* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
31 #include "regcache.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39 #include "objfiles.h"
40 #include "dwarf2-frame.h"
41 #include "gdbtypes.h"
42 #include "prologue-value.h"
43 #include "target-descriptions.h"
44 #include "user-regs.h"
45
46 #include "arm-tdep.h"
47 #include "gdb/sim-arm.h"
48
49 #include "elf-bfd.h"
50 #include "coff/internal.h"
51 #include "elf/arm.h"
52
53 #include "gdb_assert.h"
54 #include "vec.h"
55
56 static int arm_debug;
57
58 /* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
60 is used for this purpose.
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
64
65 #define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_TARGET_FLAG_1 (msym) = 1
67
68 #define MSYMBOL_IS_SPECIAL(msym) \
69 MSYMBOL_TARGET_FLAG_1 (msym)
70
71 /* Per-objfile data used for mapping symbols. */
72 static const struct objfile_data *arm_objfile_data_key;
73
74 struct arm_mapping_symbol
75 {
76 bfd_vma value;
77 char type;
78 };
79 typedef struct arm_mapping_symbol arm_mapping_symbol_s;
80 DEF_VEC_O(arm_mapping_symbol_s);
81
82 struct arm_per_objfile
83 {
84 VEC(arm_mapping_symbol_s) **section_maps;
85 };
86
87 /* The list of available "set arm ..." and "show arm ..." commands. */
88 static struct cmd_list_element *setarmcmdlist = NULL;
89 static struct cmd_list_element *showarmcmdlist = NULL;
90
91 /* The type of floating-point to use. Keep this in sync with enum
92 arm_float_model, and the help string in _initialize_arm_tdep. */
93 static const char *fp_model_strings[] =
94 {
95 "auto",
96 "softfpa",
97 "fpa",
98 "softvfp",
99 "vfp",
100 NULL
101 };
102
103 /* A variable that can be configured by the user. */
104 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
105 static const char *current_fp_model = "auto";
106
107 /* The ABI to use. Keep this in sync with arm_abi_kind. */
108 static const char *arm_abi_strings[] =
109 {
110 "auto",
111 "APCS",
112 "AAPCS",
113 NULL
114 };
115
116 /* A variable that can be configured by the user. */
117 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
118 static const char *arm_abi_string = "auto";
119
120 /* The execution mode to assume. */
121 static const char *arm_mode_strings[] =
122 {
123 "auto",
124 "arm",
125 "thumb"
126 };
127
128 static const char *arm_fallback_mode_string = "auto";
129 static const char *arm_force_mode_string = "auto";
130
131 /* Number of different reg name sets (options). */
132 static int num_disassembly_options;
133
134 /* The standard register names, and all the valid aliases for them. */
135 static const struct
136 {
137 const char *name;
138 int regnum;
139 } arm_register_aliases[] = {
140 /* Basic register numbers. */
141 { "r0", 0 },
142 { "r1", 1 },
143 { "r2", 2 },
144 { "r3", 3 },
145 { "r4", 4 },
146 { "r5", 5 },
147 { "r6", 6 },
148 { "r7", 7 },
149 { "r8", 8 },
150 { "r9", 9 },
151 { "r10", 10 },
152 { "r11", 11 },
153 { "r12", 12 },
154 { "r13", 13 },
155 { "r14", 14 },
156 { "r15", 15 },
157 /* Synonyms (argument and variable registers). */
158 { "a1", 0 },
159 { "a2", 1 },
160 { "a3", 2 },
161 { "a4", 3 },
162 { "v1", 4 },
163 { "v2", 5 },
164 { "v3", 6 },
165 { "v4", 7 },
166 { "v5", 8 },
167 { "v6", 9 },
168 { "v7", 10 },
169 { "v8", 11 },
170 /* Other platform-specific names for r9. */
171 { "sb", 9 },
172 { "tr", 9 },
173 /* Special names. */
174 { "ip", 12 },
175 { "sp", 13 },
176 { "lr", 14 },
177 { "pc", 15 },
178 /* Names used by GCC (not listed in the ARM EABI). */
179 { "sl", 10 },
180 { "fp", 11 },
181 /* A special name from the older ATPCS. */
182 { "wr", 7 },
183 };
184
185 static const char *const arm_register_names[] =
186 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
187 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
188 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
189 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
190 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
191 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
192 "fps", "cpsr" }; /* 24 25 */
193
194 /* Valid register name styles. */
195 static const char **valid_disassembly_styles;
196
197 /* Disassembly style to use. Default to "std" register names. */
198 static const char *disassembly_style;
199
200 /* This is used to keep the bfd arch_info in sync with the disassembly
201 style. */
202 static void set_disassembly_style_sfunc(char *, int,
203 struct cmd_list_element *);
204 static void set_disassembly_style (void);
205
206 static void convert_from_extended (const struct floatformat *, const void *,
207 void *, int);
208 static void convert_to_extended (const struct floatformat *, void *,
209 const void *, int);
210
211 struct arm_prologue_cache
212 {
213 /* The stack pointer at the time this frame was created; i.e. the
214 caller's stack pointer when this function was called. It is used
215 to identify this frame. */
216 CORE_ADDR prev_sp;
217
218 /* The frame base for this frame is just prev_sp - frame size.
219 FRAMESIZE is the distance from the frame pointer to the
220 initial stack pointer. */
221
222 int framesize;
223
224 /* The register used to hold the frame pointer for this frame. */
225 int framereg;
226
227 /* Saved register offsets. */
228 struct trad_frame_saved_reg *saved_regs;
229 };
230
231 /* Addresses for calling Thumb functions have the bit 0 set.
232 Here are some macros to test, set, or clear bit 0 of addresses. */
233 #define IS_THUMB_ADDR(addr) ((addr) & 1)
234 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
235 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
236
237 /* Set to true if the 32-bit mode is in use. */
238
239 int arm_apcs_32 = 1;
240
241 /* Determine if FRAME is executing in Thumb mode. */
242
243 static int
244 arm_frame_is_thumb (struct frame_info *frame)
245 {
246 CORE_ADDR cpsr;
247
248 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
249 directly (from a signal frame or dummy frame) or by interpreting
250 the saved LR (from a prologue or DWARF frame). So consult it and
251 trust the unwinders. */
252 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
253
254 return (cpsr & CPSR_T) != 0;
255 }
256
257 /* Callback for VEC_lower_bound. */
258
259 static inline int
260 arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
261 const struct arm_mapping_symbol *rhs)
262 {
263 return lhs->value < rhs->value;
264 }
265
266 /* Determine if the program counter specified in MEMADDR is in a Thumb
267 function. This function should be called for addresses unrelated to
268 any executing frame; otherwise, prefer arm_frame_is_thumb. */
269
270 static int
271 arm_pc_is_thumb (CORE_ADDR memaddr)
272 {
273 struct obj_section *sec;
274 struct minimal_symbol *sym;
275
276 /* If bit 0 of the address is set, assume this is a Thumb address. */
277 if (IS_THUMB_ADDR (memaddr))
278 return 1;
279
280 /* If the user wants to override the symbol table, let him. */
281 if (strcmp (arm_force_mode_string, "arm") == 0)
282 return 0;
283 if (strcmp (arm_force_mode_string, "thumb") == 0)
284 return 1;
285
286 /* If there are mapping symbols, consult them. */
287 sec = find_pc_section (memaddr);
288 if (sec != NULL)
289 {
290 struct arm_per_objfile *data;
291 VEC(arm_mapping_symbol_s) *map;
292 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
293 0 };
294 unsigned int idx;
295
296 data = objfile_data (sec->objfile, arm_objfile_data_key);
297 if (data != NULL)
298 {
299 map = data->section_maps[sec->the_bfd_section->index];
300 if (!VEC_empty (arm_mapping_symbol_s, map))
301 {
302 struct arm_mapping_symbol *map_sym;
303
304 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
305 arm_compare_mapping_symbols);
306
307 /* VEC_lower_bound finds the earliest ordered insertion
308 point. If the following symbol starts at this exact
309 address, we use that; otherwise, the preceding
310 mapping symbol covers this address. */
311 if (idx < VEC_length (arm_mapping_symbol_s, map))
312 {
313 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
314 if (map_sym->value == map_key.value)
315 return map_sym->type == 't';
316 }
317
318 if (idx > 0)
319 {
320 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
321 return map_sym->type == 't';
322 }
323 }
324 }
325 }
326
327 /* Thumb functions have a "special" bit set in minimal symbols. */
328 sym = lookup_minimal_symbol_by_pc (memaddr);
329 if (sym)
330 return (MSYMBOL_IS_SPECIAL (sym));
331
332 /* If the user wants to override the fallback mode, let them. */
333 if (strcmp (arm_fallback_mode_string, "arm") == 0)
334 return 0;
335 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
336 return 1;
337
338 /* If we couldn't find any symbol, but we're talking to a running
339 target, then trust the current value of $cpsr. This lets
340 "display/i $pc" always show the correct mode (though if there is
341 a symbol table we will not reach here, so it still may not be
342 displayed in the mode it will be executed). */
343 if (target_has_registers)
344 return arm_frame_is_thumb (get_current_frame ());
345
346 /* Otherwise we're out of luck; we assume ARM. */
347 return 0;
348 }
349
350 /* Remove useless bits from addresses in a running program. */
351 static CORE_ADDR
352 arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
353 {
354 if (arm_apcs_32)
355 return UNMAKE_THUMB_ADDR (val);
356 else
357 return (val & 0x03fffffc);
358 }
359
360 /* When reading symbols, we need to zap the low bit of the address,
361 which may be set to 1 for Thumb functions. */
362 static CORE_ADDR
363 arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val)
364 {
365 return val & ~1;
366 }
367
368 /* Analyze a Thumb prologue, looking for a recognizable stack frame
369 and frame pointer. Scan until we encounter a store that could
370 clobber the stack frame unexpectedly, or an unknown instruction. */
371
372 static CORE_ADDR
373 thumb_analyze_prologue (struct gdbarch *gdbarch,
374 CORE_ADDR start, CORE_ADDR limit,
375 struct arm_prologue_cache *cache)
376 {
377 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
378 int i;
379 pv_t regs[16];
380 struct pv_area *stack;
381 struct cleanup *back_to;
382 CORE_ADDR offset;
383
384 for (i = 0; i < 16; i++)
385 regs[i] = pv_register (i, 0);
386 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
387 back_to = make_cleanup_free_pv_area (stack);
388
389 while (start < limit)
390 {
391 unsigned short insn;
392
393 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
394
395 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
396 {
397 int regno;
398 int mask;
399
400 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
401 break;
402
403 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
404 whether to save LR (R14). */
405 mask = (insn & 0xff) | ((insn & 0x100) << 6);
406
407 /* Calculate offsets of saved R0-R7 and LR. */
408 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
409 if (mask & (1 << regno))
410 {
411 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
412 -4);
413 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
414 }
415 }
416 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
417 sub sp, #simm */
418 {
419 offset = (insn & 0x7f) << 2; /* get scaled offset */
420 if (insn & 0x80) /* Check for SUB. */
421 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
422 -offset);
423 else
424 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
425 offset);
426 }
427 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
428 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
429 (insn & 0xff) << 2);
430 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
431 {
432 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
433 int src_reg = (insn & 0x78) >> 3;
434 regs[dst_reg] = regs[src_reg];
435 }
436 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
437 {
438 /* Handle stores to the stack. Normally pushes are used,
439 but with GCC -mtpcs-frame, there may be other stores
440 in the prologue to create the frame. */
441 int regno = (insn >> 8) & 0x7;
442 pv_t addr;
443
444 offset = (insn & 0xff) << 2;
445 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
446
447 if (pv_area_store_would_trash (stack, addr))
448 break;
449
450 pv_area_store (stack, addr, 4, regs[regno]);
451 }
452 else
453 {
454 /* We don't know what this instruction is. We're finished
455 scanning. NOTE: Recognizing more safe-to-ignore
456 instructions here will improve support for optimized
457 code. */
458 break;
459 }
460
461 start += 2;
462 }
463
464 if (cache == NULL)
465 {
466 do_cleanups (back_to);
467 return start;
468 }
469
470 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
471 {
472 /* Frame pointer is fp. Frame size is constant. */
473 cache->framereg = ARM_FP_REGNUM;
474 cache->framesize = -regs[ARM_FP_REGNUM].k;
475 }
476 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
477 {
478 /* Frame pointer is r7. Frame size is constant. */
479 cache->framereg = THUMB_FP_REGNUM;
480 cache->framesize = -regs[THUMB_FP_REGNUM].k;
481 }
482 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
483 {
484 /* Try the stack pointer... this is a bit desperate. */
485 cache->framereg = ARM_SP_REGNUM;
486 cache->framesize = -regs[ARM_SP_REGNUM].k;
487 }
488 else
489 {
490 /* We're just out of luck. We don't know where the frame is. */
491 cache->framereg = -1;
492 cache->framesize = 0;
493 }
494
495 for (i = 0; i < 16; i++)
496 if (pv_area_find_reg (stack, gdbarch, i, &offset))
497 cache->saved_regs[i].addr = offset;
498
499 do_cleanups (back_to);
500 return start;
501 }
502
503 /* Advance the PC across any function entry prologue instructions to
504 reach some "real" code.
505
506 The APCS (ARM Procedure Call Standard) defines the following
507 prologue:
508
509 mov ip, sp
510 [stmfd sp!, {a1,a2,a3,a4}]
511 stmfd sp!, {...,fp,ip,lr,pc}
512 [stfe f7, [sp, #-12]!]
513 [stfe f6, [sp, #-12]!]
514 [stfe f5, [sp, #-12]!]
515 [stfe f4, [sp, #-12]!]
516 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
517
518 static CORE_ADDR
519 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
520 {
521 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
522 unsigned long inst;
523 CORE_ADDR skip_pc;
524 CORE_ADDR func_addr, limit_pc;
525 struct symtab_and_line sal;
526
527 /* If we're in a dummy frame, don't even try to skip the prologue. */
528 if (deprecated_pc_in_call_dummy (gdbarch, pc))
529 return pc;
530
531 /* See if we can determine the end of the prologue via the symbol table.
532 If so, then return either PC, or the PC after the prologue, whichever
533 is greater. */
534 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
535 {
536 CORE_ADDR post_prologue_pc
537 = skip_prologue_using_sal (gdbarch, func_addr);
538 if (post_prologue_pc != 0)
539 return max (pc, post_prologue_pc);
540 }
541
542 /* Can't determine prologue from the symbol table, need to examine
543 instructions. */
544
545 /* Find an upper limit on the function prologue using the debug
546 information. If the debug information could not be used to provide
547 that bound, then use an arbitrary large number as the upper bound. */
548 /* Like arm_scan_prologue, stop no later than pc + 64. */
549 limit_pc = skip_prologue_using_sal (gdbarch, pc);
550 if (limit_pc == 0)
551 limit_pc = pc + 64; /* Magic. */
552
553
554 /* Check if this is Thumb code. */
555 if (arm_pc_is_thumb (pc))
556 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
557
558 for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4)
559 {
560 inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code);
561
562 /* "mov ip, sp" is no longer a required part of the prologue. */
563 if (inst == 0xe1a0c00d) /* mov ip, sp */
564 continue;
565
566 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
567 continue;
568
569 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
570 continue;
571
572 /* Some prologues begin with "str lr, [sp, #-4]!". */
573 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
574 continue;
575
576 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
577 continue;
578
579 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
580 continue;
581
582 /* Any insns after this point may float into the code, if it makes
583 for better instruction scheduling, so we skip them only if we
584 find them, but still consider the function to be frame-ful. */
585
586 /* We may have either one sfmfd instruction here, or several stfe
587 insns, depending on the version of floating point code we
588 support. */
589 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
590 continue;
591
592 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
593 continue;
594
595 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
596 continue;
597
598 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
599 continue;
600
601 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
602 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
603 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
604 continue;
605
606 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
607 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
608 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
609 continue;
610
611 /* Un-recognized instruction; stop scanning. */
612 break;
613 }
614
615 return skip_pc; /* End of prologue */
616 }
617
618 /* *INDENT-OFF* */
619 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
620 This function decodes a Thumb function prologue to determine:
621 1) the size of the stack frame
622 2) which registers are saved on it
623 3) the offsets of saved regs
624 4) the offset from the stack pointer to the frame pointer
625
626 A typical Thumb function prologue would create this stack frame
627 (offsets relative to FP)
628 old SP -> 24 stack parameters
629 20 LR
630 16 R7
631 R7 -> 0 local variables (16 bytes)
632 SP -> -12 additional stack space (12 bytes)
633 The frame size would thus be 36 bytes, and the frame offset would be
634 12 bytes. The frame register is R7.
635
636 The comments for thumb_skip_prolog() describe the algorithm we use
637 to detect the end of the prolog. */
638 /* *INDENT-ON* */
639
640 static void
641 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
642 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
643 {
644 CORE_ADDR prologue_start;
645 CORE_ADDR prologue_end;
646 CORE_ADDR current_pc;
647
648 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
649 &prologue_end))
650 {
651 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
652
653 if (sal.line == 0) /* no line info, use current PC */
654 prologue_end = prev_pc;
655 else if (sal.end < prologue_end) /* next line begins after fn end */
656 prologue_end = sal.end; /* (probably means no prologue) */
657 }
658 else
659 /* We're in the boondocks: we have no idea where the start of the
660 function is. */
661 return;
662
663 prologue_end = min (prologue_end, prev_pc);
664
665 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
666 }
667
668 /* This function decodes an ARM function prologue to determine:
669 1) the size of the stack frame
670 2) which registers are saved on it
671 3) the offsets of saved regs
672 4) the offset from the stack pointer to the frame pointer
673 This information is stored in the "extra" fields of the frame_info.
674
675 There are two basic forms for the ARM prologue. The fixed argument
676 function call will look like:
677
678 mov ip, sp
679 stmfd sp!, {fp, ip, lr, pc}
680 sub fp, ip, #4
681 [sub sp, sp, #4]
682
683 Which would create this stack frame (offsets relative to FP):
684 IP -> 4 (caller's stack)
685 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
686 -4 LR (return address in caller)
687 -8 IP (copy of caller's SP)
688 -12 FP (caller's FP)
689 SP -> -28 Local variables
690
691 The frame size would thus be 32 bytes, and the frame offset would be
692 28 bytes. The stmfd call can also save any of the vN registers it
693 plans to use, which increases the frame size accordingly.
694
695 Note: The stored PC is 8 off of the STMFD instruction that stored it
696 because the ARM Store instructions always store PC + 8 when you read
697 the PC register.
698
699 A variable argument function call will look like:
700
701 mov ip, sp
702 stmfd sp!, {a1, a2, a3, a4}
703 stmfd sp!, {fp, ip, lr, pc}
704 sub fp, ip, #20
705
706 Which would create this stack frame (offsets relative to FP):
707 IP -> 20 (caller's stack)
708 16 A4
709 12 A3
710 8 A2
711 4 A1
712 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
713 -4 LR (return address in caller)
714 -8 IP (copy of caller's SP)
715 -12 FP (caller's FP)
716 SP -> -28 Local variables
717
718 The frame size would thus be 48 bytes, and the frame offset would be
719 28 bytes.
720
721 There is another potential complication, which is that the optimizer
722 will try to separate the store of fp in the "stmfd" instruction from
723 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
724 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
725
726 Also, note, the original version of the ARM toolchain claimed that there
727 should be an
728
729 instruction at the end of the prologue. I have never seen GCC produce
730 this, and the ARM docs don't mention it. We still test for it below in
731 case it happens...
732
733 */
734
735 static void
736 arm_scan_prologue (struct frame_info *this_frame,
737 struct arm_prologue_cache *cache)
738 {
739 struct gdbarch *gdbarch = get_frame_arch (this_frame);
740 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
741 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
742 int regno;
743 CORE_ADDR prologue_start, prologue_end, current_pc;
744 CORE_ADDR prev_pc = get_frame_pc (this_frame);
745 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
746 pv_t regs[ARM_FPS_REGNUM];
747 struct pv_area *stack;
748 struct cleanup *back_to;
749 CORE_ADDR offset;
750
751 /* Assume there is no frame until proven otherwise. */
752 cache->framereg = ARM_SP_REGNUM;
753 cache->framesize = 0;
754
755 /* Check for Thumb prologue. */
756 if (arm_frame_is_thumb (this_frame))
757 {
758 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
759 return;
760 }
761
762 /* Find the function prologue. If we can't find the function in
763 the symbol table, peek in the stack frame to find the PC. */
764 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
765 &prologue_end))
766 {
767 /* One way to find the end of the prologue (which works well
768 for unoptimized code) is to do the following:
769
770 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
771
772 if (sal.line == 0)
773 prologue_end = prev_pc;
774 else if (sal.end < prologue_end)
775 prologue_end = sal.end;
776
777 This mechanism is very accurate so long as the optimizer
778 doesn't move any instructions from the function body into the
779 prologue. If this happens, sal.end will be the last
780 instruction in the first hunk of prologue code just before
781 the first instruction that the scheduler has moved from
782 the body to the prologue.
783
784 In order to make sure that we scan all of the prologue
785 instructions, we use a slightly less accurate mechanism which
786 may scan more than necessary. To help compensate for this
787 lack of accuracy, the prologue scanning loop below contains
788 several clauses which'll cause the loop to terminate early if
789 an implausible prologue instruction is encountered.
790
791 The expression
792
793 prologue_start + 64
794
795 is a suitable endpoint since it accounts for the largest
796 possible prologue plus up to five instructions inserted by
797 the scheduler. */
798
799 if (prologue_end > prologue_start + 64)
800 {
801 prologue_end = prologue_start + 64; /* See above. */
802 }
803 }
804 else
805 {
806 /* We have no symbol information. Our only option is to assume this
807 function has a standard stack frame and the normal frame register.
808 Then, we can find the value of our frame pointer on entrance to
809 the callee (or at the present moment if this is the innermost frame).
810 The value stored there should be the address of the stmfd + 8. */
811 CORE_ADDR frame_loc;
812 LONGEST return_value;
813
814 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
815 if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
816 return;
817 else
818 {
819 prologue_start = gdbarch_addr_bits_remove
820 (gdbarch, return_value) - 8;
821 prologue_end = prologue_start + 64; /* See above. */
822 }
823 }
824
825 if (prev_pc < prologue_end)
826 prologue_end = prev_pc;
827
828 /* Now search the prologue looking for instructions that set up the
829 frame pointer, adjust the stack pointer, and save registers.
830
831 Be careful, however, and if it doesn't look like a prologue,
832 don't try to scan it. If, for instance, a frameless function
833 begins with stmfd sp!, then we will tell ourselves there is
834 a frame, which will confuse stack traceback, as well as "finish"
835 and other operations that rely on a knowledge of the stack
836 traceback.
837
838 In the APCS, the prologue should start with "mov ip, sp" so
839 if we don't see this as the first insn, we will stop.
840
841 [Note: This doesn't seem to be true any longer, so it's now an
842 optional part of the prologue. - Kevin Buettner, 2001-11-20]
843
844 [Note further: The "mov ip,sp" only seems to be missing in
845 frameless functions at optimization level "-O2" or above,
846 in which case it is often (but not always) replaced by
847 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
848
849 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
850 regs[regno] = pv_register (regno, 0);
851 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
852 back_to = make_cleanup_free_pv_area (stack);
853
854 for (current_pc = prologue_start;
855 current_pc < prologue_end;
856 current_pc += 4)
857 {
858 unsigned int insn
859 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
860
861 if (insn == 0xe1a0c00d) /* mov ip, sp */
862 {
863 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
864 continue;
865 }
866 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
867 {
868 unsigned imm = insn & 0xff; /* immediate value */
869 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
870 imm = (imm >> rot) | (imm << (32 - rot));
871 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm);
872 continue;
873 }
874 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
875 {
876 unsigned imm = insn & 0xff; /* immediate value */
877 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
878 imm = (imm >> rot) | (imm << (32 - rot));
879 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
880 continue;
881 }
882 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
883 {
884 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
885 break;
886 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
887 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]);
888 continue;
889 }
890 else if ((insn & 0xffff0000) == 0xe92d0000)
891 /* stmfd sp!, {..., fp, ip, lr, pc}
892 or
893 stmfd sp!, {a1, a2, a3, a4} */
894 {
895 int mask = insn & 0xffff;
896
897 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
898 break;
899
900 /* Calculate offsets of saved registers. */
901 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
902 if (mask & (1 << regno))
903 {
904 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
905 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
906 }
907 }
908 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
909 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
910 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
911 {
912 /* No need to add this to saved_regs -- it's just an arg reg. */
913 continue;
914 }
915 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
916 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
917 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
918 {
919 /* No need to add this to saved_regs -- it's just an arg reg. */
920 continue;
921 }
922 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
923 {
924 unsigned imm = insn & 0xff; /* immediate value */
925 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
926 imm = (imm >> rot) | (imm << (32 - rot));
927 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
928 }
929 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
930 {
931 unsigned imm = insn & 0xff; /* immediate value */
932 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
933 imm = (imm >> rot) | (imm << (32 - rot));
934 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
935 }
936 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
937 && gdbarch_tdep (gdbarch)->have_fpa_registers)
938 {
939 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
940 break;
941
942 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
943 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
944 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
945 }
946 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
947 && gdbarch_tdep (gdbarch)->have_fpa_registers)
948 {
949 int n_saved_fp_regs;
950 unsigned int fp_start_reg, fp_bound_reg;
951
952 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
953 break;
954
955 if ((insn & 0x800) == 0x800) /* N0 is set */
956 {
957 if ((insn & 0x40000) == 0x40000) /* N1 is set */
958 n_saved_fp_regs = 3;
959 else
960 n_saved_fp_regs = 1;
961 }
962 else
963 {
964 if ((insn & 0x40000) == 0x40000) /* N1 is set */
965 n_saved_fp_regs = 2;
966 else
967 n_saved_fp_regs = 4;
968 }
969
970 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
971 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
972 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
973 {
974 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
975 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
976 regs[fp_start_reg++]);
977 }
978 }
979 else if ((insn & 0xf0000000) != 0xe0000000)
980 break; /* Condition not true, exit early */
981 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
982 break; /* Don't scan past a block load */
983 else
984 /* The optimizer might shove anything into the prologue,
985 so we just skip what we don't recognize. */
986 continue;
987 }
988
989 /* The frame size is just the distance from the frame register
990 to the original stack pointer. */
991 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
992 {
993 /* Frame pointer is fp. */
994 cache->framereg = ARM_FP_REGNUM;
995 cache->framesize = -regs[ARM_FP_REGNUM].k;
996 }
997 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
998 {
999 /* Try the stack pointer... this is a bit desperate. */
1000 cache->framereg = ARM_SP_REGNUM;
1001 cache->framesize = -regs[ARM_SP_REGNUM].k;
1002 }
1003 else
1004 {
1005 /* We're just out of luck. We don't know where the frame is. */
1006 cache->framereg = -1;
1007 cache->framesize = 0;
1008 }
1009
1010 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1011 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1012 cache->saved_regs[regno].addr = offset;
1013
1014 do_cleanups (back_to);
1015 }
1016
1017 static struct arm_prologue_cache *
1018 arm_make_prologue_cache (struct frame_info *this_frame)
1019 {
1020 int reg;
1021 struct arm_prologue_cache *cache;
1022 CORE_ADDR unwound_fp;
1023
1024 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1025 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1026
1027 arm_scan_prologue (this_frame, cache);
1028
1029 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1030 if (unwound_fp == 0)
1031 return cache;
1032
1033 cache->prev_sp = unwound_fp + cache->framesize;
1034
1035 /* Calculate actual addresses of saved registers using offsets
1036 determined by arm_scan_prologue. */
1037 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1038 if (trad_frame_addr_p (cache->saved_regs, reg))
1039 cache->saved_regs[reg].addr += cache->prev_sp;
1040
1041 return cache;
1042 }
1043
1044 /* Our frame ID for a normal frame is the current function's starting PC
1045 and the caller's SP when we were called. */
1046
1047 static void
1048 arm_prologue_this_id (struct frame_info *this_frame,
1049 void **this_cache,
1050 struct frame_id *this_id)
1051 {
1052 struct arm_prologue_cache *cache;
1053 struct frame_id id;
1054 CORE_ADDR pc, func;
1055
1056 if (*this_cache == NULL)
1057 *this_cache = arm_make_prologue_cache (this_frame);
1058 cache = *this_cache;
1059
1060 /* This is meant to halt the backtrace at "_start". */
1061 pc = get_frame_pc (this_frame);
1062 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1063 return;
1064
1065 /* If we've hit a wall, stop. */
1066 if (cache->prev_sp == 0)
1067 return;
1068
1069 func = get_frame_func (this_frame);
1070 id = frame_id_build (cache->prev_sp, func);
1071 *this_id = id;
1072 }
1073
1074 static struct value *
1075 arm_prologue_prev_register (struct frame_info *this_frame,
1076 void **this_cache,
1077 int prev_regnum)
1078 {
1079 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1080 struct arm_prologue_cache *cache;
1081
1082 if (*this_cache == NULL)
1083 *this_cache = arm_make_prologue_cache (this_frame);
1084 cache = *this_cache;
1085
1086 /* If we are asked to unwind the PC, then we need to return the LR
1087 instead. The prologue may save PC, but it will point into this
1088 frame's prologue, not the next frame's resume location. Also
1089 strip the saved T bit. A valid LR may have the low bit set, but
1090 a valid PC never does. */
1091 if (prev_regnum == ARM_PC_REGNUM)
1092 {
1093 CORE_ADDR lr;
1094
1095 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1096 return frame_unwind_got_constant (this_frame, prev_regnum,
1097 arm_addr_bits_remove (gdbarch, lr));
1098 }
1099
1100 /* SP is generally not saved to the stack, but this frame is
1101 identified by the next frame's stack pointer at the time of the call.
1102 The value was already reconstructed into PREV_SP. */
1103 if (prev_regnum == ARM_SP_REGNUM)
1104 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1105
1106 /* The CPSR may have been changed by the call instruction and by the
1107 called function. The only bit we can reconstruct is the T bit,
1108 by checking the low bit of LR as of the call. This is a reliable
1109 indicator of Thumb-ness except for some ARM v4T pre-interworking
1110 Thumb code, which could get away with a clear low bit as long as
1111 the called function did not use bx. Guess that all other
1112 bits are unchanged; the condition flags are presumably lost,
1113 but the processor status is likely valid. */
1114 if (prev_regnum == ARM_PS_REGNUM)
1115 {
1116 CORE_ADDR lr, cpsr;
1117
1118 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1119 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1120 if (IS_THUMB_ADDR (lr))
1121 cpsr |= CPSR_T;
1122 else
1123 cpsr &= ~CPSR_T;
1124 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1125 }
1126
1127 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1128 prev_regnum);
1129 }
1130
1131 struct frame_unwind arm_prologue_unwind = {
1132 NORMAL_FRAME,
1133 arm_prologue_this_id,
1134 arm_prologue_prev_register,
1135 NULL,
1136 default_frame_sniffer
1137 };
1138
1139 static struct arm_prologue_cache *
1140 arm_make_stub_cache (struct frame_info *this_frame)
1141 {
1142 int reg;
1143 struct arm_prologue_cache *cache;
1144 CORE_ADDR unwound_fp;
1145
1146 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1147 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1148
1149 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
1150
1151 return cache;
1152 }
1153
1154 /* Our frame ID for a stub frame is the current SP and LR. */
1155
1156 static void
1157 arm_stub_this_id (struct frame_info *this_frame,
1158 void **this_cache,
1159 struct frame_id *this_id)
1160 {
1161 struct arm_prologue_cache *cache;
1162
1163 if (*this_cache == NULL)
1164 *this_cache = arm_make_stub_cache (this_frame);
1165 cache = *this_cache;
1166
1167 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
1168 }
1169
1170 static int
1171 arm_stub_unwind_sniffer (const struct frame_unwind *self,
1172 struct frame_info *this_frame,
1173 void **this_prologue_cache)
1174 {
1175 CORE_ADDR addr_in_block;
1176 char dummy[4];
1177
1178 addr_in_block = get_frame_address_in_block (this_frame);
1179 if (in_plt_section (addr_in_block, NULL)
1180 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1181 return 1;
1182
1183 return 0;
1184 }
1185
1186 struct frame_unwind arm_stub_unwind = {
1187 NORMAL_FRAME,
1188 arm_stub_this_id,
1189 arm_prologue_prev_register,
1190 NULL,
1191 arm_stub_unwind_sniffer
1192 };
1193
1194 static CORE_ADDR
1195 arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1196 {
1197 struct arm_prologue_cache *cache;
1198
1199 if (*this_cache == NULL)
1200 *this_cache = arm_make_prologue_cache (this_frame);
1201 cache = *this_cache;
1202
1203 return cache->prev_sp - cache->framesize;
1204 }
1205
1206 struct frame_base arm_normal_base = {
1207 &arm_prologue_unwind,
1208 arm_normal_frame_base,
1209 arm_normal_frame_base,
1210 arm_normal_frame_base
1211 };
1212
1213 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1214 dummy frame. The frame ID's base needs to match the TOS value
1215 saved by save_dummy_frame_tos() and returned from
1216 arm_push_dummy_call, and the PC needs to match the dummy frame's
1217 breakpoint. */
1218
1219 static struct frame_id
1220 arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1221 {
1222 return frame_id_build (get_frame_register_unsigned (this_frame, ARM_SP_REGNUM),
1223 get_frame_pc (this_frame));
1224 }
1225
1226 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1227 be used to construct the previous frame's ID, after looking up the
1228 containing function). */
1229
1230 static CORE_ADDR
1231 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1232 {
1233 CORE_ADDR pc;
1234 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1235 return arm_addr_bits_remove (gdbarch, pc);
1236 }
1237
1238 static CORE_ADDR
1239 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1240 {
1241 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1242 }
1243
1244 static struct value *
1245 arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
1246 int regnum)
1247 {
1248 struct gdbarch * gdbarch = get_frame_arch (this_frame);
1249 CORE_ADDR lr, cpsr;
1250
1251 switch (regnum)
1252 {
1253 case ARM_PC_REGNUM:
1254 /* The PC is normally copied from the return column, which
1255 describes saves of LR. However, that version may have an
1256 extra bit set to indicate Thumb state. The bit is not
1257 part of the PC. */
1258 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1259 return frame_unwind_got_constant (this_frame, regnum,
1260 arm_addr_bits_remove (gdbarch, lr));
1261
1262 case ARM_PS_REGNUM:
1263 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
1264 cpsr = get_frame_register_unsigned (this_frame, regnum);
1265 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1266 if (IS_THUMB_ADDR (lr))
1267 cpsr |= CPSR_T;
1268 else
1269 cpsr &= ~CPSR_T;
1270 return frame_unwind_got_constant (this_frame, regnum, cpsr);
1271
1272 default:
1273 internal_error (__FILE__, __LINE__,
1274 _("Unexpected register %d"), regnum);
1275 }
1276 }
1277
1278 static void
1279 arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1280 struct dwarf2_frame_state_reg *reg,
1281 struct frame_info *this_frame)
1282 {
1283 switch (regnum)
1284 {
1285 case ARM_PC_REGNUM:
1286 case ARM_PS_REGNUM:
1287 reg->how = DWARF2_FRAME_REG_FN;
1288 reg->loc.fn = arm_dwarf2_prev_register;
1289 break;
1290 case ARM_SP_REGNUM:
1291 reg->how = DWARF2_FRAME_REG_CFA;
1292 break;
1293 }
1294 }
1295
1296 /* When arguments must be pushed onto the stack, they go on in reverse
1297 order. The code below implements a FILO (stack) to do this. */
1298
1299 struct stack_item
1300 {
1301 int len;
1302 struct stack_item *prev;
1303 void *data;
1304 };
1305
1306 static struct stack_item *
1307 push_stack_item (struct stack_item *prev, void *contents, int len)
1308 {
1309 struct stack_item *si;
1310 si = xmalloc (sizeof (struct stack_item));
1311 si->data = xmalloc (len);
1312 si->len = len;
1313 si->prev = prev;
1314 memcpy (si->data, contents, len);
1315 return si;
1316 }
1317
1318 static struct stack_item *
1319 pop_stack_item (struct stack_item *si)
1320 {
1321 struct stack_item *dead = si;
1322 si = si->prev;
1323 xfree (dead->data);
1324 xfree (dead);
1325 return si;
1326 }
1327
1328
1329 /* Return the alignment (in bytes) of the given type. */
1330
1331 static int
1332 arm_type_align (struct type *t)
1333 {
1334 int n;
1335 int align;
1336 int falign;
1337
1338 t = check_typedef (t);
1339 switch (TYPE_CODE (t))
1340 {
1341 default:
1342 /* Should never happen. */
1343 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1344 return 4;
1345
1346 case TYPE_CODE_PTR:
1347 case TYPE_CODE_ENUM:
1348 case TYPE_CODE_INT:
1349 case TYPE_CODE_FLT:
1350 case TYPE_CODE_SET:
1351 case TYPE_CODE_RANGE:
1352 case TYPE_CODE_BITSTRING:
1353 case TYPE_CODE_REF:
1354 case TYPE_CODE_CHAR:
1355 case TYPE_CODE_BOOL:
1356 return TYPE_LENGTH (t);
1357
1358 case TYPE_CODE_ARRAY:
1359 case TYPE_CODE_COMPLEX:
1360 /* TODO: What about vector types? */
1361 return arm_type_align (TYPE_TARGET_TYPE (t));
1362
1363 case TYPE_CODE_STRUCT:
1364 case TYPE_CODE_UNION:
1365 align = 1;
1366 for (n = 0; n < TYPE_NFIELDS (t); n++)
1367 {
1368 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1369 if (falign > align)
1370 align = falign;
1371 }
1372 return align;
1373 }
1374 }
1375
1376 /* We currently only support passing parameters in integer registers. This
1377 conforms with GCC's default model. Several other variants exist and
1378 we should probably support some of them based on the selected ABI. */
1379
1380 static CORE_ADDR
1381 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1382 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1383 struct value **args, CORE_ADDR sp, int struct_return,
1384 CORE_ADDR struct_addr)
1385 {
1386 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1387 int argnum;
1388 int argreg;
1389 int nstack;
1390 struct stack_item *si = NULL;
1391
1392 /* Set the return address. For the ARM, the return breakpoint is
1393 always at BP_ADDR. */
1394 /* XXX Fix for Thumb. */
1395 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1396
1397 /* Walk through the list of args and determine how large a temporary
1398 stack is required. Need to take care here as structs may be
1399 passed on the stack, and we have to to push them. */
1400 nstack = 0;
1401
1402 argreg = ARM_A1_REGNUM;
1403 nstack = 0;
1404
1405 /* The struct_return pointer occupies the first parameter
1406 passing register. */
1407 if (struct_return)
1408 {
1409 if (arm_debug)
1410 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
1411 gdbarch_register_name (gdbarch, argreg),
1412 paddress (gdbarch, struct_addr));
1413 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1414 argreg++;
1415 }
1416
1417 for (argnum = 0; argnum < nargs; argnum++)
1418 {
1419 int len;
1420 struct type *arg_type;
1421 struct type *target_type;
1422 enum type_code typecode;
1423 bfd_byte *val;
1424 int align;
1425
1426 arg_type = check_typedef (value_type (args[argnum]));
1427 len = TYPE_LENGTH (arg_type);
1428 target_type = TYPE_TARGET_TYPE (arg_type);
1429 typecode = TYPE_CODE (arg_type);
1430 val = value_contents_writeable (args[argnum]);
1431
1432 align = arm_type_align (arg_type);
1433 /* Round alignment up to a whole number of words. */
1434 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1435 /* Different ABIs have different maximum alignments. */
1436 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1437 {
1438 /* The APCS ABI only requires word alignment. */
1439 align = INT_REGISTER_SIZE;
1440 }
1441 else
1442 {
1443 /* The AAPCS requires at most doubleword alignment. */
1444 if (align > INT_REGISTER_SIZE * 2)
1445 align = INT_REGISTER_SIZE * 2;
1446 }
1447
1448 /* Push stack padding for dowubleword alignment. */
1449 if (nstack & (align - 1))
1450 {
1451 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1452 nstack += INT_REGISTER_SIZE;
1453 }
1454
1455 /* Doubleword aligned quantities must go in even register pairs. */
1456 if (argreg <= ARM_LAST_ARG_REGNUM
1457 && align > INT_REGISTER_SIZE
1458 && argreg & 1)
1459 argreg++;
1460
1461 /* If the argument is a pointer to a function, and it is a
1462 Thumb function, create a LOCAL copy of the value and set
1463 the THUMB bit in it. */
1464 if (TYPE_CODE_PTR == typecode
1465 && target_type != NULL
1466 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1467 {
1468 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
1469 if (arm_pc_is_thumb (regval))
1470 {
1471 val = alloca (len);
1472 store_unsigned_integer (val, len, byte_order,
1473 MAKE_THUMB_ADDR (regval));
1474 }
1475 }
1476
1477 /* Copy the argument to general registers or the stack in
1478 register-sized pieces. Large arguments are split between
1479 registers and stack. */
1480 while (len > 0)
1481 {
1482 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
1483
1484 if (argreg <= ARM_LAST_ARG_REGNUM)
1485 {
1486 /* The argument is being passed in a general purpose
1487 register. */
1488 CORE_ADDR regval
1489 = extract_unsigned_integer (val, partial_len, byte_order);
1490 if (byte_order == BFD_ENDIAN_BIG)
1491 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
1492 if (arm_debug)
1493 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1494 argnum,
1495 gdbarch_register_name
1496 (gdbarch, argreg),
1497 phex (regval, INT_REGISTER_SIZE));
1498 regcache_cooked_write_unsigned (regcache, argreg, regval);
1499 argreg++;
1500 }
1501 else
1502 {
1503 /* Push the arguments onto the stack. */
1504 if (arm_debug)
1505 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1506 argnum, nstack);
1507 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1508 nstack += INT_REGISTER_SIZE;
1509 }
1510
1511 len -= partial_len;
1512 val += partial_len;
1513 }
1514 }
1515 /* If we have an odd number of words to push, then decrement the stack
1516 by one word now, so first stack argument will be dword aligned. */
1517 if (nstack & 4)
1518 sp -= 4;
1519
1520 while (si)
1521 {
1522 sp -= si->len;
1523 write_memory (sp, si->data, si->len);
1524 si = pop_stack_item (si);
1525 }
1526
1527 /* Finally, update teh SP register. */
1528 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1529
1530 return sp;
1531 }
1532
1533
1534 /* Always align the frame to an 8-byte boundary. This is required on
1535 some platforms and harmless on the rest. */
1536
1537 static CORE_ADDR
1538 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1539 {
1540 /* Align the stack to eight bytes. */
1541 return sp & ~ (CORE_ADDR) 7;
1542 }
1543
1544 static void
1545 print_fpu_flags (int flags)
1546 {
1547 if (flags & (1 << 0))
1548 fputs ("IVO ", stdout);
1549 if (flags & (1 << 1))
1550 fputs ("DVZ ", stdout);
1551 if (flags & (1 << 2))
1552 fputs ("OFL ", stdout);
1553 if (flags & (1 << 3))
1554 fputs ("UFL ", stdout);
1555 if (flags & (1 << 4))
1556 fputs ("INX ", stdout);
1557 putchar ('\n');
1558 }
1559
1560 /* Print interesting information about the floating point processor
1561 (if present) or emulator. */
1562 static void
1563 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1564 struct frame_info *frame, const char *args)
1565 {
1566 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
1567 int type;
1568
1569 type = (status >> 24) & 127;
1570 if (status & (1 << 31))
1571 printf (_("Hardware FPU type %d\n"), type);
1572 else
1573 printf (_("Software FPU type %d\n"), type);
1574 /* i18n: [floating point unit] mask */
1575 fputs (_("mask: "), stdout);
1576 print_fpu_flags (status >> 16);
1577 /* i18n: [floating point unit] flags */
1578 fputs (_("flags: "), stdout);
1579 print_fpu_flags (status);
1580 }
1581
1582 /* Construct the ARM extended floating point type. */
1583 static struct type *
1584 arm_ext_type (struct gdbarch *gdbarch)
1585 {
1586 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1587
1588 if (!tdep->arm_ext_type)
1589 tdep->arm_ext_type
1590 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
1591 floatformats_arm_ext);
1592
1593 return tdep->arm_ext_type;
1594 }
1595
1596 /* Return the GDB type object for the "standard" data type of data in
1597 register N. */
1598
1599 static struct type *
1600 arm_register_type (struct gdbarch *gdbarch, int regnum)
1601 {
1602 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1603 return arm_ext_type (gdbarch);
1604 else if (regnum == ARM_SP_REGNUM)
1605 return builtin_type (gdbarch)->builtin_data_ptr;
1606 else if (regnum == ARM_PC_REGNUM)
1607 return builtin_type (gdbarch)->builtin_func_ptr;
1608 else if (regnum >= ARRAY_SIZE (arm_register_names))
1609 /* These registers are only supported on targets which supply
1610 an XML description. */
1611 return builtin_type (gdbarch)->builtin_int0;
1612 else
1613 return builtin_type (gdbarch)->builtin_uint32;
1614 }
1615
1616 /* Map a DWARF register REGNUM onto the appropriate GDB register
1617 number. */
1618
1619 static int
1620 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1621 {
1622 /* Core integer regs. */
1623 if (reg >= 0 && reg <= 15)
1624 return reg;
1625
1626 /* Legacy FPA encoding. These were once used in a way which
1627 overlapped with VFP register numbering, so their use is
1628 discouraged, but GDB doesn't support the ARM toolchain
1629 which used them for VFP. */
1630 if (reg >= 16 && reg <= 23)
1631 return ARM_F0_REGNUM + reg - 16;
1632
1633 /* New assignments for the FPA registers. */
1634 if (reg >= 96 && reg <= 103)
1635 return ARM_F0_REGNUM + reg - 96;
1636
1637 /* WMMX register assignments. */
1638 if (reg >= 104 && reg <= 111)
1639 return ARM_WCGR0_REGNUM + reg - 104;
1640
1641 if (reg >= 112 && reg <= 127)
1642 return ARM_WR0_REGNUM + reg - 112;
1643
1644 if (reg >= 192 && reg <= 199)
1645 return ARM_WC0_REGNUM + reg - 192;
1646
1647 return -1;
1648 }
1649
1650 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1651 static int
1652 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1653 {
1654 int reg = regnum;
1655 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
1656
1657 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1658 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1659
1660 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1661 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1662
1663 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1664 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1665
1666 if (reg < NUM_GREGS)
1667 return SIM_ARM_R0_REGNUM + reg;
1668 reg -= NUM_GREGS;
1669
1670 if (reg < NUM_FREGS)
1671 return SIM_ARM_FP0_REGNUM + reg;
1672 reg -= NUM_FREGS;
1673
1674 if (reg < NUM_SREGS)
1675 return SIM_ARM_FPS_REGNUM + reg;
1676 reg -= NUM_SREGS;
1677
1678 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1679 }
1680
1681 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1682 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1683 It is thought that this is is the floating-point register format on
1684 little-endian systems. */
1685
1686 static void
1687 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1688 void *dbl, int endianess)
1689 {
1690 DOUBLEST d;
1691
1692 if (endianess == BFD_ENDIAN_BIG)
1693 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1694 else
1695 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1696 ptr, &d);
1697 floatformat_from_doublest (fmt, &d, dbl);
1698 }
1699
1700 static void
1701 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
1702 int endianess)
1703 {
1704 DOUBLEST d;
1705
1706 floatformat_to_doublest (fmt, ptr, &d);
1707 if (endianess == BFD_ENDIAN_BIG)
1708 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1709 else
1710 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1711 &d, dbl);
1712 }
1713
1714 static int
1715 condition_true (unsigned long cond, unsigned long status_reg)
1716 {
1717 if (cond == INST_AL || cond == INST_NV)
1718 return 1;
1719
1720 switch (cond)
1721 {
1722 case INST_EQ:
1723 return ((status_reg & FLAG_Z) != 0);
1724 case INST_NE:
1725 return ((status_reg & FLAG_Z) == 0);
1726 case INST_CS:
1727 return ((status_reg & FLAG_C) != 0);
1728 case INST_CC:
1729 return ((status_reg & FLAG_C) == 0);
1730 case INST_MI:
1731 return ((status_reg & FLAG_N) != 0);
1732 case INST_PL:
1733 return ((status_reg & FLAG_N) == 0);
1734 case INST_VS:
1735 return ((status_reg & FLAG_V) != 0);
1736 case INST_VC:
1737 return ((status_reg & FLAG_V) == 0);
1738 case INST_HI:
1739 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1740 case INST_LS:
1741 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1742 case INST_GE:
1743 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1744 case INST_LT:
1745 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1746 case INST_GT:
1747 return (((status_reg & FLAG_Z) == 0) &&
1748 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1749 case INST_LE:
1750 return (((status_reg & FLAG_Z) != 0) ||
1751 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1752 }
1753 return 1;
1754 }
1755
1756 /* Support routines for single stepping. Calculate the next PC value. */
1757 #define submask(x) ((1L << ((x) + 1)) - 1)
1758 #define bit(obj,st) (((obj) >> (st)) & 1)
1759 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1760 #define sbits(obj,st,fn) \
1761 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1762 #define BranchDest(addr,instr) \
1763 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1764 #define ARM_PC_32 1
1765
1766 static unsigned long
1767 shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1768 unsigned long pc_val, unsigned long status_reg)
1769 {
1770 unsigned long res, shift;
1771 int rm = bits (inst, 0, 3);
1772 unsigned long shifttype = bits (inst, 5, 6);
1773
1774 if (bit (inst, 4))
1775 {
1776 int rs = bits (inst, 8, 11);
1777 shift = (rs == 15 ? pc_val + 8
1778 : get_frame_register_unsigned (frame, rs)) & 0xFF;
1779 }
1780 else
1781 shift = bits (inst, 7, 11);
1782
1783 res = (rm == 15
1784 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1785 + (bit (inst, 4) ? 12 : 8))
1786 : get_frame_register_unsigned (frame, rm));
1787
1788 switch (shifttype)
1789 {
1790 case 0: /* LSL */
1791 res = shift >= 32 ? 0 : res << shift;
1792 break;
1793
1794 case 1: /* LSR */
1795 res = shift >= 32 ? 0 : res >> shift;
1796 break;
1797
1798 case 2: /* ASR */
1799 if (shift >= 32)
1800 shift = 31;
1801 res = ((res & 0x80000000L)
1802 ? ~((~res) >> shift) : res >> shift);
1803 break;
1804
1805 case 3: /* ROR/RRX */
1806 shift &= 31;
1807 if (shift == 0)
1808 res = (res >> 1) | (carry ? 0x80000000L : 0);
1809 else
1810 res = (res >> shift) | (res << (32 - shift));
1811 break;
1812 }
1813
1814 return res & 0xffffffff;
1815 }
1816
1817 /* Return number of 1-bits in VAL. */
1818
1819 static int
1820 bitcount (unsigned long val)
1821 {
1822 int nbits;
1823 for (nbits = 0; val != 0; nbits++)
1824 val &= val - 1; /* delete rightmost 1-bit in val */
1825 return nbits;
1826 }
1827
1828 static CORE_ADDR
1829 thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1830 {
1831 struct gdbarch *gdbarch = get_frame_arch (frame);
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1834 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1835 unsigned short inst1;
1836 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1837 unsigned long offset;
1838
1839 inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1840
1841 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1842 {
1843 CORE_ADDR sp;
1844
1845 /* Fetch the saved PC from the stack. It's stored above
1846 all of the other registers. */
1847 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
1848 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1849 nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order);
1850 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1851 if (nextpc == pc)
1852 error (_("Infinite loop detected"));
1853 }
1854 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1855 {
1856 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1857 unsigned long cond = bits (inst1, 8, 11);
1858 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1859 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1860 }
1861 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1862 {
1863 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1864 }
1865 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1866 {
1867 unsigned short inst2;
1868 inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1869 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1870 nextpc = pc_val + offset;
1871 /* For BLX make sure to clear the low bits. */
1872 if (bits (inst2, 11, 12) == 1)
1873 nextpc = nextpc & 0xfffffffc;
1874 }
1875 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1876 {
1877 if (bits (inst1, 3, 6) == 0x0f)
1878 nextpc = pc_val;
1879 else
1880 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
1881
1882 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1883 if (nextpc == pc)
1884 error (_("Infinite loop detected"));
1885 }
1886
1887 return nextpc;
1888 }
1889
1890 CORE_ADDR
1891 arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1892 {
1893 struct gdbarch *gdbarch = get_frame_arch (frame);
1894 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1895 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1896 unsigned long pc_val;
1897 unsigned long this_instr;
1898 unsigned long status;
1899 CORE_ADDR nextpc;
1900
1901 if (arm_frame_is_thumb (frame))
1902 return thumb_get_next_pc (frame, pc);
1903
1904 pc_val = (unsigned long) pc;
1905 this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1906
1907 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1908 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1909
1910 if (bits (this_instr, 28, 31) == INST_NV)
1911 switch (bits (this_instr, 24, 27))
1912 {
1913 case 0xa:
1914 case 0xb:
1915 {
1916 /* Branch with Link and change to Thumb. */
1917 nextpc = BranchDest (pc, this_instr);
1918 nextpc |= bit (this_instr, 24) << 1;
1919
1920 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1921 if (nextpc == pc)
1922 error (_("Infinite loop detected"));
1923 break;
1924 }
1925 case 0xc:
1926 case 0xd:
1927 case 0xe:
1928 /* Coprocessor register transfer. */
1929 if (bits (this_instr, 12, 15) == 15)
1930 error (_("Invalid update to pc in instruction"));
1931 break;
1932 }
1933 else if (condition_true (bits (this_instr, 28, 31), status))
1934 {
1935 switch (bits (this_instr, 24, 27))
1936 {
1937 case 0x0:
1938 case 0x1: /* data processing */
1939 case 0x2:
1940 case 0x3:
1941 {
1942 unsigned long operand1, operand2, result = 0;
1943 unsigned long rn;
1944 int c;
1945
1946 if (bits (this_instr, 12, 15) != 15)
1947 break;
1948
1949 if (bits (this_instr, 22, 25) == 0
1950 && bits (this_instr, 4, 7) == 9) /* multiply */
1951 error (_("Invalid update to pc in instruction"));
1952
1953 /* BX <reg>, BLX <reg> */
1954 if (bits (this_instr, 4, 27) == 0x12fff1
1955 || bits (this_instr, 4, 27) == 0x12fff3)
1956 {
1957 rn = bits (this_instr, 0, 3);
1958 result = (rn == 15) ? pc_val + 8
1959 : get_frame_register_unsigned (frame, rn);
1960 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1961 (gdbarch, result);
1962
1963 if (nextpc == pc)
1964 error (_("Infinite loop detected"));
1965
1966 return nextpc;
1967 }
1968
1969 /* Multiply into PC */
1970 c = (status & FLAG_C) ? 1 : 0;
1971 rn = bits (this_instr, 16, 19);
1972 operand1 = (rn == 15) ? pc_val + 8
1973 : get_frame_register_unsigned (frame, rn);
1974
1975 if (bit (this_instr, 25))
1976 {
1977 unsigned long immval = bits (this_instr, 0, 7);
1978 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1979 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1980 & 0xffffffff;
1981 }
1982 else /* operand 2 is a shifted register */
1983 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
1984
1985 switch (bits (this_instr, 21, 24))
1986 {
1987 case 0x0: /*and */
1988 result = operand1 & operand2;
1989 break;
1990
1991 case 0x1: /*eor */
1992 result = operand1 ^ operand2;
1993 break;
1994
1995 case 0x2: /*sub */
1996 result = operand1 - operand2;
1997 break;
1998
1999 case 0x3: /*rsb */
2000 result = operand2 - operand1;
2001 break;
2002
2003 case 0x4: /*add */
2004 result = operand1 + operand2;
2005 break;
2006
2007 case 0x5: /*adc */
2008 result = operand1 + operand2 + c;
2009 break;
2010
2011 case 0x6: /*sbc */
2012 result = operand1 - operand2 + c;
2013 break;
2014
2015 case 0x7: /*rsc */
2016 result = operand2 - operand1 + c;
2017 break;
2018
2019 case 0x8:
2020 case 0x9:
2021 case 0xa:
2022 case 0xb: /* tst, teq, cmp, cmn */
2023 result = (unsigned long) nextpc;
2024 break;
2025
2026 case 0xc: /*orr */
2027 result = operand1 | operand2;
2028 break;
2029
2030 case 0xd: /*mov */
2031 /* Always step into a function. */
2032 result = operand2;
2033 break;
2034
2035 case 0xe: /*bic */
2036 result = operand1 & ~operand2;
2037 break;
2038
2039 case 0xf: /*mvn */
2040 result = ~operand2;
2041 break;
2042 }
2043 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
2044 (gdbarch, result);
2045
2046 if (nextpc == pc)
2047 error (_("Infinite loop detected"));
2048 break;
2049 }
2050
2051 case 0x4:
2052 case 0x5: /* data transfer */
2053 case 0x6:
2054 case 0x7:
2055 if (bit (this_instr, 20))
2056 {
2057 /* load */
2058 if (bits (this_instr, 12, 15) == 15)
2059 {
2060 /* rd == pc */
2061 unsigned long rn;
2062 unsigned long base;
2063
2064 if (bit (this_instr, 22))
2065 error (_("Invalid update to pc in instruction"));
2066
2067 /* byte write to PC */
2068 rn = bits (this_instr, 16, 19);
2069 base = (rn == 15) ? pc_val + 8
2070 : get_frame_register_unsigned (frame, rn);
2071 if (bit (this_instr, 24))
2072 {
2073 /* pre-indexed */
2074 int c = (status & FLAG_C) ? 1 : 0;
2075 unsigned long offset =
2076 (bit (this_instr, 25)
2077 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
2078 : bits (this_instr, 0, 11));
2079
2080 if (bit (this_instr, 23))
2081 base += offset;
2082 else
2083 base -= offset;
2084 }
2085 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
2086 4, byte_order);
2087
2088 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
2089
2090 if (nextpc == pc)
2091 error (_("Infinite loop detected"));
2092 }
2093 }
2094 break;
2095
2096 case 0x8:
2097 case 0x9: /* block transfer */
2098 if (bit (this_instr, 20))
2099 {
2100 /* LDM */
2101 if (bit (this_instr, 15))
2102 {
2103 /* loading pc */
2104 int offset = 0;
2105
2106 if (bit (this_instr, 23))
2107 {
2108 /* up */
2109 unsigned long reglist = bits (this_instr, 0, 14);
2110 offset = bitcount (reglist) * 4;
2111 if (bit (this_instr, 24)) /* pre */
2112 offset += 4;
2113 }
2114 else if (bit (this_instr, 24))
2115 offset = -4;
2116
2117 {
2118 unsigned long rn_val =
2119 get_frame_register_unsigned (frame,
2120 bits (this_instr, 16, 19));
2121 nextpc =
2122 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
2123 + offset),
2124 4, byte_order);
2125 }
2126 nextpc = gdbarch_addr_bits_remove
2127 (gdbarch, nextpc);
2128 if (nextpc == pc)
2129 error (_("Infinite loop detected"));
2130 }
2131 }
2132 break;
2133
2134 case 0xb: /* branch & link */
2135 case 0xa: /* branch */
2136 {
2137 nextpc = BranchDest (pc, this_instr);
2138
2139 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
2140 if (nextpc == pc)
2141 error (_("Infinite loop detected"));
2142 break;
2143 }
2144
2145 case 0xc:
2146 case 0xd:
2147 case 0xe: /* coproc ops */
2148 case 0xf: /* SWI */
2149 break;
2150
2151 default:
2152 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
2153 return (pc);
2154 }
2155 }
2156
2157 return nextpc;
2158 }
2159
2160 /* single_step() is called just before we want to resume the inferior,
2161 if we want to single-step it but there is no hardware or kernel
2162 single-step support. We find the target of the coming instruction
2163 and breakpoint it. */
2164
2165 int
2166 arm_software_single_step (struct frame_info *frame)
2167 {
2168 struct gdbarch *gdbarch = get_frame_arch (frame);
2169
2170 /* NOTE: This may insert the wrong breakpoint instruction when
2171 single-stepping over a mode-changing instruction, if the
2172 CPSR heuristics are used. */
2173
2174 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
2175 insert_single_step_breakpoint (gdbarch, next_pc);
2176
2177 return 1;
2178 }
2179
2180 #include "bfd-in2.h"
2181 #include "libcoff.h"
2182
2183 static int
2184 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
2185 {
2186 if (arm_pc_is_thumb (memaddr))
2187 {
2188 static asymbol *asym;
2189 static combined_entry_type ce;
2190 static struct coff_symbol_struct csym;
2191 static struct bfd fake_bfd;
2192 static bfd_target fake_target;
2193
2194 if (csym.native == NULL)
2195 {
2196 /* Create a fake symbol vector containing a Thumb symbol.
2197 This is solely so that the code in print_insn_little_arm()
2198 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2199 the presence of a Thumb symbol and switch to decoding
2200 Thumb instructions. */
2201
2202 fake_target.flavour = bfd_target_coff_flavour;
2203 fake_bfd.xvec = &fake_target;
2204 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2205 csym.native = &ce;
2206 csym.symbol.the_bfd = &fake_bfd;
2207 csym.symbol.name = "fake";
2208 asym = (asymbol *) & csym;
2209 }
2210
2211 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2212 info->symbols = &asym;
2213 }
2214 else
2215 info->symbols = NULL;
2216
2217 if (info->endian == BFD_ENDIAN_BIG)
2218 return print_insn_big_arm (memaddr, info);
2219 else
2220 return print_insn_little_arm (memaddr, info);
2221 }
2222
2223 /* The following define instruction sequences that will cause ARM
2224 cpu's to take an undefined instruction trap. These are used to
2225 signal a breakpoint to GDB.
2226
2227 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2228 modes. A different instruction is required for each mode. The ARM
2229 cpu's can also be big or little endian. Thus four different
2230 instructions are needed to support all cases.
2231
2232 Note: ARMv4 defines several new instructions that will take the
2233 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2234 not in fact add the new instructions. The new undefined
2235 instructions in ARMv4 are all instructions that had no defined
2236 behaviour in earlier chips. There is no guarantee that they will
2237 raise an exception, but may be treated as NOP's. In practice, it
2238 may only safe to rely on instructions matching:
2239
2240 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2241 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2242 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2243
2244 Even this may only true if the condition predicate is true. The
2245 following use a condition predicate of ALWAYS so it is always TRUE.
2246
2247 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2248 and NetBSD all use a software interrupt rather than an undefined
2249 instruction to force a trap. This can be handled by by the
2250 abi-specific code during establishment of the gdbarch vector. */
2251
2252 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2253 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2254 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2255 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2256
2257 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2258 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2259 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2260 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2261
2262 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2263 the program counter value to determine whether a 16-bit or 32-bit
2264 breakpoint should be used. It returns a pointer to a string of
2265 bytes that encode a breakpoint instruction, stores the length of
2266 the string to *lenptr, and adjusts the program counter (if
2267 necessary) to point to the actual memory location where the
2268 breakpoint should be inserted. */
2269
2270 static const unsigned char *
2271 arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
2272 {
2273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2274
2275 if (arm_pc_is_thumb (*pcptr))
2276 {
2277 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2278 *lenptr = tdep->thumb_breakpoint_size;
2279 return tdep->thumb_breakpoint;
2280 }
2281 else
2282 {
2283 *lenptr = tdep->arm_breakpoint_size;
2284 return tdep->arm_breakpoint;
2285 }
2286 }
2287
2288 /* Extract from an array REGBUF containing the (raw) register state a
2289 function return value of type TYPE, and copy that, in virtual
2290 format, into VALBUF. */
2291
2292 static void
2293 arm_extract_return_value (struct type *type, struct regcache *regs,
2294 gdb_byte *valbuf)
2295 {
2296 struct gdbarch *gdbarch = get_regcache_arch (regs);
2297 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2298
2299 if (TYPE_CODE_FLT == TYPE_CODE (type))
2300 {
2301 switch (gdbarch_tdep (gdbarch)->fp_model)
2302 {
2303 case ARM_FLOAT_FPA:
2304 {
2305 /* The value is in register F0 in internal format. We need to
2306 extract the raw value and then convert it to the desired
2307 internal type. */
2308 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2309
2310 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2311 convert_from_extended (floatformat_from_type (type), tmpbuf,
2312 valbuf, gdbarch_byte_order (gdbarch));
2313 }
2314 break;
2315
2316 case ARM_FLOAT_SOFT_FPA:
2317 case ARM_FLOAT_SOFT_VFP:
2318 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2319 if (TYPE_LENGTH (type) > 4)
2320 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2321 valbuf + INT_REGISTER_SIZE);
2322 break;
2323
2324 default:
2325 internal_error
2326 (__FILE__, __LINE__,
2327 _("arm_extract_return_value: Floating point model not supported"));
2328 break;
2329 }
2330 }
2331 else if (TYPE_CODE (type) == TYPE_CODE_INT
2332 || TYPE_CODE (type) == TYPE_CODE_CHAR
2333 || TYPE_CODE (type) == TYPE_CODE_BOOL
2334 || TYPE_CODE (type) == TYPE_CODE_PTR
2335 || TYPE_CODE (type) == TYPE_CODE_REF
2336 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2337 {
2338 /* If the the type is a plain integer, then the access is
2339 straight-forward. Otherwise we have to play around a bit more. */
2340 int len = TYPE_LENGTH (type);
2341 int regno = ARM_A1_REGNUM;
2342 ULONGEST tmp;
2343
2344 while (len > 0)
2345 {
2346 /* By using store_unsigned_integer we avoid having to do
2347 anything special for small big-endian values. */
2348 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2349 store_unsigned_integer (valbuf,
2350 (len > INT_REGISTER_SIZE
2351 ? INT_REGISTER_SIZE : len),
2352 byte_order, tmp);
2353 len -= INT_REGISTER_SIZE;
2354 valbuf += INT_REGISTER_SIZE;
2355 }
2356 }
2357 else
2358 {
2359 /* For a structure or union the behaviour is as if the value had
2360 been stored to word-aligned memory and then loaded into
2361 registers with 32-bit load instruction(s). */
2362 int len = TYPE_LENGTH (type);
2363 int regno = ARM_A1_REGNUM;
2364 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2365
2366 while (len > 0)
2367 {
2368 regcache_cooked_read (regs, regno++, tmpbuf);
2369 memcpy (valbuf, tmpbuf,
2370 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2371 len -= INT_REGISTER_SIZE;
2372 valbuf += INT_REGISTER_SIZE;
2373 }
2374 }
2375 }
2376
2377
2378 /* Will a function return an aggregate type in memory or in a
2379 register? Return 0 if an aggregate type can be returned in a
2380 register, 1 if it must be returned in memory. */
2381
2382 static int
2383 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2384 {
2385 int nRc;
2386 enum type_code code;
2387
2388 CHECK_TYPEDEF (type);
2389
2390 /* In the ARM ABI, "integer" like aggregate types are returned in
2391 registers. For an aggregate type to be integer like, its size
2392 must be less than or equal to INT_REGISTER_SIZE and the
2393 offset of each addressable subfield must be zero. Note that bit
2394 fields are not addressable, and all addressable subfields of
2395 unions always start at offset zero.
2396
2397 This function is based on the behaviour of GCC 2.95.1.
2398 See: gcc/arm.c: arm_return_in_memory() for details.
2399
2400 Note: All versions of GCC before GCC 2.95.2 do not set up the
2401 parameters correctly for a function returning the following
2402 structure: struct { float f;}; This should be returned in memory,
2403 not a register. Richard Earnshaw sent me a patch, but I do not
2404 know of any way to detect if a function like the above has been
2405 compiled with the correct calling convention. */
2406
2407 /* All aggregate types that won't fit in a register must be returned
2408 in memory. */
2409 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
2410 {
2411 return 1;
2412 }
2413
2414 /* The AAPCS says all aggregates not larger than a word are returned
2415 in a register. */
2416 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2417 return 0;
2418
2419 /* The only aggregate types that can be returned in a register are
2420 structs and unions. Arrays must be returned in memory. */
2421 code = TYPE_CODE (type);
2422 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2423 {
2424 return 1;
2425 }
2426
2427 /* Assume all other aggregate types can be returned in a register.
2428 Run a check for structures, unions and arrays. */
2429 nRc = 0;
2430
2431 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2432 {
2433 int i;
2434 /* Need to check if this struct/union is "integer" like. For
2435 this to be true, its size must be less than or equal to
2436 INT_REGISTER_SIZE and the offset of each addressable
2437 subfield must be zero. Note that bit fields are not
2438 addressable, and unions always start at offset zero. If any
2439 of the subfields is a floating point type, the struct/union
2440 cannot be an integer type. */
2441
2442 /* For each field in the object, check:
2443 1) Is it FP? --> yes, nRc = 1;
2444 2) Is it addressable (bitpos != 0) and
2445 not packed (bitsize == 0)?
2446 --> yes, nRc = 1
2447 */
2448
2449 for (i = 0; i < TYPE_NFIELDS (type); i++)
2450 {
2451 enum type_code field_type_code;
2452 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2453
2454 /* Is it a floating point type field? */
2455 if (field_type_code == TYPE_CODE_FLT)
2456 {
2457 nRc = 1;
2458 break;
2459 }
2460
2461 /* If bitpos != 0, then we have to care about it. */
2462 if (TYPE_FIELD_BITPOS (type, i) != 0)
2463 {
2464 /* Bitfields are not addressable. If the field bitsize is
2465 zero, then the field is not packed. Hence it cannot be
2466 a bitfield or any other packed type. */
2467 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2468 {
2469 nRc = 1;
2470 break;
2471 }
2472 }
2473 }
2474 }
2475
2476 return nRc;
2477 }
2478
2479 /* Write into appropriate registers a function return value of type
2480 TYPE, given in virtual format. */
2481
2482 static void
2483 arm_store_return_value (struct type *type, struct regcache *regs,
2484 const gdb_byte *valbuf)
2485 {
2486 struct gdbarch *gdbarch = get_regcache_arch (regs);
2487 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2488
2489 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2490 {
2491 char buf[MAX_REGISTER_SIZE];
2492
2493 switch (gdbarch_tdep (gdbarch)->fp_model)
2494 {
2495 case ARM_FLOAT_FPA:
2496
2497 convert_to_extended (floatformat_from_type (type), buf, valbuf,
2498 gdbarch_byte_order (gdbarch));
2499 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2500 break;
2501
2502 case ARM_FLOAT_SOFT_FPA:
2503 case ARM_FLOAT_SOFT_VFP:
2504 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2505 if (TYPE_LENGTH (type) > 4)
2506 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2507 valbuf + INT_REGISTER_SIZE);
2508 break;
2509
2510 default:
2511 internal_error
2512 (__FILE__, __LINE__,
2513 _("arm_store_return_value: Floating point model not supported"));
2514 break;
2515 }
2516 }
2517 else if (TYPE_CODE (type) == TYPE_CODE_INT
2518 || TYPE_CODE (type) == TYPE_CODE_CHAR
2519 || TYPE_CODE (type) == TYPE_CODE_BOOL
2520 || TYPE_CODE (type) == TYPE_CODE_PTR
2521 || TYPE_CODE (type) == TYPE_CODE_REF
2522 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2523 {
2524 if (TYPE_LENGTH (type) <= 4)
2525 {
2526 /* Values of one word or less are zero/sign-extended and
2527 returned in r0. */
2528 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2529 LONGEST val = unpack_long (type, valbuf);
2530
2531 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
2532 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2533 }
2534 else
2535 {
2536 /* Integral values greater than one word are stored in consecutive
2537 registers starting with r0. This will always be a multiple of
2538 the regiser size. */
2539 int len = TYPE_LENGTH (type);
2540 int regno = ARM_A1_REGNUM;
2541
2542 while (len > 0)
2543 {
2544 regcache_cooked_write (regs, regno++, valbuf);
2545 len -= INT_REGISTER_SIZE;
2546 valbuf += INT_REGISTER_SIZE;
2547 }
2548 }
2549 }
2550 else
2551 {
2552 /* For a structure or union the behaviour is as if the value had
2553 been stored to word-aligned memory and then loaded into
2554 registers with 32-bit load instruction(s). */
2555 int len = TYPE_LENGTH (type);
2556 int regno = ARM_A1_REGNUM;
2557 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2558
2559 while (len > 0)
2560 {
2561 memcpy (tmpbuf, valbuf,
2562 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2563 regcache_cooked_write (regs, regno++, tmpbuf);
2564 len -= INT_REGISTER_SIZE;
2565 valbuf += INT_REGISTER_SIZE;
2566 }
2567 }
2568 }
2569
2570
2571 /* Handle function return values. */
2572
2573 static enum return_value_convention
2574 arm_return_value (struct gdbarch *gdbarch, struct type *func_type,
2575 struct type *valtype, struct regcache *regcache,
2576 gdb_byte *readbuf, const gdb_byte *writebuf)
2577 {
2578 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2579
2580 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2581 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2582 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2583 {
2584 if (tdep->struct_return == pcc_struct_return
2585 || arm_return_in_memory (gdbarch, valtype))
2586 return RETURN_VALUE_STRUCT_CONVENTION;
2587 }
2588
2589 if (writebuf)
2590 arm_store_return_value (valtype, regcache, writebuf);
2591
2592 if (readbuf)
2593 arm_extract_return_value (valtype, regcache, readbuf);
2594
2595 return RETURN_VALUE_REGISTER_CONVENTION;
2596 }
2597
2598
2599 static int
2600 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2601 {
2602 struct gdbarch *gdbarch = get_frame_arch (frame);
2603 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2605 CORE_ADDR jb_addr;
2606 char buf[INT_REGISTER_SIZE];
2607
2608 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
2609
2610 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2611 INT_REGISTER_SIZE))
2612 return 0;
2613
2614 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
2615 return 1;
2616 }
2617
2618 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2619 return the target PC. Otherwise return 0. */
2620
2621 CORE_ADDR
2622 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
2623 {
2624 char *name;
2625 int namelen;
2626 CORE_ADDR start_addr;
2627
2628 /* Find the starting address and name of the function containing the PC. */
2629 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2630 return 0;
2631
2632 /* If PC is in a Thumb call or return stub, return the address of the
2633 target PC, which is in a register. The thunk functions are called
2634 _call_via_xx, where x is the register name. The possible names
2635 are r0-r9, sl, fp, ip, sp, and lr. */
2636 if (strncmp (name, "_call_via_", 10) == 0)
2637 {
2638 /* Use the name suffix to determine which register contains the
2639 target PC. */
2640 static char *table[15] =
2641 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2642 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2643 };
2644 int regno;
2645 int offset = strlen (name) - 2;
2646
2647 for (regno = 0; regno <= 14; regno++)
2648 if (strcmp (&name[offset], table[regno]) == 0)
2649 return get_frame_register_unsigned (frame, regno);
2650 }
2651
2652 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2653 non-interworking calls to foo. We could decode the stubs
2654 to find the target but it's easier to use the symbol table. */
2655 namelen = strlen (name);
2656 if (name[0] == '_' && name[1] == '_'
2657 && ((namelen > 2 + strlen ("_from_thumb")
2658 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2659 strlen ("_from_thumb")) == 0)
2660 || (namelen > 2 + strlen ("_from_arm")
2661 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2662 strlen ("_from_arm")) == 0)))
2663 {
2664 char *target_name;
2665 int target_len = namelen - 2;
2666 struct minimal_symbol *minsym;
2667 struct objfile *objfile;
2668 struct obj_section *sec;
2669
2670 if (name[namelen - 1] == 'b')
2671 target_len -= strlen ("_from_thumb");
2672 else
2673 target_len -= strlen ("_from_arm");
2674
2675 target_name = alloca (target_len + 1);
2676 memcpy (target_name, name + 2, target_len);
2677 target_name[target_len] = '\0';
2678
2679 sec = find_pc_section (pc);
2680 objfile = (sec == NULL) ? NULL : sec->objfile;
2681 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2682 if (minsym != NULL)
2683 return SYMBOL_VALUE_ADDRESS (minsym);
2684 else
2685 return 0;
2686 }
2687
2688 return 0; /* not a stub */
2689 }
2690
2691 static void
2692 set_arm_command (char *args, int from_tty)
2693 {
2694 printf_unfiltered (_("\
2695 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2696 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2697 }
2698
2699 static void
2700 show_arm_command (char *args, int from_tty)
2701 {
2702 cmd_show_list (showarmcmdlist, from_tty, "");
2703 }
2704
2705 static void
2706 arm_update_current_architecture (void)
2707 {
2708 struct gdbarch_info info;
2709
2710 /* If the current architecture is not ARM, we have nothing to do. */
2711 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm)
2712 return;
2713
2714 /* Update the architecture. */
2715 gdbarch_info_init (&info);
2716
2717 if (!gdbarch_update_p (info))
2718 internal_error (__FILE__, __LINE__, "could not update architecture");
2719 }
2720
2721 static void
2722 set_fp_model_sfunc (char *args, int from_tty,
2723 struct cmd_list_element *c)
2724 {
2725 enum arm_float_model fp_model;
2726
2727 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2728 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2729 {
2730 arm_fp_model = fp_model;
2731 break;
2732 }
2733
2734 if (fp_model == ARM_FLOAT_LAST)
2735 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2736 current_fp_model);
2737
2738 arm_update_current_architecture ();
2739 }
2740
2741 static void
2742 show_fp_model (struct ui_file *file, int from_tty,
2743 struct cmd_list_element *c, const char *value)
2744 {
2745 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
2746
2747 if (arm_fp_model == ARM_FLOAT_AUTO
2748 && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
2749 fprintf_filtered (file, _("\
2750 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2751 fp_model_strings[tdep->fp_model]);
2752 else
2753 fprintf_filtered (file, _("\
2754 The current ARM floating point model is \"%s\".\n"),
2755 fp_model_strings[arm_fp_model]);
2756 }
2757
2758 static void
2759 arm_set_abi (char *args, int from_tty,
2760 struct cmd_list_element *c)
2761 {
2762 enum arm_abi_kind arm_abi;
2763
2764 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2765 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2766 {
2767 arm_abi_global = arm_abi;
2768 break;
2769 }
2770
2771 if (arm_abi == ARM_ABI_LAST)
2772 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2773 arm_abi_string);
2774
2775 arm_update_current_architecture ();
2776 }
2777
2778 static void
2779 arm_show_abi (struct ui_file *file, int from_tty,
2780 struct cmd_list_element *c, const char *value)
2781 {
2782 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
2783
2784 if (arm_abi_global == ARM_ABI_AUTO
2785 && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
2786 fprintf_filtered (file, _("\
2787 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2788 arm_abi_strings[tdep->arm_abi]);
2789 else
2790 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2791 arm_abi_string);
2792 }
2793
2794 static void
2795 arm_show_fallback_mode (struct ui_file *file, int from_tty,
2796 struct cmd_list_element *c, const char *value)
2797 {
2798 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
2799
2800 fprintf_filtered (file, _("\
2801 The current execution mode assumed (when symbols are unavailable) is \"%s\".\n"),
2802 arm_fallback_mode_string);
2803 }
2804
2805 static void
2806 arm_show_force_mode (struct ui_file *file, int from_tty,
2807 struct cmd_list_element *c, const char *value)
2808 {
2809 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
2810
2811 fprintf_filtered (file, _("\
2812 The current execution mode assumed (even when symbols are available) is \"%s\".\n"),
2813 arm_force_mode_string);
2814 }
2815
2816 /* If the user changes the register disassembly style used for info
2817 register and other commands, we have to also switch the style used
2818 in opcodes for disassembly output. This function is run in the "set
2819 arm disassembly" command, and does that. */
2820
2821 static void
2822 set_disassembly_style_sfunc (char *args, int from_tty,
2823 struct cmd_list_element *c)
2824 {
2825 set_disassembly_style ();
2826 }
2827 \f
2828 /* Return the ARM register name corresponding to register I. */
2829 static const char *
2830 arm_register_name (struct gdbarch *gdbarch, int i)
2831 {
2832 if (i >= ARRAY_SIZE (arm_register_names))
2833 /* These registers are only supported on targets which supply
2834 an XML description. */
2835 return "";
2836
2837 return arm_register_names[i];
2838 }
2839
2840 static void
2841 set_disassembly_style (void)
2842 {
2843 int current;
2844
2845 /* Find the style that the user wants. */
2846 for (current = 0; current < num_disassembly_options; current++)
2847 if (disassembly_style == valid_disassembly_styles[current])
2848 break;
2849 gdb_assert (current < num_disassembly_options);
2850
2851 /* Synchronize the disassembler. */
2852 set_arm_regname_option (current);
2853 }
2854
2855 /* Test whether the coff symbol specific value corresponds to a Thumb
2856 function. */
2857
2858 static int
2859 coff_sym_is_thumb (int val)
2860 {
2861 return (val == C_THUMBEXT ||
2862 val == C_THUMBSTAT ||
2863 val == C_THUMBEXTFUNC ||
2864 val == C_THUMBSTATFUNC ||
2865 val == C_THUMBLABEL);
2866 }
2867
2868 /* arm_coff_make_msymbol_special()
2869 arm_elf_make_msymbol_special()
2870
2871 These functions test whether the COFF or ELF symbol corresponds to
2872 an address in thumb code, and set a "special" bit in a minimal
2873 symbol to indicate that it does. */
2874
2875 static void
2876 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2877 {
2878 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2879 STT_ARM_TFUNC). */
2880 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2881 == STT_LOPROC)
2882 MSYMBOL_SET_SPECIAL (msym);
2883 }
2884
2885 static void
2886 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2887 {
2888 if (coff_sym_is_thumb (val))
2889 MSYMBOL_SET_SPECIAL (msym);
2890 }
2891
2892 static void
2893 arm_objfile_data_cleanup (struct objfile *objfile, void *arg)
2894 {
2895 struct arm_per_objfile *data = arg;
2896 unsigned int i;
2897
2898 for (i = 0; i < objfile->obfd->section_count; i++)
2899 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
2900 }
2901
2902 static void
2903 arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
2904 asymbol *sym)
2905 {
2906 const char *name = bfd_asymbol_name (sym);
2907 struct arm_per_objfile *data;
2908 VEC(arm_mapping_symbol_s) **map_p;
2909 struct arm_mapping_symbol new_map_sym;
2910
2911 gdb_assert (name[0] == '$');
2912 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
2913 return;
2914
2915 data = objfile_data (objfile, arm_objfile_data_key);
2916 if (data == NULL)
2917 {
2918 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2919 struct arm_per_objfile);
2920 set_objfile_data (objfile, arm_objfile_data_key, data);
2921 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2922 objfile->obfd->section_count,
2923 VEC(arm_mapping_symbol_s) *);
2924 }
2925 map_p = &data->section_maps[bfd_get_section (sym)->index];
2926
2927 new_map_sym.value = sym->value;
2928 new_map_sym.type = name[1];
2929
2930 /* Assume that most mapping symbols appear in order of increasing
2931 value. If they were randomly distributed, it would be faster to
2932 always push here and then sort at first use. */
2933 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
2934 {
2935 struct arm_mapping_symbol *prev_map_sym;
2936
2937 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
2938 if (prev_map_sym->value >= sym->value)
2939 {
2940 unsigned int idx;
2941 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
2942 arm_compare_mapping_symbols);
2943 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
2944 return;
2945 }
2946 }
2947
2948 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
2949 }
2950
2951 static void
2952 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
2953 {
2954 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
2955
2956 /* If necessary, set the T bit. */
2957 if (arm_apcs_32)
2958 {
2959 ULONGEST val;
2960 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
2961 if (arm_pc_is_thumb (pc))
2962 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | CPSR_T);
2963 else
2964 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2965 val & ~(ULONGEST) CPSR_T);
2966 }
2967 }
2968
2969 static struct value *
2970 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2971 {
2972 const int *reg_p = baton;
2973 return value_of_register (*reg_p, frame);
2974 }
2975 \f
2976 static enum gdb_osabi
2977 arm_elf_osabi_sniffer (bfd *abfd)
2978 {
2979 unsigned int elfosabi;
2980 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2981
2982 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2983
2984 if (elfosabi == ELFOSABI_ARM)
2985 /* GNU tools use this value. Check note sections in this case,
2986 as well. */
2987 bfd_map_over_sections (abfd,
2988 generic_elf_osabi_sniff_abi_tag_sections,
2989 &osabi);
2990
2991 /* Anything else will be handled by the generic ELF sniffer. */
2992 return osabi;
2993 }
2994
2995 \f
2996 /* Initialize the current architecture based on INFO. If possible,
2997 re-use an architecture from ARCHES, which is a list of
2998 architectures already created during this debugging session.
2999
3000 Called e.g. at program startup, when reading a core file, and when
3001 reading a binary file. */
3002
3003 static struct gdbarch *
3004 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3005 {
3006 struct gdbarch_tdep *tdep;
3007 struct gdbarch *gdbarch;
3008 struct gdbarch_list *best_arch;
3009 enum arm_abi_kind arm_abi = arm_abi_global;
3010 enum arm_float_model fp_model = arm_fp_model;
3011 struct tdesc_arch_data *tdesc_data = NULL;
3012 int i;
3013 int have_fpa_registers = 1;
3014
3015 /* Check any target description for validity. */
3016 if (tdesc_has_registers (info.target_desc))
3017 {
3018 /* For most registers we require GDB's default names; but also allow
3019 the numeric names for sp / lr / pc, as a convenience. */
3020 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
3021 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
3022 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
3023
3024 const struct tdesc_feature *feature;
3025 int i, valid_p;
3026
3027 feature = tdesc_find_feature (info.target_desc,
3028 "org.gnu.gdb.arm.core");
3029 if (feature == NULL)
3030 return NULL;
3031
3032 tdesc_data = tdesc_data_alloc ();
3033
3034 valid_p = 1;
3035 for (i = 0; i < ARM_SP_REGNUM; i++)
3036 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
3037 arm_register_names[i]);
3038 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3039 ARM_SP_REGNUM,
3040 arm_sp_names);
3041 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3042 ARM_LR_REGNUM,
3043 arm_lr_names);
3044 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3045 ARM_PC_REGNUM,
3046 arm_pc_names);
3047 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3048 ARM_PS_REGNUM, "cpsr");
3049
3050 if (!valid_p)
3051 {
3052 tdesc_data_cleanup (tdesc_data);
3053 return NULL;
3054 }
3055
3056 feature = tdesc_find_feature (info.target_desc,
3057 "org.gnu.gdb.arm.fpa");
3058 if (feature != NULL)
3059 {
3060 valid_p = 1;
3061 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
3062 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
3063 arm_register_names[i]);
3064 if (!valid_p)
3065 {
3066 tdesc_data_cleanup (tdesc_data);
3067 return NULL;
3068 }
3069 }
3070 else
3071 have_fpa_registers = 0;
3072
3073 feature = tdesc_find_feature (info.target_desc,
3074 "org.gnu.gdb.xscale.iwmmxt");
3075 if (feature != NULL)
3076 {
3077 static const char *const iwmmxt_names[] = {
3078 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
3079 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
3080 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
3081 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
3082 };
3083
3084 valid_p = 1;
3085 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
3086 valid_p
3087 &= tdesc_numbered_register (feature, tdesc_data, i,
3088 iwmmxt_names[i - ARM_WR0_REGNUM]);
3089
3090 /* Check for the control registers, but do not fail if they
3091 are missing. */
3092 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
3093 tdesc_numbered_register (feature, tdesc_data, i,
3094 iwmmxt_names[i - ARM_WR0_REGNUM]);
3095
3096 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
3097 valid_p
3098 &= tdesc_numbered_register (feature, tdesc_data, i,
3099 iwmmxt_names[i - ARM_WR0_REGNUM]);
3100
3101 if (!valid_p)
3102 {
3103 tdesc_data_cleanup (tdesc_data);
3104 return NULL;
3105 }
3106 }
3107 }
3108
3109 /* If we have an object to base this architecture on, try to determine
3110 its ABI. */
3111
3112 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
3113 {
3114 int ei_osabi, e_flags;
3115
3116 switch (bfd_get_flavour (info.abfd))
3117 {
3118 case bfd_target_aout_flavour:
3119 /* Assume it's an old APCS-style ABI. */
3120 arm_abi = ARM_ABI_APCS;
3121 break;
3122
3123 case bfd_target_coff_flavour:
3124 /* Assume it's an old APCS-style ABI. */
3125 /* XXX WinCE? */
3126 arm_abi = ARM_ABI_APCS;
3127 break;
3128
3129 case bfd_target_elf_flavour:
3130 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
3131 e_flags = elf_elfheader (info.abfd)->e_flags;
3132
3133 if (ei_osabi == ELFOSABI_ARM)
3134 {
3135 /* GNU tools used to use this value, but do not for EABI
3136 objects. There's nowhere to tag an EABI version
3137 anyway, so assume APCS. */
3138 arm_abi = ARM_ABI_APCS;
3139 }
3140 else if (ei_osabi == ELFOSABI_NONE)
3141 {
3142 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
3143
3144 switch (eabi_ver)
3145 {
3146 case EF_ARM_EABI_UNKNOWN:
3147 /* Assume GNU tools. */
3148 arm_abi = ARM_ABI_APCS;
3149 break;
3150
3151 case EF_ARM_EABI_VER4:
3152 case EF_ARM_EABI_VER5:
3153 arm_abi = ARM_ABI_AAPCS;
3154 /* EABI binaries default to VFP float ordering. */
3155 if (fp_model == ARM_FLOAT_AUTO)
3156 fp_model = ARM_FLOAT_SOFT_VFP;
3157 break;
3158
3159 default:
3160 /* Leave it as "auto". */
3161 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
3162 break;
3163 }
3164 }
3165
3166 if (fp_model == ARM_FLOAT_AUTO)
3167 {
3168 int e_flags = elf_elfheader (info.abfd)->e_flags;
3169
3170 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
3171 {
3172 case 0:
3173 /* Leave it as "auto". Strictly speaking this case
3174 means FPA, but almost nobody uses that now, and
3175 many toolchains fail to set the appropriate bits
3176 for the floating-point model they use. */
3177 break;
3178 case EF_ARM_SOFT_FLOAT:
3179 fp_model = ARM_FLOAT_SOFT_FPA;
3180 break;
3181 case EF_ARM_VFP_FLOAT:
3182 fp_model = ARM_FLOAT_VFP;
3183 break;
3184 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
3185 fp_model = ARM_FLOAT_SOFT_VFP;
3186 break;
3187 }
3188 }
3189
3190 if (e_flags & EF_ARM_BE8)
3191 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
3192
3193 break;
3194
3195 default:
3196 /* Leave it as "auto". */
3197 break;
3198 }
3199 }
3200
3201 /* If there is already a candidate, use it. */
3202 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
3203 best_arch != NULL;
3204 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
3205 {
3206 if (arm_abi != ARM_ABI_AUTO
3207 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
3208 continue;
3209
3210 if (fp_model != ARM_FLOAT_AUTO
3211 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
3212 continue;
3213
3214 /* Found a match. */
3215 break;
3216 }
3217
3218 if (best_arch != NULL)
3219 {
3220 if (tdesc_data != NULL)
3221 tdesc_data_cleanup (tdesc_data);
3222 return best_arch->gdbarch;
3223 }
3224
3225 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
3226 gdbarch = gdbarch_alloc (&info, tdep);
3227
3228 /* Record additional information about the architecture we are defining.
3229 These are gdbarch discriminators, like the OSABI. */
3230 tdep->arm_abi = arm_abi;
3231 tdep->fp_model = fp_model;
3232 tdep->have_fpa_registers = have_fpa_registers;
3233
3234 /* Breakpoints. */
3235 switch (info.byte_order_for_code)
3236 {
3237 case BFD_ENDIAN_BIG:
3238 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
3239 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
3240 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
3241 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
3242
3243 break;
3244
3245 case BFD_ENDIAN_LITTLE:
3246 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
3247 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
3248 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
3249 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
3250
3251 break;
3252
3253 default:
3254 internal_error (__FILE__, __LINE__,
3255 _("arm_gdbarch_init: bad byte order for float format"));
3256 }
3257
3258 /* On ARM targets char defaults to unsigned. */
3259 set_gdbarch_char_signed (gdbarch, 0);
3260
3261 /* This should be low enough for everything. */
3262 tdep->lowest_pc = 0x20;
3263 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
3264
3265 /* The default, for both APCS and AAPCS, is to return small
3266 structures in registers. */
3267 tdep->struct_return = reg_struct_return;
3268
3269 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
3270 set_gdbarch_frame_align (gdbarch, arm_frame_align);
3271
3272 set_gdbarch_write_pc (gdbarch, arm_write_pc);
3273
3274 /* Frame handling. */
3275 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
3276 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
3277 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
3278
3279 frame_base_set_default (gdbarch, &arm_normal_base);
3280
3281 /* Address manipulation. */
3282 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
3283 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
3284
3285 /* Advance PC across function entry code. */
3286 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
3287
3288 /* Skip trampolines. */
3289 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
3290
3291 /* The stack grows downward. */
3292 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3293
3294 /* Breakpoint manipulation. */
3295 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
3296
3297 /* Information about registers, etc. */
3298 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
3299 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
3300 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
3301 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
3302 set_gdbarch_register_type (gdbarch, arm_register_type);
3303
3304 /* This "info float" is FPA-specific. Use the generic version if we
3305 do not have FPA. */
3306 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
3307 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
3308
3309 /* Internal <-> external register number maps. */
3310 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
3311 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
3312
3313 set_gdbarch_register_name (gdbarch, arm_register_name);
3314
3315 /* Returning results. */
3316 set_gdbarch_return_value (gdbarch, arm_return_value);
3317
3318 /* Disassembly. */
3319 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3320
3321 /* Minsymbol frobbing. */
3322 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3323 set_gdbarch_coff_make_msymbol_special (gdbarch,
3324 arm_coff_make_msymbol_special);
3325 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
3326
3327 /* Virtual tables. */
3328 set_gdbarch_vbit_in_delta (gdbarch, 1);
3329
3330 /* Hook in the ABI-specific overrides, if they have been registered. */
3331 gdbarch_init_osabi (info, gdbarch);
3332
3333 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
3334
3335 /* Add some default predicates. */
3336 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
3337 dwarf2_append_unwinders (gdbarch);
3338 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
3339
3340 /* Now we have tuned the configuration, set a few final things,
3341 based on what the OS ABI has told us. */
3342
3343 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3344 binaries are always marked. */
3345 if (tdep->arm_abi == ARM_ABI_AUTO)
3346 tdep->arm_abi = ARM_ABI_APCS;
3347
3348 /* We used to default to FPA for generic ARM, but almost nobody
3349 uses that now, and we now provide a way for the user to force
3350 the model. So default to the most useful variant. */
3351 if (tdep->fp_model == ARM_FLOAT_AUTO)
3352 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3353
3354 if (tdep->jb_pc >= 0)
3355 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3356
3357 /* Floating point sizes and format. */
3358 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3359 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
3360 {
3361 set_gdbarch_double_format
3362 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3363 set_gdbarch_long_double_format
3364 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3365 }
3366 else
3367 {
3368 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3369 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3370 }
3371
3372 if (tdesc_data)
3373 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
3374
3375 /* Add standard register aliases. We add aliases even for those
3376 nanes which are used by the current architecture - it's simpler,
3377 and does no harm, since nothing ever lists user registers. */
3378 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3379 user_reg_add (gdbarch, arm_register_aliases[i].name,
3380 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3381
3382 return gdbarch;
3383 }
3384
3385 static void
3386 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3387 {
3388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3389
3390 if (tdep == NULL)
3391 return;
3392
3393 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3394 (unsigned long) tdep->lowest_pc);
3395 }
3396
3397 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3398
3399 void
3400 _initialize_arm_tdep (void)
3401 {
3402 struct ui_file *stb;
3403 long length;
3404 struct cmd_list_element *new_set, *new_show;
3405 const char *setname;
3406 const char *setdesc;
3407 const char *const *regnames;
3408 int numregs, i, j;
3409 static char *helptext;
3410 char regdesc[1024], *rdptr = regdesc;
3411 size_t rest = sizeof (regdesc);
3412
3413 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3414
3415 arm_objfile_data_key
3416 = register_objfile_data_with_cleanup (arm_objfile_data_cleanup);
3417
3418 /* Register an ELF OS ABI sniffer for ARM binaries. */
3419 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3420 bfd_target_elf_flavour,
3421 arm_elf_osabi_sniffer);
3422
3423 /* Get the number of possible sets of register names defined in opcodes. */
3424 num_disassembly_options = get_arm_regname_num_options ();
3425
3426 /* Add root prefix command for all "set arm"/"show arm" commands. */
3427 add_prefix_cmd ("arm", no_class, set_arm_command,
3428 _("Various ARM-specific commands."),
3429 &setarmcmdlist, "set arm ", 0, &setlist);
3430
3431 add_prefix_cmd ("arm", no_class, show_arm_command,
3432 _("Various ARM-specific commands."),
3433 &showarmcmdlist, "show arm ", 0, &showlist);
3434
3435 /* Sync the opcode insn printer with our register viewer. */
3436 parse_arm_disassembler_option ("reg-names-std");
3437
3438 /* Initialize the array that will be passed to
3439 add_setshow_enum_cmd(). */
3440 valid_disassembly_styles
3441 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3442 for (i = 0; i < num_disassembly_options; i++)
3443 {
3444 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3445 valid_disassembly_styles[i] = setname;
3446 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3447 rdptr += length;
3448 rest -= length;
3449 /* When we find the default names, tell the disassembler to use
3450 them. */
3451 if (!strcmp (setname, "std"))
3452 {
3453 disassembly_style = setname;
3454 set_arm_regname_option (i);
3455 }
3456 }
3457 /* Mark the end of valid options. */
3458 valid_disassembly_styles[num_disassembly_options] = NULL;
3459
3460 /* Create the help text. */
3461 stb = mem_fileopen ();
3462 fprintf_unfiltered (stb, "%s%s%s",
3463 _("The valid values are:\n"),
3464 regdesc,
3465 _("The default is \"std\"."));
3466 helptext = ui_file_xstrdup (stb, &length);
3467 ui_file_delete (stb);
3468
3469 add_setshow_enum_cmd("disassembler", no_class,
3470 valid_disassembly_styles, &disassembly_style,
3471 _("Set the disassembly style."),
3472 _("Show the disassembly style."),
3473 helptext,
3474 set_disassembly_style_sfunc,
3475 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3476 &setarmcmdlist, &showarmcmdlist);
3477
3478 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3479 _("Set usage of ARM 32-bit mode."),
3480 _("Show usage of ARM 32-bit mode."),
3481 _("When off, a 26-bit PC will be used."),
3482 NULL,
3483 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3484 &setarmcmdlist, &showarmcmdlist);
3485
3486 /* Add a command to allow the user to force the FPU model. */
3487 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3488 _("Set the floating point type."),
3489 _("Show the floating point type."),
3490 _("auto - Determine the FP typefrom the OS-ABI.\n\
3491 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3492 fpa - FPA co-processor (GCC compiled).\n\
3493 softvfp - Software FP with pure-endian doubles.\n\
3494 vfp - VFP co-processor."),
3495 set_fp_model_sfunc, show_fp_model,
3496 &setarmcmdlist, &showarmcmdlist);
3497
3498 /* Add a command to allow the user to force the ABI. */
3499 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3500 _("Set the ABI."),
3501 _("Show the ABI."),
3502 NULL, arm_set_abi, arm_show_abi,
3503 &setarmcmdlist, &showarmcmdlist);
3504
3505 /* Add two commands to allow the user to force the assumed
3506 execution mode. */
3507 add_setshow_enum_cmd ("fallback-mode", class_support,
3508 arm_mode_strings, &arm_fallback_mode_string,
3509 _("Set the mode assumed when symbols are unavailable."),
3510 _("Show the mode assumed when symbols are unavailable."),
3511 NULL, NULL, arm_show_fallback_mode,
3512 &setarmcmdlist, &showarmcmdlist);
3513 add_setshow_enum_cmd ("force-mode", class_support,
3514 arm_mode_strings, &arm_force_mode_string,
3515 _("Set the mode assumed even when symbols are available."),
3516 _("Show the mode assumed even when symbols are available."),
3517 NULL, NULL, arm_show_force_mode,
3518 &setarmcmdlist, &showarmcmdlist);
3519
3520 /* Debugging flag. */
3521 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3522 _("Set ARM debugging."),
3523 _("Show ARM debugging."),
3524 _("When on, arm-specific debugging is enabled."),
3525 NULL,
3526 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3527 &setdebuglist, &showdebuglist);
3528 }
This page took 0.165676 seconds and 5 git commands to generate.