daily update
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Contributed by Theodore A. Roth, troth@openavr.org */
23
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39
40 /* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74 #undef EXTRACT_INSN
75 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
76
77 /* Constants: prefixed with AVR_ to avoid name space clashes */
78
79 enum
80 {
81 AVR_REG_W = 24,
82 AVR_REG_X = 26,
83 AVR_REG_Y = 28,
84 AVR_FP_REGNUM = 28,
85 AVR_REG_Z = 30,
86
87 AVR_SREG_REGNUM = 32,
88 AVR_SP_REGNUM = 33,
89 AVR_PC_REGNUM = 34,
90
91 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
92 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
93
94 AVR_PC_REG_INDEX = 35, /* index into array of registers */
95
96 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
97
98 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
99 AVR_MAX_PUSHES = 18,
100
101 /* Number of the last pushed register. r17 for current avr-gcc */
102 AVR_LAST_PUSHED_REGNUM = 17,
103
104 AVR_ARG1_REGNUM = 24, /* Single byte argument */
105 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
106
107 AVR_RET1_REGNUM = 24, /* Single byte return value */
108 AVR_RETN_REGNUM = 25, /* Multi byte return value */
109
110 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
111 bits? Do these have to match the bfd vma values?. It sure would make
112 things easier in the future if they didn't need to match.
113
114 Note: I chose these values so as to be consistent with bfd vma
115 addresses.
116
117 TRoth/2002-04-08: There is already a conflict with very large programs
118 in the mega128. The mega128 has 128K instruction bytes (64K words),
119 thus the Most Significant Bit is 0x10000 which gets masked off my
120 AVR_MEM_MASK.
121
122 The problem manifests itself when trying to set a breakpoint in a
123 function which resides in the upper half of the instruction space and
124 thus requires a 17-bit address.
125
126 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
127 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
128 but could be for some remote targets by just adding the correct offset
129 to the address and letting the remote target handle the low-level
130 details of actually accessing the eeprom. */
131
132 AVR_IMEM_START = 0x00000000, /* INSN memory */
133 AVR_SMEM_START = 0x00800000, /* SRAM memory */
134 #if 1
135 /* No eeprom mask defined */
136 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
137 #else
138 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
139 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
140 #endif
141 };
142
143 /* Prologue types:
144
145 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
146 causes the generation of the CALL type prologues). */
147
148 enum {
149 AVR_PROLOGUE_NONE, /* No prologue */
150 AVR_PROLOGUE_NORMAL,
151 AVR_PROLOGUE_CALL, /* -mcall-prologues */
152 AVR_PROLOGUE_MAIN,
153 AVR_PROLOGUE_INTR, /* interrupt handler */
154 AVR_PROLOGUE_SIG, /* signal handler */
155 };
156
157 /* Any function with a frame looks like this
158 ....... <-SP POINTS HERE
159 LOCALS1 <-FP POINTS HERE
160 LOCALS0
161 SAVED FP
162 SAVED R3
163 SAVED R2
164 RET PC
165 FIRST ARG
166 SECOND ARG */
167
168 struct avr_unwind_cache
169 {
170 /* The previous frame's inner most stack address. Used as this
171 frame ID's stack_addr. */
172 CORE_ADDR prev_sp;
173 /* The frame's base, optionally used by the high-level debug info. */
174 CORE_ADDR base;
175 int size;
176 int prologue_type;
177 /* Table indicating the location of each and every register. */
178 struct trad_frame_saved_reg *saved_regs;
179 };
180
181 struct gdbarch_tdep
182 {
183 /* FIXME: TRoth: is there anything to put here? */
184 int foo;
185 };
186
187 /* Lookup the name of a register given it's number. */
188
189 static const char *
190 avr_register_name (int regnum)
191 {
192 static char *register_names[] = {
193 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
194 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
195 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
196 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
197 "SREG", "SP", "PC"
198 };
199 if (regnum < 0)
200 return NULL;
201 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
202 return NULL;
203 return register_names[regnum];
204 }
205
206 /* Return the GDB type object for the "standard" data type
207 of data in register N. */
208
209 static struct type *
210 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
211 {
212 if (reg_nr == AVR_PC_REGNUM)
213 return builtin_type_uint32;
214 if (reg_nr == AVR_SP_REGNUM)
215 return builtin_type_void_data_ptr;
216 else
217 return builtin_type_uint8;
218 }
219
220 /* Instruction address checks and convertions. */
221
222 static CORE_ADDR
223 avr_make_iaddr (CORE_ADDR x)
224 {
225 return ((x) | AVR_IMEM_START);
226 }
227
228 static int
229 avr_iaddr_p (CORE_ADDR x)
230 {
231 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
232 }
233
234 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
235 devices are already up to 128KBytes of flash space.
236
237 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
238
239 static CORE_ADDR
240 avr_convert_iaddr_to_raw (CORE_ADDR x)
241 {
242 return ((x) & 0xffffffff);
243 }
244
245 /* SRAM address checks and convertions. */
246
247 static CORE_ADDR
248 avr_make_saddr (CORE_ADDR x)
249 {
250 return ((x) | AVR_SMEM_START);
251 }
252
253 static int
254 avr_saddr_p (CORE_ADDR x)
255 {
256 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
257 }
258
259 static CORE_ADDR
260 avr_convert_saddr_to_raw (CORE_ADDR x)
261 {
262 return ((x) & 0xffffffff);
263 }
264
265 /* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
267
268 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
270
271 /* static CORE_ADDR */
272 /* avr_make_eaddr (CORE_ADDR x) */
273 /* { */
274 /* return ((x) | AVR_EMEM_START); */
275 /* } */
276
277 /* static int */
278 /* avr_eaddr_p (CORE_ADDR x) */
279 /* { */
280 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
281 /* } */
282
283 /* static CORE_ADDR */
284 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
285 /* { */
286 /* return ((x) & 0xffffffff); */
287 /* } */
288
289 /* Convert from address to pointer and vice-versa. */
290
291 static void
292 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
293 {
294 /* Is it a code address? */
295 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
296 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
297 {
298 store_unsigned_integer (buf, TYPE_LENGTH (type),
299 avr_convert_iaddr_to_raw (addr >> 1));
300 }
301 else
302 {
303 /* Strip off any upper segment bits. */
304 store_unsigned_integer (buf, TYPE_LENGTH (type),
305 avr_convert_saddr_to_raw (addr));
306 }
307 }
308
309 static CORE_ADDR
310 avr_pointer_to_address (struct type *type, const void *buf)
311 {
312 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
313
314 /* Is it a code address? */
315 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
316 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
317 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
318 return avr_make_iaddr (addr << 1);
319 else
320 return avr_make_saddr (addr);
321 }
322
323 static CORE_ADDR
324 avr_read_pc (ptid_t ptid)
325 {
326 ptid_t save_ptid;
327 ULONGEST pc;
328 CORE_ADDR retval;
329
330 save_ptid = inferior_ptid;
331 inferior_ptid = ptid;
332 regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
333 inferior_ptid = save_ptid;
334 retval = avr_make_iaddr (pc);
335 return retval;
336 }
337
338 static void
339 avr_write_pc (CORE_ADDR val, ptid_t ptid)
340 {
341 ptid_t save_ptid;
342
343 save_ptid = inferior_ptid;
344 inferior_ptid = ptid;
345 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
346 inferior_ptid = save_ptid;
347 }
348
349 static CORE_ADDR
350 avr_read_sp (void)
351 {
352 ULONGEST sp;
353
354 regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp);
355 return (avr_make_saddr (sp));
356 }
357
358 static int
359 avr_scan_arg_moves (int vpc, unsigned char *prologue)
360 {
361 unsigned short insn;
362
363 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
364 {
365 insn = EXTRACT_INSN (&prologue[vpc]);
366 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
367 continue;
368 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
369 continue;
370 else
371 break;
372 }
373
374 return vpc;
375 }
376
377 /* Function: avr_scan_prologue
378
379 This function decodes an AVR function prologue to determine:
380 1) the size of the stack frame
381 2) which registers are saved on it
382 3) the offsets of saved regs
383 This information is stored in the avr_unwind_cache structure.
384
385 Some devices lack the sbiw instruction, so on those replace this:
386 sbiw r28, XX
387 with this:
388 subi r28,lo8(XX)
389 sbci r29,hi8(XX)
390
391 A typical AVR function prologue with a frame pointer might look like this:
392 push rXX ; saved regs
393 ...
394 push r28
395 push r29
396 in r28,__SP_L__
397 in r29,__SP_H__
398 sbiw r28,<LOCALS_SIZE>
399 in __tmp_reg__,__SREG__
400 cli
401 out __SP_H__,r29
402 out __SREG__,__tmp_reg__
403 out __SP_L__,r28
404
405 A typical AVR function prologue without a frame pointer might look like
406 this:
407 push rXX ; saved regs
408 ...
409
410 A main function prologue looks like this:
411 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
412 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
413 out __SP_H__,r29
414 out __SP_L__,r28
415
416 A signal handler prologue looks like this:
417 push __zero_reg__
418 push __tmp_reg__
419 in __tmp_reg__, __SREG__
420 push __tmp_reg__
421 clr __zero_reg__
422 push rXX ; save registers r18:r27, r30:r31
423 ...
424 push r28 ; save frame pointer
425 push r29
426 in r28, __SP_L__
427 in r29, __SP_H__
428 sbiw r28, <LOCALS_SIZE>
429 out __SP_H__, r29
430 out __SP_L__, r28
431
432 A interrupt handler prologue looks like this:
433 sei
434 push __zero_reg__
435 push __tmp_reg__
436 in __tmp_reg__, __SREG__
437 push __tmp_reg__
438 clr __zero_reg__
439 push rXX ; save registers r18:r27, r30:r31
440 ...
441 push r28 ; save frame pointer
442 push r29
443 in r28, __SP_L__
444 in r29, __SP_H__
445 sbiw r28, <LOCALS_SIZE>
446 cli
447 out __SP_H__, r29
448 sei
449 out __SP_L__, r28
450
451 A `-mcall-prologues' prologue looks like this (Note that the megas use a
452 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
453 32 bit insn and rjmp is a 16 bit insn):
454 ldi r26,lo8(<LOCALS_SIZE>)
455 ldi r27,hi8(<LOCALS_SIZE>)
456 ldi r30,pm_lo8(.L_foo_body)
457 ldi r31,pm_hi8(.L_foo_body)
458 rjmp __prologue_saves__+RRR
459 .L_foo_body: */
460
461 /* Not really part of a prologue, but still need to scan for it, is when a
462 function prologue moves values passed via registers as arguments to new
463 registers. In this case, all local variables live in registers, so there
464 may be some register saves. This is what it looks like:
465 movw rMM, rNN
466 ...
467
468 There could be multiple movw's. If the target doesn't have a movw insn, it
469 will use two mov insns. This could be done after any of the above prologue
470 types. */
471
472 static CORE_ADDR
473 avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
474 {
475 int i;
476 unsigned short insn;
477 int scan_stage = 0;
478 struct minimal_symbol *msymbol;
479 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
480 int vpc = 0;
481
482 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
483 reading in the bytes of the prologue. The problem is that the figuring
484 out where the end of the prologue is is a bit difficult. The old code
485 tried to do that, but failed quite often. */
486 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
487
488 /* Scanning main()'s prologue
489 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
490 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
491 out __SP_H__,r29
492 out __SP_L__,r28 */
493
494 if (1)
495 {
496 CORE_ADDR locals;
497 unsigned char img[] = {
498 0xde, 0xbf, /* out __SP_H__,r29 */
499 0xcd, 0xbf /* out __SP_L__,r28 */
500 };
501
502 insn = EXTRACT_INSN (&prologue[vpc]);
503 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
504 if ((insn & 0xf0f0) == 0xe0c0)
505 {
506 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
507 insn = EXTRACT_INSN (&prologue[vpc + 2]);
508 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
509 if ((insn & 0xf0f0) == 0xe0d0)
510 {
511 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
512 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
513 {
514 info->prologue_type = AVR_PROLOGUE_MAIN;
515 info->base = locals;
516 return pc + 4;
517 }
518 }
519 }
520 }
521
522 /* Scanning `-mcall-prologues' prologue
523 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
524
525 while (1) /* Using a while to avoid many goto's */
526 {
527 int loc_size;
528 int body_addr;
529 unsigned num_pushes;
530 int pc_offset = 0;
531
532 insn = EXTRACT_INSN (&prologue[vpc]);
533 /* ldi r26,<LOCALS_SIZE> */
534 if ((insn & 0xf0f0) != 0xe0a0)
535 break;
536 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
537 pc_offset += 2;
538
539 insn = EXTRACT_INSN (&prologue[vpc + 2]);
540 /* ldi r27,<LOCALS_SIZE> / 256 */
541 if ((insn & 0xf0f0) != 0xe0b0)
542 break;
543 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
544 pc_offset += 2;
545
546 insn = EXTRACT_INSN (&prologue[vpc + 4]);
547 /* ldi r30,pm_lo8(.L_foo_body) */
548 if ((insn & 0xf0f0) != 0xe0e0)
549 break;
550 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
551 pc_offset += 2;
552
553 insn = EXTRACT_INSN (&prologue[vpc + 6]);
554 /* ldi r31,pm_hi8(.L_foo_body) */
555 if ((insn & 0xf0f0) != 0xe0f0)
556 break;
557 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
558 pc_offset += 2;
559
560 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
561 if (!msymbol)
562 break;
563
564 insn = EXTRACT_INSN (&prologue[vpc + 8]);
565 /* rjmp __prologue_saves__+RRR */
566 if ((insn & 0xf000) == 0xc000)
567 {
568 /* Extract PC relative offset from RJMP */
569 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
570 /* Convert offset to byte addressable mode */
571 i *= 2;
572 /* Destination address */
573 i += pc + 10;
574
575 if (body_addr != (pc + 10)/2)
576 break;
577
578 pc_offset += 2;
579 }
580 else if ((insn & 0xfe0e) == 0x940c)
581 {
582 /* Extract absolute PC address from JMP */
583 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
584 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
585 /* Convert address to byte addressable mode */
586 i *= 2;
587
588 if (body_addr != (pc + 12)/2)
589 break;
590
591 pc_offset += 4;
592 }
593 else
594 break;
595
596 /* Resolve offset (in words) from __prologue_saves__ symbol.
597 Which is a pushes count in `-mcall-prologues' mode */
598 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
599
600 if (num_pushes > AVR_MAX_PUSHES)
601 {
602 fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
603 num_pushes);
604 num_pushes = 0;
605 }
606
607 if (num_pushes)
608 {
609 int from;
610
611 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
612 if (num_pushes >= 2)
613 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
614
615 i = 0;
616 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
617 from <= AVR_LAST_PUSHED_REGNUM; ++from)
618 info->saved_regs [from].addr = ++i;
619 }
620 info->size = loc_size + num_pushes;
621 info->prologue_type = AVR_PROLOGUE_CALL;
622
623 return pc + pc_offset;
624 }
625
626 /* Scan for the beginning of the prologue for an interrupt or signal
627 function. Note that we have to set the prologue type here since the
628 third stage of the prologue may not be present (e.g. no saved registered
629 or changing of the SP register). */
630
631 if (1)
632 {
633 unsigned char img[] = {
634 0x78, 0x94, /* sei */
635 0x1f, 0x92, /* push r1 */
636 0x0f, 0x92, /* push r0 */
637 0x0f, 0xb6, /* in r0,0x3f SREG */
638 0x0f, 0x92, /* push r0 */
639 0x11, 0x24 /* clr r1 */
640 };
641 if (memcmp (prologue, img, sizeof (img)) == 0)
642 {
643 info->prologue_type = AVR_PROLOGUE_INTR;
644 vpc += sizeof (img);
645 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
646 info->saved_regs[0].addr = 2;
647 info->saved_regs[1].addr = 1;
648 info->size += 3;
649 }
650 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
651 {
652 info->prologue_type = AVR_PROLOGUE_SIG;
653 vpc += sizeof (img) - 2;
654 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
655 info->saved_regs[0].addr = 2;
656 info->saved_regs[1].addr = 1;
657 info->size += 3;
658 }
659 }
660
661 /* First stage of the prologue scanning.
662 Scan pushes (saved registers) */
663
664 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
665 {
666 insn = EXTRACT_INSN (&prologue[vpc]);
667 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
668 {
669 /* Bits 4-9 contain a mask for registers R0-R32. */
670 int regno = (insn & 0x1f0) >> 4;
671 info->size++;
672 info->saved_regs[regno].addr = info->size;
673 scan_stage = 1;
674 }
675 else
676 break;
677 }
678
679 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
680 fprintf_unfiltered (gdb_stderr,
681 "Hit end of prologue while scanning pushes\n");
682
683 /* Second stage of the prologue scanning.
684 Scan:
685 in r28,__SP_L__
686 in r29,__SP_H__ */
687
688 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
689 {
690 unsigned char img[] = {
691 0xcd, 0xb7, /* in r28,__SP_L__ */
692 0xde, 0xb7 /* in r29,__SP_H__ */
693 };
694 unsigned short insn1;
695
696 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
697 {
698 vpc += 4;
699 scan_stage = 2;
700 }
701 }
702
703 /* Third stage of the prologue scanning. (Really two stages)
704 Scan for:
705 sbiw r28,XX or subi r28,lo8(XX)
706 sbci r29,hi8(XX)
707 in __tmp_reg__,__SREG__
708 cli
709 out __SP_H__,r29
710 out __SREG__,__tmp_reg__
711 out __SP_L__,r28 */
712
713 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
714 {
715 int locals_size = 0;
716 unsigned char img[] = {
717 0x0f, 0xb6, /* in r0,0x3f */
718 0xf8, 0x94, /* cli */
719 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
720 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
721 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
722 };
723 unsigned char img_sig[] = {
724 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
725 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
726 };
727 unsigned char img_int[] = {
728 0xf8, 0x94, /* cli */
729 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
730 0x78, 0x94, /* sei */
731 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
732 };
733
734 insn = EXTRACT_INSN (&prologue[vpc]);
735 vpc += 2;
736 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
737 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
738 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
739 {
740 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
741 insn = EXTRACT_INSN (&prologue[vpc]);
742 vpc += 2;
743 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
744 }
745 else
746 return pc + vpc;
747
748 /* Scan the last part of the prologue. May not be present for interrupt
749 or signal handler functions, which is why we set the prologue type
750 when we saw the beginning of the prologue previously. */
751
752 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
753 {
754 vpc += sizeof (img_sig);
755 }
756 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
757 {
758 vpc += sizeof (img_int);
759 }
760 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
761 {
762 info->prologue_type = AVR_PROLOGUE_NORMAL;
763 vpc += sizeof (img);
764 }
765
766 info->size += locals_size;
767
768 return pc + avr_scan_arg_moves (vpc, prologue);
769 }
770
771 /* If we got this far, we could not scan the prologue, so just return the pc
772 of the frame plus an adjustment for argument move insns. */
773
774 return pc + avr_scan_arg_moves (vpc, prologue);;
775 }
776
777 static CORE_ADDR
778 avr_skip_prologue (CORE_ADDR pc)
779 {
780 CORE_ADDR func_addr, func_end;
781 CORE_ADDR prologue_end = pc;
782
783 /* See what the symbol table says */
784
785 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
786 {
787 struct symtab_and_line sal;
788 struct avr_unwind_cache info = {0};
789 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
790
791 info.saved_regs = saved_regs;
792
793 /* Need to run the prologue scanner to figure out if the function has a
794 prologue and possibly skip over moving arguments passed via registers
795 to other registers. */
796
797 prologue_end = avr_scan_prologue (pc, &info);
798
799 if (info.prologue_type == AVR_PROLOGUE_NONE)
800 return pc;
801 else
802 {
803 sal = find_pc_line (func_addr, 0);
804
805 if (sal.line != 0 && sal.end < func_end)
806 return sal.end;
807 }
808 }
809
810 /* Either we didn't find the start of this function (nothing we can do),
811 or there's no line info, or the line after the prologue is after
812 the end of the function (there probably isn't a prologue). */
813
814 return prologue_end;
815 }
816
817 /* Not all avr devices support the BREAK insn. Those that don't should treat
818 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
819 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
820
821 static const unsigned char *
822 avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
823 {
824 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
825 *lenptr = sizeof (avr_break_insn);
826 return avr_break_insn;
827 }
828
829 /* Given a return value in `regbuf' with a type `valtype',
830 extract and copy its value into `valbuf'.
831
832 Return values are always passed via registers r25:r24:... */
833
834 static void
835 avr_extract_return_value (struct type *type, struct regcache *regcache,
836 void *valbuf)
837 {
838 ULONGEST r24, r25;
839 ULONGEST c;
840 int len;
841 if (TYPE_LENGTH (type) == 1)
842 {
843 regcache_cooked_read_unsigned (regcache, 24, &c);
844 store_unsigned_integer (valbuf, 1, c);
845 }
846 else
847 {
848 int i;
849 /* The MSB of the return value is always in r25, calculate which
850 register holds the LSB. */
851 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
852
853 for (i=0; i< TYPE_LENGTH (type); i++)
854 {
855 regcache_cooked_read (regcache, lsb_reg + i,
856 (bfd_byte *) valbuf + i);
857 }
858 }
859 }
860
861 /* Put here the code to store, into fi->saved_regs, the addresses of
862 the saved registers of frame described by FRAME_INFO. This
863 includes special registers such as pc and fp saved in special ways
864 in the stack frame. sp is even more special: the address we return
865 for it IS the sp for the next frame. */
866
867 struct avr_unwind_cache *
868 avr_frame_unwind_cache (struct frame_info *next_frame,
869 void **this_prologue_cache)
870 {
871 CORE_ADDR pc;
872 ULONGEST prev_sp;
873 ULONGEST this_base;
874 struct avr_unwind_cache *info;
875 int i;
876
877 if ((*this_prologue_cache))
878 return (*this_prologue_cache);
879
880 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
881 (*this_prologue_cache) = info;
882 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
883
884 info->size = 0;
885 info->prologue_type = AVR_PROLOGUE_NONE;
886
887 pc = frame_func_unwind (next_frame);
888
889 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
890 avr_scan_prologue (pc, info);
891
892 if ((info->prologue_type != AVR_PROLOGUE_NONE)
893 && (info->prologue_type != AVR_PROLOGUE_MAIN))
894 {
895 ULONGEST high_base; /* High byte of FP */
896
897 /* The SP was moved to the FP. This indicates that a new frame
898 was created. Get THIS frame's FP value by unwinding it from
899 the next frame. */
900 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
901 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
902 this_base += (high_base << 8);
903
904 /* The FP points at the last saved register. Adjust the FP back
905 to before the first saved register giving the SP. */
906 prev_sp = this_base + info->size;
907 }
908 else
909 {
910 /* Assume that the FP is this frame's SP but with that pushed
911 stack space added back. */
912 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
913 prev_sp = this_base + info->size;
914 }
915
916 /* Add 1 here to adjust for the post-decrement nature of the push
917 instruction.*/
918 info->prev_sp = avr_make_saddr (prev_sp+1);
919
920 info->base = avr_make_saddr (this_base);
921
922 /* Adjust all the saved registers so that they contain addresses and not
923 offsets. */
924 for (i = 0; i < NUM_REGS - 1; i++)
925 if (info->saved_regs[i].addr)
926 {
927 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
928 }
929
930 /* Except for the main and startup code, the return PC is always saved on
931 the stack and is at the base of the frame. */
932
933 if (info->prologue_type != AVR_PROLOGUE_MAIN)
934 {
935 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
936 }
937
938 /* The previous frame's SP needed to be computed. Save the computed
939 value. */
940 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
941
942 return info;
943 }
944
945 static CORE_ADDR
946 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
947 {
948 ULONGEST pc;
949
950 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
951
952 return avr_make_iaddr (pc);
953 }
954
955 /* Given a GDB frame, determine the address of the calling function's
956 frame. This will be used to create a new GDB frame struct. */
957
958 static void
959 avr_frame_this_id (struct frame_info *next_frame,
960 void **this_prologue_cache,
961 struct frame_id *this_id)
962 {
963 struct avr_unwind_cache *info
964 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
965 CORE_ADDR base;
966 CORE_ADDR func;
967 struct frame_id id;
968
969 /* The FUNC is easy. */
970 func = frame_func_unwind (next_frame);
971
972 /* This is meant to halt the backtrace at "_start". Make sure we
973 don't halt it at a generic dummy frame. */
974 if (inside_entry_file (func))
975 return;
976
977 /* Hopefully the prologue analysis either correctly determined the
978 frame's base (which is the SP from the previous frame), or set
979 that base to "NULL". */
980 base = info->prev_sp;
981 if (base == 0)
982 return;
983
984 id = frame_id_build (base, func);
985
986 /* Check that we're not going round in circles with the same frame
987 ID (but avoid applying the test to sentinel frames which do go
988 round in circles). Can't use frame_id_eq() as that doesn't yet
989 compare the frame's PC value. */
990 if (frame_relative_level (next_frame) >= 0
991 && get_frame_type (next_frame) != DUMMY_FRAME
992 && frame_id_eq (get_frame_id (next_frame), id))
993 return;
994
995 (*this_id) = id;
996 }
997
998 static void
999 avr_frame_prev_register (struct frame_info *next_frame,
1000 void **this_prologue_cache,
1001 int regnum, int *optimizedp,
1002 enum lval_type *lvalp, CORE_ADDR *addrp,
1003 int *realnump, void *bufferp)
1004 {
1005 struct avr_unwind_cache *info
1006 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
1007
1008 if (regnum == AVR_PC_REGNUM)
1009 {
1010 if (trad_frame_addr_p (info->saved_regs, regnum))
1011 {
1012 *optimizedp = 0;
1013 *lvalp = lval_memory;
1014 *addrp = info->saved_regs[regnum].addr;
1015 *realnump = -1;
1016 if (bufferp != NULL)
1017 {
1018 /* Reading the return PC from the PC register is slightly
1019 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1020 but in reality, only two bytes (3 in upcoming mega256) are
1021 stored on the stack.
1022
1023 Also, note that the value on the stack is an addr to a word
1024 not a byte, so we will need to multiply it by two at some
1025 point.
1026
1027 And to confuse matters even more, the return address stored
1028 on the stack is in big endian byte order, even though most
1029 everything else about the avr is little endian. Ick! */
1030
1031 /* FIXME: number of bytes read here will need updated for the
1032 mega256 when it is available. */
1033
1034 ULONGEST pc;
1035 unsigned char tmp;
1036 unsigned char buf[2];
1037
1038 read_memory (info->saved_regs[regnum].addr, buf, 2);
1039
1040 /* Convert the PC read from memory as a big-endian to
1041 little-endian order. */
1042 tmp = buf[0];
1043 buf[0] = buf[1];
1044 buf[1] = tmp;
1045
1046 pc = (extract_unsigned_integer (buf, 2) * 2);
1047 store_unsigned_integer (bufferp,
1048 register_size (current_gdbarch, regnum),
1049 pc);
1050 }
1051 }
1052 }
1053 else
1054 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1055 optimizedp, lvalp, addrp, realnump, bufferp);
1056 }
1057
1058 static const struct frame_unwind avr_frame_unwind = {
1059 NORMAL_FRAME,
1060 avr_frame_this_id,
1061 avr_frame_prev_register
1062 };
1063
1064 const struct frame_unwind *
1065 avr_frame_sniffer (struct frame_info *next_frame)
1066 {
1067 return &avr_frame_unwind;
1068 }
1069
1070 static CORE_ADDR
1071 avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
1072 {
1073 struct avr_unwind_cache *info
1074 = avr_frame_unwind_cache (next_frame, this_cache);
1075
1076 return info->base;
1077 }
1078
1079 static const struct frame_base avr_frame_base = {
1080 &avr_frame_unwind,
1081 avr_frame_base_address,
1082 avr_frame_base_address,
1083 avr_frame_base_address
1084 };
1085
1086 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1087 dummy frame. The frame ID's base needs to match the TOS value
1088 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1089 breakpoint. */
1090
1091 static struct frame_id
1092 avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1093 {
1094 ULONGEST base;
1095
1096 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1097 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
1098 }
1099
1100 /* When arguments must be pushed onto the stack, they go on in reverse
1101 order. The below implements a FILO (stack) to do this. */
1102
1103 struct stack_item
1104 {
1105 int len;
1106 struct stack_item *prev;
1107 void *data;
1108 };
1109
1110 static struct stack_item *push_stack_item (struct stack_item *prev,
1111 void *contents, int len);
1112 static struct stack_item *
1113 push_stack_item (struct stack_item *prev, void *contents, int len)
1114 {
1115 struct stack_item *si;
1116 si = xmalloc (sizeof (struct stack_item));
1117 si->data = xmalloc (len);
1118 si->len = len;
1119 si->prev = prev;
1120 memcpy (si->data, contents, len);
1121 return si;
1122 }
1123
1124 static struct stack_item *pop_stack_item (struct stack_item *si);
1125 static struct stack_item *
1126 pop_stack_item (struct stack_item *si)
1127 {
1128 struct stack_item *dead = si;
1129 si = si->prev;
1130 xfree (dead->data);
1131 xfree (dead);
1132 return si;
1133 }
1134
1135 /* Setup the function arguments for calling a function in the inferior.
1136
1137 On the AVR architecture, there are 18 registers (R25 to R8) which are
1138 dedicated for passing function arguments. Up to the first 18 arguments
1139 (depending on size) may go into these registers. The rest go on the stack.
1140
1141 All arguments are aligned to start in even-numbered registers (odd-sized
1142 arguments, including char, have one free register above them). For example,
1143 an int in arg1 and a char in arg2 would be passed as such:
1144
1145 arg1 -> r25:r24
1146 arg2 -> r22
1147
1148 Arguments that are larger than 2 bytes will be split between two or more
1149 registers as available, but will NOT be split between a register and the
1150 stack. Arguments that go onto the stack are pushed last arg first (this is
1151 similar to the d10v). */
1152
1153 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1154 inaccurate.
1155
1156 An exceptional case exists for struct arguments (and possibly other
1157 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1158 not a multiple of WORDSIZE bytes. In this case the argument is never split
1159 between the registers and the stack, but instead is copied in its entirety
1160 onto the stack, AND also copied into as many registers as there is room
1161 for. In other words, space in registers permitting, two copies of the same
1162 argument are passed in. As far as I can tell, only the one on the stack is
1163 used, although that may be a function of the level of compiler
1164 optimization. I suspect this is a compiler bug. Arguments of these odd
1165 sizes are left-justified within the word (as opposed to arguments smaller
1166 than WORDSIZE bytes, which are right-justified).
1167
1168 If the function is to return an aggregate type such as a struct, the caller
1169 must allocate space into which the callee will copy the return value. In
1170 this case, a pointer to the return value location is passed into the callee
1171 in register R0, which displaces one of the other arguments passed in via
1172 registers R0 to R2. */
1173
1174 static CORE_ADDR
1175 avr_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1176 struct regcache *regcache, CORE_ADDR bp_addr,
1177 int nargs, struct value **args, CORE_ADDR sp,
1178 int struct_return, CORE_ADDR struct_addr)
1179 {
1180 int i;
1181 unsigned char buf[2];
1182 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1183 int regnum = AVR_ARGN_REGNUM;
1184 struct stack_item *si = NULL;
1185
1186 #if 0
1187 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1188 if (struct_return)
1189 {
1190 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1191 write_register (argreg--, struct_addr & 0xff);
1192 write_register (argreg--, (struct_addr >>8) & 0xff);
1193 }
1194 #endif
1195
1196 for (i = 0; i < nargs; i++)
1197 {
1198 int last_regnum;
1199 int j;
1200 struct value *arg = args[i];
1201 struct type *type = check_typedef (VALUE_TYPE (arg));
1202 char *contents = VALUE_CONTENTS (arg);
1203 int len = TYPE_LENGTH (type);
1204
1205 /* Calculate the potential last register needed. */
1206 last_regnum = regnum - (len + (len & 1));
1207
1208 /* If there are registers available, use them. Once we start putting
1209 stuff on the stack, all subsequent args go on stack. */
1210 if ((si == NULL) && (last_regnum >= 8))
1211 {
1212 ULONGEST val;
1213
1214 /* Skip a register for odd length args. */
1215 if (len & 1)
1216 regnum--;
1217
1218 val = extract_unsigned_integer (contents, len);
1219 for (j=0; j<len; j++)
1220 {
1221 regcache_cooked_write_unsigned (regcache, regnum--,
1222 val >> (8*(len-j-1)));
1223 }
1224 }
1225 /* No registers available, push the args onto the stack. */
1226 else
1227 {
1228 /* From here on, we don't care about regnum. */
1229 si = push_stack_item (si, contents, len);
1230 }
1231 }
1232
1233 /* Push args onto the stack. */
1234 while (si)
1235 {
1236 sp -= si->len;
1237 /* Add 1 to sp here to account for post decr nature of pushes. */
1238 write_memory (sp+1, si->data, si->len);
1239 si = pop_stack_item (si);
1240 }
1241
1242 /* Set the return address. For the avr, the return address is the BP_ADDR.
1243 Need to push the return address onto the stack noting that it needs to be
1244 in big-endian order on the stack. */
1245 buf[0] = (return_pc >> 8) & 0xff;
1246 buf[1] = return_pc & 0xff;
1247
1248 sp -= 2;
1249 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
1250
1251 /* Finally, update the SP register. */
1252 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1253 avr_convert_saddr_to_raw (sp));
1254
1255 return sp;
1256 }
1257
1258 /* Initialize the gdbarch structure for the AVR's. */
1259
1260 static struct gdbarch *
1261 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1262 {
1263 struct gdbarch *gdbarch;
1264 struct gdbarch_tdep *tdep;
1265
1266 /* Find a candidate among the list of pre-declared architectures. */
1267 arches = gdbarch_list_lookup_by_info (arches, &info);
1268 if (arches != NULL)
1269 return arches->gdbarch;
1270
1271 /* None found, create a new architecture from the information provided. */
1272 tdep = XMALLOC (struct gdbarch_tdep);
1273 gdbarch = gdbarch_alloc (&info, tdep);
1274
1275 /* If we ever need to differentiate the device types, do it here. */
1276 switch (info.bfd_arch_info->mach)
1277 {
1278 case bfd_mach_avr1:
1279 case bfd_mach_avr2:
1280 case bfd_mach_avr3:
1281 case bfd_mach_avr4:
1282 case bfd_mach_avr5:
1283 break;
1284 }
1285
1286 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1287 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1288 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1289 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1290 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1291 set_gdbarch_addr_bit (gdbarch, 32);
1292
1293 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1294 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1295 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1296
1297 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1298 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1299 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1300
1301 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1302 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1303 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1304
1305 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1306
1307 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1308 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1309
1310 set_gdbarch_register_name (gdbarch, avr_register_name);
1311 set_gdbarch_register_type (gdbarch, avr_register_type);
1312
1313 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
1314 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1315
1316 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1317
1318 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1319 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1320
1321 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1322
1323 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1324 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1325
1326 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1327 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1328
1329 set_gdbarch_function_start_offset (gdbarch, 0);
1330
1331 set_gdbarch_frame_args_skip (gdbarch, 0);
1332 set_gdbarch_frameless_function_invocation (gdbarch,
1333 frameless_look_for_prologue);
1334
1335 frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
1336 frame_base_set_default (gdbarch, &avr_frame_base);
1337
1338 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1339
1340 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1341
1342 return gdbarch;
1343 }
1344
1345 /* Send a query request to the avr remote target asking for values of the io
1346 registers. If args parameter is not NULL, then the user has requested info
1347 on a specific io register [This still needs implemented and is ignored for
1348 now]. The query string should be one of these forms:
1349
1350 "Ravr.io_reg" -> reply is "NN" number of io registers
1351
1352 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1353 registers to be read. The reply should be "<NAME>,VV;" for each io register
1354 where, <NAME> is a string, and VV is the hex value of the register.
1355
1356 All io registers are 8-bit. */
1357
1358 static void
1359 avr_io_reg_read_command (char *args, int from_tty)
1360 {
1361 int bufsiz = 0;
1362 char buf[400];
1363 char query[400];
1364 char *p;
1365 unsigned int nreg = 0;
1366 unsigned int val;
1367 int i, j, k, step;
1368
1369 if (!current_target.to_query)
1370 {
1371 fprintf_unfiltered (gdb_stderr,
1372 "ERR: info io_registers NOT supported by current "
1373 "target\n");
1374 return;
1375 }
1376
1377 /* Just get the maximum buffer size. */
1378 target_query ((int) 'R', 0, 0, &bufsiz);
1379 if (bufsiz > sizeof (buf))
1380 bufsiz = sizeof (buf);
1381
1382 /* Find out how many io registers the target has. */
1383 strcpy (query, "avr.io_reg");
1384 target_query ((int) 'R', query, buf, &bufsiz);
1385
1386 if (strncmp (buf, "", bufsiz) == 0)
1387 {
1388 fprintf_unfiltered (gdb_stderr,
1389 "info io_registers NOT supported by target\n");
1390 return;
1391 }
1392
1393 if (sscanf (buf, "%x", &nreg) != 1)
1394 {
1395 fprintf_unfiltered (gdb_stderr,
1396 "Error fetching number of io registers\n");
1397 return;
1398 }
1399
1400 reinitialize_more_filter ();
1401
1402 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1403
1404 /* only fetch up to 8 registers at a time to keep the buffer small */
1405 step = 8;
1406
1407 for (i = 0; i < nreg; i += step)
1408 {
1409 /* how many registers this round? */
1410 j = step;
1411 if ((i+j) >= nreg)
1412 j = nreg - i; /* last block is less than 8 registers */
1413
1414 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1415 target_query ((int) 'R', query, buf, &bufsiz);
1416
1417 p = buf;
1418 for (k = i; k < (i + j); k++)
1419 {
1420 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1421 {
1422 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1423 while ((*p != ';') && (*p != '\0'))
1424 p++;
1425 p++; /* skip over ';' */
1426 if (*p == '\0')
1427 break;
1428 }
1429 }
1430 }
1431 }
1432
1433 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1434
1435 void
1436 _initialize_avr_tdep (void)
1437 {
1438 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1439
1440 /* Add a new command to allow the user to query the avr remote target for
1441 the values of the io space registers in a saner way than just using
1442 `x/NNNb ADDR`. */
1443
1444 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1445 io_registers' to signify it is not available on other platforms. */
1446
1447 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1448 "query remote avr target for io space register values", &infolist);
1449 }
This page took 0.064463 seconds and 4 git commands to generate.