 struct regcache *regs, struct displaced_step_closure *dsc)
5311 {
5312 ULONGEST rd_val;
5313 int i;
5314
5315 rd_val = displaced_read_reg (regs, dsc, 0);
5316
5317 for (i = 0; i < 3; i++)
5318 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5319
5320 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5321 }
5322
5323 static void
5324 install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5325 struct displaced_step_closure *dsc,
5326 unsigned int rd, unsigned int rn, unsigned int rm)
5327 {
5328 ULONGEST rd_val, rn_val, rm_val;
5329
5330 /* Instruction is of form:
5331
5332 <op><cond> rd, [rn,] rm [, <shift>]
5333
5334 Rewrite as:
5335
5336 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5337 r0, r1, r2 <- rd, rn, rm
5338 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
5339 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5340 */
5341
5342 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5343 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5344 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5345 rd_val = displaced_read_reg (regs, dsc, rd);
5346 rn_val = displaced_read_reg (regs, dsc, rn);
5347 rm_val = displaced_read_reg (regs, dsc, rm);
5348 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5349 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5350 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5351 dsc->rd = rd;
5352
5353 dsc->cleanup = &cleanup_alu_reg;
5354 }
5355
5356 static int
5357 arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5358 struct displaced_step_closure *dsc)
5359 {
5360 unsigned int op = bits (insn, 21, 24);
5361 int is_mov = (op == 0xd);
5362
5363 if (!insn_references_pc (insn, 0x000ff00ful))
5364 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5365
5366 if (debug_displaced)
5367 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5368 is_mov ? "move" : "ALU", (unsigned long) insn);
5369
5370 if (is_mov)
5371 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5372 else
5373 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5374
5375 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5376 bits (insn, 0, 3));
5377 return 0;
5378 }
5379
5380 static int
5381 thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5382 struct regcache *regs,
5383 struct displaced_step_closure *dsc)
5384 {
5385 unsigned rm, rd;
5386
5387 rm = bits (insn, 3, 6);
5388 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
5389
5390 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
5391 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5392
5393 if (debug_displaced)
5394 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5395 (unsigned short) insn);
5396
5397 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
5398
5399 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
5400
5401 return 0;
5402 }
5403
5404 /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5405
5406 static void
5407 cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
5408 struct regcache *regs,
5409 struct displaced_step_closure *dsc)
5410 {
5411 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5412 int i;
5413
5414 for (i = 0; i < 4; i++)
5415 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5416
5417 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5418 }
5419
5420 static void
5421 install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5422 struct displaced_step_closure *dsc,
5423 unsigned int rd, unsigned int rn, unsigned int rm,
5424 unsigned rs)
5425 {
5426 int i;
5427 ULONGEST rd_val, rn_val, rm_val, rs_val;
5428
5429 /* Instruction is of form:
5430
5431 <op><cond> rd, [rn,] rm, <shift> rs
5432
5433 Rewrite as:
5434
5435 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5436 r0, r1, r2, r3 <- rd, rn, rm, rs
5437 Insn: <op><cond> r0, r1, r2, <shift> r3
5438 Cleanup: tmp5 <- r0
5439 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5440 rd <- tmp5
5441 */
5442
5443 for (i = 0; i < 4; i++)
5444 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
5445
5446 rd_val = displaced_read_reg (regs, dsc, rd);
5447 rn_val = displaced_read_reg (regs, dsc, rn);
5448 rm_val = displaced_read_reg (regs, dsc, rm);
5449 rs_val = displaced_read_reg (regs, dsc, rs);
5450 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5451 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5452 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5453 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5454 dsc->rd = rd;
5455 dsc->cleanup = &cleanup_alu_shifted_reg;
5456 }
5457
5458 static int
5459 arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5460 struct regcache *regs,
5461 struct displaced_step_closure *dsc)
5462 {
5463 unsigned int op = bits (insn, 21, 24);
5464 int is_mov = (op == 0xd);
5465 unsigned int rd, rn, rm, rs;
5466
5467 if (!insn_references_pc (insn, 0x000fff0ful))
5468 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5469
5470 if (debug_displaced)
5471 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5472 "%.8lx\n", is_mov ? "move" : "ALU",
5473 (unsigned long) insn);
5474
5475 rn = bits (insn, 16, 19);
5476 rm = bits (insn, 0, 3);
5477 rs = bits (insn, 8, 11);
5478 rd = bits (insn, 12, 15);
5479
5480 if (is_mov)
5481 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5482 else
5483 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5484
5485 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
5486
5487 return 0;
5488 }
5489
5490 /* Clean up load instructions. */
5491
5492 static void
5493 cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
5494 struct displaced_step_closure *dsc)
5495 {
5496 ULONGEST rt_val, rt_val2 = 0, rn_val;
5497
5498 rt_val = displaced_read_reg (regs, dsc, 0);
5499 if (dsc->u.ldst.xfersize == 8)
5500 rt_val2 = displaced_read_reg (regs, dsc, 1);
5501 rn_val = displaced_read_reg (regs, dsc, 2);
5502
5503 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5504 if (dsc->u.ldst.xfersize > 4)
5505 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5506 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5507 if (!dsc->u.ldst.immed)
5508 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5509
5510 /* Handle register writeback. */
5511 if (dsc->u.ldst.writeback)
5512 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5513 /* Put result in right place. */
5514 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5515 if (dsc->u.ldst.xfersize == 8)
5516 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5517 }
5518
5519 /* Clean up store instructions. */
5520
5521 static void
5522 cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
5523 struct displaced_step_closure *dsc)
5524 {
5525 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
5526
5527 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5528 if (dsc->u.ldst.xfersize > 4)
5529 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5530 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5531 if (!dsc->u.ldst.immed)
5532 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5533 if (!dsc->u.ldst.restore_r4)
5534 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5535
5536 /* Writeback. */
5537 if (dsc->u.ldst.writeback)
5538 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5539 }
5540
5541 /* Copy "extra" load/store instructions. These are halfword/doubleword
5542 transfers, which have a different encoding to byte/word transfers. */
5543
5544 static int
5545 arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
5546 struct regcache *regs, struct displaced_step_closure *dsc)
5547 {
5548 unsigned int op1 = bits (insn, 20, 24);
5549 unsigned int op2 = bits (insn, 5, 6);
5550 unsigned int rt = bits (insn, 12, 15);
5551 unsigned int rn = bits (insn, 16, 19);
5552 unsigned int rm = bits (insn, 0, 3);
5553 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5554 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5555 int immed = (op1 & 0x4) != 0;
5556 int opcode;
5557 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5558
5559 if (!insn_references_pc (insn, 0x000ff00ful))
5560 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5561
5562 if (debug_displaced)
5563 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5564 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
5565 (unsigned long) insn);
5566
5567 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5568
5569 if (opcode < 0)
5570 internal_error (__FILE__, __LINE__,
5571 _("copy_extra_ld_st: instruction decode error"));
5572
5573 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5574 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5575 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5576 if (!immed)
5577 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5578
5579 rt_val = displaced_read_reg (regs, dsc, rt);
5580 if (bytesize[opcode] == 8)
5581 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5582 rn_val = displaced_read_reg (regs, dsc, rn);
5583 if (!immed)
5584 rm_val = displaced_read_reg (regs, dsc, rm);
5585
5586 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5587 if (bytesize[opcode] == 8)
5588 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5589 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5590 if (!immed)
5591 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5592
5593 dsc->rd = rt;
5594 dsc->u.ldst.xfersize = bytesize[opcode];
5595 dsc->u.ldst.rn = rn;
5596 dsc->u.ldst.immed = immed;
5597 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5598 dsc->u.ldst.restore_r4 = 0;
5599
5600 if (immed)
5601 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5602 ->
5603 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5604 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5605 else
5606 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5607 ->
5608 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5609 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5610
5611 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5612
5613 return 0;
5614 }
5615
5616 /* Copy byte/half word/word loads and stores. */
5617
5618 static void
5619 install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5620 struct displaced_step_closure *dsc, int load,
5621 int immed, int writeback, int size, int usermode,
5622 int rt, int rm, int rn)
5623 {
5624 ULONGEST rt_val, rn_val, rm_val = 0;
5625
5626 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5627 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5628 if (!immed)
5629 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5630 if (!load)
5631 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
5632
5633 rt_val = displaced_read_reg (regs, dsc, rt);
5634 rn_val = displaced_read_reg (regs, dsc, rn);
5635 if (!immed)
5636 rm_val = displaced_read_reg (regs, dsc, rm);
5637
5638 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5639 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5640 if (!immed)
5641 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5642 dsc->rd = rt;
5643 dsc->u.ldst.xfersize = size;
5644 dsc->u.ldst.rn = rn;
5645 dsc->u.ldst.immed = immed;
5646 dsc->u.ldst.writeback = writeback;
5647
5648 /* To write PC we can do:
5649
5650 Before this sequence of instructions:
5651 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5652 r2 is the Rn value got from dispalced_read_reg.
5653
5654 Insn1: push {pc} Write address of STR instruction + offset on stack
5655 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5656 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5657 = addr(Insn1) + offset - addr(Insn3) - 8
5658 = offset - 16
5659 Insn4: add r4, r4, #8 r4 = offset - 8
5660 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5661 = from + offset
5662 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
5663
5664 Otherwise we don't know what value to write for PC, since the offset is
5665 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5666 of this can be found in Section "Saving from r15" in
5667 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
5668
5669 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5670 }
5671
5672
5673 static int
5674 thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5675 uint16_t insn2, struct regcache *regs,
5676 struct displaced_step_closure *dsc, int size)
5677 {
5678 unsigned int u_bit = bit (insn1, 7);
5679 unsigned int rt = bits (insn2, 12, 15);
5680 int imm12 = bits (insn2, 0, 11);
5681 ULONGEST pc_val;
5682
5683 if (debug_displaced)
5684 fprintf_unfiltered (gdb_stdlog,
5685 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5686 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5687 imm12);
5688
5689 if (!u_bit)
5690 imm12 = -1 * imm12;
5691
5692 /* Rewrite instruction LDR Rt imm12 into:
5693
5694 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5695
5696 LDR R0, R2, R3,
5697
5698 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5699
5700
5701 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5702 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5703 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5704
5705 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5706
5707 pc_val = pc_val & 0xfffffffc;
5708
5709 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5710 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5711
5712 dsc->rd = rt;
5713
5714 dsc->u.ldst.xfersize = size;
5715 dsc->u.ldst.immed = 0;
5716 dsc->u.ldst.writeback = 0;
5717 dsc->u.ldst.restore_r4 = 0;
5718
5719 /* LDR R0, R2, R3 */
5720 dsc->modinsn[0] = 0xf852;
5721 dsc->modinsn[1] = 0x3;
5722 dsc->numinsns = 2;
5723
5724 dsc->cleanup = &cleanup_load;
5725
5726 return 0;
5727 }
5728
5729 static int
5730 thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5731 uint16_t insn2, struct regcache *regs,
5732 struct displaced_step_closure *dsc,
5733 int writeback, int immed)
5734 {
5735 unsigned int rt = bits (insn2, 12, 15);
5736 unsigned int rn = bits (insn1, 0, 3);
5737 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5738 /* In LDR (register), there is also a register Rm, which is not allowed to
5739 be PC, so we don't have to check it. */
5740
5741 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5742 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5743 dsc);
5744
5745 if (debug_displaced)
5746 fprintf_unfiltered (gdb_stdlog,
5747 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5748 rt, rn, insn1, insn2);
5749
5750 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5751 0, rt, rm, rn);
5752
5753 dsc->u.ldst.restore_r4 = 0;
5754
5755 if (immed)
5756 /* ldr[b]<cond> rt, [rn, #imm], etc.
5757 ->
5758 ldr[b]<cond> r0, [r2, #imm]. */
5759 {
5760 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5761 dsc->modinsn[1] = insn2 & 0x0fff;
5762 }
5763 else
5764 /* ldr[b]<cond> rt, [rn, rm], etc.
5765 ->
5766 ldr[b]<cond> r0, [r2, r3]. */
5767 {
5768 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5769 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5770 }
5771
5772 dsc->numinsns = 2;
5773
5774 return 0;
5775 }
5776
5777
5778 static int
5779 arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5780 struct regcache *regs,
5781 struct displaced_step_closure *dsc,
5782 int load, int size, int usermode)
5783 {
5784 int immed = !bit (insn, 25);
5785 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5786 unsigned int rt = bits (insn, 12, 15);
5787 unsigned int rn = bits (insn, 16, 19);
5788 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5789
5790 if (!insn_references_pc (insn, 0x000ff00ful))
5791 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5792
5793 if (debug_displaced)
5794 fprintf_unfiltered (gdb_stdlog,
5795 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
5796 load ? (size == 1 ? "ldrb" : "ldr")
5797 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
5798 rt, rn,
5799 (unsigned long) insn);
5800
5801 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5802 usermode, rt, rm, rn);
5803
5804 if (load || rt != ARM_PC_REGNUM)
5805 {
5806 dsc->u.ldst.restore_r4 = 0;
5807
5808 if (immed)
5809 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5810 ->
5811 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5812 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5813 else
5814 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5815 ->
5816 {ldr,str}[b]<cond> r0, [r2, r3]. */
5817 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5818 }
5819 else
5820 {
5821 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5822 dsc->u.ldst.restore_r4 = 1;
5823 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5824 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
5825 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5826 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5827 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5828
5829 /* As above. */
5830 if (immed)
5831 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5832 else
5833 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5834
5835 dsc->numinsns = 6;
5836 }
5837
5838 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5839
5840 return 0;
5841 }
5842
5843 /* Cleanup LDM instructions with fully-populated register list. This is an
5844 unfortunate corner case: it's impossible to implement correctly by modifying
5845 the instruction. The issue is as follows: we have an instruction,
5846
5847 ldm rN, {r0-r15}
5848
5849 which we must rewrite to avoid loading PC. A possible solution would be to
5850 do the load in two halves, something like (with suitable cleanup
5851 afterwards):
5852
5853 mov r8, rN
5854 ldm[id][ab] r8!, {r0-r7}
5855 str r7, <temp>
5856 ldm[id][ab] r8, {r7-r14}
5857 <bkpt>
5858
5859 but at present there's no suitable place for <temp>, since the scratch space
5860 is overwritten before the cleanup routine is called. For now, we simply
5861 emulate the instruction. */
5862
5863 static void
5864 cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5865 struct displaced_step_closure *dsc)
5866 {
5867 int inc = dsc->u.block.increment;
5868 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5869 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5870 uint32_t regmask = dsc->u.block.regmask;
5871 int regno = inc ? 0 : 15;
5872 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5873 int exception_return = dsc->u.block.load && dsc->u.block.user
5874 && (regmask & 0x8000) != 0;
5875 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5876 int do_transfer = condition_true (dsc->u.block.cond, status);
5877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5878
5879 if (!do_transfer)
5880 return;
5881
5882 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5883 sensible we can do here. Complain loudly. */
5884 if (exception_return)
5885 error (_("Cannot single-step exception return"));
5886
5887 /* We don't handle any stores here for now. */
5888 gdb_assert (dsc->u.block.load != 0);
5889
5890 if (debug_displaced)
5891 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5892 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5893 dsc->u.block.increment ? "inc" : "dec",
5894 dsc->u.block.before ? "before" : "after");
5895
5896 while (regmask)
5897 {
5898 uint32_t memword;
5899
5900 if (inc)
5901 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
5902 regno++;
5903 else
5904 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5905 regno--;
5906
5907 xfer_addr += bump_before;
5908
5909 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5910 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5911
5912 xfer_addr += bump_after;
5913
5914 regmask &= ~(1 << regno);
5915 }
5916
5917 if (dsc->u.block.writeback)
5918 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5919 CANNOT_WRITE_PC);
5920 }
5921
5922 /* Clean up an STM which included the PC in the register list. */
5923
5924 static void
5925 cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5926 struct displaced_step_closure *dsc)
5927 {
5928 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5929 int store_executed = condition_true (dsc->u.block.cond, status);
5930 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5931 CORE_ADDR stm_insn_addr;
5932 uint32_t pc_val;
5933 long offset;
5934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5935
5936 /* If condition code fails, there's nothing else to do. */
5937 if (!store_executed)
5938 return;
5939
5940 if (dsc->u.block.increment)
5941 {
5942 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5943
5944 if (dsc->u.block.before)
5945 pc_stored_at += 4;
5946 }
5947 else
5948 {
5949 pc_stored_at = dsc->u.block.xfer_addr;
5950
5951 if (dsc->u.block.before)
5952 pc_stored_at -= 4;
5953 }
5954
5955 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5956 stm_insn_addr = dsc->scratch_base;
5957 offset = pc_val - stm_insn_addr;
5958
5959 if (debug_displaced)
5960 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5961 "STM instruction\n", offset);
5962
5963 /* Rewrite the stored PC to the proper value for the non-displaced original
5964 instruction. */
5965 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5966 dsc->insn_addr + offset);
5967 }
5968
5969 /* Clean up an LDM which includes the PC in the register list. We clumped all
5970 the registers in the transferred list into a contiguous range r0...rX (to
5971 avoid loading PC directly and losing control of the debugged program), so we
5972 must undo that here. */
5973
5974 static void
5975 cleanup_block_load_pc (struct gdbarch *gdbarch,
5976 struct regcache *regs,
5977 struct displaced_step_closure *dsc)
5978 {
5979 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5980 int load_executed = condition_true (dsc->u.block.cond, status);
5981 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
5982 unsigned int regs_loaded = bitcount (mask);
5983 unsigned int num_to_shuffle = regs_loaded, clobbered;
5984
5985 /* The method employed here will fail if the register list is fully populated
5986 (we need to avoid loading PC directly). */
5987 gdb_assert (num_to_shuffle < 16);
5988
5989 if (!load_executed)
5990 return;
5991
5992 clobbered = (1 << num_to_shuffle) - 1;
5993
5994 while (num_to_shuffle > 0)
5995 {
5996 if ((mask & (1 << write_reg)) != 0)
5997 {
5998 unsigned int read_reg = num_to_shuffle - 1;
5999
6000 if (read_reg != write_reg)
6001 {
6002 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
6003 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6004 if (debug_displaced)
6005 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6006 "loaded register r%d to r%d\n"), read_reg,
6007 write_reg);
6008 }
6009 else if (debug_displaced)
6010 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6011 "r%d already in the right place\n"),
6012 write_reg);
6013
6014 clobbered &= ~(1 << write_reg);
6015
6016 num_to_shuffle--;
6017 }
6018
6019 write_reg--;
6020 }
6021
6022 /* Restore any registers we scribbled over. */
6023 for (write_reg = 0; clobbered != 0; write_reg++)
6024 {
6025 if ((clobbered & (1 << write_reg)) != 0)
6026 {
6027 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6028 CANNOT_WRITE_PC);
6029 if (debug_displaced)
6030 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6031 "clobbered register r%d\n"), write_reg);
6032 clobbered &= ~(1 << write_reg);
6033 }
6034 }
6035
6036 /* Perform register writeback manually. */
6037 if (dsc->u.block.writeback)
6038 {
6039 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6040
6041 if (dsc->u.block.increment)
6042 new_rn_val += regs_loaded * 4;
6043 else
6044 new_rn_val -= regs_loaded * 4;
6045
6046 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6047 CANNOT_WRITE_PC);
6048 }
6049 }
6050
6051 /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6052 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6053
6054 static int
6055 arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6056 struct regcache *regs,
6057 struct displaced_step_closure *dsc)
6058 {
6059 int load = bit (insn, 20);
6060 int user = bit (insn, 22);
6061 int increment = bit (insn, 23);
6062 int before = bit (insn, 24);
6063 int writeback = bit (insn, 21);
6064 int rn = bits (insn, 16, 19);
6065
6066 /* Block transfers which don't mention PC can be run directly
6067 out-of-line. */
6068 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
6069 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
6070
6071 if (rn == ARM_PC_REGNUM)
6072 {
6073 warning (_("displaced: Unpredictable LDM or STM with "
6074 "base register r15"));
6075 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
6076 }
6077
6078 if (debug_displaced)
6079 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6080 "%.8lx\n", (unsigned long) insn);
6081
6082 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6083 dsc->u.block.rn = rn;
6084
6085 dsc->u.block.load = load;
6086 dsc->u.block.user = user;
6087 dsc->u.block.increment = increment;
6088 dsc->u.block.before = before;
6089 dsc->u.block.writeback = writeback;
6090 dsc->u.block.cond = bits (insn, 28, 31);
6091
6092 dsc->u.block.regmask = insn & 0xffff;
6093
6094 if (load)
6095 {
6096 if ((insn & 0xffff) == 0xffff)
6097 {
6098 /* LDM with a fully-populated register list. This case is
6099 particularly tricky. Implement for now by fully emulating the
6100 instruction (which might not behave perfectly in all cases, but
6101 these instructions should be rare enough for that not to matter
6102 too much). */
6103 dsc->modinsn[0] = ARM_NOP;
6104
6105 dsc->cleanup = &cleanup_block_load_all;
6106 }
6107 else
6108 {
6109 /* LDM of a list of registers which includes PC. Implement by
6110 rewriting the list of registers to be transferred into a
6111 contiguous chunk r0...rX before doing the transfer, then shuffling
6112 registers into the correct places in the cleanup routine. */
6113 unsigned int regmask = insn & 0xffff;
6114 unsigned int num_in_list = bitcount (regmask), new_regmask;
6115 unsigned int i;
6116
6117 for (i = 0; i < num_in_list; i++)
6118 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6119
6120 /* Writeback makes things complicated. We need to avoid clobbering
6121 the base register with one of the registers in our modified
6122 register list, but just using a different register can't work in
6123 all cases, e.g.:
6124
6125 ldm r14!, {r0-r13,pc}
6126
6127 which would need to be rewritten as:
6128
6129 ldm rN!, {r0-r14}
6130
6131 but that can't work, because there's no free register for N.
6132
6133 Solve this by turning off the writeback bit, and emulating
6134 writeback manually in the cleanup routine. */
6135
6136 if (writeback)
6137 insn &= ~(1 << 21);
6138
6139 new_regmask = (1 << num_in_list) - 1;
6140
6141 if (debug_displaced)
6142 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6143 "{..., pc}: original reg list %.4x, modified "
6144 "list %.4x\n"), rn, writeback ? "!" : "",
6145 (int) insn & 0xffff, new_regmask);
6146
6147 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6148
6149 dsc->cleanup = &cleanup_block_load_pc;
6150 }
6151 }
6152 else
6153 {
6154 /* STM of a list of registers which includes PC. Run the instruction
6155 as-is, but out of line: this will store the wrong value for the PC,
6156 so we must manually fix up the memory in the cleanup routine.
6157 Doing things this way has the advantage that we can auto-detect
6158 the offset of the PC write (which is architecture-dependent) in
6159 the cleanup routine. */
6160 dsc->modinsn[0] = insn;
6161
6162 dsc->cleanup = &cleanup_block_store_pc;
6163 }
6164
6165 return 0;
6166 }
6167
6168 static int
6169 thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6170 struct regcache *regs,
6171 struct displaced_step_closure *dsc)
6172 {
6173 int rn = bits (insn1, 0, 3);
6174 int load = bit (insn1, 4);
6175 int writeback = bit (insn1, 5);
6176
6177 /* Block transfers which don't mention PC can be run directly
6178 out-of-line. */
6179 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6180 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
6181
6182 if (rn == ARM_PC_REGNUM)
6183 {
6184 warning (_("displaced: Unpredictable LDM or STM with "
6185 "base register r15"));
6186 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6187 "unpredictable ldm/stm", dsc);
6188 }
6189
6190 if (debug_displaced)
6191 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6192 "%.4x%.4x\n", insn1, insn2);
6193
6194 /* Clear bit 13, since it should be always zero. */
6195 dsc->u.block.regmask = (insn2 & 0xdfff);
6196 dsc->u.block.rn = rn;
6197
6198 dsc->u.block.load = load;
6199 dsc->u.block.user = 0;
6200 dsc->u.block.increment = bit (insn1, 7);
6201 dsc->u.block.before = bit (insn1, 8);
6202 dsc->u.block.writeback = writeback;
6203 dsc->u.block.cond = INST_AL;
6204 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6205
6206 if (load)
6207 {
6208 if (dsc->u.block.regmask == 0xffff)
6209 {
6210 /* This branch is impossible to happen. */
6211 gdb_assert (0);
6212 }
6213 else
6214 {
6215 unsigned int regmask = dsc->u.block.regmask;
6216 unsigned int num_in_list = bitcount (regmask), new_regmask;
6217 unsigned int i;
6218
6219 for (i = 0; i < num_in_list; i++)
6220 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6221
6222 if (writeback)
6223 insn1 &= ~(1 << 5);
6224
6225 new_regmask = (1 << num_in_list) - 1;
6226
6227 if (debug_displaced)
6228 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6229 "{..., pc}: original reg list %.4x, modified "
6230 "list %.4x\n"), rn, writeback ? "!" : "",
6231 (int) dsc->u.block.regmask, new_regmask);
6232
6233 dsc->modinsn[0] = insn1;
6234 dsc->modinsn[1] = (new_regmask & 0xffff);
6235 dsc->numinsns = 2;
6236
6237 dsc->cleanup = &cleanup_block_load_pc;
6238 }
6239 }
6240 else
6241 {
6242 dsc->modinsn[0] = insn1;
6243 dsc->modinsn[1] = insn2;
6244 dsc->numinsns = 2;
6245 dsc->cleanup = &cleanup_block_store_pc;
6246 }
6247 return 0;
6248 }
6249
6250 /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6251 This is used to avoid a dependency on BFD's bfd_endian enum. */
6252
6253 ULONGEST
6254 arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6255 int byte_order)
6256 {
6257 return read_memory_unsigned_integer (memaddr, len,
6258 (enum bfd_endian) byte_order);
6259 }
6260
6261 /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6262
6263 CORE_ADDR
6264 arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6265 CORE_ADDR val)
6266 {
6267 return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
6268 }
6269
6270 /* Wrapper over syscall_next_pc for use in get_next_pcs. */
6271
6272 static CORE_ADDR
6273 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
6274 {
6275 return 0;
6276 }
6277
6278 /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6279
6280 int
6281 arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6282 {
6283 return arm_is_thumb (self->regcache);
6284 }
6285
6286 /* single_step() is called just before we want to resume the inferior,
6287 if we want to single-step it but there is no hardware or kernel
6288 single-step support. We find the target of the coming instructions
6289 and breakpoint them. */
6290
6291 VEC (CORE_ADDR) *
6292 arm_software_single_step (struct regcache *regcache)
6293 {
6294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6295 struct arm_get_next_pcs next_pcs_ctx;
6296 CORE_ADDR pc;
6297 int i;
6298 VEC (CORE_ADDR) *next_pcs = NULL;
6299 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
6300
6301 arm_get_next_pcs_ctor (&next_pcs_ctx,
6302 &arm_get_next_pcs_ops,
6303 gdbarch_byte_order (gdbarch),
6304 gdbarch_byte_order_for_code (gdbarch),
6305 0,
6306 regcache);
6307
6308 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
6309
6310 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
6311 {
6312 pc = gdbarch_addr_bits_remove (gdbarch, pc);
6313 VEC_replace (CORE_ADDR, next_pcs, i, pc);
6314 }
6315
6316 discard_cleanups (old_chain);
6317
6318 return next_pcs;
6319 }
6320
6321 /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6322 for Linux, where some SVC instructions must be treated specially. */
6323
6324 static void
6325 cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6326 struct displaced_step_closure *dsc)
6327 {
6328 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6329
6330 if (debug_displaced)
6331 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6332 "%.8lx\n", (unsigned long) resume_addr);
6333
6334 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6335 }
6336
6337
6338 /* Common copy routine for svc instruciton. */
6339
6340 static int
6341 install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6342 struct displaced_step_closure *dsc)
6343 {
6344 /* Preparation: none.
6345 Insn: unmodified svc.
6346 Cleanup: pc <- insn_addr + insn_size. */
6347
6348 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6349 instruction. */
6350 dsc->wrote_to_pc = 1;
6351
6352 /* Allow OS-specific code to override SVC handling. */
6353 if (dsc->u.svc.copy_svc_os)
6354 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6355 else
6356 {
6357 dsc->cleanup = &cleanup_svc;
6358 return 0;
6359 }
6360 }
6361
6362 static int
6363 arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6364 struct regcache *regs, struct displaced_step_closure *dsc)
6365 {
6366
6367 if (debug_displaced)
6368 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6369 (unsigned long) insn);
6370
6371 dsc->modinsn[0] = insn;
6372
6373 return install_svc (gdbarch, regs, dsc);
6374 }
6375
6376 static int
6377 thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6378 struct regcache *regs, struct displaced_step_closure *dsc)
6379 {
6380
6381 if (debug_displaced)
6382 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6383 insn);
6384
6385 dsc->modinsn[0] = insn;
6386
6387 return install_svc (gdbarch, regs, dsc);
6388 }
6389
6390 /* Copy undefined instructions. */
6391
6392 static int
6393 arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6394 struct displaced_step_closure *dsc)
6395 {
6396 if (debug_displaced)
6397 fprintf_unfiltered (gdb_stdlog,
6398 "displaced: copying undefined insn %.8lx\n",
6399 (unsigned long) insn);
6400
6401 dsc->modinsn[0] = insn;
6402
6403 return 0;
6404 }
6405
6406 static int
6407 thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6408 struct displaced_step_closure *dsc)
6409 {
6410
6411 if (debug_displaced)
6412 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6413 "%.4x %.4x\n", (unsigned short) insn1,
6414 (unsigned short) insn2);
6415
6416 dsc->modinsn[0] = insn1;
6417 dsc->modinsn[1] = insn2;
6418 dsc->numinsns = 2;
6419
6420 return 0;
6421 }
6422
6423 /* Copy unpredictable instructions. */
6424
6425 static int
6426 arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6427 struct displaced_step_closure *dsc)
6428 {
6429 if (debug_displaced)
6430 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6431 "%.8lx\n", (unsigned long) insn);
6432
6433 dsc->modinsn[0] = insn;
6434
6435 return 0;
6436 }
6437
6438 /* The decode_* functions are instruction decoding helpers. They mostly follow
6439 the presentation in the ARM ARM. */
6440
6441 static int
6442 arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6443 struct regcache *regs,
6444 struct displaced_step_closure *dsc)
6445 {
6446 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6447 unsigned int rn = bits (insn, 16, 19);
6448
6449 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
6450 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
6451 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
6452 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
6453 else if ((op1 & 0x60) == 0x20)
6454 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6455 else if ((op1 & 0x71) == 0x40)
6456 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6457 dsc);
6458 else if ((op1 & 0x77) == 0x41)
6459 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6460 else if ((op1 & 0x77) == 0x45)
6461 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6462 else if ((op1 & 0x77) == 0x51)
6463 {
6464 if (rn != 0xf)
6465 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6466 else
6467 return arm_copy_unpred (gdbarch, insn, dsc);
6468 }
6469 else if ((op1 & 0x77) == 0x55)
6470 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6471 else if (op1 == 0x57)
6472 switch (op2)
6473 {
6474 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6475 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6476 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6477 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6478 default: return arm_copy_unpred (gdbarch, insn, dsc);
6479 }
6480 else if ((op1 & 0x63) == 0x43)
6481 return arm_copy_unpred (gdbarch, insn, dsc);
6482 else if ((op2 & 0x1) == 0x0)
6483 switch (op1 & ~0x80)
6484 {
6485 case 0x61:
6486 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6487 case 0x65:
6488 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6489 case 0x71: case 0x75:
6490 /* pld/pldw reg. */
6491 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
6492 case 0x63: case 0x67: case 0x73: case 0x77:
6493 return arm_copy_unpred (gdbarch, insn, dsc);
6494 default:
6495 return arm_copy_undef (gdbarch, insn, dsc);
6496 }
6497 else
6498 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6499 }
6500
6501 static int
6502 arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6503 struct regcache *regs,
6504 struct displaced_step_closure *dsc)
6505 {
6506 if (bit (insn, 27) == 0)
6507 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6508 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6509 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6510 {
6511 case 0x0: case 0x2:
6512 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
6513
6514 case 0x1: case 0x3:
6515 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
6516
6517 case 0x4: case 0x5: case 0x6: case 0x7:
6518 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6519
6520 case 0x8:
6521 switch ((insn & 0xe00000) >> 21)
6522 {
6523 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6524 /* stc/stc2. */
6525 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6526
6527 case 0x2:
6528 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6529
6530 default:
6531 return arm_copy_undef (gdbarch, insn, dsc);
6532 }
6533
6534 case 0x9:
6535 {
6536 int rn_f = (bits (insn, 16, 19) == 0xf);
6537 switch ((insn & 0xe00000) >> 21)
6538 {
6539 case 0x1: case 0x3:
6540 /* ldc/ldc2 imm (undefined for rn == pc). */
6541 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6542 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6543
6544 case 0x2:
6545 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6546
6547 case 0x4: case 0x5: case 0x6: case 0x7:
6548 /* ldc/ldc2 lit (undefined for rn != pc). */
6549 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6550 : arm_copy_undef (gdbarch, insn, dsc);
6551
6552 default:
6553 return arm_copy_undef (gdbarch, insn, dsc);
6554 }
6555 }
6556
6557 case 0xa:
6558 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6559
6560 case 0xb:
6561 if (bits (insn, 16, 19) == 0xf)
6562 /* ldc/ldc2 lit. */
6563 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6564 else
6565 return arm_copy_undef (gdbarch, insn, dsc);
6566
6567 case 0xc:
6568 if (bit (insn, 4))
6569 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6570 else
6571 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6572
6573 case 0xd:
6574 if (bit (insn, 4))
6575 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6576 else
6577 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6578
6579 default:
6580 return arm_copy_undef (gdbarch, insn, dsc);
6581 }
6582 }
6583
6584 /* Decode miscellaneous instructions in dp/misc encoding space. */
6585
6586 static int
6587 arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6588 struct regcache *regs,
6589 struct displaced_step_closure *dsc)
6590 {
6591 unsigned int op2 = bits (insn, 4, 6);
6592 unsigned int op = bits (insn, 21, 22);
6593
6594 switch (op2)
6595 {
6596 case 0x0:
6597 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6598
6599 case 0x1:
6600 if (op == 0x1) /* bx. */
6601 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6602 else if (op == 0x3)
6603 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
6604 else
6605 return arm_copy_undef (gdbarch, insn, dsc);
6606
6607 case 0x2:
6608 if (op == 0x1)
6609 /* Not really supported. */
6610 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
6611 else
6612 return arm_copy_undef (gdbarch, insn, dsc);
6613
6614 case 0x3:
6615 if (op == 0x1)
6616 return arm_copy_bx_blx_reg (gdbarch, insn,
6617 regs, dsc); /* blx register. */
6618 else
6619 return arm_copy_undef (gdbarch, insn, dsc);
6620
6621 case 0x5:
6622 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6623
6624 case 0x7:
6625 if (op == 0x1)
6626 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
6627 else if (op == 0x3)
6628 /* Not really supported. */
6629 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
6630
6631 default:
6632 return arm_copy_undef (gdbarch, insn, dsc);
6633 }
6634 }
6635
6636 static int
6637 arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6638 struct regcache *regs,
6639 struct displaced_step_closure *dsc)
6640 {
6641 if (bit (insn, 25))
6642 switch (bits (insn, 20, 24))
6643 {
6644 case 0x10:
6645 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
6646
6647 case 0x14:
6648 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
6649
6650 case 0x12: case 0x16:
6651 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
6652
6653 default:
6654 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
6655 }
6656 else
6657 {
6658 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6659
6660 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6661 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
6662 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6663 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6664 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6665 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
6666 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6667 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6668 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6669 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6670 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6671 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
6672 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6673 /* 2nd arg means "unprivileged". */
6674 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6675 dsc);
6676 }
6677
6678 /* Should be unreachable. */
6679 return 1;
6680 }
6681
6682 static int
6683 arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6684 struct regcache *regs,
6685 struct displaced_step_closure *dsc)
6686 {
6687 int a = bit (insn, 25), b = bit (insn, 4);
6688 uint32_t op1 = bits (insn, 20, 24);
6689
6690 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6691 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6692 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
6693 else if ((!a && (op1 & 0x17) == 0x02)
6694 || (a && (op1 & 0x17) == 0x02 && !b))
6695 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
6696 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6697 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6698 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
6699 else if ((!a && (op1 & 0x17) == 0x03)
6700 || (a && (op1 & 0x17) == 0x03 && !b))
6701 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
6702 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6703 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6704 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6705 else if ((!a && (op1 & 0x17) == 0x06)
6706 || (a && (op1 & 0x17) == 0x06 && !b))
6707 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6708 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6709 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6710 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6711 else if ((!a && (op1 & 0x17) == 0x07)
6712 || (a && (op1 & 0x17) == 0x07 && !b))
6713 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6714
6715 /* Should be unreachable. */
6716 return 1;
6717 }
6718
6719 static int
6720 arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6721 struct displaced_step_closure *dsc)
6722 {
6723 switch (bits (insn, 20, 24))
6724 {
6725 case 0x00: case 0x01: case 0x02: case 0x03:
6726 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6727
6728 case 0x04: case 0x05: case 0x06: case 0x07:
6729 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6730
6731 case 0x08: case 0x09: case 0x0a: case 0x0b:
6732 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6733 return arm_copy_unmodified (gdbarch, insn,
6734 "decode/pack/unpack/saturate/reverse", dsc);
6735
6736 case 0x18:
6737 if (bits (insn, 5, 7) == 0) /* op2. */
6738 {
6739 if (bits (insn, 12, 15) == 0xf)
6740 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
6741 else
6742 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
6743 }
6744 else
6745 return arm_copy_undef (gdbarch, insn, dsc);
6746
6747 case 0x1a: case 0x1b:
6748 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6749 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
6750 else
6751 return arm_copy_undef (gdbarch, insn, dsc);
6752
6753 case 0x1c: case 0x1d:
6754 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6755 {
6756 if (bits (insn, 0, 3) == 0xf)
6757 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
6758 else
6759 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
6760 }
6761 else
6762 return arm_copy_undef (gdbarch, insn, dsc);
6763
6764 case 0x1e: case 0x1f:
6765 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6766 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
6767 else
6768 return arm_copy_undef (gdbarch, insn, dsc);
6769 }
6770
6771 /* Should be unreachable. */
6772 return 1;
6773 }
6774
6775 static int
6776 arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
6777 struct regcache *regs,
6778 struct displaced_step_closure *dsc)
6779 {
6780 if (bit (insn, 25))
6781 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6782 else
6783 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
6784 }
6785
6786 static int
6787 arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6788 struct regcache *regs,
6789 struct displaced_step_closure *dsc)
6790 {
6791 unsigned int opcode = bits (insn, 20, 24);
6792
6793 switch (opcode)
6794 {
6795 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6796 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6797
6798 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6799 case 0x12: case 0x16:
6800 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6801
6802 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6803 case 0x13: case 0x17:
6804 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6805
6806 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6807 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6808 /* Note: no writeback for these instructions. Bit 25 will always be
6809 zero though (via caller), so the following works OK. */
6810 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6811 }
6812
6813 /* Should be unreachable. */
6814 return 1;
6815 }
6816
6817 /* Decode shifted register instructions. */
6818
6819 static int
6820 thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6821 uint16_t insn2, struct regcache *regs,
6822 struct displaced_step_closure *dsc)
6823 {
6824 /* PC is only allowed to be used in instruction MOV. */
6825
6826 unsigned int op = bits (insn1, 5, 8);
6827 unsigned int rn = bits (insn1, 0, 3);
6828
6829 if (op == 0x2 && rn == 0xf) /* MOV */
6830 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6831 else
6832 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6833 "dp (shift reg)", dsc);
6834 }
6835
6836
6837 /* Decode extension register load/store. Exactly the same as
6838 arm_decode_ext_reg_ld_st. */
6839
6840 static int
6841 thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6842 uint16_t insn2, struct regcache *regs,
6843 struct displaced_step_closure *dsc)
6844 {
6845 unsigned int opcode = bits (insn1, 4, 8);
6846
6847 switch (opcode)
6848 {
6849 case 0x04: case 0x05:
6850 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6851 "vfp/neon vmov", dsc);
6852
6853 case 0x08: case 0x0c: /* 01x00 */
6854 case 0x0a: case 0x0e: /* 01x10 */
6855 case 0x12: case 0x16: /* 10x10 */
6856 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6857 "vfp/neon vstm/vpush", dsc);
6858
6859 case 0x09: case 0x0d: /* 01x01 */
6860 case 0x0b: case 0x0f: /* 01x11 */
6861 case 0x13: case 0x17: /* 10x11 */
6862 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6863 "vfp/neon vldm/vpop", dsc);
6864
6865 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6866 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6867 "vstr", dsc);
6868 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6869 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6870 }
6871
6872 /* Should be unreachable. */
6873 return 1;
6874 }
6875
6876 static int
6877 arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
6878 struct regcache *regs, struct displaced_step_closure *dsc)
6879 {
6880 unsigned int op1 = bits (insn, 20, 25);
6881 int op = bit (insn, 4);
6882 unsigned int coproc = bits (insn, 8, 11);
6883
6884 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6885 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6886 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6887 && (coproc & 0xe) != 0xa)
6888 /* stc/stc2. */
6889 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6890 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6891 && (coproc & 0xe) != 0xa)
6892 /* ldc/ldc2 imm/lit. */
6893 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6894 else if ((op1 & 0x3e) == 0x00)
6895 return arm_copy_undef (gdbarch, insn, dsc);
6896 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6897 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6898 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6899 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6900 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6901 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6902 else if ((op1 & 0x30) == 0x20 && !op)
6903 {
6904 if ((coproc & 0xe) == 0xa)
6905 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6906 else
6907 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6908 }
6909 else if ((op1 & 0x30) == 0x20 && op)
6910 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6911 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6912 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6913 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6914 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6915 else if ((op1 & 0x30) == 0x30)
6916 return arm_copy_svc (gdbarch, insn, regs, dsc);
6917 else
6918 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6919 }
6920
6921 static int
6922 thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6923 uint16_t insn2, struct regcache *regs,
6924 struct displaced_step_closure *dsc)
6925 {
6926 unsigned int coproc = bits (insn2, 8, 11);
6927 unsigned int bit_5_8 = bits (insn1, 5, 8);
6928 unsigned int bit_9 = bit (insn1, 9);
6929 unsigned int bit_4 = bit (insn1, 4);
6930
6931 if (bit_9 == 0)
6932 {
6933 if (bit_5_8 == 2)
6934 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6935 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6936 dsc);
6937 else if (bit_5_8 == 0) /* UNDEFINED. */
6938 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6939 else
6940 {
6941 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6942 if ((coproc & 0xe) == 0xa)
6943 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6944 dsc);
6945 else /* coproc is not 101x. */
6946 {
6947 if (bit_4 == 0) /* STC/STC2. */
6948 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6949 "stc/stc2", dsc);
6950 else /* LDC/LDC2 {literal, immeidate}. */
6951 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6952 regs, dsc);
6953 }
6954 }
6955 }
6956 else
6957 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6958
6959 return 0;
6960 }
6961
6962 static void
6963 install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6964 struct displaced_step_closure *dsc, int rd)
6965 {
6966 /* ADR Rd, #imm
6967
6968 Rewrite as:
6969
6970 Preparation: Rd <- PC
6971 Insn: ADD Rd, #imm
6972 Cleanup: Null.
6973 */
6974
6975 /* Rd <- PC */
6976 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6977 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
6978 }
6979
6980 static int
6981 thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
6982 struct displaced_step_closure *dsc,
6983 int rd, unsigned int imm)
6984 {
6985
6986 /* Encoding T2: ADDS Rd, #imm */
6987 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
6988
6989 install_pc_relative (gdbarch, regs, dsc, rd);
6990
6991 return 0;
6992 }
6993
6994 static int
6995 thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
6996 struct regcache *regs,
6997 struct displaced_step_closure *dsc)
6998 {
6999 unsigned int rd = bits (insn, 8, 10);
7000 unsigned int imm8 = bits (insn, 0, 7);
7001
7002 if (debug_displaced)
7003 fprintf_unfiltered (gdb_stdlog,
7004 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7005 rd, imm8, insn);
7006
7007 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7008 }
7009
7010 static int
7011 thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7012 uint16_t insn2, struct regcache *regs,
7013 struct displaced_step_closure *dsc)
7014 {
7015 unsigned int rd = bits (insn2, 8, 11);
7016 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7017 extract raw immediate encoding rather than computing immediate. When
7018 generating ADD or SUB instruction, we can simply perform OR operation to
7019 set immediate into ADD. */
7020 unsigned int imm_3_8 = insn2 & 0x70ff;
7021 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7022
7023 if (debug_displaced)
7024 fprintf_unfiltered (gdb_stdlog,
7025 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7026 rd, imm_i, imm_3_8, insn1, insn2);
7027
7028 if (bit (insn1, 7)) /* Encoding T2 */
7029 {
7030 /* Encoding T3: SUB Rd, Rd, #imm */
7031 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7032 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7033 }
7034 else /* Encoding T3 */
7035 {
7036 /* Encoding T3: ADD Rd, Rd, #imm */
7037 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7038 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7039 }
7040 dsc->numinsns = 2;
7041
7042 install_pc_relative (gdbarch, regs, dsc, rd);
7043
7044 return 0;
7045 }
7046
7047 static int
7048 thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
7049 struct regcache *regs,
7050 struct displaced_step_closure *dsc)
7051 {
7052 unsigned int rt = bits (insn1, 8, 10);
7053 unsigned int pc;
7054 int imm8 = (bits (insn1, 0, 7) << 2);
7055
7056 /* LDR Rd, #imm8
7057
7058 Rwrite as:
7059
7060 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7061
7062 Insn: LDR R0, [R2, R3];
7063 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
7064
7065 if (debug_displaced)
7066 fprintf_unfiltered (gdb_stdlog,
7067 "displaced: copying thumb ldr r%d [pc #%d]\n"
7068 , rt, imm8);
7069
7070 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
7071 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
7072 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
7073 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7074 /* The assembler calculates the required value of the offset from the
7075 Align(PC,4) value of this instruction to the label. */
7076 pc = pc & 0xfffffffc;
7077
7078 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
7079 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
7080
7081 dsc->rd = rt;
7082 dsc->u.ldst.xfersize = 4;
7083 dsc->u.ldst.rn = 0;
7084 dsc->u.ldst.immed = 0;
7085 dsc->u.ldst.writeback = 0;
7086 dsc->u.ldst.restore_r4 = 0;
7087
7088 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7089
7090 dsc->cleanup = &cleanup_load;
7091
7092 return 0;
7093 }
7094
7095 /* Copy Thumb cbnz/cbz insruction. */
7096
7097 static int
7098 thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7099 struct regcache *regs,
7100 struct displaced_step_closure *dsc)
7101 {
7102 int non_zero = bit (insn1, 11);
7103 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7104 CORE_ADDR from = dsc->insn_addr;
7105 int rn = bits (insn1, 0, 2);
7106 int rn_val = displaced_read_reg (regs, dsc, rn);
7107
7108 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7109 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7110 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7111 condition is false, let it be, cleanup_branch will do nothing. */
7112 if (dsc->u.branch.cond)
7113 {
7114 dsc->u.branch.cond = INST_AL;
7115 dsc->u.branch.dest = from + 4 + imm5;
7116 }
7117 else
7118 dsc->u.branch.dest = from + 2;
7119
7120 dsc->u.branch.link = 0;
7121 dsc->u.branch.exchange = 0;
7122
7123 if (debug_displaced)
7124 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7125 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7126 rn, rn_val, insn1, dsc->u.branch.dest);
7127
7128 dsc->modinsn[0] = THUMB_NOP;
7129
7130 dsc->cleanup = &cleanup_branch;
7131 return 0;
7132 }
7133
7134 /* Copy Table Branch Byte/Halfword */
7135 static int
7136 thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7137 uint16_t insn2, struct regcache *regs,
7138 struct displaced_step_closure *dsc)
7139 {
7140 ULONGEST rn_val, rm_val;
7141 int is_tbh = bit (insn2, 4);
7142 CORE_ADDR halfwords = 0;
7143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7144
7145 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7146 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7147
7148 if (is_tbh)
7149 {
7150 gdb_byte buf[2];
7151
7152 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7153 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7154 }
7155 else
7156 {
7157 gdb_byte buf[1];
7158
7159 target_read_memory (rn_val + rm_val, buf, 1);
7160 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7161 }
7162
7163 if (debug_displaced)
7164 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7165 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7166 (unsigned int) rn_val, (unsigned int) rm_val,
7167 (unsigned int) halfwords);
7168
7169 dsc->u.branch.cond = INST_AL;
7170 dsc->u.branch.link = 0;
7171 dsc->u.branch.exchange = 0;
7172 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7173
7174 dsc->cleanup = &cleanup_branch;
7175
7176 return 0;
7177 }
7178
7179 static void
7180 cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7181 struct displaced_step_closure *dsc)
7182 {
7183 /* PC <- r7 */
7184 int val = displaced_read_reg (regs, dsc, 7);
7185 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7186
7187 /* r7 <- r8 */
7188 val = displaced_read_reg (regs, dsc, 8);
7189 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7190
7191 /* r8 <- tmp[0] */
7192 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7193
7194 }
7195
7196 static int
7197 thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
7198 struct regcache *regs,
7199 struct displaced_step_closure *dsc)
7200 {
7201 dsc->u.block.regmask = insn1 & 0x00ff;
7202
7203 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7204 to :
7205
7206 (1) register list is full, that is, r0-r7 are used.
7207 Prepare: tmp[0] <- r8
7208
7209 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7210 MOV r8, r7; Move value of r7 to r8;
7211 POP {r7}; Store PC value into r7.
7212
7213 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7214
7215 (2) register list is not full, supposing there are N registers in
7216 register list (except PC, 0 <= N <= 7).
7217 Prepare: for each i, 0 - N, tmp[i] <- ri.
7218
7219 POP {r0, r1, ...., rN};
7220
7221 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7222 from tmp[] properly.
7223 */
7224 if (debug_displaced)
7225 fprintf_unfiltered (gdb_stdlog,
7226 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7227 dsc->u.block.regmask, insn1);
7228
7229 if (dsc->u.block.regmask == 0xff)
7230 {
7231 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7232
7233 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7234 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7235 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7236
7237 dsc->numinsns = 3;
7238 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7239 }
7240 else
7241 {
7242 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
7243 unsigned int i;
7244 unsigned int new_regmask;
7245
7246 for (i = 0; i < num_in_list + 1; i++)
7247 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7248
7249 new_regmask = (1 << (num_in_list + 1)) - 1;
7250
7251 if (debug_displaced)
7252 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7253 "{..., pc}: original reg list %.4x,"
7254 " modified list %.4x\n"),
7255 (int) dsc->u.block.regmask, new_regmask);
7256
7257 dsc->u.block.regmask |= 0x8000;
7258 dsc->u.block.writeback = 0;
7259 dsc->u.block.cond = INST_AL;
7260
7261 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7262
7263 dsc->cleanup = &cleanup_block_load_pc;
7264 }
7265
7266 return 0;
7267 }
7268
7269 static void
7270 thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7271 struct regcache *regs,
7272 struct displaced_step_closure *dsc)
7273 {
7274 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7275 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7276 int err = 0;
7277
7278 /* 16-bit thumb instructions. */
7279 switch (op_bit_12_15)
7280 {
7281 /* Shift (imme), add, subtract, move and compare. */
7282 case 0: case 1: case 2: case 3:
7283 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7284 "shift/add/sub/mov/cmp",
7285 dsc);
7286 break;
7287 case 4:
7288 switch (op_bit_10_11)
7289 {
7290 case 0: /* Data-processing */
7291 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7292 "data-processing",
7293 dsc);
7294 break;
7295 case 1: /* Special data instructions and branch and exchange. */
7296 {
7297 unsigned short op = bits (insn1, 7, 9);
7298 if (op == 6 || op == 7) /* BX or BLX */
7299 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7300 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7301 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7302 else
7303 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7304 dsc);
7305 }
7306 break;
7307 default: /* LDR (literal) */
7308 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7309 }
7310 break;
7311 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7312 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7313 break;
7314 case 10:
7315 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7316 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7317 else /* Generate SP-relative address */
7318 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7319 break;
7320 case 11: /* Misc 16-bit instructions */
7321 {
7322 switch (bits (insn1, 8, 11))
7323 {
7324 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7325 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7326 break;
7327 case 12: case 13: /* POP */
7328 if (bit (insn1, 8)) /* PC is in register list. */
7329 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7330 else
7331 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7332 break;
7333 case 15: /* If-Then, and hints */
7334 if (bits (insn1, 0, 3))
7335 /* If-Then makes up to four following instructions conditional.
7336 IT instruction itself is not conditional, so handle it as a
7337 common unmodified instruction. */
7338 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7339 dsc);
7340 else
7341 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7342 break;
7343 default:
7344 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7345 }
7346 }
7347 break;
7348 case 12:
7349 if (op_bit_10_11 < 2) /* Store multiple registers */
7350 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7351 else /* Load multiple registers */
7352 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7353 break;
7354 case 13: /* Conditional branch and supervisor call */
7355 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7356 err = thumb_copy_b (gdbarch, insn1, dsc);
7357 else
7358 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7359 break;
7360 case 14: /* Unconditional branch */
7361 err = thumb_copy_b (gdbarch, insn1, dsc);
7362 break;
7363 default:
7364 err = 1;
7365 }
7366
7367 if (err)
7368 internal_error (__FILE__, __LINE__,
7369 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7370 }
7371
7372 static int
7373 decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7374 uint16_t insn1, uint16_t insn2,
7375 struct regcache *regs,
7376 struct displaced_step_closure *dsc)
7377 {
7378 int rt = bits (insn2, 12, 15);
7379 int rn = bits (insn1, 0, 3);
7380 int op1 = bits (insn1, 7, 8);
7381
7382 switch (bits (insn1, 5, 6))
7383 {
7384 case 0: /* Load byte and memory hints */
7385 if (rt == 0xf) /* PLD/PLI */
7386 {
7387 if (rn == 0xf)
7388 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7389 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7390 else
7391 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7392 "pli/pld", dsc);
7393 }
7394 else
7395 {
7396 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7397 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7398 1);
7399 else
7400 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7401 "ldrb{reg, immediate}/ldrbt",
7402 dsc);
7403 }
7404
7405 break;
7406 case 1: /* Load halfword and memory hints. */
7407 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7408 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7409 "pld/unalloc memhint", dsc);
7410 else
7411 {
7412 if (rn == 0xf)
7413 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7414 2);
7415 else
7416 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7417 "ldrh/ldrht", dsc);
7418 }
7419 break;
7420 case 2: /* Load word */
7421 {
7422 int insn2_bit_8_11 = bits (insn2, 8, 11);
7423
7424 if (rn == 0xf)
7425 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7426 else if (op1 == 0x1) /* Encoding T3 */
7427 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7428 0, 1);
7429 else /* op1 == 0x0 */
7430 {
7431 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7432 /* LDR (immediate) */
7433 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7434 dsc, bit (insn2, 8), 1);
7435 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7436 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7437 "ldrt", dsc);
7438 else
7439 /* LDR (register) */
7440 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7441 dsc, 0, 0);
7442 }
7443 break;
7444 }
7445 default:
7446 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7447 break;
7448 }
7449 return 0;
7450 }
7451
7452 static void
7453 thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7454 uint16_t insn2, struct regcache *regs,
7455 struct displaced_step_closure *dsc)
7456 {
7457 int err = 0;
7458 unsigned short op = bit (insn2, 15);
7459 unsigned int op1 = bits (insn1, 11, 12);
7460
7461 switch (op1)
7462 {
7463 case 1:
7464 {
7465 switch (bits (insn1, 9, 10))
7466 {
7467 case 0:
7468 if (bit (insn1, 6))
7469 {
7470 /* Load/store {dual, execlusive}, table branch. */
7471 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7472 && bits (insn2, 5, 7) == 0)
7473 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7474 dsc);
7475 else
7476 /* PC is not allowed to use in load/store {dual, exclusive}
7477 instructions. */
7478 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7479 "load/store dual/ex", dsc);
7480 }
7481 else /* load/store multiple */
7482 {
7483 switch (bits (insn1, 7, 8))
7484 {
7485 case 0: case 3: /* SRS, RFE */
7486 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7487 "srs/rfe", dsc);
7488 break;
7489 case 1: case 2: /* LDM/STM/PUSH/POP */
7490 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7491 break;
7492 }
7493 }
7494 break;
7495
7496 case 1:
7497 /* Data-processing (shift register). */
7498 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7499 dsc);
7500 break;
7501 default: /* Coprocessor instructions. */
7502 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7503 break;
7504 }
7505 break;
7506 }
7507 case 2: /* op1 = 2 */
7508 if (op) /* Branch and misc control. */
7509 {
7510 if (bit (insn2, 14) /* BLX/BL */
7511 || bit (insn2, 12) /* Unconditional branch */
7512 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7513 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7514 else
7515 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7516 "misc ctrl", dsc);
7517 }
7518 else
7519 {
7520 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7521 {
7522 int op = bits (insn1, 4, 8);
7523 int rn = bits (insn1, 0, 3);
7524 if ((op == 0 || op == 0xa) && rn == 0xf)
7525 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7526 regs, dsc);
7527 else
7528 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7529 "dp/pb", dsc);
7530 }
7531 else /* Data processing (modified immeidate) */
7532 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7533 "dp/mi", dsc);
7534 }
7535 break;
7536 case 3: /* op1 = 3 */
7537 switch (bits (insn1, 9, 10))
7538 {
7539 case 0:
7540 if (bit (insn1, 4))
7541 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7542 regs, dsc);
7543 else /* NEON Load/Store and Store single data item */
7544 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7545 "neon elt/struct load/store",
7546 dsc);
7547 break;
7548 case 1: /* op1 = 3, bits (9, 10) == 1 */
7549 switch (bits (insn1, 7, 8))
7550 {
7551 case 0: case 1: /* Data processing (register) */
7552 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7553 "dp(reg)", dsc);
7554 break;
7555 case 2: /* Multiply and absolute difference */
7556 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7557 "mul/mua/diff", dsc);
7558 break;
7559 case 3: /* Long multiply and divide */
7560 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7561 "lmul/lmua", dsc);
7562 break;
7563 }
7564 break;
7565 default: /* Coprocessor instructions */
7566 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7567 break;
7568 }
7569 break;
7570 default:
7571 err = 1;
7572 }
7573
7574 if (err)
7575 internal_error (__FILE__, __LINE__,
7576 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7577
7578 }
7579
7580 static void
7581 thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7582 struct regcache *regs,
7583 struct displaced_step_closure *dsc)
7584 {
7585 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7586 uint16_t insn1
7587 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7588
7589 if (debug_displaced)
7590 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7591 "at %.8lx\n", insn1, (unsigned long) from);
7592
7593 dsc->is_thumb = 1;
7594 dsc->insn_size = thumb_insn_size (insn1);
7595 if (thumb_insn_size (insn1) == 4)
7596 {
7597 uint16_t insn2
7598 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7599 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7600 }
7601 else
7602 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
7603 }
7604
7605 void
7606 arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7607 CORE_ADDR to, struct regcache *regs,
7608 struct displaced_step_closure *dsc)
7609 {
7610 int err = 0;
7611 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7612 uint32_t insn;
7613
7614 /* Most displaced instructions use a 1-instruction scratch space, so set this
7615 here and override below if/when necessary. */
7616 dsc->numinsns = 1;
7617 dsc->insn_addr = from;
7618 dsc->scratch_base = to;
7619 dsc->cleanup = NULL;
7620 dsc->wrote_to_pc = 0;
7621
7622 if (!displaced_in_arm_mode (regs))
7623 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
7624
7625 dsc->is_thumb = 0;
7626 dsc->insn_size = 4;
7627 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7628 if (debug_displaced)
7629 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7630 "at %.8lx\n", (unsigned long) insn,
7631 (unsigned long) from);
7632
7633 if ((insn & 0xf0000000) == 0xf0000000)
7634 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
7635 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7636 {
7637 case 0x0: case 0x1: case 0x2: case 0x3:
7638 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
7639 break;
7640
7641 case 0x4: case 0x5: case 0x6:
7642 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
7643 break;
7644
7645 case 0x7:
7646 err = arm_decode_media (gdbarch, insn, dsc);
7647 break;
7648
7649 case 0x8: case 0x9: case 0xa: case 0xb:
7650 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
7651 break;
7652
7653 case 0xc: case 0xd: case 0xe: case 0xf:
7654 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
7655 break;
7656 }
7657
7658 if (err)
7659 internal_error (__FILE__, __LINE__,
7660 _("arm_process_displaced_insn: Instruction decode error"));
7661 }
7662
7663 /* Actually set up the scratch space for a displaced instruction. */
7664
7665 void
7666 arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7667 CORE_ADDR to, struct displaced_step_closure *dsc)
7668 {
7669 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7670 unsigned int i, len, offset;
7671 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7672 int size = dsc->is_thumb? 2 : 4;
7673 const gdb_byte *bkp_insn;
7674
7675 offset = 0;
7676 /* Poke modified instruction(s). */
7677 for (i = 0; i < dsc->numinsns; i++)
7678 {
7679 if (debug_displaced)
7680 {
7681 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7682 if (size == 4)
7683 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7684 dsc->modinsn[i]);
7685 else if (size == 2)
7686 fprintf_unfiltered (gdb_stdlog, "%.4x",
7687 (unsigned short)dsc->modinsn[i]);
7688
7689 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7690 (unsigned long) to + offset);
7691
7692 }
7693 write_memory_unsigned_integer (to + offset, size,
7694 byte_order_for_code,
7695 dsc->modinsn[i]);
7696 offset += size;
7697 }
7698
7699 /* Choose the correct breakpoint instruction. */
7700 if (dsc->is_thumb)
7701 {
7702 bkp_insn = tdep->thumb_breakpoint;
7703 len = tdep->thumb_breakpoint_size;
7704 }
7705 else
7706 {
7707 bkp_insn = tdep->arm_breakpoint;
7708 len = tdep->arm_breakpoint_size;
7709 }
7710
7711 /* Put breakpoint afterwards. */
7712 write_memory (to + offset, bkp_insn, len);
7713
7714 if (debug_displaced)
7715 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7716 paddress (gdbarch, from), paddress (gdbarch, to));
7717 }
7718
7719 /* Entry point for cleaning things up after a displaced instruction has been
7720 single-stepped. */
7721
7722 void
7723 arm_displaced_step_fixup (struct gdbarch *gdbarch,
7724 struct displaced_step_closure *dsc,
7725 CORE_ADDR from, CORE_ADDR to,
7726 struct regcache *regs)
7727 {
7728 if (dsc->cleanup)
7729 dsc->cleanup (gdbarch, regs, dsc);
7730
7731 if (!dsc->wrote_to_pc)
7732 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7733 dsc->insn_addr + dsc->insn_size);
7734
7735 }
7736
7737 #include "bfd-in2.h"
7738 #include "libcoff.h"
7739
7740 static int
7741 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7742 {
7743 gdb_disassembler *di
7744 = static_cast<gdb_disassembler *>(info->application_data);
7745 struct gdbarch *gdbarch = di->arch ();
7746
7747 if (arm_pc_is_thumb (gdbarch, memaddr))
7748 {
7749 static asymbol *asym;
7750 static combined_entry_type ce;
7751 static struct coff_symbol_struct csym;
7752 static struct bfd fake_bfd;
7753 static bfd_target fake_target;
7754
7755 if (csym.native == NULL)
7756 {
7757 /* Create a fake symbol vector containing a Thumb symbol.
7758 This is solely so that the code in print_insn_little_arm()
7759 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7760 the presence of a Thumb symbol and switch to decoding
7761 Thumb instructions. */
7762
7763 fake_target.flavour = bfd_target_coff_flavour;
7764 fake_bfd.xvec = &fake_target;
7765 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7766 csym.native = &ce;
7767 csym.symbol.the_bfd = &fake_bfd;
7768 csym.symbol.name = "fake";
7769 asym = (asymbol *) & csym;
7770 }
7771
7772 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7773 info->symbols = &asym;
7774 }
7775 else
7776 info->symbols = NULL;
7777
7778 if (info->endian == BFD_ENDIAN_BIG)
7779 return print_insn_big_arm (memaddr, info);
7780 else
7781 return print_insn_little_arm (memaddr, info);
7782 }
7783
7784 /* The following define instruction sequences that will cause ARM
7785 cpu's to take an undefined instruction trap. These are used to
7786 signal a breakpoint to GDB.
7787
7788 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7789 modes. A different instruction is required for each mode. The ARM
7790 cpu's can also be big or little endian. Thus four different
7791 instructions are needed to support all cases.
7792
7793 Note: ARMv4 defines several new instructions that will take the
7794 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7795 not in fact add the new instructions. The new undefined
7796 instructions in ARMv4 are all instructions that had no defined
7797 behaviour in earlier chips. There is no guarantee that they will
7798 raise an exception, but may be treated as NOP's. In practice, it
7799 may only safe to rely on instructions matching:
7800
7801 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7802 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7803 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7804
7805 Even this may only true if the condition predicate is true. The
7806 following use a condition predicate of ALWAYS so it is always TRUE.
7807
7808 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7809 and NetBSD all use a software interrupt rather than an undefined
7810 instruction to force a trap. This can be handled by by the
7811 abi-specific code during establishment of the gdbarch vector. */
7812
7813 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7814 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7815 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7816 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7817
7818 static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7819 static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7820 static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7821 static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7822
7823 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7824
7825 static int
7826 arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7827 {
7828 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7829 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7830
7831 if (arm_pc_is_thumb (gdbarch, *pcptr))
7832 {
7833 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
7834
7835 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7836 check whether we are replacing a 32-bit instruction. */
7837 if (tdep->thumb2_breakpoint != NULL)
7838 {
7839 gdb_byte buf[2];
7840
7841 if (target_read_memory (*pcptr, buf, 2) == 0)
7842 {
7843 unsigned short inst1;
7844
7845 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7846 if (thumb_insn_size (inst1) == 4)
7847 return ARM_BP_KIND_THUMB2;
7848 }
7849 }
7850
7851 return ARM_BP_KIND_THUMB;
7852 }
7853 else
7854 return ARM_BP_KIND_ARM;
7855
7856 }
7857
7858 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7859
7860 static const gdb_byte *
7861 arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7862 {
7863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7864
7865 switch (kind)
7866 {
7867 case ARM_BP_KIND_ARM:
7868 *size = tdep->arm_breakpoint_size;
7869 return tdep->arm_breakpoint;
7870 case ARM_BP_KIND_THUMB:
7871 *size = tdep->thumb_breakpoint_size;
7872 return tdep->thumb_breakpoint;
7873 case ARM_BP_KIND_THUMB2:
7874 *size = tdep->thumb2_breakpoint_size;
7875 return tdep->thumb2_breakpoint;
7876 default:
7877 gdb_assert_not_reached ("unexpected arm breakpoint kind");
7878 }
7879 }
7880
7881 /* Implement the breakpoint_kind_from_current_state gdbarch method. */
7882
7883 static int
7884 arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
7885 struct regcache *regcache,
7886 CORE_ADDR *pcptr)
7887 {
7888 gdb_byte buf[4];
7889
7890 /* Check the memory pointed by PC is readable. */
7891 if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
7892 {
7893 struct arm_get_next_pcs next_pcs_ctx;
7894 CORE_ADDR pc;
7895 int i;
7896 VEC (CORE_ADDR) *next_pcs = NULL;
7897 struct cleanup *old_chain
7898 = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
7899
7900 arm_get_next_pcs_ctor (&next_pcs_ctx,
7901 &arm_get_next_pcs_ops,
7902 gdbarch_byte_order (gdbarch),
7903 gdbarch_byte_order_for_code (gdbarch),
7904 0,
7905 regcache);
7906
7907 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
7908
7909 /* If MEMADDR is the next instruction of current pc, do the
7910 software single step computation, and get the thumb mode by
7911 the destination address. */
7912 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
7913 {
7914 if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
7915 {
7916 do_cleanups (old_chain);
7917
7918 if (IS_THUMB_ADDR (pc))
7919 {
7920 *pcptr = MAKE_THUMB_ADDR (*pcptr);
7921 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7922 }
7923 else
7924 return ARM_BP_KIND_ARM;
7925 }
7926 }
7927
7928 do_cleanups (old_chain);
7929 }
7930
7931 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7932 }
7933
7934 /* Extract from an array REGBUF containing the (raw) register state a
7935 function return value of type TYPE, and copy that, in virtual
7936 format, into VALBUF. */
7937
7938 static void
7939 arm_extract_return_value (struct type *type, struct regcache *regs,
7940 gdb_byte *valbuf)
7941 {
7942 struct gdbarch *gdbarch = get_regcache_arch (regs);
7943 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7944
7945 if (TYPE_CODE_FLT == TYPE_CODE (type))
7946 {
7947 switch (gdbarch_tdep (gdbarch)->fp_model)
7948 {
7949 case ARM_FLOAT_FPA:
7950 {
7951 /* The value is in register F0 in internal format. We need to
7952 extract the raw value and then convert it to the desired
7953 internal type. */
7954 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7955
7956 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7957 convert_from_extended (floatformat_from_type (type), tmpbuf,
7958 valbuf, gdbarch_byte_order (gdbarch));
7959 }
7960 break;
7961
7962 case ARM_FLOAT_SOFT_FPA:
7963 case ARM_FLOAT_SOFT_VFP:
7964 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7965 not using the VFP ABI code. */
7966 case ARM_FLOAT_VFP:
7967 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7968 if (TYPE_LENGTH (type) > 4)
7969 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7970 valbuf + INT_REGISTER_SIZE);
7971 break;
7972
7973 default:
7974 internal_error (__FILE__, __LINE__,
7975 _("arm_extract_return_value: "
7976 "Floating point model not supported"));
7977 break;
7978 }
7979 }
7980 else if (TYPE_CODE (type) == TYPE_CODE_INT
7981 || TYPE_CODE (type) == TYPE_CODE_CHAR
7982 || TYPE_CODE (type) == TYPE_CODE_BOOL
7983 || TYPE_CODE (type) == TYPE_CODE_PTR
7984 || TYPE_CODE (type) == TYPE_CODE_REF
7985 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7986 {
7987 /* If the type is a plain integer, then the access is
7988 straight-forward. Otherwise we have to play around a bit
7989 more. */
7990 int len = TYPE_LENGTH (type);
7991 int regno = ARM_A1_REGNUM;
7992 ULONGEST tmp;
7993
7994 while (len > 0)
7995 {
7996 /* By using store_unsigned_integer we avoid having to do
7997 anything special for small big-endian values. */
7998 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7999 store_unsigned_integer (valbuf,
8000 (len > INT_REGISTER_SIZE
8001 ? INT_REGISTER_SIZE : len),
8002 byte_order, tmp);
8003 len -= INT_REGISTER_SIZE;
8004 valbuf += INT_REGISTER_SIZE;
8005 }
8006 }
8007 else
8008 {
8009 /* For a structure or union the behaviour is as if the value had
8010 been stored to word-aligned memory and then loaded into
8011 registers with 32-bit load instruction(s). */
8012 int len = TYPE_LENGTH (type);
8013 int regno = ARM_A1_REGNUM;
8014 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8015
8016 while (len > 0)
8017 {
8018 regcache_cooked_read (regs, regno++, tmpbuf);
8019 memcpy (valbuf, tmpbuf,
8020 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8021 len -= INT_REGISTER_SIZE;
8022 valbuf += INT_REGISTER_SIZE;
8023 }
8024 }
8025 }
8026
8027
8028 /* Will a function return an aggregate type in memory or in a
8029 register? Return 0 if an aggregate type can be returned in a
8030 register, 1 if it must be returned in memory. */
8031
8032 static int
8033 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8034 {
8035 enum type_code code;
8036
8037 type = check_typedef (type);
8038
8039 /* Simple, non-aggregate types (ie not including vectors and
8040 complex) are always returned in a register (or registers). */
8041 code = TYPE_CODE (type);
8042 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
8043 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
8044 return 0;
8045
8046 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
8047 {
8048 /* Vector values should be returned using ARM registers if they
8049 are not over 16 bytes. */
8050 return (TYPE_LENGTH (type) > 16);
8051 }
8052
8053 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
8054 {
8055 /* The AAPCS says all aggregates not larger than a word are returned
8056 in a register. */
8057 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
8058 return 0;
8059
8060 return 1;
8061 }
8062 else
8063 {
8064 int nRc;
8065
8066 /* All aggregate types that won't fit in a register must be returned
8067 in memory. */
8068 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8069 return 1;
8070
8071 /* In the ARM ABI, "integer" like aggregate types are returned in
8072 registers. For an aggregate type to be integer like, its size
8073 must be less than or equal to INT_REGISTER_SIZE and the
8074 offset of each addressable subfield must be zero. Note that bit
8075 fields are not addressable, and all addressable subfields of
8076 unions always start at offset zero.
8077
8078 This function is based on the behaviour of GCC 2.95.1.
8079 See: gcc/arm.c: arm_return_in_memory() for details.
8080
8081 Note: All versions of GCC before GCC 2.95.2 do not set up the
8082 parameters correctly for a function returning the following
8083 structure: struct { float f;}; This should be returned in memory,
8084 not a register. Richard Earnshaw sent me a patch, but I do not
8085 know of any way to detect if a function like the above has been
8086 compiled with the correct calling convention. */
8087
8088 /* Assume all other aggregate types can be returned in a register.
8089 Run a check for structures, unions and arrays. */
8090 nRc = 0;
8091
8092 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8093 {
8094 int i;
8095 /* Need to check if this struct/union is "integer" like. For
8096 this to be true, its size must be less than or equal to
8097 INT_REGISTER_SIZE and the offset of each addressable
8098 subfield must be zero. Note that bit fields are not
8099 addressable, and unions always start at offset zero. If any
8100 of the subfields is a floating point type, the struct/union
8101 cannot be an integer type. */
8102
8103 /* For each field in the object, check:
8104 1) Is it FP? --> yes, nRc = 1;
8105 2) Is it addressable (bitpos != 0) and
8106 not packed (bitsize == 0)?
8107 --> yes, nRc = 1
8108 */
8109
8110 for (i = 0; i < TYPE_NFIELDS (type); i++)
8111 {
8112 enum type_code field_type_code;
8113
8114 field_type_code
8115 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8116 i)));
8117
8118 /* Is it a floating point type field? */
8119 if (field_type_code == TYPE_CODE_FLT)
8120 {
8121 nRc = 1;
8122 break;
8123 }
8124
8125 /* If bitpos != 0, then we have to care about it. */
8126 if (TYPE_FIELD_BITPOS (type, i) != 0)
8127 {
8128 /* Bitfields are not addressable. If the field bitsize is
8129 zero, then the field is not packed. Hence it cannot be
8130 a bitfield or any other packed type. */
8131 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8132 {
8133 nRc = 1;
8134 break;
8135 }
8136 }
8137 }
8138 }
8139
8140 return nRc;
8141 }
8142 }
8143
8144 /* Write into appropriate registers a function return value of type
8145 TYPE, given in virtual format. */
8146
8147 static void
8148 arm_store_return_value (struct type *type, struct regcache *regs,
8149 const gdb_byte *valbuf)
8150 {
8151 struct gdbarch *gdbarch = get_regcache_arch (regs);
8152 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8153
8154 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8155 {
8156 gdb_byte buf[MAX_REGISTER_SIZE];
8157
8158 switch (gdbarch_tdep (gdbarch)->fp_model)
8159 {
8160 case ARM_FLOAT_FPA:
8161
8162 convert_to_extended (floatformat_from_type (type), buf, valbuf,
8163 gdbarch_byte_order (gdbarch));
8164 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
8165 break;
8166
8167 case ARM_FLOAT_SOFT_FPA:
8168 case ARM_FLOAT_SOFT_VFP:
8169 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8170 not using the VFP ABI code. */
8171 case ARM_FLOAT_VFP:
8172 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
8173 if (TYPE_LENGTH (type) > 4)
8174 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
8175 valbuf + INT_REGISTER_SIZE);
8176 break;
8177
8178 default:
8179 internal_error (__FILE__, __LINE__,
8180 _("arm_store_return_value: Floating "
8181 "point model not supported"));
8182 break;
8183 }
8184 }
8185 else if (TYPE_CODE (type) == TYPE_CODE_INT
8186 || TYPE_CODE (type) == TYPE_CODE_CHAR
8187 || TYPE_CODE (type) == TYPE_CODE_BOOL
8188 || TYPE_CODE (type) == TYPE_CODE_PTR
8189 || TYPE_CODE (type) == TYPE_CODE_REF
8190 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8191 {
8192 if (TYPE_LENGTH (type) <= 4)
8193 {
8194 /* Values of one word or less are zero/sign-extended and
8195 returned in r0. */
8196 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8197 LONGEST val = unpack_long (type, valbuf);
8198
8199 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
8200 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
8201 }
8202 else
8203 {
8204 /* Integral values greater than one word are stored in consecutive
8205 registers starting with r0. This will always be a multiple of
8206 the regiser size. */
8207 int len = TYPE_LENGTH (type);
8208 int regno = ARM_A1_REGNUM;
8209
8210 while (len > 0)
8211 {
8212 regcache_cooked_write (regs, regno++, valbuf);
8213 len -= INT_REGISTER_SIZE;
8214 valbuf += INT_REGISTER_SIZE;
8215 }
8216 }
8217 }
8218 else
8219 {
8220 /* For a structure or union the behaviour is as if the value had
8221 been stored to word-aligned memory and then loaded into
8222 registers with 32-bit load instruction(s). */
8223 int len = TYPE_LENGTH (type);
8224 int regno = ARM_A1_REGNUM;
8225 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8226
8227 while (len > 0)
8228 {
8229 memcpy (tmpbuf, valbuf,
8230 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8231 regcache_cooked_write (regs, regno++, tmpbuf);
8232 len -= INT_REGISTER_SIZE;
8233 valbuf += INT_REGISTER_SIZE;
8234 }
8235 }
8236 }
8237
8238
8239 /* Handle function return values. */
8240
8241 static enum return_value_convention
8242 arm_return_value (struct gdbarch *gdbarch, struct value *function,
8243 struct type *valtype, struct regcache *regcache,
8244 gdb_byte *readbuf, const gdb_byte *writebuf)
8245 {
8246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8247 struct type *func_type = function ? value_type (function) : NULL;
8248 enum arm_vfp_cprc_base_type vfp_base_type;
8249 int vfp_base_count;
8250
8251 if (arm_vfp_abi_for_function (gdbarch, func_type)
8252 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8253 {
8254 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8255 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8256 int i;
8257 for (i = 0; i < vfp_base_count; i++)
8258 {
8259 if (reg_char == 'q')
8260 {
8261 if (writebuf)
8262 arm_neon_quad_write (gdbarch, regcache, i,
8263 writebuf + i * unit_length);
8264
8265 if (readbuf)
8266 arm_neon_quad_read (gdbarch, regcache, i,
8267 readbuf + i * unit_length);
8268 }
8269 else
8270 {
8271 char name_buf[4];
8272 int regnum;
8273
8274 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
8275 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8276 strlen (name_buf));
8277 if (writebuf)
8278 regcache_cooked_write (regcache, regnum,
8279 writebuf + i * unit_length);
8280 if (readbuf)
8281 regcache_cooked_read (regcache, regnum,
8282 readbuf + i * unit_length);
8283 }
8284 }
8285 return RETURN_VALUE_REGISTER_CONVENTION;
8286 }
8287
8288 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8289 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8290 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8291 {
8292 if (tdep->struct_return == pcc_struct_return
8293 || arm_return_in_memory (gdbarch, valtype))
8294 return RETURN_VALUE_STRUCT_CONVENTION;
8295 }
8296 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8297 {
8298 if (arm_return_in_memory (gdbarch, valtype))
8299 return RETURN_VALUE_STRUCT_CONVENTION;
8300 }
8301
8302 if (writebuf)
8303 arm_store_return_value (valtype, regcache, writebuf);
8304
8305 if (readbuf)
8306 arm_extract_return_value (valtype, regcache, readbuf);
8307
8308 return RETURN_VALUE_REGISTER_CONVENTION;
8309 }
8310
8311
8312 static int
8313 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
8314 {
8315 struct gdbarch *gdbarch = get_frame_arch (frame);
8316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8318 CORE_ADDR jb_addr;
8319 gdb_byte buf[INT_REGISTER_SIZE];
8320
8321 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
8322
8323 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
8324 INT_REGISTER_SIZE))
8325 return 0;
8326
8327 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
8328 return 1;
8329 }
8330
8331 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8332 return the target PC. Otherwise return 0. */
8333
8334 CORE_ADDR
8335 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
8336 {
8337 const char *name;
8338 int namelen;
8339 CORE_ADDR start_addr;
8340
8341 /* Find the starting address and name of the function containing the PC. */
8342 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
8343 {
8344 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8345 check here. */
8346 start_addr = arm_skip_bx_reg (frame, pc);
8347 if (start_addr != 0)
8348 return start_addr;
8349
8350 return 0;
8351 }
8352
8353 /* If PC is in a Thumb call or return stub, return the address of the
8354 target PC, which is in a register. The thunk functions are called
8355 _call_via_xx, where x is the register name. The possible names
8356 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8357 functions, named __ARM_call_via_r[0-7]. */
8358 if (startswith (name, "_call_via_")
8359 || startswith (name, "__ARM_call_via_"))
8360 {
8361 /* Use the name suffix to determine which register contains the
8362 target PC. */
8363 static char *table[15] =
8364 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8365 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8366 };
8367 int regno;
8368 int offset = strlen (name) - 2;
8369
8370 for (regno = 0; regno <= 14; regno++)
8371 if (strcmp (&name[offset], table[regno]) == 0)
8372 return get_frame_register_unsigned (frame, regno);
8373 }
8374
8375 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8376 non-interworking calls to foo. We could decode the stubs
8377 to find the target but it's easier to use the symbol table. */
8378 namelen = strlen (name);
8379 if (name[0] == '_' && name[1] == '_'
8380 && ((namelen > 2 + strlen ("_from_thumb")
8381 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
8382 || (namelen > 2 + strlen ("_from_arm")
8383 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
8384 {
8385 char *target_name;
8386 int target_len = namelen - 2;
8387 struct bound_minimal_symbol minsym;
8388 struct objfile *objfile;
8389 struct obj_section *sec;
8390
8391 if (name[namelen - 1] == 'b')
8392 target_len -= strlen ("_from_thumb");
8393 else
8394 target_len -= strlen ("_from_arm");
8395
8396 target_name = (char *) alloca (target_len + 1);
8397 memcpy (target_name, name + 2, target_len);
8398 target_name[target_len] = '\0';
8399
8400 sec = find_pc_section (pc);
8401 objfile = (sec == NULL) ? NULL : sec->objfile;
8402 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
8403 if (minsym.minsym != NULL)
8404 return BMSYMBOL_VALUE_ADDRESS (minsym);
8405 else
8406 return 0;
8407 }
8408
8409 return 0; /* not a stub */
8410 }
8411
8412 static void
8413 set_arm_command (char *args, int from_tty)
8414 {
8415 printf_unfiltered (_("\
8416 \"set arm\" must be followed by an apporpriate subcommand.\n"));
8417 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8418 }
8419
8420 static void
8421 show_arm_command (char *args, int from_tty)
8422 {
8423 cmd_show_list (showarmcmdlist, from_tty, "");
8424 }
8425
8426 static void
8427 arm_update_current_architecture (void)
8428 {
8429 struct gdbarch_info info;
8430
8431 /* If the current architecture is not ARM, we have nothing to do. */
8432 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
8433 return;
8434
8435 /* Update the architecture. */
8436 gdbarch_info_init (&info);
8437
8438 if (!gdbarch_update_p (info))
8439 internal_error (__FILE__, __LINE__, _("could not update architecture"));
8440 }
8441
8442 static void
8443 set_fp_model_sfunc (char *args, int from_tty,
8444 struct cmd_list_element *c)
8445 {
8446 int fp_model;
8447
8448 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8449 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8450 {
8451 arm_fp_model = (enum arm_float_model) fp_model;
8452 break;
8453 }
8454
8455 if (fp_model == ARM_FLOAT_LAST)
8456 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
8457 current_fp_model);
8458
8459 arm_update_current_architecture ();
8460 }
8461
8462 static void
8463 show_fp_model (struct ui_file *file, int from_tty,
8464 struct cmd_list_element *c, const char *value)
8465 {
8466 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8467
8468 if (arm_fp_model == ARM_FLOAT_AUTO
8469 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8470 fprintf_filtered (file, _("\
8471 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8472 fp_model_strings[tdep->fp_model]);
8473 else
8474 fprintf_filtered (file, _("\
8475 The current ARM floating point model is \"%s\".\n"),
8476 fp_model_strings[arm_fp_model]);
8477 }
8478
8479 static void
8480 arm_set_abi (char *args, int from_tty,
8481 struct cmd_list_element *c)
8482 {
8483 int arm_abi;
8484
8485 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8486 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8487 {
8488 arm_abi_global = (enum arm_abi_kind) arm_abi;
8489 break;
8490 }
8491
8492 if (arm_abi == ARM_ABI_LAST)
8493 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8494 arm_abi_string);
8495
8496 arm_update_current_architecture ();
8497 }
8498
8499 static void
8500 arm_show_abi (struct ui_file *file, int from_tty,
8501 struct cmd_list_element *c, const char *value)
8502 {
8503 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8504
8505 if (arm_abi_global == ARM_ABI_AUTO
8506 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8507 fprintf_filtered (file, _("\
8508 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8509 arm_abi_strings[tdep->arm_abi]);
8510 else
8511 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8512 arm_abi_string);
8513 }
8514
8515 static void
8516 arm_show_fallback_mode (struct ui_file *file, int from_tty,
8517 struct cmd_list_element *c, const char *value)
8518 {
8519 fprintf_filtered (file,
8520 _("The current execution mode assumed "
8521 "(when symbols are unavailable) is \"%s\".\n"),
8522 arm_fallback_mode_string);
8523 }
8524
8525 static void
8526 arm_show_force_mode (struct ui_file *file, int from_tty,
8527 struct cmd_list_element *c, const char *value)
8528 {
8529 fprintf_filtered (file,
8530 _("The current execution mode assumed "
8531 "(even when symbols are available) is \"%s\".\n"),
8532 arm_force_mode_string);
8533 }
8534
8535 /* If the user changes the register disassembly style used for info
8536 register and other commands, we have to also switch the style used
8537 in opcodes for disassembly output. This function is run in the "set
8538 arm disassembly" command, and does that. */
8539
8540 static void
8541 set_disassembly_style_sfunc (char *args, int from_tty,
8542 struct cmd_list_element *c)
8543 {
8544 set_disassembly_style ();
8545 }
8546 \f
8547 /* Return the ARM register name corresponding to register I. */
8548 static const char *
8549 arm_register_name (struct gdbarch *gdbarch, int i)
8550 {
8551 const int num_regs = gdbarch_num_regs (gdbarch);
8552
8553 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8554 && i >= num_regs && i < num_regs + 32)
8555 {
8556 static const char *const vfp_pseudo_names[] = {
8557 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8558 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8559 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8560 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8561 };
8562
8563 return vfp_pseudo_names[i - num_regs];
8564 }
8565
8566 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8567 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8568 {
8569 static const char *const neon_pseudo_names[] = {
8570 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8571 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8572 };
8573
8574 return neon_pseudo_names[i - num_regs - 32];
8575 }
8576
8577 if (i >= ARRAY_SIZE (arm_register_names))
8578 /* These registers are only supported on targets which supply
8579 an XML description. */
8580 return "";
8581
8582 return arm_register_names[i];
8583 }
8584
8585 static void
8586 set_disassembly_style (void)
8587 {
8588 int current;
8589
8590 /* Find the style that the user wants. */
8591 for (current = 0; current < num_disassembly_options; current++)
8592 if (disassembly_style == valid_disassembly_styles[current])
8593 break;
8594 gdb_assert (current < num_disassembly_options);
8595
8596 /* Synchronize the disassembler. */
8597 set_arm_regname_option (current);
8598 }
8599
8600 /* Test whether the coff symbol specific value corresponds to a Thumb
8601 function. */
8602
8603 static int
8604 coff_sym_is_thumb (int val)
8605 {
8606 return (val == C_THUMBEXT
8607 || val == C_THUMBSTAT
8608 || val == C_THUMBEXTFUNC
8609 || val == C_THUMBSTATFUNC
8610 || val == C_THUMBLABEL);
8611 }
8612
8613 /* arm_coff_make_msymbol_special()
8614 arm_elf_make_msymbol_special()
8615
8616 These functions test whether the COFF or ELF symbol corresponds to
8617 an address in thumb code, and set a "special" bit in a minimal
8618 symbol to indicate that it does. */
8619
8620 static void
8621 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8622 {
8623 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8624
8625 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
8626 == ST_BRANCH_TO_THUMB)
8627 MSYMBOL_SET_SPECIAL (msym);
8628 }
8629
8630 static void
8631 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8632 {
8633 if (coff_sym_is_thumb (val))
8634 MSYMBOL_SET_SPECIAL (msym);
8635 }
8636
8637 static void
8638 arm_objfile_data_free (struct objfile *objfile, void *arg)
8639 {
8640 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
8641 unsigned int i;
8642
8643 for (i = 0; i < objfile->obfd->section_count; i++)
8644 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8645 }
8646
8647 static void
8648 arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8649 asymbol *sym)
8650 {
8651 const char *name = bfd_asymbol_name (sym);
8652 struct arm_per_objfile *data;
8653 VEC(arm_mapping_symbol_s) **map_p;
8654 struct arm_mapping_symbol new_map_sym;
8655
8656 gdb_assert (name[0] == '$');
8657 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8658 return;
8659
8660 data = (struct arm_per_objfile *) objfile_data (objfile,
8661 arm_objfile_data_key);
8662 if (data == NULL)
8663 {
8664 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8665 struct arm_per_objfile);
8666 set_objfile_data (objfile, arm_objfile_data_key, data);
8667 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8668 objfile->obfd->section_count,
8669 VEC(arm_mapping_symbol_s) *);
8670 }
8671 map_p = &data->section_maps[bfd_get_section (sym)->index];
8672
8673 new_map_sym.value = sym->value;
8674 new_map_sym.type = name[1];
8675
8676 /* Assume that most mapping symbols appear in order of increasing
8677 value. If they were randomly distributed, it would be faster to
8678 always push here and then sort at first use. */
8679 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8680 {
8681 struct arm_mapping_symbol *prev_map_sym;
8682
8683 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8684 if (prev_map_sym->value >= sym->value)
8685 {
8686 unsigned int idx;
8687 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8688 arm_compare_mapping_symbols);
8689 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8690 return;
8691 }
8692 }
8693
8694 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8695 }
8696
8697 static void
8698 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
8699 {
8700 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8701 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
8702
8703 /* If necessary, set the T bit. */
8704 if (arm_apcs_32)
8705 {
8706 ULONGEST val, t_bit;
8707 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
8708 t_bit = arm_psr_thumb_bit (gdbarch);
8709 if (arm_pc_is_thumb (gdbarch, pc))
8710 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8711 val | t_bit);
8712 else
8713 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8714 val & ~t_bit);
8715 }
8716 }
8717
8718 /* Read the contents of a NEON quad register, by reading from two
8719 double registers. This is used to implement the quad pseudo
8720 registers, and for argument passing in case the quad registers are
8721 missing; vectors are passed in quad registers when using the VFP
8722 ABI, even if a NEON unit is not present. REGNUM is the index of
8723 the quad register, in [0, 15]. */
8724
8725 static enum register_status
8726 arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8727 int regnum, gdb_byte *buf)
8728 {
8729 char name_buf[4];
8730 gdb_byte reg_buf[8];
8731 int offset, double_regnum;
8732 enum register_status status;
8733
8734 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8735 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8736 strlen (name_buf));
8737
8738 /* d0 is always the least significant half of q0. */
8739 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8740 offset = 8;
8741 else
8742 offset = 0;
8743
8744 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8745 if (status != REG_VALID)
8746 return status;
8747 memcpy (buf + offset, reg_buf, 8);
8748
8749 offset = 8 - offset;
8750 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8751 if (status != REG_VALID)
8752 return status;
8753 memcpy (buf + offset, reg_buf, 8);
8754
8755 return REG_VALID;
8756 }
8757
8758 static enum register_status
8759 arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8760 int regnum, gdb_byte *buf)
8761 {
8762 const int num_regs = gdbarch_num_regs (gdbarch);
8763 char name_buf[4];
8764 gdb_byte reg_buf[8];
8765 int offset, double_regnum;
8766
8767 gdb_assert (regnum >= num_regs);
8768 regnum -= num_regs;
8769
8770 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8771 /* Quad-precision register. */
8772 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
8773 else
8774 {
8775 enum register_status status;
8776
8777 /* Single-precision register. */
8778 gdb_assert (regnum < 32);
8779
8780 /* s0 is always the least significant half of d0. */
8781 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8782 offset = (regnum & 1) ? 0 : 4;
8783 else
8784 offset = (regnum & 1) ? 4 : 0;
8785
8786 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8787 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8788 strlen (name_buf));
8789
8790 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8791 if (status == REG_VALID)
8792 memcpy (buf, reg_buf + offset, 4);
8793 return status;
8794 }
8795 }
8796
8797 /* Store the contents of BUF to a NEON quad register, by writing to
8798 two double registers. This is used to implement the quad pseudo
8799 registers, and for argument passing in case the quad registers are
8800 missing; vectors are passed in quad registers when using the VFP
8801 ABI, even if a NEON unit is not present. REGNUM is the index
8802 of the quad register, in [0, 15]. */
8803
8804 static void
8805 arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8806 int regnum, const gdb_byte *buf)
8807 {
8808 char name_buf[4];
8809 int offset, double_regnum;
8810
8811 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8812 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8813 strlen (name_buf));
8814
8815 /* d0 is always the least significant half of q0. */
8816 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8817 offset = 8;
8818 else
8819 offset = 0;
8820
8821 regcache_raw_write (regcache, double_regnum, buf + offset);
8822 offset = 8 - offset;
8823 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8824 }
8825
8826 static void
8827 arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8828 int regnum, const gdb_byte *buf)
8829 {
8830 const int num_regs = gdbarch_num_regs (gdbarch);
8831 char name_buf[4];
8832 gdb_byte reg_buf[8];
8833 int offset, double_regnum;
8834
8835 gdb_assert (regnum >= num_regs);
8836 regnum -= num_regs;
8837
8838 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8839 /* Quad-precision register. */
8840 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8841 else
8842 {
8843 /* Single-precision register. */
8844 gdb_assert (regnum < 32);
8845
8846 /* s0 is always the least significant half of d0. */
8847 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8848 offset = (regnum & 1) ? 0 : 4;
8849 else
8850 offset = (regnum & 1) ? 4 : 0;
8851
8852 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8853 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8854 strlen (name_buf));
8855
8856 regcache_raw_read (regcache, double_regnum, reg_buf);
8857 memcpy (reg_buf + offset, buf, 4);
8858 regcache_raw_write (regcache, double_regnum, reg_buf);
8859 }
8860 }
8861
8862 static struct value *
8863 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8864 {
8865 const int *reg_p = (const int *) baton;
8866 return value_of_register (*reg_p, frame);
8867 }
8868 \f
8869 static enum gdb_osabi
8870 arm_elf_osabi_sniffer (bfd *abfd)
8871 {
8872 unsigned int elfosabi;
8873 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
8874
8875 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
8876
8877 if (elfosabi == ELFOSABI_ARM)
8878 /* GNU tools use this value. Check note sections in this case,
8879 as well. */
8880 bfd_map_over_sections (abfd,
8881 generic_elf_osabi_sniff_abi_tag_sections,
8882 &osabi);
8883
8884 /* Anything else will be handled by the generic ELF sniffer. */
8885 return osabi;
8886 }
8887
8888 static int
8889 arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8890 struct reggroup *group)
8891 {
8892 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8893 this, FPS register belongs to save_regroup, restore_reggroup, and
8894 all_reggroup, of course. */
8895 if (regnum == ARM_FPS_REGNUM)
8896 return (group == float_reggroup
8897 || group == save_reggroup
8898 || group == restore_reggroup
8899 || group == all_reggroup);
8900 else
8901 return default_register_reggroup_p (gdbarch, regnum, group);
8902 }
8903
8904 \f
8905 /* For backward-compatibility we allow two 'g' packet lengths with
8906 the remote protocol depending on whether FPA registers are
8907 supplied. M-profile targets do not have FPA registers, but some
8908 stubs already exist in the wild which use a 'g' packet which
8909 supplies them albeit with dummy values. The packet format which
8910 includes FPA registers should be considered deprecated for
8911 M-profile targets. */
8912
8913 static void
8914 arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8915 {
8916 if (gdbarch_tdep (gdbarch)->is_m)
8917 {
8918 /* If we know from the executable this is an M-profile target,
8919 cater for remote targets whose register set layout is the
8920 same as the FPA layout. */
8921 register_remote_g_packet_guess (gdbarch,
8922 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
8923 (16 * INT_REGISTER_SIZE)
8924 + (8 * FP_REGISTER_SIZE)
8925 + (2 * INT_REGISTER_SIZE),
8926 tdesc_arm_with_m_fpa_layout);
8927
8928 /* The regular M-profile layout. */
8929 register_remote_g_packet_guess (gdbarch,
8930 /* r0-r12,sp,lr,pc; xpsr */
8931 (16 * INT_REGISTER_SIZE)
8932 + INT_REGISTER_SIZE,
8933 tdesc_arm_with_m);
8934
8935 /* M-profile plus M4F VFP. */
8936 register_remote_g_packet_guess (gdbarch,
8937 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8938 (16 * INT_REGISTER_SIZE)
8939 + (16 * VFP_REGISTER_SIZE)
8940 + (2 * INT_REGISTER_SIZE),
8941 tdesc_arm_with_m_vfp_d16);
8942 }
8943
8944 /* Otherwise we don't have a useful guess. */
8945 }
8946
8947 /* Implement the code_of_frame_writable gdbarch method. */
8948
8949 static int
8950 arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8951 {
8952 if (gdbarch_tdep (gdbarch)->is_m
8953 && get_frame_type (frame) == SIGTRAMP_FRAME)
8954 {
8955 /* M-profile exception frames return to some magic PCs, where
8956 isn't writable at all. */
8957 return 0;
8958 }
8959 else
8960 return 1;
8961 }
8962
8963 \f
8964 /* Initialize the current architecture based on INFO. If possible,
8965 re-use an architecture from ARCHES, which is a list of
8966 architectures already created during this debugging session.
8967
8968 Called e.g. at program startup, when reading a core file, and when
8969 reading a binary file. */
8970
8971 static struct gdbarch *
8972 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8973 {
8974 struct gdbarch_tdep *tdep;
8975 struct gdbarch *gdbarch;
8976 struct gdbarch_list *best_arch;
8977 enum arm_abi_kind arm_abi = arm_abi_global;
8978 enum arm_float_model fp_model = arm_fp_model;
8979 struct tdesc_arch_data *tdesc_data = NULL;
8980 int i, is_m = 0;
8981 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8982 int have_wmmx_registers = 0;
8983 int have_neon = 0;
8984 int have_fpa_registers = 1;
8985 const struct target_desc *tdesc = info.target_desc;
8986
8987 /* If we have an object to base this architecture on, try to determine
8988 its ABI. */
8989
8990 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8991 {
8992 int ei_osabi, e_flags;
8993
8994 switch (bfd_get_flavour (info.abfd))
8995 {
8996 case bfd_target_coff_flavour:
8997 /* Assume it's an old APCS-style ABI. */
8998 /* XXX WinCE? */
8999 arm_abi = ARM_ABI_APCS;
9000 break;
9001
9002 case bfd_target_elf_flavour:
9003 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
9004 e_flags = elf_elfheader (info.abfd)->e_flags;
9005
9006 if (ei_osabi == ELFOSABI_ARM)
9007 {
9008 /* GNU tools used to use this value, but do not for EABI
9009 objects. There's nowhere to tag an EABI version
9010 anyway, so assume APCS. */
9011 arm_abi = ARM_ABI_APCS;
9012 }
9013 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
9014 {
9015 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9016 int attr_arch, attr_profile;
9017
9018 switch (eabi_ver)
9019 {
9020 case EF_ARM_EABI_UNKNOWN:
9021 /* Assume GNU tools. */
9022 arm_abi = ARM_ABI_APCS;
9023 break;
9024
9025 case EF_ARM_EABI_VER4:
9026 case EF_ARM_EABI_VER5:
9027 arm_abi = ARM_ABI_AAPCS;
9028 /* EABI binaries default to VFP float ordering.
9029 They may also contain build attributes that can
9030 be used to identify if the VFP argument-passing
9031 ABI is in use. */
9032 if (fp_model == ARM_FLOAT_AUTO)
9033 {
9034 #ifdef HAVE_ELF
9035 switch (bfd_elf_get_obj_attr_int (info.abfd,
9036 OBJ_ATTR_PROC,
9037 Tag_ABI_VFP_args))
9038 {
9039 case AEABI_VFP_args_base:
9040 /* "The user intended FP parameter/result
9041 passing to conform to AAPCS, base
9042 variant". */
9043 fp_model = ARM_FLOAT_SOFT_VFP;
9044 break;
9045 case AEABI_VFP_args_vfp:
9046 /* "The user intended FP parameter/result
9047 passing to conform to AAPCS, VFP
9048 variant". */
9049 fp_model = ARM_FLOAT_VFP;
9050 break;
9051 case AEABI_VFP_args_toolchain:
9052 /* "The user intended FP parameter/result
9053 passing to conform to tool chain-specific
9054 conventions" - we don't know any such
9055 conventions, so leave it as "auto". */
9056 break;
9057 case AEABI_VFP_args_compatible:
9058 /* "Code is compatible with both the base
9059 and VFP variants; the user did not permit
9060 non-variadic functions to pass FP
9061 parameters/results" - leave it as
9062 "auto". */
9063 break;
9064 default:
9065 /* Attribute value not mentioned in the
9066 November 2012 ABI, so leave it as
9067 "auto". */
9068 break;
9069 }
9070 #else
9071 fp_model = ARM_FLOAT_SOFT_VFP;
9072 #endif
9073 }
9074 break;
9075
9076 default:
9077 /* Leave it as "auto". */
9078 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9079 break;
9080 }
9081
9082 #ifdef HAVE_ELF
9083 /* Detect M-profile programs. This only works if the
9084 executable file includes build attributes; GCC does
9085 copy them to the executable, but e.g. RealView does
9086 not. */
9087 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9088 Tag_CPU_arch);
9089 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9090 OBJ_ATTR_PROC,
9091 Tag_CPU_arch_profile);
9092 /* GCC specifies the profile for v6-M; RealView only
9093 specifies the profile for architectures starting with
9094 V7 (as opposed to architectures with a tag
9095 numerically greater than TAG_CPU_ARCH_V7). */
9096 if (!tdesc_has_registers (tdesc)
9097 && (attr_arch == TAG_CPU_ARCH_V6_M
9098 || attr_arch == TAG_CPU_ARCH_V6S_M
9099 || attr_profile == 'M'))
9100 is_m = 1;
9101 #endif
9102 }
9103
9104 if (fp_model == ARM_FLOAT_AUTO)
9105 {
9106 int e_flags = elf_elfheader (info.abfd)->e_flags;
9107
9108 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9109 {
9110 case 0:
9111 /* Leave it as "auto". Strictly speaking this case
9112 means FPA, but almost nobody uses that now, and
9113 many toolchains fail to set the appropriate bits
9114 for the floating-point model they use. */
9115 break;
9116 case EF_ARM_SOFT_FLOAT:
9117 fp_model = ARM_FLOAT_SOFT_FPA;
9118 break;
9119 case EF_ARM_VFP_FLOAT:
9120 fp_model = ARM_FLOAT_VFP;
9121 break;
9122 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9123 fp_model = ARM_FLOAT_SOFT_VFP;
9124 break;
9125 }
9126 }
9127
9128 if (e_flags & EF_ARM_BE8)
9129 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9130
9131 break;
9132
9133 default:
9134 /* Leave it as "auto". */
9135 break;
9136 }
9137 }
9138
9139 /* Check any target description for validity. */
9140 if (tdesc_has_registers (tdesc))
9141 {
9142 /* For most registers we require GDB's default names; but also allow
9143 the numeric names for sp / lr / pc, as a convenience. */
9144 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9145 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9146 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9147
9148 const struct tdesc_feature *feature;
9149 int valid_p;
9150
9151 feature = tdesc_find_feature (tdesc,
9152 "org.gnu.gdb.arm.core");
9153 if (feature == NULL)
9154 {
9155 feature = tdesc_find_feature (tdesc,
9156 "org.gnu.gdb.arm.m-profile");
9157 if (feature == NULL)
9158 return NULL;
9159 else
9160 is_m = 1;
9161 }
9162
9163 tdesc_data = tdesc_data_alloc ();
9164
9165 valid_p = 1;
9166 for (i = 0; i < ARM_SP_REGNUM; i++)
9167 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9168 arm_register_names[i]);
9169 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9170 ARM_SP_REGNUM,
9171 arm_sp_names);
9172 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9173 ARM_LR_REGNUM,
9174 arm_lr_names);
9175 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9176 ARM_PC_REGNUM,
9177 arm_pc_names);
9178 if (is_m)
9179 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9180 ARM_PS_REGNUM, "xpsr");
9181 else
9182 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9183 ARM_PS_REGNUM, "cpsr");
9184
9185 if (!valid_p)
9186 {
9187 tdesc_data_cleanup (tdesc_data);
9188 return NULL;
9189 }
9190
9191 feature = tdesc_find_feature (tdesc,
9192 "org.gnu.gdb.arm.fpa");
9193 if (feature != NULL)
9194 {
9195 valid_p = 1;
9196 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9197 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9198 arm_register_names[i]);
9199 if (!valid_p)
9200 {
9201 tdesc_data_cleanup (tdesc_data);
9202 return NULL;
9203 }
9204 }
9205 else
9206 have_fpa_registers = 0;
9207
9208 feature = tdesc_find_feature (tdesc,
9209 "org.gnu.gdb.xscale.iwmmxt");
9210 if (feature != NULL)
9211 {
9212 static const char *const iwmmxt_names[] = {
9213 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9214 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9215 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9216 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9217 };
9218
9219 valid_p = 1;
9220 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9221 valid_p
9222 &= tdesc_numbered_register (feature, tdesc_data, i,
9223 iwmmxt_names[i - ARM_WR0_REGNUM]);
9224
9225 /* Check for the control registers, but do not fail if they
9226 are missing. */
9227 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9228 tdesc_numbered_register (feature, tdesc_data, i,
9229 iwmmxt_names[i - ARM_WR0_REGNUM]);
9230
9231 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9232 valid_p
9233 &= tdesc_numbered_register (feature, tdesc_data, i,
9234 iwmmxt_names[i - ARM_WR0_REGNUM]);
9235
9236 if (!valid_p)
9237 {
9238 tdesc_data_cleanup (tdesc_data);
9239 return NULL;
9240 }
9241
9242 have_wmmx_registers = 1;
9243 }
9244
9245 /* If we have a VFP unit, check whether the single precision registers
9246 are present. If not, then we will synthesize them as pseudo
9247 registers. */
9248 feature = tdesc_find_feature (tdesc,
9249 "org.gnu.gdb.arm.vfp");
9250 if (feature != NULL)
9251 {
9252 static const char *const vfp_double_names[] = {
9253 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9254 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9255 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9256 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9257 };
9258
9259 /* Require the double precision registers. There must be either
9260 16 or 32. */
9261 valid_p = 1;
9262 for (i = 0; i < 32; i++)
9263 {
9264 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9265 ARM_D0_REGNUM + i,
9266 vfp_double_names[i]);
9267 if (!valid_p)
9268 break;
9269 }
9270 if (!valid_p && i == 16)
9271 valid_p = 1;
9272
9273 /* Also require FPSCR. */
9274 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9275 ARM_FPSCR_REGNUM, "fpscr");
9276 if (!valid_p)
9277 {
9278 tdesc_data_cleanup (tdesc_data);
9279 return NULL;
9280 }
9281
9282 if (tdesc_unnumbered_register (feature, "s0") == 0)
9283 have_vfp_pseudos = 1;
9284
9285 vfp_register_count = i;
9286
9287 /* If we have VFP, also check for NEON. The architecture allows
9288 NEON without VFP (integer vector operations only), but GDB
9289 does not support that. */
9290 feature = tdesc_find_feature (tdesc,
9291 "org.gnu.gdb.arm.neon");
9292 if (feature != NULL)
9293 {
9294 /* NEON requires 32 double-precision registers. */
9295 if (i != 32)
9296 {
9297 tdesc_data_cleanup (tdesc_data);
9298 return NULL;
9299 }
9300
9301 /* If there are quad registers defined by the stub, use
9302 their type; otherwise (normally) provide them with
9303 the default type. */
9304 if (tdesc_unnumbered_register (feature, "q0") == 0)
9305 have_neon_pseudos = 1;
9306
9307 have_neon = 1;
9308 }
9309 }
9310 }
9311
9312 /* If there is already a candidate, use it. */
9313 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9314 best_arch != NULL;
9315 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9316 {
9317 if (arm_abi != ARM_ABI_AUTO
9318 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
9319 continue;
9320
9321 if (fp_model != ARM_FLOAT_AUTO
9322 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
9323 continue;
9324
9325 /* There are various other properties in tdep that we do not
9326 need to check here: those derived from a target description,
9327 since gdbarches with a different target description are
9328 automatically disqualified. */
9329
9330 /* Do check is_m, though, since it might come from the binary. */
9331 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9332 continue;
9333
9334 /* Found a match. */
9335 break;
9336 }
9337
9338 if (best_arch != NULL)
9339 {
9340 if (tdesc_data != NULL)
9341 tdesc_data_cleanup (tdesc_data);
9342 return best_arch->gdbarch;
9343 }
9344
9345 tdep = XCNEW (struct gdbarch_tdep);
9346 gdbarch = gdbarch_alloc (&info, tdep);
9347
9348 /* Record additional information about the architecture we are defining.
9349 These are gdbarch discriminators, like the OSABI. */
9350 tdep->arm_abi = arm_abi;
9351 tdep->fp_model = fp_model;
9352 tdep->is_m = is_m;
9353 tdep->have_fpa_registers = have_fpa_registers;
9354 tdep->have_wmmx_registers = have_wmmx_registers;
9355 gdb_assert (vfp_register_count == 0
9356 || vfp_register_count == 16
9357 || vfp_register_count == 32);
9358 tdep->vfp_register_count = vfp_register_count;
9359 tdep->have_vfp_pseudos = have_vfp_pseudos;
9360 tdep->have_neon_pseudos = have_neon_pseudos;
9361 tdep->have_neon = have_neon;
9362
9363 arm_register_g_packet_guesses (gdbarch);
9364
9365 /* Breakpoints. */
9366 switch (info.byte_order_for_code)
9367 {
9368 case BFD_ENDIAN_BIG:
9369 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9370 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9371 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9372 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9373
9374 break;
9375
9376 case BFD_ENDIAN_LITTLE:
9377 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9378 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9379 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9380 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9381
9382 break;
9383
9384 default:
9385 internal_error (__FILE__, __LINE__,
9386 _("arm_gdbarch_init: bad byte order for float format"));
9387 }
9388
9389 /* On ARM targets char defaults to unsigned. */
9390 set_gdbarch_char_signed (gdbarch, 0);
9391
9392 /* Note: for displaced stepping, this includes the breakpoint, and one word
9393 of additional scratch space. This setting isn't used for anything beside
9394 displaced stepping at present. */
9395 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9396
9397 /* This should be low enough for everything. */
9398 tdep->lowest_pc = 0x20;
9399 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
9400
9401 /* The default, for both APCS and AAPCS, is to return small
9402 structures in registers. */
9403 tdep->struct_return = reg_struct_return;
9404
9405 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
9406 set_gdbarch_frame_align (gdbarch, arm_frame_align);
9407
9408 if (is_m)
9409 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9410
9411 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9412
9413 /* Frame handling. */
9414 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
9415 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
9416 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
9417
9418 frame_base_set_default (gdbarch, &arm_normal_base);
9419
9420 /* Address manipulation. */
9421 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9422
9423 /* Advance PC across function entry code. */
9424 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9425
9426 /* Detect whether PC is at a point where the stack has been destroyed. */
9427 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
9428
9429 /* Skip trampolines. */
9430 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9431
9432 /* The stack grows downward. */
9433 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9434
9435 /* Breakpoint manipulation. */
9436 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
9437 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
9438 set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
9439 arm_breakpoint_kind_from_current_state);
9440
9441 /* Information about registers, etc. */
9442 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9443 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9444 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
9445 set_gdbarch_register_type (gdbarch, arm_register_type);
9446 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
9447
9448 /* This "info float" is FPA-specific. Use the generic version if we
9449 do not have FPA. */
9450 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9451 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9452
9453 /* Internal <-> external register number maps. */
9454 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
9455 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9456
9457 set_gdbarch_register_name (gdbarch, arm_register_name);
9458
9459 /* Returning results. */
9460 set_gdbarch_return_value (gdbarch, arm_return_value);
9461
9462 /* Disassembly. */
9463 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9464
9465 /* Minsymbol frobbing. */
9466 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9467 set_gdbarch_coff_make_msymbol_special (gdbarch,
9468 arm_coff_make_msymbol_special);
9469 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
9470
9471 /* Thumb-2 IT block support. */
9472 set_gdbarch_adjust_breakpoint_address (gdbarch,
9473 arm_adjust_breakpoint_address);
9474
9475 /* Virtual tables. */
9476 set_gdbarch_vbit_in_delta (gdbarch, 1);
9477
9478 /* Hook in the ABI-specific overrides, if they have been registered. */
9479 gdbarch_init_osabi (info, gdbarch);
9480
9481 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9482
9483 /* Add some default predicates. */
9484 if (is_m)
9485 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
9486 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9487 dwarf2_append_unwinders (gdbarch);
9488 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
9489 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
9490 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
9491
9492 /* Now we have tuned the configuration, set a few final things,
9493 based on what the OS ABI has told us. */
9494
9495 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9496 binaries are always marked. */
9497 if (tdep->arm_abi == ARM_ABI_AUTO)
9498 tdep->arm_abi = ARM_ABI_APCS;
9499
9500 /* Watchpoints are not steppable. */
9501 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9502
9503 /* We used to default to FPA for generic ARM, but almost nobody
9504 uses that now, and we now provide a way for the user to force
9505 the model. So default to the most useful variant. */
9506 if (tdep->fp_model == ARM_FLOAT_AUTO)
9507 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9508
9509 if (tdep->jb_pc >= 0)
9510 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9511
9512 /* Floating point sizes and format. */
9513 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
9514 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
9515 {
9516 set_gdbarch_double_format
9517 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9518 set_gdbarch_long_double_format
9519 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9520 }
9521 else
9522 {
9523 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9524 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
9525 }
9526
9527 if (have_vfp_pseudos)
9528 {
9529 /* NOTE: These are the only pseudo registers used by
9530 the ARM target at the moment. If more are added, a
9531 little more care in numbering will be needed. */
9532
9533 int num_pseudos = 32;
9534 if (have_neon_pseudos)
9535 num_pseudos += 16;
9536 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9537 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9538 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9539 }
9540
9541 if (tdesc_data)
9542 {
9543 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9544
9545 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
9546
9547 /* Override tdesc_register_type to adjust the types of VFP
9548 registers for NEON. */
9549 set_gdbarch_register_type (gdbarch, arm_register_type);
9550 }
9551
9552 /* Add standard register aliases. We add aliases even for those
9553 nanes which are used by the current architecture - it's simpler,
9554 and does no harm, since nothing ever lists user registers. */
9555 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9556 user_reg_add (gdbarch, arm_register_aliases[i].name,
9557 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9558
9559 return gdbarch;
9560 }
9561
9562 static void
9563 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
9564 {
9565 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9566
9567 if (tdep == NULL)
9568 return;
9569
9570 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
9571 (unsigned long) tdep->lowest_pc);
9572 }
9573
9574 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
9575
9576 void
9577 _initialize_arm_tdep (void)
9578 {
9579 long length;
9580 const char *setname;
9581 const char *setdesc;
9582 const char *const *regnames;
9583 int i;
9584 char regdesc[1024], *rdptr = regdesc;
9585 size_t rest = sizeof (regdesc);
9586
9587 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
9588
9589 arm_objfile_data_key
9590 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
9591
9592 /* Add ourselves to objfile event chain. */
9593 observer_attach_new_objfile (arm_exidx_new_objfile);
9594 arm_exidx_data_key
9595 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9596
9597 /* Register an ELF OS ABI sniffer for ARM binaries. */
9598 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9599 bfd_target_elf_flavour,
9600 arm_elf_osabi_sniffer);
9601
9602 /* Initialize the standard target descriptions. */
9603 initialize_tdesc_arm_with_m ();
9604 initialize_tdesc_arm_with_m_fpa_layout ();
9605 initialize_tdesc_arm_with_m_vfp_d16 ();
9606 initialize_tdesc_arm_with_iwmmxt ();
9607 initialize_tdesc_arm_with_vfpv2 ();
9608 initialize_tdesc_arm_with_vfpv3 ();
9609 initialize_tdesc_arm_with_neon ();
9610
9611 /* Get the number of possible sets of register names defined in opcodes. */
9612 num_disassembly_options = get_arm_regname_num_options ();
9613
9614 /* Add root prefix command for all "set arm"/"show arm" commands. */
9615 add_prefix_cmd ("arm", no_class, set_arm_command,
9616 _("Various ARM-specific commands."),
9617 &setarmcmdlist, "set arm ", 0, &setlist);
9618
9619 add_prefix_cmd ("arm", no_class, show_arm_command,
9620 _("Various ARM-specific commands."),
9621 &showarmcmdlist, "show arm ", 0, &showlist);
9622
9623 /* Sync the opcode insn printer with our register viewer. */
9624 parse_arm_disassembler_option ("reg-names-std");
9625
9626 /* Initialize the array that will be passed to
9627 add_setshow_enum_cmd(). */
9628 valid_disassembly_styles = XNEWVEC (const char *,
9629 num_disassembly_options + 1);
9630 for (i = 0; i < num_disassembly_options; i++)
9631 {
9632 get_arm_regnames (i, &setname, &setdesc, &regnames);
9633 valid_disassembly_styles[i] = setname;
9634 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
9635 rdptr += length;
9636 rest -= length;
9637 /* When we find the default names, tell the disassembler to use
9638 them. */
9639 if (!strcmp (setname, "std"))
9640 {
9641 disassembly_style = setname;
9642 set_arm_regname_option (i);
9643 }
9644 }
9645 /* Mark the end of valid options. */
9646 valid_disassembly_styles[num_disassembly_options] = NULL;
9647
9648 /* Create the help text. */
9649 std::string helptext = string_printf ("%s%s%s",
9650 _("The valid values are:\n"),
9651 regdesc,
9652 _("The default is \"std\"."));
9653
9654 add_setshow_enum_cmd("disassembler", no_class,
9655 valid_disassembly_styles, &disassembly_style,
9656 _("Set the disassembly style."),
9657 _("Show the disassembly style."),
9658 helptext.c_str (),
9659 set_disassembly_style_sfunc,
9660 NULL, /* FIXME: i18n: The disassembly style is
9661 \"%s\". */
9662 &setarmcmdlist, &showarmcmdlist);
9663
9664 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9665 _("Set usage of ARM 32-bit mode."),
9666 _("Show usage of ARM 32-bit mode."),
9667 _("When off, a 26-bit PC will be used."),
9668 NULL,
9669 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9670 mode is %s. */
9671 &setarmcmdlist, &showarmcmdlist);
9672
9673 /* Add a command to allow the user to force the FPU model. */
9674 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9675 _("Set the floating point type."),
9676 _("Show the floating point type."),
9677 _("auto - Determine the FP typefrom the OS-ABI.\n\
9678 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9679 fpa - FPA co-processor (GCC compiled).\n\
9680 softvfp - Software FP with pure-endian doubles.\n\
9681 vfp - VFP co-processor."),
9682 set_fp_model_sfunc, show_fp_model,
9683 &setarmcmdlist, &showarmcmdlist);
9684
9685 /* Add a command to allow the user to force the ABI. */
9686 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9687 _("Set the ABI."),
9688 _("Show the ABI."),
9689 NULL, arm_set_abi, arm_show_abi,
9690 &setarmcmdlist, &showarmcmdlist);
9691
9692 /* Add two commands to allow the user to force the assumed
9693 execution mode. */
9694 add_setshow_enum_cmd ("fallback-mode", class_support,
9695 arm_mode_strings, &arm_fallback_mode_string,
9696 _("Set the mode assumed when symbols are unavailable."),
9697 _("Show the mode assumed when symbols are unavailable."),
9698 NULL, NULL, arm_show_fallback_mode,
9699 &setarmcmdlist, &showarmcmdlist);
9700 add_setshow_enum_cmd ("force-mode", class_support,
9701 arm_mode_strings, &arm_force_mode_string,
9702 _("Set the mode assumed even when symbols are available."),
9703 _("Show the mode assumed even when symbols are available."),
9704 NULL, NULL, arm_show_force_mode,
9705 &setarmcmdlist, &showarmcmdlist);
9706
9707 /* Debugging flag. */
9708 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9709 _("Set ARM debugging."),
9710 _("Show ARM debugging."),
9711 _("When on, arm-specific debugging is enabled."),
9712 NULL,
9713 NULL, /* FIXME: i18n: "ARM debugging is %s. */
9714 &setdebuglist, &showdebuglist);
9715 }
9716
9717 /* ARM-reversible process record data structures. */
9718
9719 #define ARM_INSN_SIZE_BYTES 4
9720 #define THUMB_INSN_SIZE_BYTES 2
9721 #define THUMB2_INSN_SIZE_BYTES 4
9722
9723
9724 /* Position of the bit within a 32-bit ARM instruction
9725 that defines whether the instruction is a load or store. */
9726 #define INSN_S_L_BIT_NUM 20
9727
9728 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9729 do \
9730 { \
9731 unsigned int reg_len = LENGTH; \
9732 if (reg_len) \
9733 { \
9734 REGS = XNEWVEC (uint32_t, reg_len); \
9735 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9736 } \
9737 } \
9738 while (0)
9739
9740 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9741 do \
9742 { \
9743 unsigned int mem_len = LENGTH; \
9744 if (mem_len) \
9745 { \
9746 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9747 memcpy(&MEMS->len, &RECORD_BUF[0], \
9748 sizeof(struct arm_mem_r) * LENGTH); \
9749 } \
9750 } \
9751 while (0)
9752
9753 /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9754 #define INSN_RECORDED(ARM_RECORD) \
9755 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9756
9757 /* ARM memory record structure. */
9758 struct arm_mem_r
9759 {
9760 uint32_t len; /* Record length. */
9761 uint32_t addr; /* Memory address. */
9762 };
9763
9764 /* ARM instruction record contains opcode of current insn
9765 and execution state (before entry to decode_insn()),
9766 contains list of to-be-modified registers and
9767 memory blocks (on return from decode_insn()). */
9768
9769 typedef struct insn_decode_record_t
9770 {
9771 struct gdbarch *gdbarch;
9772 struct regcache *regcache;
9773 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9774 uint32_t arm_insn; /* Should accommodate thumb. */
9775 uint32_t cond; /* Condition code. */
9776 uint32_t opcode; /* Insn opcode. */
9777 uint32_t decode; /* Insn decode bits. */
9778 uint32_t mem_rec_count; /* No of mem records. */
9779 uint32_t reg_rec_count; /* No of reg records. */
9780 uint32_t *arm_regs; /* Registers to be saved for this record. */
9781 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9782 } insn_decode_record;
9783
9784
9785 /* Checks ARM SBZ and SBO mandatory fields. */
9786
9787 static int
9788 sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9789 {
9790 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9791
9792 if (!len)
9793 return 1;
9794
9795 if (!sbo)
9796 ones = ~ones;
9797
9798 while (ones)
9799 {
9800 if (!(ones & sbo))
9801 {
9802 return 0;
9803 }
9804 ones = ones >> 1;
9805 }
9806 return 1;
9807 }
9808
9809 enum arm_record_result
9810 {
9811 ARM_RECORD_SUCCESS = 0,
9812 ARM_RECORD_FAILURE = 1
9813 };
9814
9815 typedef enum
9816 {
9817 ARM_RECORD_STRH=1,
9818 ARM_RECORD_STRD
9819 } arm_record_strx_t;
9820
9821 typedef enum
9822 {
9823 ARM_RECORD=1,
9824 THUMB_RECORD,
9825 THUMB2_RECORD
9826 } record_type_t;
9827
9828
9829 static int
9830 arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9831 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9832 {
9833
9834 struct regcache *reg_cache = arm_insn_r->regcache;
9835 ULONGEST u_regval[2]= {0};
9836
9837 uint32_t reg_src1 = 0, reg_src2 = 0;
9838 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
9839
9840 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9841 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
9842
9843 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9844 {
9845 /* 1) Handle misc store, immediate offset. */
9846 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9847 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9848 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9849 regcache_raw_read_unsigned (reg_cache, reg_src1,
9850 &u_regval[0]);
9851 if (ARM_PC_REGNUM == reg_src1)
9852 {
9853 /* If R15 was used as Rn, hence current PC+8. */
9854 u_regval[0] = u_regval[0] + 8;
9855 }
9856 offset_8 = (immed_high << 4) | immed_low;
9857 /* Calculate target store address. */
9858 if (14 == arm_insn_r->opcode)
9859 {
9860 tgt_mem_addr = u_regval[0] + offset_8;
9861 }
9862 else
9863 {
9864 tgt_mem_addr = u_regval[0] - offset_8;
9865 }
9866 if (ARM_RECORD_STRH == str_type)
9867 {
9868 record_buf_mem[0] = 2;
9869 record_buf_mem[1] = tgt_mem_addr;
9870 arm_insn_r->mem_rec_count = 1;
9871 }
9872 else if (ARM_RECORD_STRD == str_type)
9873 {
9874 record_buf_mem[0] = 4;
9875 record_buf_mem[1] = tgt_mem_addr;
9876 record_buf_mem[2] = 4;
9877 record_buf_mem[3] = tgt_mem_addr + 4;
9878 arm_insn_r->mem_rec_count = 2;
9879 }
9880 }
9881 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9882 {
9883 /* 2) Store, register offset. */
9884 /* Get Rm. */
9885 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9886 /* Get Rn. */
9887 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9888 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9889 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9890 if (15 == reg_src2)
9891 {
9892 /* If R15 was used as Rn, hence current PC+8. */
9893 u_regval[0] = u_regval[0] + 8;
9894 }
9895 /* Calculate target store address, Rn +/- Rm, register offset. */
9896 if (12 == arm_insn_r->opcode)
9897 {
9898 tgt_mem_addr = u_regval[0] + u_regval[1];
9899 }
9900 else
9901 {
9902 tgt_mem_addr = u_regval[1] - u_regval[0];
9903 }
9904 if (ARM_RECORD_STRH == str_type)
9905 {
9906 record_buf_mem[0] = 2;
9907 record_buf_mem[1] = tgt_mem_addr;
9908 arm_insn_r->mem_rec_count = 1;
9909 }
9910 else if (ARM_RECORD_STRD == str_type)
9911 {
9912 record_buf_mem[0] = 4;
9913 record_buf_mem[1] = tgt_mem_addr;
9914 record_buf_mem[2] = 4;
9915 record_buf_mem[3] = tgt_mem_addr + 4;
9916 arm_insn_r->mem_rec_count = 2;
9917 }
9918 }
9919 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9920 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9921 {
9922 /* 3) Store, immediate pre-indexed. */
9923 /* 5) Store, immediate post-indexed. */
9924 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9925 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9926 offset_8 = (immed_high << 4) | immed_low;
9927 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9928 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9929 /* Calculate target store address, Rn +/- Rm, register offset. */
9930 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9931 {
9932 tgt_mem_addr = u_regval[0] + offset_8;
9933 }
9934 else
9935 {
9936 tgt_mem_addr = u_regval[0] - offset_8;
9937 }
9938 if (ARM_RECORD_STRH == str_type)
9939 {
9940 record_buf_mem[0] = 2;
9941 record_buf_mem[1] = tgt_mem_addr;
9942 arm_insn_r->mem_rec_count = 1;
9943 }
9944 else if (ARM_RECORD_STRD == str_type)
9945 {
9946 record_buf_mem[0] = 4;
9947 record_buf_mem[1] = tgt_mem_addr;
9948 record_buf_mem[2] = 4;
9949 record_buf_mem[3] = tgt_mem_addr + 4;
9950 arm_insn_r->mem_rec_count = 2;
9951 }
9952 /* Record Rn also as it changes. */
9953 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9954 arm_insn_r->reg_rec_count = 1;
9955 }
9956 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9957 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9958 {
9959 /* 4) Store, register pre-indexed. */
9960 /* 6) Store, register post -indexed. */
9961 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9962 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9963 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9964 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9965 /* Calculate target store address, Rn +/- Rm, register offset. */
9966 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9967 {
9968 tgt_mem_addr = u_regval[0] + u_regval[1];
9969 }
9970 else
9971 {
9972 tgt_mem_addr = u_regval[1] - u_regval[0];
9973 }
9974 if (ARM_RECORD_STRH == str_type)
9975 {
9976 record_buf_mem[0] = 2;
9977 record_buf_mem[1] = tgt_mem_addr;
9978 arm_insn_r->mem_rec_count = 1;
9979 }
9980 else if (ARM_RECORD_STRD == str_type)
9981 {
9982 record_buf_mem[0] = 4;
9983 record_buf_mem[1] = tgt_mem_addr;
9984 record_buf_mem[2] = 4;
9985 record_buf_mem[3] = tgt_mem_addr + 4;
9986 arm_insn_r->mem_rec_count = 2;
9987 }
9988 /* Record Rn also as it changes. */
9989 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9990 arm_insn_r->reg_rec_count = 1;
9991 }
9992 return 0;
9993 }
9994
9995 /* Handling ARM extension space insns. */
9996
9997 static int
9998 arm_record_extension_space (insn_decode_record *arm_insn_r)
9999 {
10000 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
10001 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
10002 uint32_t record_buf[8], record_buf_mem[8];
10003 uint32_t reg_src1 = 0;
10004 struct regcache *reg_cache = arm_insn_r->regcache;
10005 ULONGEST u_regval = 0;
10006
10007 gdb_assert (!INSN_RECORDED(arm_insn_r));
10008 /* Handle unconditional insn extension space. */
10009
10010 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
10011 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10012 if (arm_insn_r->cond)
10013 {
10014 /* PLD has no affect on architectural state, it just affects
10015 the caches. */
10016 if (5 == ((opcode1 & 0xE0) >> 5))
10017 {
10018 /* BLX(1) */
10019 record_buf[0] = ARM_PS_REGNUM;
10020 record_buf[1] = ARM_LR_REGNUM;
10021 arm_insn_r->reg_rec_count = 2;
10022 }
10023 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10024 }
10025
10026
10027 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10028 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10029 {
10030 ret = -1;
10031 /* Undefined instruction on ARM V5; need to handle if later
10032 versions define it. */
10033 }
10034
10035 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10036 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10037 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10038
10039 /* Handle arithmetic insn extension space. */
10040 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10041 && !INSN_RECORDED(arm_insn_r))
10042 {
10043 /* Handle MLA(S) and MUL(S). */
10044 if (0 <= insn_op1 && 3 >= insn_op1)
10045 {
10046 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10047 record_buf[1] = ARM_PS_REGNUM;
10048 arm_insn_r->reg_rec_count = 2;
10049 }
10050 else if (4 <= insn_op1 && 15 >= insn_op1)
10051 {
10052 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10053 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10054 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10055 record_buf[2] = ARM_PS_REGNUM;
10056 arm_insn_r->reg_rec_count = 3;
10057 }
10058 }
10059
10060 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10061 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10062 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10063
10064 /* Handle control insn extension space. */
10065
10066 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10067 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10068 {
10069 if (!bit (arm_insn_r->arm_insn,25))
10070 {
10071 if (!bits (arm_insn_r->arm_insn, 4, 7))
10072 {
10073 if ((0 == insn_op1) || (2 == insn_op1))
10074 {
10075 /* MRS. */
10076 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10077 arm_insn_r->reg_rec_count = 1;
10078 }
10079 else if (1 == insn_op1)
10080 {
10081 /* CSPR is going to be changed. */
10082 record_buf[0] = ARM_PS_REGNUM;
10083 arm_insn_r->reg_rec_count = 1;
10084 }
10085 else if (3 == insn_op1)
10086 {
10087 /* SPSR is going to be changed. */
10088 /* We need to get SPSR value, which is yet to be done. */
10089 return -1;
10090 }
10091 }
10092 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10093 {
10094 if (1 == insn_op1)
10095 {
10096 /* BX. */
10097 record_buf[0] = ARM_PS_REGNUM;
10098 arm_insn_r->reg_rec_count = 1;
10099 }
10100 else if (3 == insn_op1)
10101 {
10102 /* CLZ. */
10103 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10104 arm_insn_r->reg_rec_count = 1;
10105 }
10106 }
10107 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10108 {
10109 /* BLX. */
10110 record_buf[0] = ARM_PS_REGNUM;
10111 record_buf[1] = ARM_LR_REGNUM;
10112 arm_insn_r->reg_rec_count = 2;
10113 }
10114 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10115 {
10116 /* QADD, QSUB, QDADD, QDSUB */
10117 record_buf[0] = ARM_PS_REGNUM;
10118 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10119 arm_insn_r->reg_rec_count = 2;
10120 }
10121 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10122 {
10123 /* BKPT. */
10124 record_buf[0] = ARM_PS_REGNUM;
10125 record_buf[1] = ARM_LR_REGNUM;
10126 arm_insn_r->reg_rec_count = 2;
10127
10128 /* Save SPSR also;how? */
10129 return -1;
10130 }
10131 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10132 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10133 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10134 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10135 )
10136 {
10137 if (0 == insn_op1 || 1 == insn_op1)
10138 {
10139 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10140 /* We dont do optimization for SMULW<y> where we
10141 need only Rd. */
10142 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10143 record_buf[1] = ARM_PS_REGNUM;
10144 arm_insn_r->reg_rec_count = 2;
10145 }
10146 else if (2 == insn_op1)
10147 {
10148 /* SMLAL<x><y>. */
10149 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10150 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10151 arm_insn_r->reg_rec_count = 2;
10152 }
10153 else if (3 == insn_op1)
10154 {
10155 /* SMUL<x><y>. */
10156 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10157 arm_insn_r->reg_rec_count = 1;
10158 }
10159 }
10160 }
10161 else
10162 {
10163 /* MSR : immediate form. */
10164 if (1 == insn_op1)
10165 {
10166 /* CSPR is going to be changed. */
10167 record_buf[0] = ARM_PS_REGNUM;
10168 arm_insn_r->reg_rec_count = 1;
10169 }
10170 else if (3 == insn_op1)
10171 {
10172 /* SPSR is going to be changed. */
10173 /* we need to get SPSR value, which is yet to be done */
10174 return -1;
10175 }
10176 }
10177 }
10178
10179 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10180 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10181 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10182
10183 /* Handle load/store insn extension space. */
10184
10185 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10186 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10187 && !INSN_RECORDED(arm_insn_r))
10188 {
10189 /* SWP/SWPB. */
10190 if (0 == insn_op1)
10191 {
10192 /* These insn, changes register and memory as well. */
10193 /* SWP or SWPB insn. */
10194 /* Get memory address given by Rn. */
10195 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10196 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10197 /* SWP insn ?, swaps word. */
10198 if (8 == arm_insn_r->opcode)
10199 {
10200 record_buf_mem[0] = 4;
10201 }
10202 else
10203 {
10204 /* SWPB insn, swaps only byte. */
10205 record_buf_mem[0] = 1;
10206 }
10207 record_buf_mem[1] = u_regval;
10208 arm_insn_r->mem_rec_count = 1;
10209 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10210 arm_insn_r->reg_rec_count = 1;
10211 }
10212 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10213 {
10214 /* STRH. */
10215 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10216 ARM_RECORD_STRH);
10217 }
10218 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10219 {
10220 /* LDRD. */
10221 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10222 record_buf[1] = record_buf[0] + 1;
10223 arm_insn_r->reg_rec_count = 2;
10224 }
10225 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10226 {
10227 /* STRD. */
10228 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10229 ARM_RECORD_STRD);
10230 }
10231 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10232 {
10233 /* LDRH, LDRSB, LDRSH. */
10234 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10235 arm_insn_r->reg_rec_count = 1;
10236 }
10237
10238 }
10239
10240 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10241 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10242 && !INSN_RECORDED(arm_insn_r))
10243 {
10244 ret = -1;
10245 /* Handle coprocessor insn extension space. */
10246 }
10247
10248 /* To be done for ARMv5 and later; as of now we return -1. */
10249 if (-1 == ret)
10250 return ret;
10251
10252 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10253 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10254
10255 return ret;
10256 }
10257
10258 /* Handling opcode 000 insns. */
10259
10260 static int
10261 arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10262 {
10263 struct regcache *reg_cache = arm_insn_r->regcache;
10264 uint32_t record_buf[8], record_buf_mem[8];
10265 ULONGEST u_regval[2] = {0};
10266
10267 uint32_t reg_src1 = 0, reg_dest = 0;
10268 uint32_t opcode1 = 0;
10269
10270 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10271 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10272 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10273
10274 /* Data processing insn /multiply insn. */
10275 if (9 == arm_insn_r->decode
10276 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10277 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
10278 {
10279 /* Handle multiply instructions. */
10280 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10281 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10282 {
10283 /* Handle MLA and MUL. */
10284 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10285 record_buf[1] = ARM_PS_REGNUM;
10286 arm_insn_r->reg_rec_count = 2;
10287 }
10288 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10289 {
10290 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10291 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10292 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10293 record_buf[2] = ARM_PS_REGNUM;
10294 arm_insn_r->reg_rec_count = 3;
10295 }
10296 }
10297 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10298 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
10299 {
10300 /* Handle misc load insns, as 20th bit (L = 1). */
10301 /* LDR insn has a capability to do branching, if
10302 MOV LR, PC is precceded by LDR insn having Rn as R15
10303 in that case, it emulates branch and link insn, and hence we
10304 need to save CSPR and PC as well. I am not sure this is right
10305 place; as opcode = 010 LDR insn make this happen, if R15 was
10306 used. */
10307 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10308 if (15 != reg_dest)
10309 {
10310 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10311 arm_insn_r->reg_rec_count = 1;
10312 }
10313 else
10314 {
10315 record_buf[0] = reg_dest;
10316 record_buf[1] = ARM_PS_REGNUM;
10317 arm_insn_r->reg_rec_count = 2;
10318 }
10319 }
10320 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10321 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
10322 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10323 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
10324 {
10325 /* Handle MSR insn. */
10326 if (9 == arm_insn_r->opcode)
10327 {
10328 /* CSPR is going to be changed. */
10329 record_buf[0] = ARM_PS_REGNUM;
10330 arm_insn_r->reg_rec_count = 1;
10331 }
10332 else
10333 {
10334 /* SPSR is going to be changed. */
10335 /* How to read SPSR value? */
10336 return -1;
10337 }
10338 }
10339 else if (9 == arm_insn_r->decode
10340 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10341 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10342 {
10343 /* Handling SWP, SWPB. */
10344 /* These insn, changes register and memory as well. */
10345 /* SWP or SWPB insn. */
10346
10347 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10348 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10349 /* SWP insn ?, swaps word. */
10350 if (8 == arm_insn_r->opcode)
10351 {
10352 record_buf_mem[0] = 4;
10353 }
10354 else
10355 {
10356 /* SWPB insn, swaps only byte. */
10357 record_buf_mem[0] = 1;
10358 }
10359 record_buf_mem[1] = u_regval[0];
10360 arm_insn_r->mem_rec_count = 1;
10361 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10362 arm_insn_r->reg_rec_count = 1;
10363 }
10364 else if (3 == arm_insn_r->decode && 0x12 == opcode1
10365 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10366 {
10367 /* Handle BLX, branch and link/exchange. */
10368 if (9 == arm_insn_r->opcode)
10369 {
10370 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10371 and R14 stores the return address. */
10372 record_buf[0] = ARM_PS_REGNUM;
10373 record_buf[1] = ARM_LR_REGNUM;
10374 arm_insn_r->reg_rec_count = 2;
10375 }
10376 }
10377 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10378 {
10379 /* Handle enhanced software breakpoint insn, BKPT. */
10380 /* CPSR is changed to be executed in ARM state, disabling normal
10381 interrupts, entering abort mode. */
10382 /* According to high vector configuration PC is set. */
10383 /* user hit breakpoint and type reverse, in
10384 that case, we need to go back with previous CPSR and
10385 Program Counter. */
10386 record_buf[0] = ARM_PS_REGNUM;
10387 record_buf[1] = ARM_LR_REGNUM;
10388 arm_insn_r->reg_rec_count = 2;
10389
10390 /* Save SPSR also; how? */
10391 return -1;
10392 }
10393 else if (11 == arm_insn_r->decode
10394 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10395 {
10396 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
10397
10398 /* Handle str(x) insn */
10399 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10400 ARM_RECORD_STRH);
10401 }
10402 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10403 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10404 {
10405 /* Handle BX, branch and link/exchange. */
10406 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10407 record_buf[0] = ARM_PS_REGNUM;
10408 arm_insn_r->reg_rec_count = 1;
10409 }
10410 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10411 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10412 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10413 {
10414 /* Count leading zeros: CLZ. */
10415 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10416 arm_insn_r->reg_rec_count = 1;
10417 }
10418 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10419 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10420 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10421 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
10422 )
10423 {
10424 /* Handle MRS insn. */
10425 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10426 arm_insn_r->reg_rec_count = 1;
10427 }
10428 else if (arm_insn_r->opcode <= 15)
10429 {
10430 /* Normal data processing insns. */
10431 /* Out of 11 shifter operands mode, all the insn modifies destination
10432 register, which is specified by 13-16 decode. */
10433 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10434 record_buf[1] = ARM_PS_REGNUM;
10435 arm_insn_r->reg_rec_count = 2;
10436 }
10437 else
10438 {
10439 return -1;
10440 }
10441
10442 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10443 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10444 return 0;
10445 }
10446
10447 /* Handling opcode 001 insns. */
10448
10449 static int
10450 arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10451 {
10452 uint32_t record_buf[8], record_buf_mem[8];
10453
10454 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10455 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10456
10457 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10458 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10459 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10460 )
10461 {
10462 /* Handle MSR insn. */
10463 if (9 == arm_insn_r->opcode)
10464 {
10465 /* CSPR is going to be changed. */
10466 record_buf[0] = ARM_PS_REGNUM;
10467 arm_insn_r->reg_rec_count = 1;
10468 }
10469 else
10470 {
10471 /* SPSR is going to be changed. */
10472 }
10473 }
10474 else if (arm_insn_r->opcode <= 15)
10475 {
10476 /* Normal data processing insns. */
10477 /* Out of 11 shifter operands mode, all the insn modifies destination
10478 register, which is specified by 13-16 decode. */
10479 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10480 record_buf[1] = ARM_PS_REGNUM;
10481 arm_insn_r->reg_rec_count = 2;
10482 }
10483 else
10484 {
10485 return -1;
10486 }
10487
10488 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10489 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10490 return 0;
10491 }
10492
10493 static int
10494 arm_record_media (insn_decode_record *arm_insn_r)
10495 {
10496 uint32_t record_buf[8];
10497
10498 switch (bits (arm_insn_r->arm_insn, 22, 24))
10499 {
10500 case 0:
10501 /* Parallel addition and subtraction, signed */
10502 case 1:
10503 /* Parallel addition and subtraction, unsigned */
10504 case 2:
10505 case 3:
10506 /* Packing, unpacking, saturation and reversal */
10507 {
10508 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10509
10510 record_buf[arm_insn_r->reg_rec_count++] = rd;
10511 }
10512 break;
10513
10514 case 4:
10515 case 5:
10516 /* Signed multiplies */
10517 {
10518 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10519 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10520
10521 record_buf[arm_insn_r->reg_rec_count++] = rd;
10522 if (op1 == 0x0)
10523 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10524 else if (op1 == 0x4)
10525 record_buf[arm_insn_r->reg_rec_count++]
10526 = bits (arm_insn_r->arm_insn, 12, 15);
10527 }
10528 break;
10529
10530 case 6:
10531 {
10532 if (bit (arm_insn_r->arm_insn, 21)
10533 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10534 {
10535 /* SBFX */
10536 record_buf[arm_insn_r->reg_rec_count++]
10537 = bits (arm_insn_r->arm_insn, 12, 15);
10538 }
10539 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10540 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10541 {
10542 /* USAD8 and USADA8 */
10543 record_buf[arm_insn_r->reg_rec_count++]
10544 = bits (arm_insn_r->arm_insn, 16, 19);
10545 }
10546 }
10547 break;
10548
10549 case 7:
10550 {
10551 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10552 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10553 {
10554 /* Permanently UNDEFINED */
10555 return -1;
10556 }
10557 else
10558 {
10559 /* BFC, BFI and UBFX */
10560 record_buf[arm_insn_r->reg_rec_count++]
10561 = bits (arm_insn_r->arm_insn, 12, 15);
10562 }
10563 }
10564 break;
10565
10566 default:
10567 return -1;
10568 }
10569
10570 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10571
10572 return 0;
10573 }
10574
10575 /* Handle ARM mode instructions with opcode 010. */
10576
10577 static int
10578 arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10579 {
10580 struct regcache *reg_cache = arm_insn_r->regcache;
10581
10582 uint32_t reg_base , reg_dest;
10583 uint32_t offset_12, tgt_mem_addr;
10584 uint32_t record_buf[8], record_buf_mem[8];
10585 unsigned char wback;
10586 ULONGEST u_regval;
10587
10588 /* Calculate wback. */
10589 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10590 || (bit (arm_insn_r->arm_insn, 21) == 1);
10591
10592 arm_insn_r->reg_rec_count = 0;
10593 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10594
10595 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10596 {
10597 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10598 and LDRT. */
10599
10600 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10601 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10602
10603 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10604 preceeds a LDR instruction having R15 as reg_base, it
10605 emulates a branch and link instruction, and hence we need to save
10606 CPSR and PC as well. */
10607 if (ARM_PC_REGNUM == reg_dest)
10608 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10609
10610 /* If wback is true, also save the base register, which is going to be
10611 written to. */
10612 if (wback)
10613 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10614 }
10615 else
10616 {
10617 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10618
10619 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
10620 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10621
10622 /* Handle bit U. */
10623 if (bit (arm_insn_r->arm_insn, 23))
10624 {
10625 /* U == 1: Add the offset. */
10626 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10627 }
10628 else
10629 {
10630 /* U == 0: subtract the offset. */
10631 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10632 }
10633
10634 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10635 bytes. */
10636 if (bit (arm_insn_r->arm_insn, 22))
10637 {
10638 /* STRB and STRBT: 1 byte. */
10639 record_buf_mem[0] = 1;
10640 }
10641 else
10642 {
10643 /* STR and STRT: 4 bytes. */
10644 record_buf_mem[0] = 4;
10645 }
10646
10647 /* Handle bit P. */
10648 if (bit (arm_insn_r->arm_insn, 24))
10649 record_buf_mem[1] = tgt_mem_addr;
10650 else
10651 record_buf_mem[1] = (uint32_t) u_regval;
10652
10653 arm_insn_r->mem_rec_count = 1;
10654
10655 /* If wback is true, also save the base register, which is going to be
10656 written to. */
10657 if (wback)
10658 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10659 }
10660
10661 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10662 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10663 return 0;
10664 }
10665
10666 /* Handling opcode 011 insns. */
10667
10668 static int
10669 arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10670 {
10671 struct regcache *reg_cache = arm_insn_r->regcache;
10672
10673 uint32_t shift_imm = 0;
10674 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10675 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10676 uint32_t record_buf[8], record_buf_mem[8];
10677
10678 LONGEST s_word;
10679 ULONGEST u_regval[2];
10680
10681 if (bit (arm_insn_r->arm_insn, 4))
10682 return arm_record_media (arm_insn_r);
10683
10684 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10685 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10686
10687 /* Handle enhanced store insns and LDRD DSP insn,
10688 order begins according to addressing modes for store insns
10689 STRH insn. */
10690
10691 /* LDR or STR? */
10692 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10693 {
10694 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10695 /* LDR insn has a capability to do branching, if
10696 MOV LR, PC is precedded by LDR insn having Rn as R15
10697 in that case, it emulates branch and link insn, and hence we
10698 need to save CSPR and PC as well. */
10699 if (15 != reg_dest)
10700 {
10701 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10702 arm_insn_r->reg_rec_count = 1;
10703 }
10704 else
10705 {
10706 record_buf[0] = reg_dest;
10707 record_buf[1] = ARM_PS_REGNUM;
10708 arm_insn_r->reg_rec_count = 2;
10709 }
10710 }
10711 else
10712 {
10713 if (! bits (arm_insn_r->arm_insn, 4, 11))
10714 {
10715 /* Store insn, register offset and register pre-indexed,
10716 register post-indexed. */
10717 /* Get Rm. */
10718 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10719 /* Get Rn. */
10720 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10721 regcache_raw_read_unsigned (reg_cache, reg_src1
10722 , &u_regval[0]);
10723 regcache_raw_read_unsigned (reg_cache, reg_src2
10724 , &u_regval[1]);
10725 if (15 == reg_src2)
10726 {
10727 /* If R15 was used as Rn, hence current PC+8. */
10728 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10729 u_regval[0] = u_regval[0] + 8;
10730 }
10731 /* Calculate target store address, Rn +/- Rm, register offset. */
10732 /* U == 1. */
10733 if (bit (arm_insn_r->arm_insn, 23))
10734 {
10735 tgt_mem_addr = u_regval[0] + u_regval[1];
10736 }
10737 else
10738 {
10739 tgt_mem_addr = u_regval[1] - u_regval[0];
10740 }
10741
10742 switch (arm_insn_r->opcode)
10743 {
10744 /* STR. */
10745 case 8:
10746 case 12:
10747 /* STR. */
10748 case 9:
10749 case 13:
10750 /* STRT. */
10751 case 1:
10752 case 5:
10753 /* STR. */
10754 case 0:
10755 case 4:
10756 record_buf_mem[0] = 4;
10757 break;
10758
10759 /* STRB. */
10760 case 10:
10761 case 14:
10762 /* STRB. */
10763 case 11:
10764 case 15:
10765 /* STRBT. */
10766 case 3:
10767 case 7:
10768 /* STRB. */
10769 case 2:
10770 case 6:
10771 record_buf_mem[0] = 1;
10772 break;
10773
10774 default:
10775 gdb_assert_not_reached ("no decoding pattern found");
10776 break;
10777 }
10778 record_buf_mem[1] = tgt_mem_addr;
10779 arm_insn_r->mem_rec_count = 1;
10780
10781 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10782 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10783 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10784 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10785 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10786 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10787 )
10788 {
10789 /* Rn is going to be changed in pre-indexed mode and
10790 post-indexed mode as well. */
10791 record_buf[0] = reg_src2;
10792 arm_insn_r->reg_rec_count = 1;
10793 }
10794 }
10795 else
10796 {
10797 /* Store insn, scaled register offset; scaled pre-indexed. */
10798 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10799 /* Get Rm. */
10800 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10801 /* Get Rn. */
10802 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10803 /* Get shift_imm. */
10804 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10805 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10806 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10807 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10808 /* Offset_12 used as shift. */
10809 switch (offset_12)
10810 {
10811 case 0:
10812 /* Offset_12 used as index. */
10813 offset_12 = u_regval[0] << shift_imm;
10814 break;
10815
10816 case 1:
10817 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10818 break;
10819
10820 case 2:
10821 if (!shift_imm)
10822 {
10823 if (bit (u_regval[0], 31))
10824 {
10825 offset_12 = 0xFFFFFFFF;
10826 }
10827 else
10828 {
10829 offset_12 = 0;
10830 }
10831 }
10832 else
10833 {
10834 /* This is arithmetic shift. */
10835 offset_12 = s_word >> shift_imm;
10836 }
10837 break;
10838
10839 case 3:
10840 if (!shift_imm)
10841 {
10842 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10843 &u_regval[1]);
10844 /* Get C flag value and shift it by 31. */
10845 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10846 | (u_regval[0]) >> 1);
10847 }
10848 else
10849 {
10850 offset_12 = (u_regval[0] >> shift_imm) \
10851 | (u_regval[0] <<
10852 (sizeof(uint32_t) - shift_imm));
10853 }
10854 break;
10855
10856 default:
10857 gdb_assert_not_reached ("no decoding pattern found");
10858 break;
10859 }
10860
10861 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10862 /* bit U set. */
10863 if (bit (arm_insn_r->arm_insn, 23))
10864 {
10865 tgt_mem_addr = u_regval[1] + offset_12;
10866 }
10867 else
10868 {
10869 tgt_mem_addr = u_regval[1] - offset_12;
10870 }
10871
10872 switch (arm_insn_r->opcode)
10873 {
10874 /* STR. */
10875 case 8:
10876 case 12:
10877 /* STR. */
10878 case 9:
10879 case 13:
10880 /* STRT. */
10881 case 1:
10882 case 5:
10883 /* STR. */
10884 case 0:
10885 case 4:
10886 record_buf_mem[0] = 4;
10887 break;
10888
10889 /* STRB. */
10890 case 10:
10891 case 14:
10892 /* STRB. */
10893 case 11:
10894 case 15:
10895 /* STRBT. */
10896 case 3:
10897 case 7:
10898 /* STRB. */
10899 case 2:
10900 case 6:
10901 record_buf_mem[0] = 1;
10902 break;
10903
10904 default:
10905 gdb_assert_not_reached ("no decoding pattern found");
10906 break;
10907 }
10908 record_buf_mem[1] = tgt_mem_addr;
10909 arm_insn_r->mem_rec_count = 1;
10910
10911 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10912 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10913 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10914 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10915 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10916 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10917 )
10918 {
10919 /* Rn is going to be changed in register scaled pre-indexed
10920 mode,and scaled post indexed mode. */
10921 record_buf[0] = reg_src2;
10922 arm_insn_r->reg_rec_count = 1;
10923 }
10924 }
10925 }
10926
10927 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10928 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10929 return 0;
10930 }
10931
10932 /* Handle ARM mode instructions with opcode 100. */
10933
10934 static int
10935 arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10936 {
10937 struct regcache *reg_cache = arm_insn_r->regcache;
10938 uint32_t register_count = 0, register_bits;
10939 uint32_t reg_base, addr_mode;
10940 uint32_t record_buf[24], record_buf_mem[48];
10941 uint32_t wback;
10942 ULONGEST u_regval;
10943
10944 /* Fetch the list of registers. */
10945 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10946 arm_insn_r->reg_rec_count = 0;
10947
10948 /* Fetch the base register that contains the address we are loading data
10949 to. */
10950 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10951
10952 /* Calculate wback. */
10953 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
10954
10955 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10956 {
10957 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
10958
10959 /* Find out which registers are going to be loaded from memory. */
10960 while (register_bits)
10961 {
10962 if (register_bits & 0x00000001)
10963 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10964 register_bits = register_bits >> 1;
10965 register_count++;
10966 }
10967
10968
10969 /* If wback is true, also save the base register, which is going to be
10970 written to. */
10971 if (wback)
10972 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10973
10974 /* Save the CPSR register. */
10975 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10976 }
10977 else
10978 {
10979 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
10980
10981 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
10982
10983 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10984
10985 /* Find out how many registers are going to be stored to memory. */
10986 while (register_bits)
10987 {
10988 if (register_bits & 0x00000001)
10989 register_count++;
10990 register_bits = register_bits >> 1;
10991 }
10992
10993 switch (addr_mode)
10994 {
10995 /* STMDA (STMED): Decrement after. */
10996 case 0:
10997 record_buf_mem[1] = (uint32_t) u_regval
10998 - register_count * INT_REGISTER_SIZE + 4;
10999 break;
11000 /* STM (STMIA, STMEA): Increment after. */
11001 case 1:
11002 record_buf_mem[1] = (uint32_t) u_regval;
11003 break;
11004 /* STMDB (STMFD): Decrement before. */
11005 case 2:
11006 record_buf_mem[1] = (uint32_t) u_regval
11007 - register_count * INT_REGISTER_SIZE;
11008 break;
11009 /* STMIB (STMFA): Increment before. */
11010 case 3:
11011 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
11012 break;
11013 default:
11014 gdb_assert_not_reached ("no decoding pattern found");
11015 break;
11016 }
11017
11018 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
11019 arm_insn_r->mem_rec_count = 1;
11020
11021 /* If wback is true, also save the base register, which is going to be
11022 written to. */
11023 if (wback)
11024 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
11025 }
11026
11027 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11028 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11029 return 0;
11030 }
11031
11032 /* Handling opcode 101 insns. */
11033
11034 static int
11035 arm_record_b_bl (insn_decode_record *arm_insn_r)
11036 {
11037 uint32_t record_buf[8];
11038
11039 /* Handle B, BL, BLX(1) insns. */
11040 /* B simply branches so we do nothing here. */
11041 /* Note: BLX(1) doesnt fall here but instead it falls into
11042 extension space. */
11043 if (bit (arm_insn_r->arm_insn, 24))
11044 {
11045 record_buf[0] = ARM_LR_REGNUM;
11046 arm_insn_r->reg_rec_count = 1;
11047 }
11048
11049 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11050
11051 return 0;
11052 }
11053
11054 static int
11055 arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
11056 {
11057 printf_unfiltered (_("Process record does not support instruction "
11058 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11059 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11060
11061 return -1;
11062 }
11063
11064 /* Record handler for vector data transfer instructions. */
11065
11066 static int
11067 arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11068 {
11069 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11070 uint32_t record_buf[4];
11071
11072 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11073 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11074 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11075 bit_l = bit (arm_insn_r->arm_insn, 20);
11076 bit_c = bit (arm_insn_r->arm_insn, 8);
11077
11078 /* Handle VMOV instruction. */
11079 if (bit_l && bit_c)
11080 {
11081 record_buf[0] = reg_t;
11082 arm_insn_r->reg_rec_count = 1;
11083 }
11084 else if (bit_l && !bit_c)
11085 {
11086 /* Handle VMOV instruction. */
11087 if (bits_a == 0x00)
11088 {
11089 record_buf[0] = reg_t;
11090 arm_insn_r->reg_rec_count = 1;
11091 }
11092 /* Handle VMRS instruction. */
11093 else if (bits_a == 0x07)
11094 {
11095 if (reg_t == 15)
11096 reg_t = ARM_PS_REGNUM;
11097
11098 record_buf[0] = reg_t;
11099 arm_insn_r->reg_rec_count = 1;
11100 }
11101 }
11102 else if (!bit_l && !bit_c)
11103 {
11104 /* Handle VMOV instruction. */
11105 if (bits_a == 0x00)
11106 {
11107 record_buf[0] = ARM_D0_REGNUM + reg_v;
11108
11109 arm_insn_r->reg_rec_count = 1;
11110 }
11111 /* Handle VMSR instruction. */
11112 else if (bits_a == 0x07)
11113 {
11114 record_buf[0] = ARM_FPSCR_REGNUM;
11115 arm_insn_r->reg_rec_count = 1;
11116 }
11117 }
11118 else if (!bit_l && bit_c)
11119 {
11120 /* Handle VMOV instruction. */
11121 if (!(bits_a & 0x04))
11122 {
11123 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11124 + ARM_D0_REGNUM;
11125 arm_insn_r->reg_rec_count = 1;
11126 }
11127 /* Handle VDUP instruction. */
11128 else
11129 {
11130 if (bit (arm_insn_r->arm_insn, 21))
11131 {
11132 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11133 record_buf[0] = reg_v + ARM_D0_REGNUM;
11134 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11135 arm_insn_r->reg_rec_count = 2;
11136 }
11137 else
11138 {
11139 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11140 record_buf[0] = reg_v + ARM_D0_REGNUM;
11141 arm_insn_r->reg_rec_count = 1;
11142 }
11143 }
11144 }
11145
11146 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11147 return 0;
11148 }
11149
11150 /* Record handler for extension register load/store instructions. */
11151
11152 static int
11153 arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11154 {
11155 uint32_t opcode, single_reg;
11156 uint8_t op_vldm_vstm;
11157 uint32_t record_buf[8], record_buf_mem[128];
11158 ULONGEST u_regval = 0;
11159
11160 struct regcache *reg_cache = arm_insn_r->regcache;
11161
11162 opcode = bits (arm_insn_r->arm_insn, 20, 24);
11163 single_reg = !bit (arm_insn_r->arm_insn, 8);
11164 op_vldm_vstm = opcode & 0x1b;
11165
11166 /* Handle VMOV instructions. */
11167 if ((opcode & 0x1e) == 0x04)
11168 {
11169 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
11170 {
11171 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11172 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11173 arm_insn_r->reg_rec_count = 2;
11174 }
11175 else
11176 {
11177 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11178 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
11179
11180 if (single_reg)
11181 {
11182 /* The first S register number m is REG_M:M (M is bit 5),
11183 the corresponding D register number is REG_M:M / 2, which
11184 is REG_M. */
11185 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11186 /* The second S register number is REG_M:M + 1, the
11187 corresponding D register number is (REG_M:M + 1) / 2.
11188 IOW, if bit M is 1, the first and second S registers
11189 are mapped to different D registers, otherwise, they are
11190 in the same D register. */
11191 if (bit_m)
11192 {
11193 record_buf[arm_insn_r->reg_rec_count++]
11194 = ARM_D0_REGNUM + reg_m + 1;
11195 }
11196 }
11197 else
11198 {
11199 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
11200 arm_insn_r->reg_rec_count = 1;
11201 }
11202 }
11203 }
11204 /* Handle VSTM and VPUSH instructions. */
11205 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
11206 || op_vldm_vstm == 0x12)
11207 {
11208 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11209 uint32_t memory_index = 0;
11210
11211 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11212 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11213 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11214 imm_off32 = imm_off8 << 2;
11215 memory_count = imm_off8;
11216
11217 if (bit (arm_insn_r->arm_insn, 23))
11218 start_address = u_regval;
11219 else
11220 start_address = u_regval - imm_off32;
11221
11222 if (bit (arm_insn_r->arm_insn, 21))
11223 {
11224 record_buf[0] = reg_rn;
11225 arm_insn_r->reg_rec_count = 1;
11226 }
11227
11228 while (memory_count > 0)
11229 {
11230 if (single_reg)
11231 {
11232 record_buf_mem[memory_index] = 4;
11233 record_buf_mem[memory_index + 1] = start_address;
11234 start_address = start_address + 4;
11235 memory_index = memory_index + 2;
11236 }
11237 else
11238 {
11239 record_buf_mem[memory_index] = 4;
11240 record_buf_mem[memory_index + 1] = start_address;
11241 record_buf_mem[memory_index + 2] = 4;
11242 record_buf_mem[memory_index + 3] = start_address + 4;
11243 start_address = start_address + 8;
11244 memory_index = memory_index + 4;
11245 }
11246 memory_count--;
11247 }
11248 arm_insn_r->mem_rec_count = (memory_index >> 1);
11249 }
11250 /* Handle VLDM instructions. */
11251 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
11252 || op_vldm_vstm == 0x13)
11253 {
11254 uint32_t reg_count, reg_vd;
11255 uint32_t reg_index = 0;
11256 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
11257
11258 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11259 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11260
11261 /* REG_VD is the first D register number. If the instruction
11262 loads memory to S registers (SINGLE_REG is TRUE), the register
11263 number is (REG_VD << 1 | bit D), so the corresponding D
11264 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11265 if (!single_reg)
11266 reg_vd = reg_vd | (bit_d << 4);
11267
11268 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
11269 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
11270
11271 /* If the instruction loads memory to D register, REG_COUNT should
11272 be divided by 2, according to the ARM Architecture Reference
11273 Manual. If the instruction loads memory to S register, divide by
11274 2 as well because two S registers are mapped to D register. */
11275 reg_count = reg_count / 2;
11276 if (single_reg && bit_d)
11277 {
11278 /* Increase the register count if S register list starts from
11279 an odd number (bit d is one). */
11280 reg_count++;
11281 }
11282
11283 while (reg_count > 0)
11284 {
11285 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
11286 reg_count--;
11287 }
11288 arm_insn_r->reg_rec_count = reg_index;
11289 }
11290 /* VSTR Vector store register. */
11291 else if ((opcode & 0x13) == 0x10)
11292 {
11293 uint32_t start_address, reg_rn, imm_off32, imm_off8;
11294 uint32_t memory_index = 0;
11295
11296 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11297 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11298 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11299 imm_off32 = imm_off8 << 2;
11300
11301 if (bit (arm_insn_r->arm_insn, 23))
11302 start_address = u_regval + imm_off32;
11303 else
11304 start_address = u_regval - imm_off32;
11305
11306 if (single_reg)
11307 {
11308 record_buf_mem[memory_index] = 4;
11309 record_buf_mem[memory_index + 1] = start_address;
11310 arm_insn_r->mem_rec_count = 1;
11311 }
11312 else
11313 {
11314 record_buf_mem[memory_index] = 4;
11315 record_buf_mem[memory_index + 1] = start_address;
11316 record_buf_mem[memory_index + 2] = 4;
11317 record_buf_mem[memory_index + 3] = start_address + 4;
11318 arm_insn_r->mem_rec_count = 2;
11319 }
11320 }
11321 /* VLDR Vector load register. */
11322 else if ((opcode & 0x13) == 0x11)
11323 {
11324 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11325
11326 if (!single_reg)
11327 {
11328 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11329 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11330 }
11331 else
11332 {
11333 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
11334 /* Record register D rather than pseudo register S. */
11335 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
11336 }
11337 arm_insn_r->reg_rec_count = 1;
11338 }
11339
11340 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11341 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11342 return 0;
11343 }
11344
11345 /* Record handler for arm/thumb mode VFP data processing instructions. */
11346
11347 static int
11348 arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11349 {
11350 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11351 uint32_t record_buf[4];
11352 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11353 enum insn_types curr_insn_type = INSN_INV;
11354
11355 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11356 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11357 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11358 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11359 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11360 bit_d = bit (arm_insn_r->arm_insn, 22);
11361 opc1 = opc1 & 0x04;
11362
11363 /* Handle VMLA, VMLS. */
11364 if (opc1 == 0x00)
11365 {
11366 if (bit (arm_insn_r->arm_insn, 10))
11367 {
11368 if (bit (arm_insn_r->arm_insn, 6))
11369 curr_insn_type = INSN_T0;
11370 else
11371 curr_insn_type = INSN_T1;
11372 }
11373 else
11374 {
11375 if (dp_op_sz)
11376 curr_insn_type = INSN_T1;
11377 else
11378 curr_insn_type = INSN_T2;
11379 }
11380 }
11381 /* Handle VNMLA, VNMLS, VNMUL. */
11382 else if (opc1 == 0x01)
11383 {
11384 if (dp_op_sz)
11385 curr_insn_type = INSN_T1;
11386 else
11387 curr_insn_type = INSN_T2;
11388 }
11389 /* Handle VMUL. */
11390 else if (opc1 == 0x02 && !(opc3 & 0x01))
11391 {
11392 if (bit (arm_insn_r->arm_insn, 10))
11393 {
11394 if (bit (arm_insn_r->arm_insn, 6))
11395 curr_insn_type = INSN_T0;
11396 else
11397 curr_insn_type = INSN_T1;
11398 }
11399 else
11400 {
11401 if (dp_op_sz)
11402 curr_insn_type = INSN_T1;
11403 else
11404 curr_insn_type = INSN_T2;
11405 }
11406 }
11407 /* Handle VADD, VSUB. */
11408 else if (opc1 == 0x03)
11409 {
11410 if (!bit (arm_insn_r->arm_insn, 9))
11411 {
11412 if (bit (arm_insn_r->arm_insn, 6))
11413 curr_insn_type = INSN_T0;
11414 else
11415 curr_insn_type = INSN_T1;
11416 }
11417 else
11418 {
11419 if (dp_op_sz)
11420 curr_insn_type = INSN_T1;
11421 else
11422 curr_insn_type = INSN_T2;
11423 }
11424 }
11425 /* Handle VDIV. */
11426 else if (opc1 == 0x0b)
11427 {
11428 if (dp_op_sz)
11429 curr_insn_type = INSN_T1;
11430 else
11431 curr_insn_type = INSN_T2;
11432 }
11433 /* Handle all other vfp data processing instructions. */
11434 else if (opc1 == 0x0b)
11435 {
11436 /* Handle VMOV. */
11437 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11438 {
11439 if (bit (arm_insn_r->arm_insn, 4))
11440 {
11441 if (bit (arm_insn_r->arm_insn, 6))
11442 curr_insn_type = INSN_T0;
11443 else
11444 curr_insn_type = INSN_T1;
11445 }
11446 else
11447 {
11448 if (dp_op_sz)
11449 curr_insn_type = INSN_T1;
11450 else
11451 curr_insn_type = INSN_T2;
11452 }
11453 }
11454 /* Handle VNEG and VABS. */
11455 else if ((opc2 == 0x01 && opc3 == 0x01)
11456 || (opc2 == 0x00 && opc3 == 0x03))
11457 {
11458 if (!bit (arm_insn_r->arm_insn, 11))
11459 {
11460 if (bit (arm_insn_r->arm_insn, 6))
11461 curr_insn_type = INSN_T0;
11462 else
11463 curr_insn_type = INSN_T1;
11464 }
11465 else
11466 {
11467 if (dp_op_sz)
11468 curr_insn_type = INSN_T1;
11469 else
11470 curr_insn_type = INSN_T2;
11471 }
11472 }
11473 /* Handle VSQRT. */
11474 else if (opc2 == 0x01 && opc3 == 0x03)
11475 {
11476 if (dp_op_sz)
11477 curr_insn_type = INSN_T1;
11478 else
11479 curr_insn_type = INSN_T2;
11480 }
11481 /* Handle VCVT. */
11482 else if (opc2 == 0x07 && opc3 == 0x03)
11483 {
11484 if (!dp_op_sz)
11485 curr_insn_type = INSN_T1;
11486 else
11487 curr_insn_type = INSN_T2;
11488 }
11489 else if (opc3 & 0x01)
11490 {
11491 /* Handle VCVT. */
11492 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11493 {
11494 if (!bit (arm_insn_r->arm_insn, 18))
11495 curr_insn_type = INSN_T2;
11496 else
11497 {
11498 if (dp_op_sz)
11499 curr_insn_type = INSN_T1;
11500 else
11501 curr_insn_type = INSN_T2;
11502 }
11503 }
11504 /* Handle VCVT. */
11505 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11506 {
11507 if (dp_op_sz)
11508 curr_insn_type = INSN_T1;
11509 else
11510 curr_insn_type = INSN_T2;
11511 }
11512 /* Handle VCVTB, VCVTT. */
11513 else if ((opc2 & 0x0e) == 0x02)
11514 curr_insn_type = INSN_T2;
11515 /* Handle VCMP, VCMPE. */
11516 else if ((opc2 & 0x0e) == 0x04)
11517 curr_insn_type = INSN_T3;
11518 }
11519 }
11520
11521 switch (curr_insn_type)
11522 {
11523 case INSN_T0:
11524 reg_vd = reg_vd | (bit_d << 4);
11525 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11526 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11527 arm_insn_r->reg_rec_count = 2;
11528 break;
11529
11530 case INSN_T1:
11531 reg_vd = reg_vd | (bit_d << 4);
11532 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11533 arm_insn_r->reg_rec_count = 1;
11534 break;
11535
11536 case INSN_T2:
11537 reg_vd = (reg_vd << 1) | bit_d;
11538 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11539 arm_insn_r->reg_rec_count = 1;
11540 break;
11541
11542 case INSN_T3:
11543 record_buf[0] = ARM_FPSCR_REGNUM;
11544 arm_insn_r->reg_rec_count = 1;
11545 break;
11546
11547 default:
11548 gdb_assert_not_reached ("no decoding pattern found");
11549 break;
11550 }
11551
11552 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11553 return 0;
11554 }
11555
11556 /* Handling opcode 110 insns. */
11557
11558 static int
11559 arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11560 {
11561 uint32_t op1, op1_ebit, coproc;
11562
11563 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11564 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11565 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11566
11567 if ((coproc & 0x0e) == 0x0a)
11568 {
11569 /* Handle extension register ld/st instructions. */
11570 if (!(op1 & 0x20))
11571 return arm_record_exreg_ld_st_insn (arm_insn_r);
11572
11573 /* 64-bit transfers between arm core and extension registers. */
11574 if ((op1 & 0x3e) == 0x04)
11575 return arm_record_exreg_ld_st_insn (arm_insn_r);
11576 }
11577 else
11578 {
11579 /* Handle coprocessor ld/st instructions. */
11580 if (!(op1 & 0x3a))
11581 {
11582 /* Store. */
11583 if (!op1_ebit)
11584 return arm_record_unsupported_insn (arm_insn_r);
11585 else
11586 /* Load. */
11587 return arm_record_unsupported_insn (arm_insn_r);
11588 }
11589
11590 /* Move to coprocessor from two arm core registers. */
11591 if (op1 == 0x4)
11592 return arm_record_unsupported_insn (arm_insn_r);
11593
11594 /* Move to two arm core registers from coprocessor. */
11595 if (op1 == 0x5)
11596 {
11597 uint32_t reg_t[2];
11598
11599 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11600 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11601 arm_insn_r->reg_rec_count = 2;
11602
11603 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11604 return 0;
11605 }
11606 }
11607 return arm_record_unsupported_insn (arm_insn_r);
11608 }
11609
11610 /* Handling opcode 111 insns. */
11611
11612 static int
11613 arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11614 {
11615 uint32_t op, op1_sbit, op1_ebit, coproc;
11616 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11617 struct regcache *reg_cache = arm_insn_r->regcache;
11618
11619 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
11620 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11621 op1_sbit = bit (arm_insn_r->arm_insn, 24);
11622 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11623 op = bit (arm_insn_r->arm_insn, 4);
11624
11625 /* Handle arm SWI/SVC system call instructions. */
11626 if (op1_sbit)
11627 {
11628 if (tdep->arm_syscall_record != NULL)
11629 {
11630 ULONGEST svc_operand, svc_number;
11631
11632 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11633
11634 if (svc_operand) /* OABI. */
11635 svc_number = svc_operand - 0x900000;
11636 else /* EABI. */
11637 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11638
11639 return tdep->arm_syscall_record (reg_cache, svc_number);
11640 }
11641 else
11642 {
11643 printf_unfiltered (_("no syscall record support\n"));
11644 return -1;
11645 }
11646 }
11647
11648 if ((coproc & 0x0e) == 0x0a)
11649 {
11650 /* VFP data-processing instructions. */
11651 if (!op1_sbit && !op)
11652 return arm_record_vfp_data_proc_insn (arm_insn_r);
11653
11654 /* Advanced SIMD, VFP instructions. */
11655 if (!op1_sbit && op)
11656 return arm_record_vdata_transfer_insn (arm_insn_r);
11657 }
11658 else
11659 {
11660 /* Coprocessor data operations. */
11661 if (!op1_sbit && !op)
11662 return arm_record_unsupported_insn (arm_insn_r);
11663
11664 /* Move to Coprocessor from ARM core register. */
11665 if (!op1_sbit && !op1_ebit && op)
11666 return arm_record_unsupported_insn (arm_insn_r);
11667
11668 /* Move to arm core register from coprocessor. */
11669 if (!op1_sbit && op1_ebit && op)
11670 {
11671 uint32_t record_buf[1];
11672
11673 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11674 if (record_buf[0] == 15)
11675 record_buf[0] = ARM_PS_REGNUM;
11676
11677 arm_insn_r->reg_rec_count = 1;
11678 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11679 record_buf);
11680 return 0;
11681 }
11682 }
11683
11684 return arm_record_unsupported_insn (arm_insn_r);
11685 }
11686
11687 /* Handling opcode 000 insns. */
11688
11689 static int
11690 thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11691 {
11692 uint32_t record_buf[8];
11693 uint32_t reg_src1 = 0;
11694
11695 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11696
11697 record_buf[0] = ARM_PS_REGNUM;
11698 record_buf[1] = reg_src1;
11699 thumb_insn_r->reg_rec_count = 2;
11700
11701 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11702
11703 return 0;
11704 }
11705
11706
11707 /* Handling opcode 001 insns. */
11708
11709 static int
11710 thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11711 {
11712 uint32_t record_buf[8];
11713 uint32_t reg_src1 = 0;
11714
11715 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11716
11717 record_buf[0] = ARM_PS_REGNUM;
11718 record_buf[1] = reg_src1;
11719 thumb_insn_r->reg_rec_count = 2;
11720
11721 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11722
11723 return 0;
11724 }
11725
11726 /* Handling opcode 010 insns. */
11727
11728 static int
11729 thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11730 {
11731 struct regcache *reg_cache = thumb_insn_r->regcache;
11732 uint32_t record_buf[8], record_buf_mem[8];
11733
11734 uint32_t reg_src1 = 0, reg_src2 = 0;
11735 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11736
11737 ULONGEST u_regval[2] = {0};
11738
11739 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11740
11741 if (bit (thumb_insn_r->arm_insn, 12))
11742 {
11743 /* Handle load/store register offset. */
11744 opcode2 = bits (thumb_insn_r->arm_insn, 9, 10);
11745 if (opcode2 >= 12 && opcode2 <= 15)
11746 {
11747 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11748 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11749 record_buf[0] = reg_src1;
11750 thumb_insn_r->reg_rec_count = 1;
11751 }
11752 else if (opcode2 >= 8 && opcode2 <= 10)
11753 {
11754 /* STR(2), STRB(2), STRH(2) . */
11755 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11756 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11757 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11758 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11759 if (8 == opcode2)
11760 record_buf_mem[0] = 4; /* STR (2). */
11761 else if (10 == opcode2)
11762 record_buf_mem[0] = 1; /* STRB (2). */
11763 else if (9 == opcode2)
11764 record_buf_mem[0] = 2; /* STRH (2). */
11765 record_buf_mem[1] = u_regval[0] + u_regval[1];
11766 thumb_insn_r->mem_rec_count = 1;
11767 }
11768 }
11769 else if (bit (thumb_insn_r->arm_insn, 11))
11770 {
11771 /* Handle load from literal pool. */
11772 /* LDR(3). */
11773 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11774 record_buf[0] = reg_src1;
11775 thumb_insn_r->reg_rec_count = 1;
11776 }
11777 else if (opcode1)
11778 {
11779 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11780 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11781 if ((3 == opcode2) && (!opcode3))
11782 {
11783 /* Branch with exchange. */
11784 record_buf[0] = ARM_PS_REGNUM;
11785 thumb_insn_r->reg_rec_count = 1;
11786 }
11787 else
11788 {
11789 /* Format 8; special data processing insns. */
11790 record_buf[0] = ARM_PS_REGNUM;
11791 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11792 | bits (thumb_insn_r->arm_insn, 0, 2));
11793 thumb_insn_r->reg_rec_count = 2;
11794 }
11795 }
11796 else
11797 {
11798 /* Format 5; data processing insns. */
11799 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11800 if (bit (thumb_insn_r->arm_insn, 7))
11801 {
11802 reg_src1 = reg_src1 + 8;
11803 }
11804 record_buf[0] = ARM_PS_REGNUM;
11805 record_buf[1] = reg_src1;
11806 thumb_insn_r->reg_rec_count = 2;
11807 }
11808
11809 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11810 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11811 record_buf_mem);
11812
11813 return 0;
11814 }
11815
11816 /* Handling opcode 001 insns. */
11817
11818 static int
11819 thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11820 {
11821 struct regcache *reg_cache = thumb_insn_r->regcache;
11822 uint32_t record_buf[8], record_buf_mem[8];
11823
11824 uint32_t reg_src1 = 0;
11825 uint32_t opcode = 0, immed_5 = 0;
11826
11827 ULONGEST u_regval = 0;
11828
11829 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11830
11831 if (opcode)
11832 {
11833 /* LDR(1). */
11834 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11835 record_buf[0] = reg_src1;
11836 thumb_insn_r->reg_rec_count = 1;
11837 }
11838 else
11839 {
11840 /* STR(1). */
11841 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11842 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11843 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11844 record_buf_mem[0] = 4;
11845 record_buf_mem[1] = u_regval + (immed_5 * 4);
11846 thumb_insn_r->mem_rec_count = 1;
11847 }
11848
11849 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11850 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11851 record_buf_mem);
11852
11853 return 0;
11854 }
11855
11856 /* Handling opcode 100 insns. */
11857
11858 static int
11859 thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11860 {
11861 struct regcache *reg_cache = thumb_insn_r->regcache;
11862 uint32_t record_buf[8], record_buf_mem[8];
11863
11864 uint32_t reg_src1 = 0;
11865 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11866
11867 ULONGEST u_regval = 0;
11868
11869 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11870
11871 if (3 == opcode)
11872 {
11873 /* LDR(4). */
11874 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11875 record_buf[0] = reg_src1;
11876 thumb_insn_r->reg_rec_count = 1;
11877 }
11878 else if (1 == opcode)
11879 {
11880 /* LDRH(1). */
11881 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11882 record_buf[0] = reg_src1;
11883 thumb_insn_r->reg_rec_count = 1;
11884 }
11885 else if (2 == opcode)
11886 {
11887 /* STR(3). */
11888 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11889 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11890 record_buf_mem[0] = 4;
11891 record_buf_mem[1] = u_regval + (immed_8 * 4);
11892 thumb_insn_r->mem_rec_count = 1;
11893 }
11894 else if (0 == opcode)
11895 {
11896 /* STRH(1). */
11897 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11898 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11899 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11900 record_buf_mem[0] = 2;
11901 record_buf_mem[1] = u_regval + (immed_5 * 2);
11902 thumb_insn_r->mem_rec_count = 1;
11903 }
11904
11905 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11906 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11907 record_buf_mem);
11908
11909 return 0;
11910 }
11911
11912 /* Handling opcode 101 insns. */
11913
11914 static int
11915 thumb_record_misc (insn_decode_record *thumb_insn_r)
11916 {
11917 struct regcache *reg_cache = thumb_insn_r->regcache;
11918
11919 uint32_t opcode = 0, opcode1 = 0, opcode2 = 0;
11920 uint32_t register_bits = 0, register_count = 0;
11921 uint32_t index = 0, start_address = 0;
11922 uint32_t record_buf[24], record_buf_mem[48];
11923 uint32_t reg_src1;
11924
11925 ULONGEST u_regval = 0;
11926
11927 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11928 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
11929 opcode2 = bits (thumb_insn_r->arm_insn, 9, 12);
11930
11931 if (14 == opcode2)
11932 {
11933 /* POP. */
11934 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11935 while (register_bits)
11936 {
11937 if (register_bits & 0x00000001)
11938 record_buf[index++] = register_count;
11939 register_bits = register_bits >> 1;
11940 register_count++;
11941 }
11942 record_buf[index++] = ARM_PS_REGNUM;
11943 record_buf[index++] = ARM_SP_REGNUM;
11944 thumb_insn_r->reg_rec_count = index;
11945 }
11946 else if (10 == opcode2)
11947 {
11948 /* PUSH. */
11949 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11950 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11951 while (register_bits)
11952 {
11953 if (register_bits & 0x00000001)
11954 register_count++;
11955 register_bits = register_bits >> 1;
11956 }
11957 start_address = u_regval - \
11958 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
11959 thumb_insn_r->mem_rec_count = register_count;
11960 while (register_count)
11961 {
11962 record_buf_mem[(register_count * 2) - 1] = start_address;
11963 record_buf_mem[(register_count * 2) - 2] = 4;
11964 start_address = start_address + 4;
11965 register_count--;
11966 }
11967 record_buf[0] = ARM_SP_REGNUM;
11968 thumb_insn_r->reg_rec_count = 1;
11969 }
11970 else if (0x1E == opcode1)
11971 {
11972 /* BKPT insn. */
11973 /* Handle enhanced software breakpoint insn, BKPT. */
11974 /* CPSR is changed to be executed in ARM state, disabling normal
11975 interrupts, entering abort mode. */
11976 /* According to high vector configuration PC is set. */
11977 /* User hits breakpoint and type reverse, in that case, we need to go back with
11978 previous CPSR and Program Counter. */
11979 record_buf[0] = ARM_PS_REGNUM;
11980 record_buf[1] = ARM_LR_REGNUM;
11981 thumb_insn_r->reg_rec_count = 2;
11982 /* We need to save SPSR value, which is not yet done. */
11983 printf_unfiltered (_("Process record does not support instruction "
11984 "0x%0x at address %s.\n"),
11985 thumb_insn_r->arm_insn,
11986 paddress (thumb_insn_r->gdbarch,
11987 thumb_insn_r->this_addr));
11988 return -1;
11989 }
11990 else if ((0 == opcode) || (1 == opcode))
11991 {
11992 /* ADD(5), ADD(6). */
11993 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11994 record_buf[0] = reg_src1;
11995 thumb_insn_r->reg_rec_count = 1;
11996 }
11997 else if (2 == opcode)
11998 {
11999 /* ADD(7), SUB(4). */
12000 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12001 record_buf[0] = ARM_SP_REGNUM;
12002 thumb_insn_r->reg_rec_count = 1;
12003 }
12004
12005 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12006 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12007 record_buf_mem);
12008
12009 return 0;
12010 }
12011
12012 /* Handling opcode 110 insns. */
12013
12014 static int
12015 thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12016 {
12017 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12018 struct regcache *reg_cache = thumb_insn_r->regcache;
12019
12020 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12021 uint32_t reg_src1 = 0;
12022 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
12023 uint32_t index = 0, start_address = 0;
12024 uint32_t record_buf[24], record_buf_mem[48];
12025
12026 ULONGEST u_regval = 0;
12027
12028 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12029 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12030
12031 if (1 == opcode2)
12032 {
12033
12034 /* LDMIA. */
12035 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12036 /* Get Rn. */
12037 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12038 while (register_bits)
12039 {
12040 if (register_bits & 0x00000001)
12041 record_buf[index++] = register_count;
12042 register_bits = register_bits >> 1;
12043 register_count++;
12044 }
12045 record_buf[index++] = reg_src1;
12046 thumb_insn_r->reg_rec_count = index;
12047 }
12048 else if (0 == opcode2)
12049 {
12050 /* It handles both STMIA. */
12051 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12052 /* Get Rn. */
12053 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12054 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12055 while (register_bits)
12056 {
12057 if (register_bits & 0x00000001)
12058 register_count++;
12059 register_bits = register_bits >> 1;
12060 }
12061 start_address = u_regval;
12062 thumb_insn_r->mem_rec_count = register_count;
12063 while (register_count)
12064 {
12065 record_buf_mem[(register_count * 2) - 1] = start_address;
12066 record_buf_mem[(register_count * 2) - 2] = 4;
12067 start_address = start_address + 4;
12068 register_count--;
12069 }
12070 }
12071 else if (0x1F == opcode1)
12072 {
12073 /* Handle arm syscall insn. */
12074 if (tdep->arm_syscall_record != NULL)
12075 {
12076 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12077 ret = tdep->arm_syscall_record (reg_cache, u_regval);
12078 }
12079 else
12080 {
12081 printf_unfiltered (_("no syscall record support\n"));
12082 return -1;
12083 }
12084 }
12085
12086 /* B (1), conditional branch is automatically taken care in process_record,
12087 as PC is saved there. */
12088
12089 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12090 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12091 record_buf_mem);
12092
12093 return ret;
12094 }
12095
12096 /* Handling opcode 111 insns. */
12097
12098 static int
12099 thumb_record_branch (insn_decode_record *thumb_insn_r)
12100 {
12101 uint32_t record_buf[8];
12102 uint32_t bits_h = 0;
12103
12104 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12105
12106 if (2 == bits_h || 3 == bits_h)
12107 {
12108 /* BL */
12109 record_buf[0] = ARM_LR_REGNUM;
12110 thumb_insn_r->reg_rec_count = 1;
12111 }
12112 else if (1 == bits_h)
12113 {
12114 /* BLX(1). */
12115 record_buf[0] = ARM_PS_REGNUM;
12116 record_buf[1] = ARM_LR_REGNUM;
12117 thumb_insn_r->reg_rec_count = 2;
12118 }
12119
12120 /* B(2) is automatically taken care in process_record, as PC is
12121 saved there. */
12122
12123 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12124
12125 return 0;
12126 }
12127
12128 /* Handler for thumb2 load/store multiple instructions. */
12129
12130 static int
12131 thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12132 {
12133 struct regcache *reg_cache = thumb2_insn_r->regcache;
12134
12135 uint32_t reg_rn, op;
12136 uint32_t register_bits = 0, register_count = 0;
12137 uint32_t index = 0, start_address = 0;
12138 uint32_t record_buf[24], record_buf_mem[48];
12139
12140 ULONGEST u_regval = 0;
12141
12142 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12143 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12144
12145 if (0 == op || 3 == op)
12146 {
12147 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12148 {
12149 /* Handle RFE instruction. */
12150 record_buf[0] = ARM_PS_REGNUM;
12151 thumb2_insn_r->reg_rec_count = 1;
12152 }
12153 else
12154 {
12155 /* Handle SRS instruction after reading banked SP. */
12156 return arm_record_unsupported_insn (thumb2_insn_r);
12157 }
12158 }
12159 else if (1 == op || 2 == op)
12160 {
12161 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12162 {
12163 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12164 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12165 while (register_bits)
12166 {
12167 if (register_bits & 0x00000001)
12168 record_buf[index++] = register_count;
12169
12170 register_count++;
12171 register_bits = register_bits >> 1;
12172 }
12173 record_buf[index++] = reg_rn;
12174 record_buf[index++] = ARM_PS_REGNUM;
12175 thumb2_insn_r->reg_rec_count = index;
12176 }
12177 else
12178 {
12179 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12180 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12181 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12182 while (register_bits)
12183 {
12184 if (register_bits & 0x00000001)
12185 register_count++;
12186
12187 register_bits = register_bits >> 1;
12188 }
12189
12190 if (1 == op)
12191 {
12192 /* Start address calculation for LDMDB/LDMEA. */
12193 start_address = u_regval;
12194 }
12195 else if (2 == op)
12196 {
12197 /* Start address calculation for LDMDB/LDMEA. */
12198 start_address = u_regval - register_count * 4;
12199 }
12200
12201 thumb2_insn_r->mem_rec_count = register_count;
12202 while (register_count)
12203 {
12204 record_buf_mem[register_count * 2 - 1] = start_address;
12205 record_buf_mem[register_count * 2 - 2] = 4;
12206 start_address = start_address + 4;
12207 register_count--;
12208 }
12209 record_buf[0] = reg_rn;
12210 record_buf[1] = ARM_PS_REGNUM;
12211 thumb2_insn_r->reg_rec_count = 2;
12212 }
12213 }
12214
12215 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12216 record_buf_mem);
12217 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12218 record_buf);
12219 return ARM_RECORD_SUCCESS;
12220 }
12221
12222 /* Handler for thumb2 load/store (dual/exclusive) and table branch
12223 instructions. */
12224
12225 static int
12226 thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12227 {
12228 struct regcache *reg_cache = thumb2_insn_r->regcache;
12229
12230 uint32_t reg_rd, reg_rn, offset_imm;
12231 uint32_t reg_dest1, reg_dest2;
12232 uint32_t address, offset_addr;
12233 uint32_t record_buf[8], record_buf_mem[8];
12234 uint32_t op1, op2, op3;
12235
12236 ULONGEST u_regval[2];
12237
12238 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12239 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12240 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12241
12242 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12243 {
12244 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12245 {
12246 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12247 record_buf[0] = reg_dest1;
12248 record_buf[1] = ARM_PS_REGNUM;
12249 thumb2_insn_r->reg_rec_count = 2;
12250 }
12251
12252 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12253 {
12254 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12255 record_buf[2] = reg_dest2;
12256 thumb2_insn_r->reg_rec_count = 3;
12257 }
12258 }
12259 else
12260 {
12261 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12262 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12263
12264 if (0 == op1 && 0 == op2)
12265 {
12266 /* Handle STREX. */
12267 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12268 address = u_regval[0] + (offset_imm * 4);
12269 record_buf_mem[0] = 4;
12270 record_buf_mem[1] = address;
12271 thumb2_insn_r->mem_rec_count = 1;
12272 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12273 record_buf[0] = reg_rd;
12274 thumb2_insn_r->reg_rec_count = 1;
12275 }
12276 else if (1 == op1 && 0 == op2)
12277 {
12278 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12279 record_buf[0] = reg_rd;
12280 thumb2_insn_r->reg_rec_count = 1;
12281 address = u_regval[0];
12282 record_buf_mem[1] = address;
12283
12284 if (4 == op3)
12285 {
12286 /* Handle STREXB. */
12287 record_buf_mem[0] = 1;
12288 thumb2_insn_r->mem_rec_count = 1;
12289 }
12290 else if (5 == op3)
12291 {
12292 /* Handle STREXH. */
12293 record_buf_mem[0] = 2 ;
12294 thumb2_insn_r->mem_rec_count = 1;
12295 }
12296 else if (7 == op3)
12297 {
12298 /* Handle STREXD. */
12299 address = u_regval[0];
12300 record_buf_mem[0] = 4;
12301 record_buf_mem[2] = 4;
12302 record_buf_mem[3] = address + 4;
12303 thumb2_insn_r->mem_rec_count = 2;
12304 }
12305 }
12306 else
12307 {
12308 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12309
12310 if (bit (thumb2_insn_r->arm_insn, 24))
12311 {
12312 if (bit (thumb2_insn_r->arm_insn, 23))
12313 offset_addr = u_regval[0] + (offset_imm * 4);
12314 else
12315 offset_addr = u_regval[0] - (offset_imm * 4);
12316
12317 address = offset_addr;
12318 }
12319 else
12320 address = u_regval[0];
12321
12322 record_buf_mem[0] = 4;
12323 record_buf_mem[1] = address;
12324 record_buf_mem[2] = 4;
12325 record_buf_mem[3] = address + 4;
12326 thumb2_insn_r->mem_rec_count = 2;
12327 record_buf[0] = reg_rn;
12328 thumb2_insn_r->reg_rec_count = 1;
12329 }
12330 }
12331
12332 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12333 record_buf);
12334 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12335 record_buf_mem);
12336 return ARM_RECORD_SUCCESS;
12337 }
12338
12339 /* Handler for thumb2 data processing (shift register and modified immediate)
12340 instructions. */
12341
12342 static int
12343 thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12344 {
12345 uint32_t reg_rd, op;
12346 uint32_t record_buf[8];
12347
12348 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12349 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12350
12351 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12352 {
12353 record_buf[0] = ARM_PS_REGNUM;
12354 thumb2_insn_r->reg_rec_count = 1;
12355 }
12356 else
12357 {
12358 record_buf[0] = reg_rd;
12359 record_buf[1] = ARM_PS_REGNUM;
12360 thumb2_insn_r->reg_rec_count = 2;
12361 }
12362
12363 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12364 record_buf);
12365 return ARM_RECORD_SUCCESS;
12366 }
12367
12368 /* Generic handler for thumb2 instructions which effect destination and PS
12369 registers. */
12370
12371 static int
12372 thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12373 {
12374 uint32_t reg_rd;
12375 uint32_t record_buf[8];
12376
12377 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12378
12379 record_buf[0] = reg_rd;
12380 record_buf[1] = ARM_PS_REGNUM;
12381 thumb2_insn_r->reg_rec_count = 2;
12382
12383 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12384 record_buf);
12385 return ARM_RECORD_SUCCESS;
12386 }
12387
12388 /* Handler for thumb2 branch and miscellaneous control instructions. */
12389
12390 static int
12391 thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12392 {
12393 uint32_t op, op1, op2;
12394 uint32_t record_buf[8];
12395
12396 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12397 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12398 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12399
12400 /* Handle MSR insn. */
12401 if (!(op1 & 0x2) && 0x38 == op)
12402 {
12403 if (!(op2 & 0x3))
12404 {
12405 /* CPSR is going to be changed. */
12406 record_buf[0] = ARM_PS_REGNUM;
12407 thumb2_insn_r->reg_rec_count = 1;
12408 }
12409 else
12410 {
12411 arm_record_unsupported_insn(thumb2_insn_r);
12412 return -1;
12413 }
12414 }
12415 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12416 {
12417 /* BLX. */
12418 record_buf[0] = ARM_PS_REGNUM;
12419 record_buf[1] = ARM_LR_REGNUM;
12420 thumb2_insn_r->reg_rec_count = 2;
12421 }
12422
12423 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12424 record_buf);
12425 return ARM_RECORD_SUCCESS;
12426 }
12427
12428 /* Handler for thumb2 store single data item instructions. */
12429
12430 static int
12431 thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12432 {
12433 struct regcache *reg_cache = thumb2_insn_r->regcache;
12434
12435 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12436 uint32_t address, offset_addr;
12437 uint32_t record_buf[8], record_buf_mem[8];
12438 uint32_t op1, op2;
12439
12440 ULONGEST u_regval[2];
12441
12442 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12443 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12444 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12445 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12446
12447 if (bit (thumb2_insn_r->arm_insn, 23))
12448 {
12449 /* T2 encoding. */
12450 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12451 offset_addr = u_regval[0] + offset_imm;
12452 address = offset_addr;
12453 }
12454 else
12455 {
12456 /* T3 encoding. */
12457 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12458 {
12459 /* Handle STRB (register). */
12460 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12461 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12462 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12463 offset_addr = u_regval[1] << shift_imm;
12464 address = u_regval[0] + offset_addr;
12465 }
12466 else
12467 {
12468 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12469 if (bit (thumb2_insn_r->arm_insn, 10))
12470 {
12471 if (bit (thumb2_insn_r->arm_insn, 9))
12472 offset_addr = u_regval[0] + offset_imm;
12473 else
12474 offset_addr = u_regval[0] - offset_imm;
12475
12476 address = offset_addr;
12477 }
12478 else
12479 address = u_regval[0];
12480 }
12481 }
12482
12483 switch (op1)
12484 {
12485 /* Store byte instructions. */
12486 case 4:
12487 case 0:
12488 record_buf_mem[0] = 1;
12489 break;
12490 /* Store half word instructions. */
12491 case 1:
12492 case 5:
12493 record_buf_mem[0] = 2;
12494 break;
12495 /* Store word instructions. */
12496 case 2:
12497 case 6:
12498 record_buf_mem[0] = 4;
12499 break;
12500
12501 default:
12502 gdb_assert_not_reached ("no decoding pattern found");
12503 break;
12504 }
12505
12506 record_buf_mem[1] = address;
12507 thumb2_insn_r->mem_rec_count = 1;
12508 record_buf[0] = reg_rn;
12509 thumb2_insn_r->reg_rec_count = 1;
12510
12511 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12512 record_buf);
12513 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12514 record_buf_mem);
12515 return ARM_RECORD_SUCCESS;
12516 }
12517
12518 /* Handler for thumb2 load memory hints instructions. */
12519
12520 static int
12521 thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12522 {
12523 uint32_t record_buf[8];
12524 uint32_t reg_rt, reg_rn;
12525
12526 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12527 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12528
12529 if (ARM_PC_REGNUM != reg_rt)
12530 {
12531 record_buf[0] = reg_rt;
12532 record_buf[1] = reg_rn;
12533 record_buf[2] = ARM_PS_REGNUM;
12534 thumb2_insn_r->reg_rec_count = 3;
12535
12536 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12537 record_buf);
12538 return ARM_RECORD_SUCCESS;
12539 }
12540
12541 return ARM_RECORD_FAILURE;
12542 }
12543
12544 /* Handler for thumb2 load word instructions. */
12545
12546 static int
12547 thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12548 {
12549 uint32_t record_buf[8];
12550
12551 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12552 record_buf[1] = ARM_PS_REGNUM;
12553 thumb2_insn_r->reg_rec_count = 2;
12554
12555 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12556 record_buf);
12557 return ARM_RECORD_SUCCESS;
12558 }
12559
12560 /* Handler for thumb2 long multiply, long multiply accumulate, and
12561 divide instructions. */
12562
12563 static int
12564 thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12565 {
12566 uint32_t opcode1 = 0, opcode2 = 0;
12567 uint32_t record_buf[8];
12568
12569 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12570 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12571
12572 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12573 {
12574 /* Handle SMULL, UMULL, SMULAL. */
12575 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12576 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12577 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12578 record_buf[2] = ARM_PS_REGNUM;
12579 thumb2_insn_r->reg_rec_count = 3;
12580 }
12581 else if (1 == opcode1 || 3 == opcode2)
12582 {
12583 /* Handle SDIV and UDIV. */
12584 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12585 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12586 record_buf[2] = ARM_PS_REGNUM;
12587 thumb2_insn_r->reg_rec_count = 3;
12588 }
12589 else
12590 return ARM_RECORD_FAILURE;
12591
12592 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12593 record_buf);
12594 return ARM_RECORD_SUCCESS;
12595 }
12596
12597 /* Record handler for thumb32 coprocessor instructions. */
12598
12599 static int
12600 thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12601 {
12602 if (bit (thumb2_insn_r->arm_insn, 25))
12603 return arm_record_coproc_data_proc (thumb2_insn_r);
12604 else
12605 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12606 }
12607
12608 /* Record handler for advance SIMD structure load/store instructions. */
12609
12610 static int
12611 thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12612 {
12613 struct regcache *reg_cache = thumb2_insn_r->regcache;
12614 uint32_t l_bit, a_bit, b_bits;
12615 uint32_t record_buf[128], record_buf_mem[128];
12616 uint32_t reg_rn, reg_vd, address, f_elem;
12617 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12618 uint8_t f_ebytes;
12619
12620 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12621 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12622 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12623 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12624 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12625 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12626 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
12627 f_elem = 8 / f_ebytes;
12628
12629 if (!l_bit)
12630 {
12631 ULONGEST u_regval = 0;
12632 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12633 address = u_regval;
12634
12635 if (!a_bit)
12636 {
12637 /* Handle VST1. */
12638 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12639 {
12640 if (b_bits == 0x07)
12641 bf_regs = 1;
12642 else if (b_bits == 0x0a)
12643 bf_regs = 2;
12644 else if (b_bits == 0x06)
12645 bf_regs = 3;
12646 else if (b_bits == 0x02)
12647 bf_regs = 4;
12648 else
12649 bf_regs = 0;
12650
12651 for (index_r = 0; index_r < bf_regs; index_r++)
12652 {
12653 for (index_e = 0; index_e < f_elem; index_e++)
12654 {
12655 record_buf_mem[index_m++] = f_ebytes;
12656 record_buf_mem[index_m++] = address;
12657 address = address + f_ebytes;
12658 thumb2_insn_r->mem_rec_count += 1;
12659 }
12660 }
12661 }
12662 /* Handle VST2. */
12663 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12664 {
12665 if (b_bits == 0x09 || b_bits == 0x08)
12666 bf_regs = 1;
12667 else if (b_bits == 0x03)
12668 bf_regs = 2;
12669 else
12670 bf_regs = 0;
12671
12672 for (index_r = 0; index_r < bf_regs; index_r++)
12673 for (index_e = 0; index_e < f_elem; index_e++)
12674 {
12675 for (loop_t = 0; loop_t < 2; loop_t++)
12676 {
12677 record_buf_mem[index_m++] = f_ebytes;
12678 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12679 thumb2_insn_r->mem_rec_count += 1;
12680 }
12681 address = address + (2 * f_ebytes);
12682 }
12683 }
12684 /* Handle VST3. */
12685 else if ((b_bits & 0x0e) == 0x04)
12686 {
12687 for (index_e = 0; index_e < f_elem; index_e++)
12688 {
12689 for (loop_t = 0; loop_t < 3; loop_t++)
12690 {
12691 record_buf_mem[index_m++] = f_ebytes;
12692 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12693 thumb2_insn_r->mem_rec_count += 1;
12694 }
12695 address = address + (3 * f_ebytes);
12696 }
12697 }
12698 /* Handle VST4. */
12699 else if (!(b_bits & 0x0e))
12700 {
12701 for (index_e = 0; index_e < f_elem; index_e++)
12702 {
12703 for (loop_t = 0; loop_t < 4; loop_t++)
12704 {
12705 record_buf_mem[index_m++] = f_ebytes;
12706 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12707 thumb2_insn_r->mem_rec_count += 1;
12708 }
12709 address = address + (4 * f_ebytes);
12710 }
12711 }
12712 }
12713 else
12714 {
12715 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12716
12717 if (bft_size == 0x00)
12718 f_ebytes = 1;
12719 else if (bft_size == 0x01)
12720 f_ebytes = 2;
12721 else if (bft_size == 0x02)
12722 f_ebytes = 4;
12723 else
12724 f_ebytes = 0;
12725
12726 /* Handle VST1. */
12727 if (!(b_bits & 0x0b) || b_bits == 0x08)
12728 thumb2_insn_r->mem_rec_count = 1;
12729 /* Handle VST2. */
12730 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12731 thumb2_insn_r->mem_rec_count = 2;
12732 /* Handle VST3. */
12733 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12734 thumb2_insn_r->mem_rec_count = 3;
12735 /* Handle VST4. */
12736 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12737 thumb2_insn_r->mem_rec_count = 4;
12738
12739 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12740 {
12741 record_buf_mem[index_m] = f_ebytes;
12742 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12743 }
12744 }
12745 }
12746 else
12747 {
12748 if (!a_bit)
12749 {
12750 /* Handle VLD1. */
12751 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12752 thumb2_insn_r->reg_rec_count = 1;
12753 /* Handle VLD2. */
12754 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12755 thumb2_insn_r->reg_rec_count = 2;
12756 /* Handle VLD3. */
12757 else if ((b_bits & 0x0e) == 0x04)
12758 thumb2_insn_r->reg_rec_count = 3;
12759 /* Handle VLD4. */
12760 else if (!(b_bits & 0x0e))
12761 thumb2_insn_r->reg_rec_count = 4;
12762 }
12763 else
12764 {
12765 /* Handle VLD1. */
12766 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12767 thumb2_insn_r->reg_rec_count = 1;
12768 /* Handle VLD2. */
12769 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12770 thumb2_insn_r->reg_rec_count = 2;
12771 /* Handle VLD3. */
12772 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12773 thumb2_insn_r->reg_rec_count = 3;
12774 /* Handle VLD4. */
12775 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12776 thumb2_insn_r->reg_rec_count = 4;
12777
12778 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12779 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12780 }
12781 }
12782
12783 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12784 {
12785 record_buf[index_r] = reg_rn;
12786 thumb2_insn_r->reg_rec_count += 1;
12787 }
12788
12789 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12790 record_buf);
12791 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12792 record_buf_mem);
12793 return 0;
12794 }
12795
12796 /* Decodes thumb2 instruction type and invokes its record handler. */
12797
12798 static unsigned int
12799 thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12800 {
12801 uint32_t op, op1, op2;
12802
12803 op = bit (thumb2_insn_r->arm_insn, 15);
12804 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12805 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12806
12807 if (op1 == 0x01)
12808 {
12809 if (!(op2 & 0x64 ))
12810 {
12811 /* Load/store multiple instruction. */
12812 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12813 }
12814 else if (!((op2 & 0x64) ^ 0x04))
12815 {
12816 /* Load/store (dual/exclusive) and table branch instruction. */
12817 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12818 }
12819 else if (!((op2 & 0x20) ^ 0x20))
12820 {
12821 /* Data-processing (shifted register). */
12822 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12823 }
12824 else if (op2 & 0x40)
12825 {
12826 /* Co-processor instructions. */
12827 return thumb2_record_coproc_insn (thumb2_insn_r);
12828 }
12829 }
12830 else if (op1 == 0x02)
12831 {
12832 if (op)
12833 {
12834 /* Branches and miscellaneous control instructions. */
12835 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12836 }
12837 else if (op2 & 0x20)
12838 {
12839 /* Data-processing (plain binary immediate) instruction. */
12840 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12841 }
12842 else
12843 {
12844 /* Data-processing (modified immediate). */
12845 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12846 }
12847 }
12848 else if (op1 == 0x03)
12849 {
12850 if (!(op2 & 0x71 ))
12851 {
12852 /* Store single data item. */
12853 return thumb2_record_str_single_data (thumb2_insn_r);
12854 }
12855 else if (!((op2 & 0x71) ^ 0x10))
12856 {
12857 /* Advanced SIMD or structure load/store instructions. */
12858 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
12859 }
12860 else if (!((op2 & 0x67) ^ 0x01))
12861 {
12862 /* Load byte, memory hints instruction. */
12863 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12864 }
12865 else if (!((op2 & 0x67) ^ 0x03))
12866 {
12867 /* Load halfword, memory hints instruction. */
12868 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12869 }
12870 else if (!((op2 & 0x67) ^ 0x05))
12871 {
12872 /* Load word instruction. */
12873 return thumb2_record_ld_word (thumb2_insn_r);
12874 }
12875 else if (!((op2 & 0x70) ^ 0x20))
12876 {
12877 /* Data-processing (register) instruction. */
12878 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12879 }
12880 else if (!((op2 & 0x78) ^ 0x30))
12881 {
12882 /* Multiply, multiply accumulate, abs diff instruction. */
12883 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12884 }
12885 else if (!((op2 & 0x78) ^ 0x38))
12886 {
12887 /* Long multiply, long multiply accumulate, and divide. */
12888 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12889 }
12890 else if (op2 & 0x40)
12891 {
12892 /* Co-processor instructions. */
12893 return thumb2_record_coproc_insn (thumb2_insn_r);
12894 }
12895 }
12896
12897 return -1;
12898 }
12899
12900 /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12901 and positive val on fauilure. */
12902
12903 static int
12904 extract_arm_insn (insn_decode_record *insn_record, uint32_t insn_size)
12905 {
12906 gdb_byte buf[insn_size];
12907
12908 memset (&buf[0], 0, insn_size);
12909
12910 if (target_read_memory (insn_record->this_addr, &buf[0], insn_size))
12911 return 1;
12912 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12913 insn_size,
12914 gdbarch_byte_order_for_code (insn_record->gdbarch));
12915 return 0;
12916 }
12917
12918 typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
12919
12920 /* Decode arm/thumb insn depending on condition cods and opcodes; and
12921 dispatch it. */
12922
12923 static int
12924 decode_insn (insn_decode_record *arm_record, record_type_t record_type,
12925 uint32_t insn_size)
12926 {
12927
12928 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
12929 instruction. */
12930 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
12931 {
12932 arm_record_data_proc_misc_ld_str, /* 000. */
12933 arm_record_data_proc_imm, /* 001. */
12934 arm_record_ld_st_imm_offset, /* 010. */
12935 arm_record_ld_st_reg_offset, /* 011. */
12936 arm_record_ld_st_multiple, /* 100. */
12937 arm_record_b_bl, /* 101. */
12938 arm_record_asimd_vfp_coproc, /* 110. */
12939 arm_record_coproc_data_proc /* 111. */
12940 };
12941
12942 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
12943 instruction. */
12944 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
12945 { \
12946 thumb_record_shift_add_sub, /* 000. */
12947 thumb_record_add_sub_cmp_mov, /* 001. */
12948 thumb_record_ld_st_reg_offset, /* 010. */
12949 thumb_record_ld_st_imm_offset, /* 011. */
12950 thumb_record_ld_st_stack, /* 100. */
12951 thumb_record_misc, /* 101. */
12952 thumb_record_ldm_stm_swi, /* 110. */
12953 thumb_record_branch /* 111. */
12954 };
12955
12956 uint32_t ret = 0; /* return value: negative:failure 0:success. */
12957 uint32_t insn_id = 0;
12958
12959 if (extract_arm_insn (arm_record, insn_size))
12960 {
12961 if (record_debug)
12962 {
12963 printf_unfiltered (_("Process record: error reading memory at "
12964 "addr %s len = %d.\n"),
12965 paddress (arm_record->gdbarch,
12966 arm_record->this_addr), insn_size);
12967 }
12968 return -1;
12969 }
12970 else if (ARM_RECORD == record_type)
12971 {
12972 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
12973 insn_id = bits (arm_record->arm_insn, 25, 27);
12974
12975 if (arm_record->cond == 0xf)
12976 ret = arm_record_extension_space (arm_record);
12977 else
12978 {
12979 /* If this insn has fallen into extension space
12980 then we need not decode it anymore. */
12981 ret = arm_handle_insn[insn_id] (arm_record);
12982 }
12983 if (ret != ARM_RECORD_SUCCESS)
12984 {
12985 arm_record_unsupported_insn (arm_record);
12986 ret = -1;
12987 }
12988 }
12989 else if (THUMB_RECORD == record_type)
12990 {
12991 /* As thumb does not have condition codes, we set negative. */
12992 arm_record->cond = -1;
12993 insn_id = bits (arm_record->arm_insn, 13, 15);
12994 ret = thumb_handle_insn[insn_id] (arm_record);
12995 if (ret != ARM_RECORD_SUCCESS)
12996 {
12997 arm_record_unsupported_insn (arm_record);
12998 ret = -1;
12999 }
13000 }
13001 else if (THUMB2_RECORD == record_type)
13002 {
13003 /* As thumb does not have condition codes, we set negative. */
13004 arm_record->cond = -1;
13005
13006 /* Swap first half of 32bit thumb instruction with second half. */
13007 arm_record->arm_insn
13008 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
13009
13010 ret = thumb2_record_decode_insn_handler (arm_record);
13011
13012 if (ret != ARM_RECORD_SUCCESS)
13013 {
13014 arm_record_unsupported_insn (arm_record);
13015 ret = -1;
13016 }
13017 }
13018 else
13019 {
13020 /* Throw assertion. */
13021 gdb_assert_not_reached ("not a valid instruction, could not decode");
13022 }
13023
13024 return ret;
13025 }
13026
13027
13028 /* Cleans up local record registers and memory allocations. */
13029
13030 static void
13031 deallocate_reg_mem (insn_decode_record *record)
13032 {
13033 xfree (record->arm_regs);
13034 xfree (record->arm_mems);
13035 }
13036
13037
13038 /* Parse the current instruction and record the values of the registers and
13039 memory that will be changed in current instruction to record_arch_list".
13040 Return -1 if something is wrong. */
13041
13042 int
13043 arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13044 CORE_ADDR insn_addr)
13045 {
13046
13047 uint32_t no_of_rec = 0;
13048 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13049 ULONGEST t_bit = 0, insn_id = 0;
13050
13051 ULONGEST u_regval = 0;
13052
13053 insn_decode_record arm_record;
13054
13055 memset (&arm_record, 0, sizeof (insn_decode_record));
13056 arm_record.regcache = regcache;
13057 arm_record.this_addr = insn_addr;
13058 arm_record.gdbarch = gdbarch;
13059
13060
13061 if (record_debug > 1)
13062 {
13063 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
13064 "addr = %s\n",
13065 paddress (gdbarch, arm_record.this_addr));
13066 }
13067
13068 if (extract_arm_insn (&arm_record, 2))
13069 {
13070 if (record_debug)
13071 {
13072 printf_unfiltered (_("Process record: error reading memory at "
13073 "addr %s len = %d.\n"),
13074 paddress (arm_record.gdbarch,
13075 arm_record.this_addr), 2);
13076 }
13077 return -1;
13078 }
13079
13080 /* Check the insn, whether it is thumb or arm one. */
13081
13082 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13083 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13084
13085
13086 if (!(u_regval & t_bit))
13087 {
13088 /* We are decoding arm insn. */
13089 ret = decode_insn (&arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13090 }
13091 else
13092 {
13093 insn_id = bits (arm_record.arm_insn, 11, 15);
13094 /* is it thumb2 insn? */
13095 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
13096 {
13097 ret = decode_insn (&arm_record, THUMB2_RECORD,
13098 THUMB2_INSN_SIZE_BYTES);
13099 }
13100 else
13101 {
13102 /* We are decoding thumb insn. */
13103 ret = decode_insn (&arm_record, THUMB_RECORD, THUMB_INSN_SIZE_BYTES);
13104 }
13105 }
13106
13107 if (0 == ret)
13108 {
13109 /* Record registers. */
13110 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
13111 if (arm_record.arm_regs)
13112 {
13113 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13114 {
13115 if (record_full_arch_list_add_reg
13116 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
13117 ret = -1;
13118 }
13119 }
13120 /* Record memories. */
13121 if (arm_record.arm_mems)
13122 {
13123 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13124 {
13125 if (record_full_arch_list_add_mem
13126 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
13127 arm_record.arm_mems[no_of_rec].len))
13128 ret = -1;
13129 }
13130 }
13131
13132 if (record_full_arch_list_add_end ())
13133 ret = -1;
13134 }
13135
13136
13137 deallocate_reg_mem (&arm_record);
13138
13139 return ret;
13140 }
This page took 0.306632 seconds and 5 git commands to generate.