2003-07-16 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Contributed by Theodore A. Roth, troth@openavr.org */
23
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39
40 /* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74 #undef EXTRACT_INSN
75 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
76
77 /* Constants: prefixed with AVR_ to avoid name space clashes */
78
79 enum
80 {
81 AVR_REG_W = 24,
82 AVR_REG_X = 26,
83 AVR_REG_Y = 28,
84 AVR_FP_REGNUM = 28,
85 AVR_REG_Z = 30,
86
87 AVR_SREG_REGNUM = 32,
88 AVR_SP_REGNUM = 33,
89 AVR_PC_REGNUM = 34,
90
91 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
92 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
93
94 AVR_PC_REG_INDEX = 35, /* index into array of registers */
95
96 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
97
98 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
99 AVR_MAX_PUSHES = 18,
100
101 /* Number of the last pushed register. r17 for current avr-gcc */
102 AVR_LAST_PUSHED_REGNUM = 17,
103
104 AVR_ARG1_REGNUM = 24, /* Single byte argument */
105 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
106
107 AVR_RET1_REGNUM = 24, /* Single byte return value */
108 AVR_RETN_REGNUM = 25, /* Multi byte return value */
109
110 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
111 bits? Do these have to match the bfd vma values?. It sure would make
112 things easier in the future if they didn't need to match.
113
114 Note: I chose these values so as to be consistent with bfd vma
115 addresses.
116
117 TRoth/2002-04-08: There is already a conflict with very large programs
118 in the mega128. The mega128 has 128K instruction bytes (64K words),
119 thus the Most Significant Bit is 0x10000 which gets masked off my
120 AVR_MEM_MASK.
121
122 The problem manifests itself when trying to set a breakpoint in a
123 function which resides in the upper half of the instruction space and
124 thus requires a 17-bit address.
125
126 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
127 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
128 but could be for some remote targets by just adding the correct offset
129 to the address and letting the remote target handle the low-level
130 details of actually accessing the eeprom. */
131
132 AVR_IMEM_START = 0x00000000, /* INSN memory */
133 AVR_SMEM_START = 0x00800000, /* SRAM memory */
134 #if 1
135 /* No eeprom mask defined */
136 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
137 #else
138 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
139 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
140 #endif
141 };
142
143 /* Prologue types:
144
145 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
146 causes the generation of the CALL type prologues). */
147
148 enum {
149 AVR_PROLOGUE_NONE, /* No prologue */
150 AVR_PROLOGUE_NORMAL,
151 AVR_PROLOGUE_CALL, /* -mcall-prologues */
152 AVR_PROLOGUE_MAIN,
153 AVR_PROLOGUE_INTR, /* interrupt handler */
154 AVR_PROLOGUE_SIG, /* signal handler */
155 };
156
157 /* Any function with a frame looks like this
158 ....... <-SP POINTS HERE
159 LOCALS1 <-FP POINTS HERE
160 LOCALS0
161 SAVED FP
162 SAVED R3
163 SAVED R2
164 RET PC
165 FIRST ARG
166 SECOND ARG */
167
168 struct avr_unwind_cache
169 {
170 /* The previous frame's inner most stack address. Used as this
171 frame ID's stack_addr. */
172 CORE_ADDR prev_sp;
173 /* The frame's base, optionally used by the high-level debug info. */
174 CORE_ADDR base;
175 int size;
176 int prologue_type;
177 /* Table indicating the location of each and every register. */
178 struct trad_frame_saved_reg *saved_regs;
179 };
180
181 struct gdbarch_tdep
182 {
183 /* FIXME: TRoth: is there anything to put here? */
184 int foo;
185 };
186
187 /* Lookup the name of a register given it's number. */
188
189 static const char *
190 avr_register_name (int regnum)
191 {
192 static char *register_names[] = {
193 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
194 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
195 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
196 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
197 "SREG", "SP", "PC"
198 };
199 if (regnum < 0)
200 return NULL;
201 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
202 return NULL;
203 return register_names[regnum];
204 }
205
206 /* Return the GDB type object for the "standard" data type
207 of data in register N. */
208
209 static struct type *
210 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
211 {
212 if (reg_nr == AVR_PC_REGNUM)
213 return builtin_type_uint32;
214 if (reg_nr == AVR_SP_REGNUM)
215 return builtin_type_void_data_ptr;
216 else
217 return builtin_type_uint8;
218 }
219
220 /* Instruction address checks and convertions. */
221
222 static CORE_ADDR
223 avr_make_iaddr (CORE_ADDR x)
224 {
225 return ((x) | AVR_IMEM_START);
226 }
227
228 static int
229 avr_iaddr_p (CORE_ADDR x)
230 {
231 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
232 }
233
234 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
235 devices are already up to 128KBytes of flash space.
236
237 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
238
239 static CORE_ADDR
240 avr_convert_iaddr_to_raw (CORE_ADDR x)
241 {
242 return ((x) & 0xffffffff);
243 }
244
245 /* SRAM address checks and convertions. */
246
247 static CORE_ADDR
248 avr_make_saddr (CORE_ADDR x)
249 {
250 return ((x) | AVR_SMEM_START);
251 }
252
253 static int
254 avr_saddr_p (CORE_ADDR x)
255 {
256 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
257 }
258
259 static CORE_ADDR
260 avr_convert_saddr_to_raw (CORE_ADDR x)
261 {
262 return ((x) & 0xffffffff);
263 }
264
265 /* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
267
268 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
270
271 /* static CORE_ADDR */
272 /* avr_make_eaddr (CORE_ADDR x) */
273 /* { */
274 /* return ((x) | AVR_EMEM_START); */
275 /* } */
276
277 /* static int */
278 /* avr_eaddr_p (CORE_ADDR x) */
279 /* { */
280 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
281 /* } */
282
283 /* static CORE_ADDR */
284 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
285 /* { */
286 /* return ((x) & 0xffffffff); */
287 /* } */
288
289 /* Convert from address to pointer and vice-versa. */
290
291 static void
292 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
293 {
294 /* Is it a code address? */
295 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
296 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
297 {
298 store_unsigned_integer (buf, TYPE_LENGTH (type),
299 avr_convert_iaddr_to_raw (addr >> 1));
300 }
301 else
302 {
303 /* Strip off any upper segment bits. */
304 store_unsigned_integer (buf, TYPE_LENGTH (type),
305 avr_convert_saddr_to_raw (addr));
306 }
307 }
308
309 static CORE_ADDR
310 avr_pointer_to_address (struct type *type, const void *buf)
311 {
312 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
313
314 /* Is it a code address? */
315 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
316 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
317 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
318 return avr_make_iaddr (addr << 1);
319 else
320 return avr_make_saddr (addr);
321 }
322
323 static CORE_ADDR
324 avr_read_pc (ptid_t ptid)
325 {
326 ptid_t save_ptid;
327 ULONGEST pc;
328 CORE_ADDR retval;
329
330 save_ptid = inferior_ptid;
331 inferior_ptid = ptid;
332 regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
333 inferior_ptid = save_ptid;
334 retval = avr_make_iaddr (pc);
335 return retval;
336 }
337
338 static void
339 avr_write_pc (CORE_ADDR val, ptid_t ptid)
340 {
341 ptid_t save_ptid;
342
343 save_ptid = inferior_ptid;
344 inferior_ptid = ptid;
345 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
346 inferior_ptid = save_ptid;
347 }
348
349 static CORE_ADDR
350 avr_read_sp (void)
351 {
352 ULONGEST sp;
353
354 regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp);
355 return (avr_make_saddr (sp));
356 }
357
358 static int
359 avr_scan_arg_moves (int vpc, unsigned char *prologue)
360 {
361 unsigned short insn;
362
363 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
364 {
365 insn = EXTRACT_INSN (&prologue[vpc]);
366 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
367 continue;
368 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
369 continue;
370 else
371 break;
372 }
373
374 return vpc;
375 }
376
377 /* Function: avr_scan_prologue
378
379 This function decodes an AVR function prologue to determine:
380 1) the size of the stack frame
381 2) which registers are saved on it
382 3) the offsets of saved regs
383 This information is stored in the avr_unwind_cache structure.
384
385 Some devices lack the sbiw instruction, so on those replace this:
386 sbiw r28, XX
387 with this:
388 subi r28,lo8(XX)
389 sbci r29,hi8(XX)
390
391 A typical AVR function prologue with a frame pointer might look like this:
392 push rXX ; saved regs
393 ...
394 push r28
395 push r29
396 in r28,__SP_L__
397 in r29,__SP_H__
398 sbiw r28,<LOCALS_SIZE>
399 in __tmp_reg__,__SREG__
400 cli
401 out __SP_H__,r29
402 out __SREG__,__tmp_reg__
403 out __SP_L__,r28
404
405 A typical AVR function prologue without a frame pointer might look like
406 this:
407 push rXX ; saved regs
408 ...
409
410 A main function prologue looks like this:
411 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
412 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
413 out __SP_H__,r29
414 out __SP_L__,r28
415
416 A signal handler prologue looks like this:
417 push __zero_reg__
418 push __tmp_reg__
419 in __tmp_reg__, __SREG__
420 push __tmp_reg__
421 clr __zero_reg__
422 push rXX ; save registers r18:r27, r30:r31
423 ...
424 push r28 ; save frame pointer
425 push r29
426 in r28, __SP_L__
427 in r29, __SP_H__
428 sbiw r28, <LOCALS_SIZE>
429 out __SP_H__, r29
430 out __SP_L__, r28
431
432 A interrupt handler prologue looks like this:
433 sei
434 push __zero_reg__
435 push __tmp_reg__
436 in __tmp_reg__, __SREG__
437 push __tmp_reg__
438 clr __zero_reg__
439 push rXX ; save registers r18:r27, r30:r31
440 ...
441 push r28 ; save frame pointer
442 push r29
443 in r28, __SP_L__
444 in r29, __SP_H__
445 sbiw r28, <LOCALS_SIZE>
446 cli
447 out __SP_H__, r29
448 sei
449 out __SP_L__, r28
450
451 A `-mcall-prologues' prologue looks like this (Note that the megas use a
452 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
453 32 bit insn and rjmp is a 16 bit insn):
454 ldi r26,lo8(<LOCALS_SIZE>)
455 ldi r27,hi8(<LOCALS_SIZE>)
456 ldi r30,pm_lo8(.L_foo_body)
457 ldi r31,pm_hi8(.L_foo_body)
458 rjmp __prologue_saves__+RRR
459 .L_foo_body: */
460
461 /* Not really part of a prologue, but still need to scan for it, is when a
462 function prologue moves values passed via registers as arguments to new
463 registers. In this case, all local variables live in registers, so there
464 may be some register saves. This is what it looks like:
465 movw rMM, rNN
466 ...
467
468 There could be multiple movw's. If the target doesn't have a movw insn, it
469 will use two mov insns. This could be done after any of the above prologue
470 types. */
471
472 static CORE_ADDR
473 avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
474 {
475 int i;
476 unsigned short insn;
477 int scan_stage = 0;
478 struct minimal_symbol *msymbol;
479 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
480 int vpc = 0;
481
482 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
483 reading in the bytes of the prologue. The problem is that the figuring
484 out where the end of the prologue is is a bit difficult. The old code
485 tried to do that, but failed quite often. */
486 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
487
488 /* Scanning main()'s prologue
489 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
490 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
491 out __SP_H__,r29
492 out __SP_L__,r28 */
493
494 if (1)
495 {
496 CORE_ADDR locals;
497 unsigned char img[] = {
498 0xde, 0xbf, /* out __SP_H__,r29 */
499 0xcd, 0xbf /* out __SP_L__,r28 */
500 };
501
502 insn = EXTRACT_INSN (&prologue[vpc]);
503 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
504 if ((insn & 0xf0f0) == 0xe0c0)
505 {
506 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
507 insn = EXTRACT_INSN (&prologue[vpc + 2]);
508 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
509 if ((insn & 0xf0f0) == 0xe0d0)
510 {
511 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
512 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
513 {
514 info->prologue_type = AVR_PROLOGUE_MAIN;
515 info->base = locals;
516 return pc + 4;
517 }
518 }
519 }
520 }
521
522 /* Scanning `-mcall-prologues' prologue
523 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
524
525 while (1) /* Using a while to avoid many goto's */
526 {
527 int loc_size;
528 int body_addr;
529 unsigned num_pushes;
530 int pc_offset = 0;
531
532 insn = EXTRACT_INSN (&prologue[vpc]);
533 /* ldi r26,<LOCALS_SIZE> */
534 if ((insn & 0xf0f0) != 0xe0a0)
535 break;
536 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
537 pc_offset += 2;
538
539 insn = EXTRACT_INSN (&prologue[vpc + 2]);
540 /* ldi r27,<LOCALS_SIZE> / 256 */
541 if ((insn & 0xf0f0) != 0xe0b0)
542 break;
543 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
544 pc_offset += 2;
545
546 insn = EXTRACT_INSN (&prologue[vpc + 4]);
547 /* ldi r30,pm_lo8(.L_foo_body) */
548 if ((insn & 0xf0f0) != 0xe0e0)
549 break;
550 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
551 pc_offset += 2;
552
553 insn = EXTRACT_INSN (&prologue[vpc + 6]);
554 /* ldi r31,pm_hi8(.L_foo_body) */
555 if ((insn & 0xf0f0) != 0xe0f0)
556 break;
557 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
558 pc_offset += 2;
559
560 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
561 if (!msymbol)
562 break;
563
564 insn = EXTRACT_INSN (&prologue[vpc + 8]);
565 /* rjmp __prologue_saves__+RRR */
566 if ((insn & 0xf000) == 0xc000)
567 {
568 /* Extract PC relative offset from RJMP */
569 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
570 /* Convert offset to byte addressable mode */
571 i *= 2;
572 /* Destination address */
573 i += pc + 10;
574
575 if (body_addr != (pc + 10)/2)
576 break;
577
578 pc_offset += 2;
579 }
580 else if ((insn & 0xfe0e) == 0x940c)
581 {
582 /* Extract absolute PC address from JMP */
583 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
584 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
585 /* Convert address to byte addressable mode */
586 i *= 2;
587
588 if (body_addr != (pc + 12)/2)
589 break;
590
591 pc_offset += 4;
592 }
593 else
594 break;
595
596 /* Resolve offset (in words) from __prologue_saves__ symbol.
597 Which is a pushes count in `-mcall-prologues' mode */
598 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
599
600 if (num_pushes > AVR_MAX_PUSHES)
601 {
602 fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
603 num_pushes);
604 num_pushes = 0;
605 }
606
607 if (num_pushes)
608 {
609 int from;
610
611 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
612 if (num_pushes >= 2)
613 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
614
615 i = 0;
616 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
617 from <= AVR_LAST_PUSHED_REGNUM; ++from)
618 info->saved_regs [from].addr = ++i;
619 }
620 info->size = loc_size + num_pushes;
621 info->prologue_type = AVR_PROLOGUE_CALL;
622
623 return pc + pc_offset;
624 }
625
626 /* Scan for the beginning of the prologue for an interrupt or signal
627 function. Note that we have to set the prologue type here since the
628 third stage of the prologue may not be present (e.g. no saved registered
629 or changing of the SP register). */
630
631 if (1)
632 {
633 unsigned char img[] = {
634 0x78, 0x94, /* sei */
635 0x1f, 0x92, /* push r1 */
636 0x0f, 0x92, /* push r0 */
637 0x0f, 0xb6, /* in r0,0x3f SREG */
638 0x0f, 0x92, /* push r0 */
639 0x11, 0x24 /* clr r1 */
640 };
641 if (memcmp (prologue, img, sizeof (img)) == 0)
642 {
643 info->prologue_type = AVR_PROLOGUE_INTR;
644 vpc += sizeof (img);
645 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
646 info->saved_regs[0].addr = 2;
647 info->saved_regs[1].addr = 1;
648 info->size += 3;
649 }
650 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
651 {
652 info->prologue_type = AVR_PROLOGUE_SIG;
653 vpc += sizeof (img) - 2;
654 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
655 info->saved_regs[0].addr = 2;
656 info->saved_regs[1].addr = 1;
657 info->size += 3;
658 }
659 }
660
661 /* First stage of the prologue scanning.
662 Scan pushes (saved registers) */
663
664 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
665 {
666 insn = EXTRACT_INSN (&prologue[vpc]);
667 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
668 {
669 /* Bits 4-9 contain a mask for registers R0-R32. */
670 int regno = (insn & 0x1f0) >> 4;
671 info->size++;
672 info->saved_regs[regno].addr = info->size;
673 scan_stage = 1;
674 }
675 else
676 break;
677 }
678
679 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
680 fprintf_unfiltered (gdb_stderr,
681 "Hit end of prologue while scanning pushes\n");
682
683 /* Second stage of the prologue scanning.
684 Scan:
685 in r28,__SP_L__
686 in r29,__SP_H__ */
687
688 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
689 {
690 unsigned char img[] = {
691 0xcd, 0xb7, /* in r28,__SP_L__ */
692 0xde, 0xb7 /* in r29,__SP_H__ */
693 };
694 unsigned short insn1;
695
696 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
697 {
698 vpc += 4;
699 scan_stage = 2;
700 }
701 }
702
703 /* Third stage of the prologue scanning. (Really two stages)
704 Scan for:
705 sbiw r28,XX or subi r28,lo8(XX)
706 sbci r29,hi8(XX)
707 in __tmp_reg__,__SREG__
708 cli
709 out __SP_H__,r29
710 out __SREG__,__tmp_reg__
711 out __SP_L__,r28 */
712
713 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
714 {
715 int locals_size = 0;
716 unsigned char img[] = {
717 0x0f, 0xb6, /* in r0,0x3f */
718 0xf8, 0x94, /* cli */
719 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
720 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
721 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
722 };
723 unsigned char img_sig[] = {
724 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
725 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
726 };
727 unsigned char img_int[] = {
728 0xf8, 0x94, /* cli */
729 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
730 0x78, 0x94, /* sei */
731 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
732 };
733
734 insn = EXTRACT_INSN (&prologue[vpc]);
735 vpc += 2;
736 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
737 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
738 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
739 {
740 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
741 insn = EXTRACT_INSN (&prologue[vpc]);
742 vpc += 2;
743 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
744 }
745 else
746 return pc + vpc;
747
748 /* Scan the last part of the prologue. May not be present for interrupt
749 or signal handler functions, which is why we set the prologue type
750 when we saw the beginning of the prologue previously. */
751
752 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
753 {
754 vpc += sizeof (img_sig);
755 }
756 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
757 {
758 vpc += sizeof (img_int);
759 }
760 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
761 {
762 info->prologue_type = AVR_PROLOGUE_NORMAL;
763 vpc += sizeof (img);
764 }
765
766 info->size += locals_size;
767
768 return pc + avr_scan_arg_moves (vpc, prologue);
769 }
770
771 /* If we got this far, we could not scan the prologue, so just return the pc
772 of the frame plus an adjustment for argument move insns. */
773
774 return pc + avr_scan_arg_moves (vpc, prologue);;
775 }
776
777 static CORE_ADDR
778 avr_skip_prologue (CORE_ADDR pc)
779 {
780 CORE_ADDR func_addr, func_end;
781 CORE_ADDR prologue_end = pc;
782
783 /* See what the symbol table says */
784
785 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
786 {
787 struct symtab_and_line sal;
788 struct avr_unwind_cache info = {0};
789 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
790
791 info.saved_regs = saved_regs;
792
793 /* Need to run the prologue scanner to figure out if the function has a
794 prologue and possibly skip over moving arguments passed via registers
795 to other registers. */
796
797 prologue_end = avr_scan_prologue (pc, &info);
798
799 if (info.prologue_type != AVR_PROLOGUE_NONE)
800 {
801 sal = find_pc_line (func_addr, 0);
802
803 if (sal.line != 0 && sal.end < func_end)
804 return sal.end;
805 }
806 }
807
808 /* Either we didn't find the start of this function (nothing we can do),
809 or there's no line info, or the line after the prologue is after
810 the end of the function (there probably isn't a prologue). */
811
812 return prologue_end;
813 }
814
815 /* Not all avr devices support the BREAK insn. Those that don't should treat
816 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
817 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
818
819 static const unsigned char *
820 avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
821 {
822 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
823 *lenptr = sizeof (avr_break_insn);
824 return avr_break_insn;
825 }
826
827 /* Given a return value in `regbuf' with a type `valtype',
828 extract and copy its value into `valbuf'.
829
830 Return values are always passed via registers r25:r24:... */
831
832 static void
833 avr_extract_return_value (struct type *type, struct regcache *regcache,
834 void *valbuf)
835 {
836 ULONGEST r24, r25;
837 ULONGEST c;
838 int len;
839 if (TYPE_LENGTH (type) == 1)
840 {
841 regcache_cooked_read_unsigned (regcache, 24, &c);
842 store_unsigned_integer (valbuf, 1, c);
843 }
844 else
845 {
846 int i;
847 /* The MSB of the return value is always in r25, calculate which
848 register holds the LSB. */
849 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
850
851 for (i=0; i< TYPE_LENGTH (type); i++)
852 {
853 regcache_cooked_read (regcache, lsb_reg + i,
854 (bfd_byte *) valbuf + i);
855 }
856 }
857 }
858
859 static void
860 avr_saved_regs_unwinder (struct frame_info *next_frame,
861 struct trad_frame_saved_reg *this_saved_regs,
862 int regnum, int *optimizedp,
863 enum lval_type *lvalp, CORE_ADDR *addrp,
864 int *realnump, void *bufferp)
865 {
866 if (this_saved_regs[regnum].addr != 0)
867 {
868 *optimizedp = 0;
869 *lvalp = lval_memory;
870 *addrp = this_saved_regs[regnum].addr;
871 *realnump = -1;
872 if (bufferp != NULL)
873 {
874 /* Read the value in from memory. */
875
876 if (regnum == AVR_PC_REGNUM)
877 {
878 /* Reading the return PC from the PC register is slightly
879 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
880 but in reality, only two bytes (3 in upcoming mega256) are
881 stored on the stack.
882
883 Also, note that the value on the stack is an addr to a word
884 not a byte, so we will need to multiply it by two at some
885 point.
886
887 And to confuse matters even more, the return address stored
888 on the stack is in big endian byte order, even though most
889 everything else about the avr is little endian. Ick! */
890
891 /* FIXME: number of bytes read here will need updated for the
892 mega256 when it is available. */
893
894 ULONGEST pc;
895 unsigned char tmp;
896 unsigned char buf[2];
897
898 read_memory (this_saved_regs[regnum].addr, buf, 2);
899
900 /* Convert the PC read from memory as a big-endian to
901 little-endian order. */
902 tmp = buf[0];
903 buf[0] = buf[1];
904 buf[1] = tmp;
905
906 pc = (extract_unsigned_integer (buf, 2) * 2);
907 store_unsigned_integer (bufferp,
908 register_size (current_gdbarch, regnum),
909 pc);
910 }
911 else
912 {
913 read_memory (this_saved_regs[regnum].addr, bufferp,
914 register_size (current_gdbarch, regnum));
915 }
916 }
917
918 return;
919 }
920
921 /* No luck, assume this and the next frame have the same register
922 value. If a value is needed, pass the request on down the chain;
923 otherwise just return an indication that the value is in the same
924 register as the next frame. */
925 frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
926 realnump, bufferp);
927 }
928
929 /* Put here the code to store, into fi->saved_regs, the addresses of
930 the saved registers of frame described by FRAME_INFO. This
931 includes special registers such as pc and fp saved in special ways
932 in the stack frame. sp is even more special: the address we return
933 for it IS the sp for the next frame. */
934
935 struct avr_unwind_cache *
936 avr_frame_unwind_cache (struct frame_info *next_frame,
937 void **this_prologue_cache)
938 {
939 CORE_ADDR pc;
940 ULONGEST prev_sp;
941 ULONGEST this_base;
942 struct avr_unwind_cache *info;
943 int i;
944
945 if ((*this_prologue_cache))
946 return (*this_prologue_cache);
947
948 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
949 (*this_prologue_cache) = info;
950 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
951
952 info->size = 0;
953 info->prologue_type = AVR_PROLOGUE_NONE;
954
955 pc = frame_func_unwind (next_frame);
956
957 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
958 avr_scan_prologue (pc, info);
959
960 if (info->prologue_type != AVR_PROLOGUE_NONE)
961 {
962 ULONGEST high_base; /* High byte of FP */
963
964 /* The SP was moved to the FP. This indicates that a new frame
965 was created. Get THIS frame's FP value by unwinding it from
966 the next frame. */
967 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
968 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
969 this_base += (high_base << 8);
970
971 /* The FP points at the last saved register. Adjust the FP back
972 to before the first saved register giving the SP. */
973 prev_sp = this_base + info->size;
974 }
975 else
976 {
977 /* Assume that the FP is this frame's SP but with that pushed
978 stack space added back. */
979 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
980 prev_sp = this_base + info->size;
981 }
982
983 /* Add 1 here to adjust for the post-decrement nature of the push
984 instruction.*/
985 info->prev_sp = avr_make_saddr (prev_sp+1);
986
987 info->base = avr_make_saddr (this_base);
988
989 /* Adjust all the saved registers so that they contain addresses and not
990 offsets. We need to add one to the addresses since push ops are post
991 decrement on the avr. */
992 for (i = 0; i < NUM_REGS - 1; i++)
993 if (info->saved_regs[i].addr)
994 {
995 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
996 }
997
998 /* Except for the main and startup code, the return PC is always saved on
999 the stack and is at the base of the frame. */
1000
1001 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1002 {
1003 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1004 }
1005
1006 return info;
1007 }
1008
1009 static CORE_ADDR
1010 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1011 {
1012 ULONGEST pc;
1013
1014 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
1015
1016 return avr_make_iaddr (pc);
1017 }
1018
1019 /* Given a GDB frame, determine the address of the calling function's
1020 frame. This will be used to create a new GDB frame struct. */
1021
1022 static void
1023 avr_frame_this_id (struct frame_info *next_frame,
1024 void **this_prologue_cache,
1025 struct frame_id *this_id)
1026 {
1027 struct avr_unwind_cache *info
1028 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
1029 CORE_ADDR base;
1030 CORE_ADDR func;
1031 struct frame_id id;
1032
1033 /* The FUNC is easy. */
1034 func = frame_func_unwind (next_frame);
1035
1036 /* This is meant to halt the backtrace at "_start". Make sure we
1037 don't halt it at a generic dummy frame. */
1038 if (inside_entry_file (func))
1039 return;
1040
1041 /* Hopefully the prologue analysis either correctly determined the
1042 frame's base (which is the SP from the previous frame), or set
1043 that base to "NULL". */
1044 base = info->prev_sp;
1045 if (base == 0)
1046 return;
1047
1048 id = frame_id_build (base, func);
1049
1050 /* Check that we're not going round in circles with the same frame
1051 ID (but avoid applying the test to sentinel frames which do go
1052 round in circles). Can't use frame_id_eq() as that doesn't yet
1053 compare the frame's PC value. */
1054 if (frame_relative_level (next_frame) >= 0
1055 && get_frame_type (next_frame) != DUMMY_FRAME
1056 && frame_id_eq (get_frame_id (next_frame), id))
1057 return;
1058
1059 (*this_id) = id;
1060 }
1061
1062 static void
1063 avr_frame_prev_register (struct frame_info *next_frame,
1064 void **this_prologue_cache,
1065 int regnum, int *optimizedp,
1066 enum lval_type *lvalp, CORE_ADDR *addrp,
1067 int *realnump, void *bufferp)
1068 {
1069 struct avr_unwind_cache *info
1070 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
1071
1072 avr_saved_regs_unwinder (next_frame, info->saved_regs, regnum, optimizedp,
1073 lvalp, addrp, realnump, bufferp);
1074 }
1075
1076 static const struct frame_unwind avr_frame_unwind = {
1077 NORMAL_FRAME,
1078 avr_frame_this_id,
1079 avr_frame_prev_register
1080 };
1081
1082 const struct frame_unwind *
1083 avr_frame_sniffer (struct frame_info *next_frame)
1084 {
1085 return &avr_frame_unwind;
1086 }
1087
1088 static CORE_ADDR
1089 avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
1090 {
1091 struct avr_unwind_cache *info
1092 = avr_frame_unwind_cache (next_frame, this_cache);
1093
1094 return info->base;
1095 }
1096
1097 static const struct frame_base avr_frame_base = {
1098 &avr_frame_unwind,
1099 avr_frame_base_address,
1100 avr_frame_base_address,
1101 avr_frame_base_address
1102 };
1103
1104 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1105 dummy frame. The frame ID's base needs to match the TOS value
1106 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1107 breakpoint. */
1108
1109 static struct frame_id
1110 avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1111 {
1112 ULONGEST base;
1113
1114 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1115 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
1116 }
1117
1118 /* When arguments must be pushed onto the stack, they go on in reverse
1119 order. The below implements a FILO (stack) to do this. */
1120
1121 struct stack_item
1122 {
1123 int len;
1124 struct stack_item *prev;
1125 void *data;
1126 };
1127
1128 static struct stack_item *push_stack_item (struct stack_item *prev,
1129 void *contents, int len);
1130 static struct stack_item *
1131 push_stack_item (struct stack_item *prev, void *contents, int len)
1132 {
1133 struct stack_item *si;
1134 si = xmalloc (sizeof (struct stack_item));
1135 si->data = xmalloc (len);
1136 si->len = len;
1137 si->prev = prev;
1138 memcpy (si->data, contents, len);
1139 return si;
1140 }
1141
1142 static struct stack_item *pop_stack_item (struct stack_item *si);
1143 static struct stack_item *
1144 pop_stack_item (struct stack_item *si)
1145 {
1146 struct stack_item *dead = si;
1147 si = si->prev;
1148 xfree (dead->data);
1149 xfree (dead);
1150 return si;
1151 }
1152
1153 /* Setup the function arguments for calling a function in the inferior.
1154
1155 On the AVR architecture, there are 18 registers (R25 to R8) which are
1156 dedicated for passing function arguments. Up to the first 18 arguments
1157 (depending on size) may go into these registers. The rest go on the stack.
1158
1159 All arguments are aligned to start in even-numbered registers (odd-sized
1160 arguments, including char, have one free register above them). For example,
1161 an int in arg1 and a char in arg2 would be passed as such:
1162
1163 arg1 -> r25:r24
1164 arg2 -> r22
1165
1166 Arguments that are larger than 2 bytes will be split between two or more
1167 registers as available, but will NOT be split between a register and the
1168 stack. Arguments that go onto the stack are pushed last arg first (this is
1169 similar to the d10v). */
1170
1171 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1172 inaccurate.
1173
1174 An exceptional case exists for struct arguments (and possibly other
1175 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1176 not a multiple of WORDSIZE bytes. In this case the argument is never split
1177 between the registers and the stack, but instead is copied in its entirety
1178 onto the stack, AND also copied into as many registers as there is room
1179 for. In other words, space in registers permitting, two copies of the same
1180 argument are passed in. As far as I can tell, only the one on the stack is
1181 used, although that may be a function of the level of compiler
1182 optimization. I suspect this is a compiler bug. Arguments of these odd
1183 sizes are left-justified within the word (as opposed to arguments smaller
1184 than WORDSIZE bytes, which are right-justified).
1185
1186 If the function is to return an aggregate type such as a struct, the caller
1187 must allocate space into which the callee will copy the return value. In
1188 this case, a pointer to the return value location is passed into the callee
1189 in register R0, which displaces one of the other arguments passed in via
1190 registers R0 to R2. */
1191
1192 static CORE_ADDR
1193 avr_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1194 struct regcache *regcache, CORE_ADDR bp_addr,
1195 int nargs, struct value **args, CORE_ADDR sp,
1196 int struct_return, CORE_ADDR struct_addr)
1197 {
1198 int i;
1199 unsigned char buf[2];
1200 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1201 int regnum = AVR_ARGN_REGNUM;
1202 struct stack_item *si = NULL;
1203
1204 #if 0
1205 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1206 if (struct_return)
1207 {
1208 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1209 write_register (argreg--, struct_addr & 0xff);
1210 write_register (argreg--, (struct_addr >>8) & 0xff);
1211 }
1212 #endif
1213
1214 for (i = 0; i < nargs; i++)
1215 {
1216 int last_regnum;
1217 int j;
1218 struct value *arg = args[i];
1219 struct type *type = check_typedef (VALUE_TYPE (arg));
1220 char *contents = VALUE_CONTENTS (arg);
1221 int len = TYPE_LENGTH (type);
1222
1223 /* Calculate the potential last register needed. */
1224 last_regnum = regnum - (len + (len & 1));
1225
1226 /* If there are registers available, use them. Once we start putting
1227 stuff on the stack, all subsequent args go on stack. */
1228 if ((si == NULL) && (last_regnum >= 8))
1229 {
1230 ULONGEST val;
1231
1232 /* Skip a register for odd length args. */
1233 if (len & 1)
1234 regnum--;
1235
1236 val = extract_unsigned_integer (contents, len);
1237 for (j=0; j<len; j++)
1238 {
1239 regcache_cooked_write_unsigned (regcache, regnum--,
1240 val >> (8*(len-j-1)));
1241 }
1242 }
1243 /* No registers available, push the args onto the stack. */
1244 else
1245 {
1246 /* From here on, we don't care about regnum. */
1247 si = push_stack_item (si, contents, len);
1248 }
1249 }
1250
1251 /* Push args onto the stack. */
1252 while (si)
1253 {
1254 sp -= si->len;
1255 /* Add 1 to sp here to account for post decr nature of pushes. */
1256 write_memory (sp+1, si->data, si->len);
1257 si = pop_stack_item (si);
1258 }
1259
1260 /* Set the return address. For the avr, the return address is the BP_ADDR.
1261 Need to push the return address onto the stack noting that it needs to be
1262 in big-endian order on the stack. */
1263 buf[0] = (return_pc >> 8) & 0xff;
1264 buf[1] = return_pc & 0xff;
1265
1266 sp -= 2;
1267 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
1268
1269 /* Finally, update the SP register. */
1270 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1271 avr_convert_saddr_to_raw (sp));
1272
1273 return sp;
1274 }
1275
1276 /* Initialize the gdbarch structure for the AVR's. */
1277
1278 static struct gdbarch *
1279 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1280 {
1281 struct gdbarch *gdbarch;
1282 struct gdbarch_tdep *tdep;
1283
1284 /* Find a candidate among the list of pre-declared architectures. */
1285 arches = gdbarch_list_lookup_by_info (arches, &info);
1286 if (arches != NULL)
1287 return arches->gdbarch;
1288
1289 /* None found, create a new architecture from the information provided. */
1290 tdep = XMALLOC (struct gdbarch_tdep);
1291 gdbarch = gdbarch_alloc (&info, tdep);
1292
1293 /* If we ever need to differentiate the device types, do it here. */
1294 switch (info.bfd_arch_info->mach)
1295 {
1296 case bfd_mach_avr1:
1297 case bfd_mach_avr2:
1298 case bfd_mach_avr3:
1299 case bfd_mach_avr4:
1300 case bfd_mach_avr5:
1301 break;
1302 }
1303
1304 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1305 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1306 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1307 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1308 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1309 set_gdbarch_addr_bit (gdbarch, 32);
1310
1311 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1312 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1313 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1314
1315 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1316 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1317 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1318
1319 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1320 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1321 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1322
1323 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1324
1325 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1326 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1327
1328 set_gdbarch_register_name (gdbarch, avr_register_name);
1329 set_gdbarch_register_type (gdbarch, avr_register_type);
1330
1331 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
1332 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1333
1334 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1335
1336 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1337 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1338
1339 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1340
1341 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1342 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1343
1344 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1345 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1346
1347 set_gdbarch_function_start_offset (gdbarch, 0);
1348
1349 set_gdbarch_frame_args_skip (gdbarch, 0);
1350 set_gdbarch_frameless_function_invocation (gdbarch,
1351 frameless_look_for_prologue);
1352
1353 frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
1354 frame_base_set_default (gdbarch, &avr_frame_base);
1355
1356 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1357
1358 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1359
1360 return gdbarch;
1361 }
1362
1363 /* Send a query request to the avr remote target asking for values of the io
1364 registers. If args parameter is not NULL, then the user has requested info
1365 on a specific io register [This still needs implemented and is ignored for
1366 now]. The query string should be one of these forms:
1367
1368 "Ravr.io_reg" -> reply is "NN" number of io registers
1369
1370 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1371 registers to be read. The reply should be "<NAME>,VV;" for each io register
1372 where, <NAME> is a string, and VV is the hex value of the register.
1373
1374 All io registers are 8-bit. */
1375
1376 static void
1377 avr_io_reg_read_command (char *args, int from_tty)
1378 {
1379 int bufsiz = 0;
1380 char buf[400];
1381 char query[400];
1382 char *p;
1383 unsigned int nreg = 0;
1384 unsigned int val;
1385 int i, j, k, step;
1386
1387 if (!current_target.to_query)
1388 {
1389 fprintf_unfiltered (gdb_stderr,
1390 "ERR: info io_registers NOT supported by current "
1391 "target\n");
1392 return;
1393 }
1394
1395 /* Just get the maximum buffer size. */
1396 target_query ((int) 'R', 0, 0, &bufsiz);
1397 if (bufsiz > sizeof (buf))
1398 bufsiz = sizeof (buf);
1399
1400 /* Find out how many io registers the target has. */
1401 strcpy (query, "avr.io_reg");
1402 target_query ((int) 'R', query, buf, &bufsiz);
1403
1404 if (strncmp (buf, "", bufsiz) == 0)
1405 {
1406 fprintf_unfiltered (gdb_stderr,
1407 "info io_registers NOT supported by target\n");
1408 return;
1409 }
1410
1411 if (sscanf (buf, "%x", &nreg) != 1)
1412 {
1413 fprintf_unfiltered (gdb_stderr,
1414 "Error fetching number of io registers\n");
1415 return;
1416 }
1417
1418 reinitialize_more_filter ();
1419
1420 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1421
1422 /* only fetch up to 8 registers at a time to keep the buffer small */
1423 step = 8;
1424
1425 for (i = 0; i < nreg; i += step)
1426 {
1427 /* how many registers this round? */
1428 j = step;
1429 if ((i+j) >= nreg)
1430 j = nreg - i; /* last block is less than 8 registers */
1431
1432 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1433 target_query ((int) 'R', query, buf, &bufsiz);
1434
1435 p = buf;
1436 for (k = i; k < (i + j); k++)
1437 {
1438 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1439 {
1440 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1441 while ((*p != ';') && (*p != '\0'))
1442 p++;
1443 p++; /* skip over ';' */
1444 if (*p == '\0')
1445 break;
1446 }
1447 }
1448 }
1449 }
1450
1451 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1452
1453 void
1454 _initialize_avr_tdep (void)
1455 {
1456 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1457
1458 /* Add a new command to allow the user to query the avr remote target for
1459 the values of the io space registers in a saner way than just using
1460 `x/NNNb ADDR`. */
1461
1462 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1463 io_registers' to signify it is not available on other platforms. */
1464
1465 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1466 "query remote avr target for io space register values", &infolist);
1467 }
This page took 0.073586 seconds and 4 git commands to generate.