1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Contributed by Theodore A. Roth, troth@openavr.org */
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
36 #include "arch-utils.h"
38 #include "gdb_string.h"
42 (AVR micros are pure Harvard Architecture processors.)
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
75 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
77 /* Constants: prefixed with AVR_ to avoid name space clashes */
91 AVR_NUM_REGS
= 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
92 AVR_NUM_REG_BYTES
= 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
94 AVR_PC_REG_INDEX
= 35, /* index into array of registers */
96 AVR_MAX_PROLOGUE_SIZE
= 64, /* bytes */
98 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
101 /* Number of the last pushed register. r17 for current avr-gcc */
102 AVR_LAST_PUSHED_REGNUM
= 17,
104 AVR_ARG1_REGNUM
= 24, /* Single byte argument */
105 AVR_ARGN_REGNUM
= 25, /* Multi byte argments */
107 AVR_RET1_REGNUM
= 24, /* Single byte return value */
108 AVR_RETN_REGNUM
= 25, /* Multi byte return value */
110 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
111 bits? Do these have to match the bfd vma values?. It sure would make
112 things easier in the future if they didn't need to match.
114 Note: I chose these values so as to be consistent with bfd vma
117 TRoth/2002-04-08: There is already a conflict with very large programs
118 in the mega128. The mega128 has 128K instruction bytes (64K words),
119 thus the Most Significant Bit is 0x10000 which gets masked off my
122 The problem manifests itself when trying to set a breakpoint in a
123 function which resides in the upper half of the instruction space and
124 thus requires a 17-bit address.
126 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
127 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
128 but could be for some remote targets by just adding the correct offset
129 to the address and letting the remote target handle the low-level
130 details of actually accessing the eeprom. */
132 AVR_IMEM_START
= 0x00000000, /* INSN memory */
133 AVR_SMEM_START
= 0x00800000, /* SRAM memory */
135 /* No eeprom mask defined */
136 AVR_MEM_MASK
= 0x00f00000, /* mask to determine memory space */
138 AVR_EMEM_START
= 0x00810000, /* EEPROM memory */
139 AVR_MEM_MASK
= 0x00ff0000, /* mask to determine memory space */
145 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
146 causes the generation of the CALL type prologues). */
149 AVR_PROLOGUE_NONE
, /* No prologue */
151 AVR_PROLOGUE_CALL
, /* -mcall-prologues */
153 AVR_PROLOGUE_INTR
, /* interrupt handler */
154 AVR_PROLOGUE_SIG
, /* signal handler */
157 /* Any function with a frame looks like this
158 ....... <-SP POINTS HERE
159 LOCALS1 <-FP POINTS HERE
168 struct avr_unwind_cache
170 /* The previous frame's inner most stack address. Used as this
171 frame ID's stack_addr. */
173 /* The frame's base, optionally used by the high-level debug info. */
177 /* Table indicating the location of each and every register. */
178 struct trad_frame_saved_reg
*saved_regs
;
183 /* FIXME: TRoth: is there anything to put here? */
187 /* Lookup the name of a register given it's number. */
190 avr_register_name (int regnum
)
192 static char *register_names
[] = {
193 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
194 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
195 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
196 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
201 if (regnum
>= (sizeof (register_names
) / sizeof (*register_names
)))
203 return register_names
[regnum
];
206 /* Return the GDB type object for the "standard" data type
207 of data in register N. */
210 avr_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
212 if (reg_nr
== AVR_PC_REGNUM
)
213 return builtin_type_uint32
;
214 if (reg_nr
== AVR_SP_REGNUM
)
215 return builtin_type_void_data_ptr
;
217 return builtin_type_uint8
;
220 /* Instruction address checks and convertions. */
223 avr_make_iaddr (CORE_ADDR x
)
225 return ((x
) | AVR_IMEM_START
);
229 avr_iaddr_p (CORE_ADDR x
)
231 return (((x
) & AVR_MEM_MASK
) == AVR_IMEM_START
);
234 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
235 devices are already up to 128KBytes of flash space.
237 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
240 avr_convert_iaddr_to_raw (CORE_ADDR x
)
242 return ((x
) & 0xffffffff);
245 /* SRAM address checks and convertions. */
248 avr_make_saddr (CORE_ADDR x
)
250 return ((x
) | AVR_SMEM_START
);
254 avr_saddr_p (CORE_ADDR x
)
256 return (((x
) & AVR_MEM_MASK
) == AVR_SMEM_START
);
260 avr_convert_saddr_to_raw (CORE_ADDR x
)
262 return ((x
) & 0xffffffff);
265 /* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
268 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
271 /* static CORE_ADDR */
272 /* avr_make_eaddr (CORE_ADDR x) */
274 /* return ((x) | AVR_EMEM_START); */
278 /* avr_eaddr_p (CORE_ADDR x) */
280 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
283 /* static CORE_ADDR */
284 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
286 /* return ((x) & 0xffffffff); */
289 /* Convert from address to pointer and vice-versa. */
292 avr_address_to_pointer (struct type
*type
, void *buf
, CORE_ADDR addr
)
294 /* Is it a code address? */
295 if (TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_FUNC
296 || TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_METHOD
)
298 store_unsigned_integer (buf
, TYPE_LENGTH (type
),
299 avr_convert_iaddr_to_raw (addr
>> 1));
303 /* Strip off any upper segment bits. */
304 store_unsigned_integer (buf
, TYPE_LENGTH (type
),
305 avr_convert_saddr_to_raw (addr
));
310 avr_pointer_to_address (struct type
*type
, const void *buf
)
312 CORE_ADDR addr
= extract_unsigned_integer (buf
, TYPE_LENGTH (type
));
314 /* Is it a code address? */
315 if (TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_FUNC
316 || TYPE_CODE (TYPE_TARGET_TYPE (type
)) == TYPE_CODE_METHOD
317 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type
)))
318 return avr_make_iaddr (addr
<< 1);
320 return avr_make_saddr (addr
);
324 avr_read_pc (ptid_t ptid
)
330 save_ptid
= inferior_ptid
;
331 inferior_ptid
= ptid
;
332 regcache_cooked_read_unsigned (current_regcache
, AVR_PC_REGNUM
, &pc
);
333 inferior_ptid
= save_ptid
;
334 retval
= avr_make_iaddr (pc
);
339 avr_write_pc (CORE_ADDR val
, ptid_t ptid
)
343 save_ptid
= inferior_ptid
;
344 inferior_ptid
= ptid
;
345 write_register (AVR_PC_REGNUM
, avr_convert_iaddr_to_raw (val
));
346 inferior_ptid
= save_ptid
;
354 regcache_cooked_read_unsigned (current_regcache
, AVR_SP_REGNUM
, &sp
);
355 return (avr_make_saddr (sp
));
359 avr_scan_arg_moves (int vpc
, unsigned char *prologue
)
363 for (; vpc
< AVR_MAX_PROLOGUE_SIZE
; vpc
+= 2)
365 insn
= EXTRACT_INSN (&prologue
[vpc
]);
366 if ((insn
& 0xff00) == 0x0100) /* movw rXX, rYY */
368 else if ((insn
& 0xfc00) == 0x2c00) /* mov rXX, rYY */
377 /* Function: avr_scan_prologue
379 This function decodes an AVR function prologue to determine:
380 1) the size of the stack frame
381 2) which registers are saved on it
382 3) the offsets of saved regs
383 This information is stored in the avr_unwind_cache structure.
385 Some devices lack the sbiw instruction, so on those replace this:
391 A typical AVR function prologue with a frame pointer might look like this:
392 push rXX ; saved regs
398 sbiw r28,<LOCALS_SIZE>
399 in __tmp_reg__,__SREG__
402 out __SREG__,__tmp_reg__
405 A typical AVR function prologue without a frame pointer might look like
407 push rXX ; saved regs
410 A main function prologue looks like this:
411 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
412 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
416 A signal handler prologue looks like this:
419 in __tmp_reg__, __SREG__
422 push rXX ; save registers r18:r27, r30:r31
424 push r28 ; save frame pointer
428 sbiw r28, <LOCALS_SIZE>
432 A interrupt handler prologue looks like this:
436 in __tmp_reg__, __SREG__
439 push rXX ; save registers r18:r27, r30:r31
441 push r28 ; save frame pointer
445 sbiw r28, <LOCALS_SIZE>
451 A `-mcall-prologues' prologue looks like this (Note that the megas use a
452 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
453 32 bit insn and rjmp is a 16 bit insn):
454 ldi r26,lo8(<LOCALS_SIZE>)
455 ldi r27,hi8(<LOCALS_SIZE>)
456 ldi r30,pm_lo8(.L_foo_body)
457 ldi r31,pm_hi8(.L_foo_body)
458 rjmp __prologue_saves__+RRR
461 /* Not really part of a prologue, but still need to scan for it, is when a
462 function prologue moves values passed via registers as arguments to new
463 registers. In this case, all local variables live in registers, so there
464 may be some register saves. This is what it looks like:
468 There could be multiple movw's. If the target doesn't have a movw insn, it
469 will use two mov insns. This could be done after any of the above prologue
473 avr_scan_prologue (CORE_ADDR pc
, struct avr_unwind_cache
*info
)
478 struct minimal_symbol
*msymbol
;
479 unsigned char prologue
[AVR_MAX_PROLOGUE_SIZE
];
482 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
483 reading in the bytes of the prologue. The problem is that the figuring
484 out where the end of the prologue is is a bit difficult. The old code
485 tried to do that, but failed quite often. */
486 read_memory (pc
, prologue
, AVR_MAX_PROLOGUE_SIZE
);
488 /* Scanning main()'s prologue
489 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
490 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
497 unsigned char img
[] = {
498 0xde, 0xbf, /* out __SP_H__,r29 */
499 0xcd, 0xbf /* out __SP_L__,r28 */
502 insn
= EXTRACT_INSN (&prologue
[vpc
]);
503 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
504 if ((insn
& 0xf0f0) == 0xe0c0)
506 locals
= (insn
& 0xf) | ((insn
& 0x0f00) >> 4);
507 insn
= EXTRACT_INSN (&prologue
[vpc
+ 2]);
508 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
509 if ((insn
& 0xf0f0) == 0xe0d0)
511 locals
|= ((insn
& 0xf) | ((insn
& 0x0f00) >> 4)) << 8;
512 if (memcmp (prologue
+ vpc
+ 4, img
, sizeof (img
)) == 0)
514 info
->prologue_type
= AVR_PROLOGUE_MAIN
;
522 /* Scanning `-mcall-prologues' prologue
523 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
525 while (1) /* Using a while to avoid many goto's */
532 insn
= EXTRACT_INSN (&prologue
[vpc
]);
533 /* ldi r26,<LOCALS_SIZE> */
534 if ((insn
& 0xf0f0) != 0xe0a0)
536 loc_size
= (insn
& 0xf) | ((insn
& 0x0f00) >> 4);
539 insn
= EXTRACT_INSN (&prologue
[vpc
+ 2]);
540 /* ldi r27,<LOCALS_SIZE> / 256 */
541 if ((insn
& 0xf0f0) != 0xe0b0)
543 loc_size
|= ((insn
& 0xf) | ((insn
& 0x0f00) >> 4)) << 8;
546 insn
= EXTRACT_INSN (&prologue
[vpc
+ 4]);
547 /* ldi r30,pm_lo8(.L_foo_body) */
548 if ((insn
& 0xf0f0) != 0xe0e0)
550 body_addr
= (insn
& 0xf) | ((insn
& 0x0f00) >> 4);
553 insn
= EXTRACT_INSN (&prologue
[vpc
+ 6]);
554 /* ldi r31,pm_hi8(.L_foo_body) */
555 if ((insn
& 0xf0f0) != 0xe0f0)
557 body_addr
|= ((insn
& 0xf) | ((insn
& 0x0f00) >> 4)) << 8;
560 msymbol
= lookup_minimal_symbol ("__prologue_saves__", NULL
, NULL
);
564 insn
= EXTRACT_INSN (&prologue
[vpc
+ 8]);
565 /* rjmp __prologue_saves__+RRR */
566 if ((insn
& 0xf000) == 0xc000)
568 /* Extract PC relative offset from RJMP */
569 i
= (insn
& 0xfff) | (insn
& 0x800 ? (-1 ^ 0xfff) : 0);
570 /* Convert offset to byte addressable mode */
572 /* Destination address */
575 if (body_addr
!= (pc
+ 10)/2)
580 else if ((insn
& 0xfe0e) == 0x940c)
582 /* Extract absolute PC address from JMP */
583 i
= (((insn
& 0x1) | ((insn
& 0x1f0) >> 3) << 16)
584 | (EXTRACT_INSN (&prologue
[vpc
+ 10]) & 0xffff));
585 /* Convert address to byte addressable mode */
588 if (body_addr
!= (pc
+ 12)/2)
596 /* Resolve offset (in words) from __prologue_saves__ symbol.
597 Which is a pushes count in `-mcall-prologues' mode */
598 num_pushes
= AVR_MAX_PUSHES
- (i
- SYMBOL_VALUE_ADDRESS (msymbol
)) / 2;
600 if (num_pushes
> AVR_MAX_PUSHES
)
602 fprintf_unfiltered (gdb_stderr
, "Num pushes too large: %d\n",
611 info
->saved_regs
[AVR_FP_REGNUM
+ 1].addr
= num_pushes
;
613 info
->saved_regs
[AVR_FP_REGNUM
].addr
= num_pushes
- 1;
616 for (from
= AVR_LAST_PUSHED_REGNUM
+ 1 - (num_pushes
- 2);
617 from
<= AVR_LAST_PUSHED_REGNUM
; ++from
)
618 info
->saved_regs
[from
].addr
= ++i
;
620 info
->size
= loc_size
+ num_pushes
;
621 info
->prologue_type
= AVR_PROLOGUE_CALL
;
623 return pc
+ pc_offset
;
626 /* Scan for the beginning of the prologue for an interrupt or signal
627 function. Note that we have to set the prologue type here since the
628 third stage of the prologue may not be present (e.g. no saved registered
629 or changing of the SP register). */
633 unsigned char img
[] = {
634 0x78, 0x94, /* sei */
635 0x1f, 0x92, /* push r1 */
636 0x0f, 0x92, /* push r0 */
637 0x0f, 0xb6, /* in r0,0x3f SREG */
638 0x0f, 0x92, /* push r0 */
639 0x11, 0x24 /* clr r1 */
641 if (memcmp (prologue
, img
, sizeof (img
)) == 0)
643 info
->prologue_type
= AVR_PROLOGUE_INTR
;
645 info
->saved_regs
[AVR_SREG_REGNUM
].addr
= 3;
646 info
->saved_regs
[0].addr
= 2;
647 info
->saved_regs
[1].addr
= 1;
650 else if (memcmp (img
+ 2, prologue
, sizeof (img
) - 2) == 0)
652 info
->prologue_type
= AVR_PROLOGUE_SIG
;
653 vpc
+= sizeof (img
) - 2;
654 info
->saved_regs
[AVR_SREG_REGNUM
].addr
= 3;
655 info
->saved_regs
[0].addr
= 2;
656 info
->saved_regs
[1].addr
= 1;
661 /* First stage of the prologue scanning.
662 Scan pushes (saved registers) */
664 for (; vpc
< AVR_MAX_PROLOGUE_SIZE
; vpc
+= 2)
666 insn
= EXTRACT_INSN (&prologue
[vpc
]);
667 if ((insn
& 0xfe0f) == 0x920f) /* push rXX */
669 /* Bits 4-9 contain a mask for registers R0-R32. */
670 int regno
= (insn
& 0x1f0) >> 4;
672 info
->saved_regs
[regno
].addr
= info
->size
;
679 if (vpc
>= AVR_MAX_PROLOGUE_SIZE
)
680 fprintf_unfiltered (gdb_stderr
,
681 "Hit end of prologue while scanning pushes\n");
683 /* Second stage of the prologue scanning.
688 if (scan_stage
== 1 && vpc
< AVR_MAX_PROLOGUE_SIZE
)
690 unsigned char img
[] = {
691 0xcd, 0xb7, /* in r28,__SP_L__ */
692 0xde, 0xb7 /* in r29,__SP_H__ */
694 unsigned short insn1
;
696 if (memcmp (prologue
+ vpc
, img
, sizeof (img
)) == 0)
703 /* Third stage of the prologue scanning. (Really two stages)
705 sbiw r28,XX or subi r28,lo8(XX)
707 in __tmp_reg__,__SREG__
710 out __SREG__,__tmp_reg__
713 if (scan_stage
== 2 && vpc
< AVR_MAX_PROLOGUE_SIZE
)
716 unsigned char img
[] = {
717 0x0f, 0xb6, /* in r0,0x3f */
718 0xf8, 0x94, /* cli */
719 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
720 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
721 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
723 unsigned char img_sig
[] = {
724 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
725 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
727 unsigned char img_int
[] = {
728 0xf8, 0x94, /* cli */
729 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
730 0x78, 0x94, /* sei */
731 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
734 insn
= EXTRACT_INSN (&prologue
[vpc
]);
736 if ((insn
& 0xff30) == 0x9720) /* sbiw r28,XXX */
737 locals_size
= (insn
& 0xf) | ((insn
& 0xc0) >> 2);
738 else if ((insn
& 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
740 locals_size
= (insn
& 0xf) | ((insn
& 0xf00) >> 4);
741 insn
= EXTRACT_INSN (&prologue
[vpc
]);
743 locals_size
+= ((insn
& 0xf) | ((insn
& 0xf00) >> 4) << 8);
748 /* Scan the last part of the prologue. May not be present for interrupt
749 or signal handler functions, which is why we set the prologue type
750 when we saw the beginning of the prologue previously. */
752 if (memcmp (prologue
+ vpc
, img_sig
, sizeof (img_sig
)) == 0)
754 vpc
+= sizeof (img_sig
);
756 else if (memcmp (prologue
+ vpc
, img_int
, sizeof (img_int
)) == 0)
758 vpc
+= sizeof (img_int
);
760 if (memcmp (prologue
+ vpc
, img
, sizeof (img
)) == 0)
762 info
->prologue_type
= AVR_PROLOGUE_NORMAL
;
766 info
->size
+= locals_size
;
768 return pc
+ avr_scan_arg_moves (vpc
, prologue
);
771 /* If we got this far, we could not scan the prologue, so just return the pc
772 of the frame plus an adjustment for argument move insns. */
774 return pc
+ avr_scan_arg_moves (vpc
, prologue
);;
778 avr_skip_prologue (CORE_ADDR pc
)
780 CORE_ADDR func_addr
, func_end
;
781 CORE_ADDR prologue_end
= pc
;
783 /* See what the symbol table says */
785 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
787 struct symtab_and_line sal
;
788 struct avr_unwind_cache info
= {0};
789 struct trad_frame_saved_reg saved_regs
[AVR_NUM_REGS
];
791 info
.saved_regs
= saved_regs
;
793 /* Need to run the prologue scanner to figure out if the function has a
794 prologue and possibly skip over moving arguments passed via registers
795 to other registers. */
797 prologue_end
= avr_scan_prologue (pc
, &info
);
799 if (info
.prologue_type
== AVR_PROLOGUE_NONE
)
803 sal
= find_pc_line (func_addr
, 0);
805 if (sal
.line
!= 0 && sal
.end
< func_end
)
810 /* Either we didn't find the start of this function (nothing we can do),
811 or there's no line info, or the line after the prologue is after
812 the end of the function (there probably isn't a prologue). */
817 /* Not all avr devices support the BREAK insn. Those that don't should treat
818 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
819 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
821 static const unsigned char *
822 avr_breakpoint_from_pc (CORE_ADDR
* pcptr
, int *lenptr
)
824 static unsigned char avr_break_insn
[] = { 0x98, 0x95 };
825 *lenptr
= sizeof (avr_break_insn
);
826 return avr_break_insn
;
829 /* Given a return value in `regbuf' with a type `valtype',
830 extract and copy its value into `valbuf'.
832 Return values are always passed via registers r25:r24:... */
835 avr_extract_return_value (struct type
*type
, struct regcache
*regcache
,
841 if (TYPE_LENGTH (type
) == 1)
843 regcache_cooked_read_unsigned (regcache
, 24, &c
);
844 store_unsigned_integer (valbuf
, 1, c
);
849 /* The MSB of the return value is always in r25, calculate which
850 register holds the LSB. */
851 int lsb_reg
= 25 - TYPE_LENGTH (type
) + 1;
853 for (i
=0; i
< TYPE_LENGTH (type
); i
++)
855 regcache_cooked_read (regcache
, lsb_reg
+ i
,
856 (bfd_byte
*) valbuf
+ i
);
861 /* Put here the code to store, into fi->saved_regs, the addresses of
862 the saved registers of frame described by FRAME_INFO. This
863 includes special registers such as pc and fp saved in special ways
864 in the stack frame. sp is even more special: the address we return
865 for it IS the sp for the next frame. */
867 struct avr_unwind_cache
*
868 avr_frame_unwind_cache (struct frame_info
*next_frame
,
869 void **this_prologue_cache
)
874 struct avr_unwind_cache
*info
;
877 if ((*this_prologue_cache
))
878 return (*this_prologue_cache
);
880 info
= FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache
);
881 (*this_prologue_cache
) = info
;
882 info
->saved_regs
= trad_frame_alloc_saved_regs (next_frame
);
885 info
->prologue_type
= AVR_PROLOGUE_NONE
;
887 pc
= frame_func_unwind (next_frame
);
889 if ((pc
> 0) && (pc
< frame_pc_unwind (next_frame
)))
890 avr_scan_prologue (pc
, info
);
892 if ((info
->prologue_type
!= AVR_PROLOGUE_NONE
)
893 && (info
->prologue_type
!= AVR_PROLOGUE_MAIN
))
895 ULONGEST high_base
; /* High byte of FP */
897 /* The SP was moved to the FP. This indicates that a new frame
898 was created. Get THIS frame's FP value by unwinding it from
900 frame_unwind_unsigned_register (next_frame
, AVR_FP_REGNUM
, &this_base
);
901 frame_unwind_unsigned_register (next_frame
, AVR_FP_REGNUM
+1, &high_base
);
902 this_base
+= (high_base
<< 8);
904 /* The FP points at the last saved register. Adjust the FP back
905 to before the first saved register giving the SP. */
906 prev_sp
= this_base
+ info
->size
;
910 /* Assume that the FP is this frame's SP but with that pushed
911 stack space added back. */
912 frame_unwind_unsigned_register (next_frame
, AVR_SP_REGNUM
, &this_base
);
913 prev_sp
= this_base
+ info
->size
;
916 /* Add 1 here to adjust for the post-decrement nature of the push
918 info
->prev_sp
= avr_make_saddr (prev_sp
+1);
920 info
->base
= avr_make_saddr (this_base
);
922 /* Adjust all the saved registers so that they contain addresses and not
924 for (i
= 0; i
< NUM_REGS
- 1; i
++)
925 if (info
->saved_regs
[i
].addr
)
927 info
->saved_regs
[i
].addr
= (info
->prev_sp
- info
->saved_regs
[i
].addr
);
930 /* Except for the main and startup code, the return PC is always saved on
931 the stack and is at the base of the frame. */
933 if (info
->prologue_type
!= AVR_PROLOGUE_MAIN
)
935 info
->saved_regs
[AVR_PC_REGNUM
].addr
= info
->prev_sp
;
938 /* The previous frame's SP needed to be computed. Save the computed
940 trad_frame_set_value (info
->saved_regs
, AVR_SP_REGNUM
, info
->prev_sp
+1);
946 avr_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
950 frame_unwind_unsigned_register (next_frame
, AVR_PC_REGNUM
, &pc
);
952 return avr_make_iaddr (pc
);
955 /* Given a GDB frame, determine the address of the calling function's
956 frame. This will be used to create a new GDB frame struct. */
959 avr_frame_this_id (struct frame_info
*next_frame
,
960 void **this_prologue_cache
,
961 struct frame_id
*this_id
)
963 struct avr_unwind_cache
*info
964 = avr_frame_unwind_cache (next_frame
, this_prologue_cache
);
969 /* The FUNC is easy. */
970 func
= frame_func_unwind (next_frame
);
972 /* This is meant to halt the backtrace at "_start". Make sure we
973 don't halt it at a generic dummy frame. */
974 if (inside_entry_file (func
))
977 /* Hopefully the prologue analysis either correctly determined the
978 frame's base (which is the SP from the previous frame), or set
979 that base to "NULL". */
980 base
= info
->prev_sp
;
984 id
= frame_id_build (base
, func
);
986 /* Check that we're not going round in circles with the same frame
987 ID (but avoid applying the test to sentinel frames which do go
988 round in circles). Can't use frame_id_eq() as that doesn't yet
989 compare the frame's PC value. */
990 if (frame_relative_level (next_frame
) >= 0
991 && get_frame_type (next_frame
) != DUMMY_FRAME
992 && frame_id_eq (get_frame_id (next_frame
), id
))
999 avr_frame_prev_register (struct frame_info
*next_frame
,
1000 void **this_prologue_cache
,
1001 int regnum
, int *optimizedp
,
1002 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
1003 int *realnump
, void *bufferp
)
1005 struct avr_unwind_cache
*info
1006 = avr_frame_unwind_cache (next_frame
, this_prologue_cache
);
1008 if (regnum
== AVR_PC_REGNUM
)
1010 if (trad_frame_addr_p (info
->saved_regs
, regnum
))
1013 *lvalp
= lval_memory
;
1014 *addrp
= info
->saved_regs
[regnum
].addr
;
1016 if (bufferp
!= NULL
)
1018 /* Reading the return PC from the PC register is slightly
1019 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1020 but in reality, only two bytes (3 in upcoming mega256) are
1021 stored on the stack.
1023 Also, note that the value on the stack is an addr to a word
1024 not a byte, so we will need to multiply it by two at some
1027 And to confuse matters even more, the return address stored
1028 on the stack is in big endian byte order, even though most
1029 everything else about the avr is little endian. Ick! */
1031 /* FIXME: number of bytes read here will need updated for the
1032 mega256 when it is available. */
1036 unsigned char buf
[2];
1038 read_memory (info
->saved_regs
[regnum
].addr
, buf
, 2);
1040 /* Convert the PC read from memory as a big-endian to
1041 little-endian order. */
1046 pc
= (extract_unsigned_integer (buf
, 2) * 2);
1047 store_unsigned_integer (bufferp
,
1048 register_size (current_gdbarch
, regnum
),
1054 trad_frame_prev_register (next_frame
, info
->saved_regs
, regnum
,
1055 optimizedp
, lvalp
, addrp
, realnump
, bufferp
);
1058 static const struct frame_unwind avr_frame_unwind
= {
1061 avr_frame_prev_register
1064 const struct frame_unwind
*
1065 avr_frame_sniffer (struct frame_info
*next_frame
)
1067 return &avr_frame_unwind
;
1071 avr_frame_base_address (struct frame_info
*next_frame
, void **this_cache
)
1073 struct avr_unwind_cache
*info
1074 = avr_frame_unwind_cache (next_frame
, this_cache
);
1079 static const struct frame_base avr_frame_base
= {
1081 avr_frame_base_address
,
1082 avr_frame_base_address
,
1083 avr_frame_base_address
1086 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1087 dummy frame. The frame ID's base needs to match the TOS value
1088 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1091 static struct frame_id
1092 avr_unwind_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1096 frame_unwind_unsigned_register (next_frame
, AVR_SP_REGNUM
, &base
);
1097 return frame_id_build (avr_make_saddr (base
), frame_pc_unwind (next_frame
));
1100 /* When arguments must be pushed onto the stack, they go on in reverse
1101 order. The below implements a FILO (stack) to do this. */
1106 struct stack_item
*prev
;
1110 static struct stack_item
*push_stack_item (struct stack_item
*prev
,
1111 void *contents
, int len
);
1112 static struct stack_item
*
1113 push_stack_item (struct stack_item
*prev
, void *contents
, int len
)
1115 struct stack_item
*si
;
1116 si
= xmalloc (sizeof (struct stack_item
));
1117 si
->data
= xmalloc (len
);
1120 memcpy (si
->data
, contents
, len
);
1124 static struct stack_item
*pop_stack_item (struct stack_item
*si
);
1125 static struct stack_item
*
1126 pop_stack_item (struct stack_item
*si
)
1128 struct stack_item
*dead
= si
;
1135 /* Setup the function arguments for calling a function in the inferior.
1137 On the AVR architecture, there are 18 registers (R25 to R8) which are
1138 dedicated for passing function arguments. Up to the first 18 arguments
1139 (depending on size) may go into these registers. The rest go on the stack.
1141 All arguments are aligned to start in even-numbered registers (odd-sized
1142 arguments, including char, have one free register above them). For example,
1143 an int in arg1 and a char in arg2 would be passed as such:
1148 Arguments that are larger than 2 bytes will be split between two or more
1149 registers as available, but will NOT be split between a register and the
1150 stack. Arguments that go onto the stack are pushed last arg first (this is
1151 similar to the d10v). */
1153 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1156 An exceptional case exists for struct arguments (and possibly other
1157 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1158 not a multiple of WORDSIZE bytes. In this case the argument is never split
1159 between the registers and the stack, but instead is copied in its entirety
1160 onto the stack, AND also copied into as many registers as there is room
1161 for. In other words, space in registers permitting, two copies of the same
1162 argument are passed in. As far as I can tell, only the one on the stack is
1163 used, although that may be a function of the level of compiler
1164 optimization. I suspect this is a compiler bug. Arguments of these odd
1165 sizes are left-justified within the word (as opposed to arguments smaller
1166 than WORDSIZE bytes, which are right-justified).
1168 If the function is to return an aggregate type such as a struct, the caller
1169 must allocate space into which the callee will copy the return value. In
1170 this case, a pointer to the return value location is passed into the callee
1171 in register R0, which displaces one of the other arguments passed in via
1172 registers R0 to R2. */
1175 avr_push_dummy_call (struct gdbarch
*gdbarch
, CORE_ADDR func_addr
,
1176 struct regcache
*regcache
, CORE_ADDR bp_addr
,
1177 int nargs
, struct value
**args
, CORE_ADDR sp
,
1178 int struct_return
, CORE_ADDR struct_addr
)
1181 unsigned char buf
[2];
1182 CORE_ADDR return_pc
= avr_convert_iaddr_to_raw (bp_addr
);
1183 int regnum
= AVR_ARGN_REGNUM
;
1184 struct stack_item
*si
= NULL
;
1187 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1190 fprintf_unfiltered (gdb_stderr
, "struct_return: 0x%lx\n", struct_addr
);
1191 write_register (argreg
--, struct_addr
& 0xff);
1192 write_register (argreg
--, (struct_addr
>>8) & 0xff);
1196 for (i
= 0; i
< nargs
; i
++)
1200 struct value
*arg
= args
[i
];
1201 struct type
*type
= check_typedef (VALUE_TYPE (arg
));
1202 char *contents
= VALUE_CONTENTS (arg
);
1203 int len
= TYPE_LENGTH (type
);
1205 /* Calculate the potential last register needed. */
1206 last_regnum
= regnum
- (len
+ (len
& 1));
1208 /* If there are registers available, use them. Once we start putting
1209 stuff on the stack, all subsequent args go on stack. */
1210 if ((si
== NULL
) && (last_regnum
>= 8))
1214 /* Skip a register for odd length args. */
1218 val
= extract_unsigned_integer (contents
, len
);
1219 for (j
=0; j
<len
; j
++)
1221 regcache_cooked_write_unsigned (regcache
, regnum
--,
1222 val
>> (8*(len
-j
-1)));
1225 /* No registers available, push the args onto the stack. */
1228 /* From here on, we don't care about regnum. */
1229 si
= push_stack_item (si
, contents
, len
);
1233 /* Push args onto the stack. */
1237 /* Add 1 to sp here to account for post decr nature of pushes. */
1238 write_memory (sp
+1, si
->data
, si
->len
);
1239 si
= pop_stack_item (si
);
1242 /* Set the return address. For the avr, the return address is the BP_ADDR.
1243 Need to push the return address onto the stack noting that it needs to be
1244 in big-endian order on the stack. */
1245 buf
[0] = (return_pc
>> 8) & 0xff;
1246 buf
[1] = return_pc
& 0xff;
1249 write_memory (sp
+1, buf
, 2); /* Add one since pushes are post decr ops. */
1251 /* Finally, update the SP register. */
1252 regcache_cooked_write_unsigned (regcache
, AVR_SP_REGNUM
,
1253 avr_convert_saddr_to_raw (sp
));
1258 /* Initialize the gdbarch structure for the AVR's. */
1260 static struct gdbarch
*
1261 avr_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1263 struct gdbarch
*gdbarch
;
1264 struct gdbarch_tdep
*tdep
;
1266 /* Find a candidate among the list of pre-declared architectures. */
1267 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1269 return arches
->gdbarch
;
1271 /* None found, create a new architecture from the information provided. */
1272 tdep
= XMALLOC (struct gdbarch_tdep
);
1273 gdbarch
= gdbarch_alloc (&info
, tdep
);
1275 /* If we ever need to differentiate the device types, do it here. */
1276 switch (info
.bfd_arch_info
->mach
)
1286 set_gdbarch_short_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
1287 set_gdbarch_int_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
1288 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1289 set_gdbarch_long_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
1290 set_gdbarch_ptr_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
1291 set_gdbarch_addr_bit (gdbarch
, 32);
1293 set_gdbarch_float_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1294 set_gdbarch_double_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1295 set_gdbarch_long_double_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1297 set_gdbarch_float_format (gdbarch
, &floatformat_ieee_single_little
);
1298 set_gdbarch_double_format (gdbarch
, &floatformat_ieee_single_little
);
1299 set_gdbarch_long_double_format (gdbarch
, &floatformat_ieee_single_little
);
1301 set_gdbarch_read_pc (gdbarch
, avr_read_pc
);
1302 set_gdbarch_write_pc (gdbarch
, avr_write_pc
);
1303 set_gdbarch_read_sp (gdbarch
, avr_read_sp
);
1305 set_gdbarch_num_regs (gdbarch
, AVR_NUM_REGS
);
1307 set_gdbarch_sp_regnum (gdbarch
, AVR_SP_REGNUM
);
1308 set_gdbarch_pc_regnum (gdbarch
, AVR_PC_REGNUM
);
1310 set_gdbarch_register_name (gdbarch
, avr_register_name
);
1311 set_gdbarch_register_type (gdbarch
, avr_register_type
);
1313 set_gdbarch_extract_return_value (gdbarch
, avr_extract_return_value
);
1314 set_gdbarch_print_insn (gdbarch
, print_insn_avr
);
1316 set_gdbarch_push_dummy_call (gdbarch
, avr_push_dummy_call
);
1318 set_gdbarch_address_to_pointer (gdbarch
, avr_address_to_pointer
);
1319 set_gdbarch_pointer_to_address (gdbarch
, avr_pointer_to_address
);
1321 set_gdbarch_use_struct_convention (gdbarch
, generic_use_struct_convention
);
1323 set_gdbarch_skip_prologue (gdbarch
, avr_skip_prologue
);
1324 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1326 set_gdbarch_decr_pc_after_break (gdbarch
, 0);
1327 set_gdbarch_breakpoint_from_pc (gdbarch
, avr_breakpoint_from_pc
);
1329 set_gdbarch_function_start_offset (gdbarch
, 0);
1331 set_gdbarch_frame_args_skip (gdbarch
, 0);
1332 set_gdbarch_frameless_function_invocation (gdbarch
,
1333 frameless_look_for_prologue
);
1335 frame_unwind_append_sniffer (gdbarch
, avr_frame_sniffer
);
1336 frame_base_set_default (gdbarch
, &avr_frame_base
);
1338 set_gdbarch_unwind_dummy_id (gdbarch
, avr_unwind_dummy_id
);
1340 set_gdbarch_unwind_pc (gdbarch
, avr_unwind_pc
);
1345 /* Send a query request to the avr remote target asking for values of the io
1346 registers. If args parameter is not NULL, then the user has requested info
1347 on a specific io register [This still needs implemented and is ignored for
1348 now]. The query string should be one of these forms:
1350 "Ravr.io_reg" -> reply is "NN" number of io registers
1352 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1353 registers to be read. The reply should be "<NAME>,VV;" for each io register
1354 where, <NAME> is a string, and VV is the hex value of the register.
1356 All io registers are 8-bit. */
1359 avr_io_reg_read_command (char *args
, int from_tty
)
1365 unsigned int nreg
= 0;
1369 if (!current_target
.to_query
)
1371 fprintf_unfiltered (gdb_stderr
,
1372 "ERR: info io_registers NOT supported by current "
1377 /* Just get the maximum buffer size. */
1378 target_query ((int) 'R', 0, 0, &bufsiz
);
1379 if (bufsiz
> sizeof (buf
))
1380 bufsiz
= sizeof (buf
);
1382 /* Find out how many io registers the target has. */
1383 strcpy (query
, "avr.io_reg");
1384 target_query ((int) 'R', query
, buf
, &bufsiz
);
1386 if (strncmp (buf
, "", bufsiz
) == 0)
1388 fprintf_unfiltered (gdb_stderr
,
1389 "info io_registers NOT supported by target\n");
1393 if (sscanf (buf
, "%x", &nreg
) != 1)
1395 fprintf_unfiltered (gdb_stderr
,
1396 "Error fetching number of io registers\n");
1400 reinitialize_more_filter ();
1402 printf_unfiltered ("Target has %u io registers:\n\n", nreg
);
1404 /* only fetch up to 8 registers at a time to keep the buffer small */
1407 for (i
= 0; i
< nreg
; i
+= step
)
1409 /* how many registers this round? */
1412 j
= nreg
- i
; /* last block is less than 8 registers */
1414 snprintf (query
, sizeof (query
) - 1, "avr.io_reg:%x,%x", i
, j
);
1415 target_query ((int) 'R', query
, buf
, &bufsiz
);
1418 for (k
= i
; k
< (i
+ j
); k
++)
1420 if (sscanf (p
, "%[^,],%x;", query
, &val
) == 2)
1422 printf_filtered ("[%02x] %-15s : %02x\n", k
, query
, val
);
1423 while ((*p
!= ';') && (*p
!= '\0'))
1425 p
++; /* skip over ';' */
1433 extern initialize_file_ftype _initialize_avr_tdep
; /* -Wmissing-prototypes */
1436 _initialize_avr_tdep (void)
1438 register_gdbarch_init (bfd_arch_avr
, avr_gdbarch_init
);
1440 /* Add a new command to allow the user to query the avr remote target for
1441 the values of the io space registers in a saner way than just using
1444 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1445 io_registers' to signify it is not available on other platforms. */
1447 add_cmd ("io_registers", class_info
, avr_io_reg_read_command
,
1448 "query remote avr target for io space register values", &infolist
);