2002-11-27 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Contributed by Theodore A. Roth, troth@verinet.com */
23
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27 #include "defs.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdb_string.h"
35
36 /* AVR Background:
37
38 (AVR micros are pure Harvard Architecture processors.)
39
40 The AVR family of microcontrollers have three distinctly different memory
41 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
42 the most part to store program instructions. The sram is 8 bits wide and is
43 used for the stack and the heap. Some devices lack sram and some can have
44 an additional external sram added on as a peripheral.
45
46 The eeprom is 8 bits wide and is used to store data when the device is
47 powered down. Eeprom is not directly accessible, it can only be accessed
48 via io-registers using a special algorithm. Accessing eeprom via gdb's
49 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
50 not included at this time.
51
52 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
53 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
54 work, the remote target must be able to handle eeprom accesses and perform
55 the address translation.]
56
57 All three memory spaces have physical addresses beginning at 0x0. In
58 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
59 bytes instead of the 16 bit wide words used by the real device for the
60 Program Counter.
61
62 In order for remote targets to work correctly, extra bits must be added to
63 addresses before they are send to the target or received from the target
64 via the remote serial protocol. The extra bits are the MSBs and are used to
65 decode which memory space the address is referring to. */
66
67 #undef XMALLOC
68 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
69
70 #undef EXTRACT_INSN
71 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
72
73 /* Constants: prefixed with AVR_ to avoid name space clashes */
74
75 enum
76 {
77 AVR_REG_W = 24,
78 AVR_REG_X = 26,
79 AVR_REG_Y = 28,
80 AVR_FP_REGNUM = 28,
81 AVR_REG_Z = 30,
82
83 AVR_SREG_REGNUM = 32,
84 AVR_SP_REGNUM = 33,
85 AVR_PC_REGNUM = 34,
86
87 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
88 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
89
90 AVR_PC_REG_INDEX = 35, /* index into array of registers */
91
92 AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
93
94 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
95 AVR_MAX_PUSHES = 18,
96
97 /* Number of the last pushed register. r17 for current avr-gcc */
98 AVR_LAST_PUSHED_REGNUM = 17,
99
100 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
101 bits? Do these have to match the bfd vma values?. It sure would make
102 things easier in the future if they didn't need to match.
103
104 Note: I chose these values so as to be consistent with bfd vma
105 addresses.
106
107 TRoth/2002-04-08: There is already a conflict with very large programs
108 in the mega128. The mega128 has 128K instruction bytes (64K words),
109 thus the Most Significant Bit is 0x10000 which gets masked off my
110 AVR_MEM_MASK.
111
112 The problem manifests itself when trying to set a breakpoint in a
113 function which resides in the upper half of the instruction space and
114 thus requires a 17-bit address.
115
116 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
117 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
118 but could be for some remote targets by just adding the correct offset
119 to the address and letting the remote target handle the low-level
120 details of actually accessing the eeprom. */
121
122 AVR_IMEM_START = 0x00000000, /* INSN memory */
123 AVR_SMEM_START = 0x00800000, /* SRAM memory */
124 #if 1
125 /* No eeprom mask defined */
126 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
127 #else
128 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
129 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
130 #endif
131 };
132
133 /* Any function with a frame looks like this
134 ....... <-SP POINTS HERE
135 LOCALS1 <-FP POINTS HERE
136 LOCALS0
137 SAVED FP
138 SAVED R3
139 SAVED R2
140 RET PC
141 FIRST ARG
142 SECOND ARG */
143
144 struct frame_extra_info
145 {
146 CORE_ADDR return_pc;
147 CORE_ADDR args_pointer;
148 int locals_size;
149 int framereg;
150 int framesize;
151 int is_main;
152 };
153
154 struct gdbarch_tdep
155 {
156 /* FIXME: TRoth: is there anything to put here? */
157 int foo;
158 };
159
160 /* Lookup the name of a register given it's number. */
161
162 static const char *
163 avr_register_name (int regnum)
164 {
165 static char *register_names[] = {
166 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
167 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
168 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
169 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
170 "SREG", "SP", "PC"
171 };
172 if (regnum < 0)
173 return NULL;
174 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
175 return NULL;
176 return register_names[regnum];
177 }
178
179 /* Index within `registers' of the first byte of the space for
180 register REGNUM. */
181
182 static int
183 avr_register_byte (int regnum)
184 {
185 if (regnum < AVR_PC_REGNUM)
186 return regnum;
187 else
188 return AVR_PC_REG_INDEX;
189 }
190
191 /* Number of bytes of storage in the actual machine representation for
192 register REGNUM. */
193
194 static int
195 avr_register_raw_size (int regnum)
196 {
197 switch (regnum)
198 {
199 case AVR_PC_REGNUM:
200 return 4;
201 case AVR_SP_REGNUM:
202 case AVR_FP_REGNUM:
203 return 2;
204 default:
205 return 1;
206 }
207 }
208
209 /* Number of bytes of storage in the program's representation
210 for register N. */
211
212 static int
213 avr_register_virtual_size (int regnum)
214 {
215 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
216 }
217
218 /* Return the GDB type object for the "standard" data type
219 of data in register N. */
220
221 static struct type *
222 avr_register_virtual_type (int regnum)
223 {
224 switch (regnum)
225 {
226 case AVR_PC_REGNUM:
227 return builtin_type_unsigned_long;
228 case AVR_SP_REGNUM:
229 return builtin_type_unsigned_short;
230 default:
231 return builtin_type_unsigned_char;
232 }
233 }
234
235 /* Instruction address checks and convertions. */
236
237 static CORE_ADDR
238 avr_make_iaddr (CORE_ADDR x)
239 {
240 return ((x) | AVR_IMEM_START);
241 }
242
243 static int
244 avr_iaddr_p (CORE_ADDR x)
245 {
246 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
247 }
248
249 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
250 devices are already up to 128KBytes of flash space.
251
252 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
253
254 static CORE_ADDR
255 avr_convert_iaddr_to_raw (CORE_ADDR x)
256 {
257 return ((x) & 0xffffffff);
258 }
259
260 /* SRAM address checks and convertions. */
261
262 static CORE_ADDR
263 avr_make_saddr (CORE_ADDR x)
264 {
265 return ((x) | AVR_SMEM_START);
266 }
267
268 static int
269 avr_saddr_p (CORE_ADDR x)
270 {
271 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
272 }
273
274 static CORE_ADDR
275 avr_convert_saddr_to_raw (CORE_ADDR x)
276 {
277 return ((x) & 0xffffffff);
278 }
279
280 /* EEPROM address checks and convertions. I don't know if these will ever
281 actually be used, but I've added them just the same. TRoth */
282
283 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
284 programs in the mega128. */
285
286 /* static CORE_ADDR */
287 /* avr_make_eaddr (CORE_ADDR x) */
288 /* { */
289 /* return ((x) | AVR_EMEM_START); */
290 /* } */
291
292 /* static int */
293 /* avr_eaddr_p (CORE_ADDR x) */
294 /* { */
295 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
296 /* } */
297
298 /* static CORE_ADDR */
299 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
300 /* { */
301 /* return ((x) & 0xffffffff); */
302 /* } */
303
304 /* Convert from address to pointer and vice-versa. */
305
306 static void
307 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
308 {
309 /* Is it a code address? */
310 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
311 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
312 {
313 store_unsigned_integer (buf, TYPE_LENGTH (type),
314 avr_convert_iaddr_to_raw (addr));
315 }
316 else
317 {
318 /* Strip off any upper segment bits. */
319 store_unsigned_integer (buf, TYPE_LENGTH (type),
320 avr_convert_saddr_to_raw (addr));
321 }
322 }
323
324 static CORE_ADDR
325 avr_pointer_to_address (struct type *type, void *buf)
326 {
327 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
328
329 if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
330 {
331 fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n",
332 addr);
333 fprintf_unfiltered (gdb_stderr,
334 "+++ If you see this, please send me an email <troth@verinet.com>\n");
335 }
336
337 /* Is it a code address? */
338 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
339 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
340 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
341 return avr_make_iaddr (addr);
342 else
343 return avr_make_saddr (addr);
344 }
345
346 static CORE_ADDR
347 avr_read_pc (ptid_t ptid)
348 {
349 ptid_t save_ptid;
350 CORE_ADDR pc;
351 CORE_ADDR retval;
352
353 save_ptid = inferior_ptid;
354 inferior_ptid = ptid;
355 pc = (int) read_register (AVR_PC_REGNUM);
356 inferior_ptid = save_ptid;
357 retval = avr_make_iaddr (pc);
358 return retval;
359 }
360
361 static void
362 avr_write_pc (CORE_ADDR val, ptid_t ptid)
363 {
364 ptid_t save_ptid;
365
366 save_ptid = inferior_ptid;
367 inferior_ptid = ptid;
368 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
369 inferior_ptid = save_ptid;
370 }
371
372 static CORE_ADDR
373 avr_read_sp (void)
374 {
375 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
376 }
377
378 static void
379 avr_write_sp (CORE_ADDR val)
380 {
381 write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
382 }
383
384 static CORE_ADDR
385 avr_read_fp (void)
386 {
387 return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
388 }
389
390 /* Translate a GDB virtual ADDR/LEN into a format the remote target
391 understands. Returns number of bytes that can be transfered
392 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
393 (segmentation fault).
394
395 TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
396 pointer? */
397
398 static void
399 avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
400 CORE_ADDR *targ_addr, int *targ_len)
401 {
402 long out_addr;
403 long out_len;
404
405 /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
406 point and see if the high bit are set with the masks that we want. */
407
408 *targ_addr = memaddr;
409 *targ_len = nr_bytes;
410 }
411
412 /* Function pointers obtained from the target are half of what gdb expects so
413 multiply by 2. */
414
415 static CORE_ADDR
416 avr_convert_from_func_ptr_addr (CORE_ADDR addr)
417 {
418 return addr * 2;
419 }
420
421 /* avr_scan_prologue is also used as the frame_init_saved_regs().
422
423 Put here the code to store, into fi->saved_regs, the addresses of
424 the saved registers of frame described by FRAME_INFO. This
425 includes special registers such as pc and fp saved in special ways
426 in the stack frame. sp is even more special: the address we return
427 for it IS the sp for the next frame. */
428
429 /* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
430 This function decodes a AVR function prologue to determine:
431 1) the size of the stack frame
432 2) which registers are saved on it
433 3) the offsets of saved regs
434 This information is stored in the "extra_info" field of the frame_info.
435
436 A typical AVR function prologue might look like this:
437 push rXX
438 push r28
439 push r29
440 in r28,__SP_L__
441 in r29,__SP_H__
442 sbiw r28,<LOCALS_SIZE>
443 in __tmp_reg__,__SREG__
444 cli
445 out __SP_L__,r28
446 out __SREG__,__tmp_reg__
447 out __SP_H__,r29
448
449 A `-mcall-prologues' prologue look like this:
450 ldi r26,<LOCALS_SIZE>
451 ldi r27,<LOCALS_SIZE>/265
452 ldi r30,pm_lo8(.L_foo_body)
453 ldi r31,pm_hi8(.L_foo_body)
454 rjmp __prologue_saves__+RRR
455 .L_foo_body: */
456
457 static void
458 avr_scan_prologue (struct frame_info *fi)
459 {
460 CORE_ADDR prologue_start;
461 CORE_ADDR prologue_end;
462 int i;
463 unsigned short insn;
464 int regno;
465 int scan_stage = 0;
466 char *name;
467 struct minimal_symbol *msymbol;
468 int prologue_len;
469 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
470 int vpc = 0;
471
472 fi->extra_info->framereg = AVR_SP_REGNUM;
473
474 if (find_pc_partial_function
475 (fi->pc, &name, &prologue_start, &prologue_end))
476 {
477 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
478
479 if (sal.line == 0) /* no line info, use current PC */
480 prologue_end = fi->pc;
481 else if (sal.end < prologue_end) /* next line begins after fn end */
482 prologue_end = sal.end; /* (probably means no prologue) */
483 }
484 else
485 /* We're in the boondocks: allow for */
486 /* 19 pushes, an add, and "mv fp,sp" */
487 prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
488
489 prologue_end = min (prologue_end, fi->pc);
490
491 /* Search the prologue looking for instructions that set up the
492 frame pointer, adjust the stack pointer, and save registers. */
493
494 fi->extra_info->framesize = 0;
495 prologue_len = prologue_end - prologue_start;
496 read_memory (prologue_start, prologue, prologue_len);
497
498 /* Scanning main()'s prologue
499 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
500 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
501 out __SP_H__,r29
502 out __SP_L__,r28 */
503
504 if (name && strcmp ("main", name) == 0 && prologue_len == 8)
505 {
506 CORE_ADDR locals;
507 unsigned char img[] = {
508 0xde, 0xbf, /* out __SP_H__,r29 */
509 0xcd, 0xbf /* out __SP_L__,r28 */
510 };
511
512 fi->extra_info->framereg = AVR_FP_REGNUM;
513 insn = EXTRACT_INSN (&prologue[vpc]);
514 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
515 if ((insn & 0xf0f0) == 0xe0c0)
516 {
517 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
518 insn = EXTRACT_INSN (&prologue[vpc + 2]);
519 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
520 if ((insn & 0xf0f0) == 0xe0d0)
521 {
522 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
523 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
524 {
525 fi->frame = locals;
526
527 fi->extra_info->is_main = 1;
528 return;
529 }
530 }
531 }
532 }
533
534 /* Scanning `-mcall-prologues' prologue
535 FIXME: mega prologue have a 12 bytes long */
536
537 while (prologue_len <= 12) /* I'm use while to avoit many goto's */
538 {
539 int loc_size;
540 int body_addr;
541 unsigned num_pushes;
542
543 insn = EXTRACT_INSN (&prologue[vpc]);
544 /* ldi r26,<LOCALS_SIZE> */
545 if ((insn & 0xf0f0) != 0xe0a0)
546 break;
547 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
548
549 insn = EXTRACT_INSN (&prologue[vpc + 2]);
550 /* ldi r27,<LOCALS_SIZE> / 256 */
551 if ((insn & 0xf0f0) != 0xe0b0)
552 break;
553 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
554
555 insn = EXTRACT_INSN (&prologue[vpc + 4]);
556 /* ldi r30,pm_lo8(.L_foo_body) */
557 if ((insn & 0xf0f0) != 0xe0e0)
558 break;
559 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
560
561 insn = EXTRACT_INSN (&prologue[vpc + 6]);
562 /* ldi r31,pm_hi8(.L_foo_body) */
563 if ((insn & 0xf0f0) != 0xe0f0)
564 break;
565 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
566
567 if (body_addr != (prologue_start + 10) / 2)
568 break;
569
570 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
571 if (!msymbol)
572 break;
573
574 /* FIXME: prologue for mega have a JMP instead of RJMP */
575 insn = EXTRACT_INSN (&prologue[vpc + 8]);
576 /* rjmp __prologue_saves__+RRR */
577 if ((insn & 0xf000) != 0xc000)
578 break;
579
580 /* Extract PC relative offset from RJMP */
581 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
582 /* Convert offset to byte addressable mode */
583 i *= 2;
584 /* Destination address */
585 i += vpc + prologue_start + 10;
586 /* Resovle offset (in words) from __prologue_saves__ symbol.
587 Which is a pushes count in `-mcall-prologues' mode */
588 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
589
590 if (num_pushes > AVR_MAX_PUSHES)
591 num_pushes = 0;
592
593 if (num_pushes)
594 {
595 int from;
596 fi->saved_regs[AVR_FP_REGNUM + 1] = num_pushes;
597 if (num_pushes >= 2)
598 fi->saved_regs[AVR_FP_REGNUM] = num_pushes - 1;
599 i = 0;
600 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
601 from <= AVR_LAST_PUSHED_REGNUM; ++from)
602 fi->saved_regs[from] = ++i;
603 }
604 fi->extra_info->locals_size = loc_size;
605 fi->extra_info->framesize = loc_size + num_pushes;
606 fi->extra_info->framereg = AVR_FP_REGNUM;
607 return;
608 }
609
610 /* Scan interrupt or signal function */
611
612 if (prologue_len >= 12)
613 {
614 unsigned char img[] = {
615 0x78, 0x94, /* sei */
616 0x1f, 0x92, /* push r1 */
617 0x0f, 0x92, /* push r0 */
618 0x0f, 0xb6, /* in r0,0x3f SREG */
619 0x0f, 0x92, /* push r0 */
620 0x11, 0x24 /* clr r1 */
621 };
622 if (memcmp (prologue, img, sizeof (img)) == 0)
623 {
624 vpc += sizeof (img);
625 fi->saved_regs[0] = 2;
626 fi->saved_regs[1] = 1;
627 fi->extra_info->framesize += 3;
628 }
629 else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
630 {
631 vpc += sizeof (img) - 1;
632 fi->saved_regs[0] = 2;
633 fi->saved_regs[1] = 1;
634 fi->extra_info->framesize += 3;
635 }
636 }
637
638 /* First stage of the prologue scanning.
639 Scan pushes */
640
641 for (; vpc <= prologue_len; vpc += 2)
642 {
643 insn = EXTRACT_INSN (&prologue[vpc]);
644 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
645 {
646 /* Bits 4-9 contain a mask for registers R0-R32. */
647 regno = (insn & 0x1f0) >> 4;
648 ++fi->extra_info->framesize;
649 fi->saved_regs[regno] = fi->extra_info->framesize;
650 scan_stage = 1;
651 }
652 else
653 break;
654 }
655
656 /* Second stage of the prologue scanning.
657 Scan:
658 in r28,__SP_L__
659 in r29,__SP_H__ */
660
661 if (scan_stage == 1 && vpc + 4 <= prologue_len)
662 {
663 unsigned char img[] = {
664 0xcd, 0xb7, /* in r28,__SP_L__ */
665 0xde, 0xb7 /* in r29,__SP_H__ */
666 };
667 unsigned short insn1;
668
669 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
670 {
671 vpc += 4;
672 fi->extra_info->framereg = AVR_FP_REGNUM;
673 scan_stage = 2;
674 }
675 }
676
677 /* Third stage of the prologue scanning. (Really two stages)
678 Scan for:
679 sbiw r28,XX or subi r28,lo8(XX)
680 sbci r29,hi8(XX)
681 in __tmp_reg__,__SREG__
682 cli
683 out __SP_L__,r28
684 out __SREG__,__tmp_reg__
685 out __SP_H__,r29 */
686
687 if (scan_stage == 2 && vpc + 12 <= prologue_len)
688 {
689 int locals_size = 0;
690 unsigned char img[] = {
691 0x0f, 0xb6, /* in r0,0x3f */
692 0xf8, 0x94, /* cli */
693 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
694 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
695 0xde, 0xbf /* out 0x3e,r29 ; SPH */
696 };
697 unsigned char img_sig[] = {
698 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
699 0xde, 0xbf /* out 0x3e,r29 ; SPH */
700 };
701 unsigned char img_int[] = {
702 0xf8, 0x94, /* cli */
703 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
704 0x78, 0x94, /* sei */
705 0xde, 0xbf /* out 0x3e,r29 ; SPH */
706 };
707
708 insn = EXTRACT_INSN (&prologue[vpc]);
709 vpc += 2;
710 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
711 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
712 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
713 {
714 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
715 insn = EXTRACT_INSN (&prologue[vpc]);
716 vpc += 2;
717 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
718 }
719 else
720 return;
721 fi->extra_info->locals_size = locals_size;
722 fi->extra_info->framesize += locals_size;
723 }
724 }
725
726 /* This function actually figures out the frame address for a given pc and
727 sp. This is tricky because we sometimes don't use an explicit
728 frame pointer, and the previous stack pointer isn't necessarily recorded
729 on the stack. The only reliable way to get this info is to
730 examine the prologue. */
731
732 static void
733 avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
734 {
735 int reg;
736
737 if (fi->next)
738 fi->pc = FRAME_SAVED_PC (fi->next);
739
740 fi->extra_info = (struct frame_extra_info *)
741 frame_obstack_alloc (sizeof (struct frame_extra_info));
742 frame_saved_regs_zalloc (fi);
743
744 fi->extra_info->return_pc = 0;
745 fi->extra_info->args_pointer = 0;
746 fi->extra_info->locals_size = 0;
747 fi->extra_info->framereg = 0;
748 fi->extra_info->framesize = 0;
749 fi->extra_info->is_main = 0;
750
751 avr_scan_prologue (fi);
752
753 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
754 {
755 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
756 by assuming it's always FP. */
757 fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
758 AVR_PC_REGNUM);
759 }
760 else if (!fi->next) /* this is the innermost frame? */
761 fi->frame = read_register (fi->extra_info->framereg);
762 else if (fi->extra_info->is_main != 1) /* not the innermost frame, not `main' */
763 /* If we have an next frame, the callee saved it. */
764 {
765 struct frame_info *next_fi = fi->next;
766 if (fi->extra_info->framereg == AVR_SP_REGNUM)
767 fi->frame =
768 next_fi->frame + 2 /* ret addr */ + next_fi->extra_info->framesize;
769 /* FIXME: I don't analyse va_args functions */
770 else
771 {
772 CORE_ADDR fp = 0;
773 CORE_ADDR fp1 = 0;
774 unsigned int fp_low, fp_high;
775
776 /* Scan all frames */
777 for (; next_fi; next_fi = next_fi->next)
778 {
779 /* look for saved AVR_FP_REGNUM */
780 if (next_fi->saved_regs[AVR_FP_REGNUM] && !fp)
781 fp = next_fi->saved_regs[AVR_FP_REGNUM];
782 /* look for saved AVR_FP_REGNUM + 1 */
783 if (next_fi->saved_regs[AVR_FP_REGNUM + 1] && !fp1)
784 fp1 = next_fi->saved_regs[AVR_FP_REGNUM + 1];
785 }
786 fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
787 : read_register (AVR_FP_REGNUM)) & 0xff;
788 fp_high =
789 (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
790 read_register (AVR_FP_REGNUM + 1)) & 0xff;
791 fi->frame = fp_low | (fp_high << 8);
792 }
793 }
794
795 /* TRoth: Do we want to do this if we are in main? I don't think we should
796 since return_pc makes no sense when we are in main. */
797
798 if ((fi->pc) && (fi->extra_info->is_main == 0)) /* We are not in CALL_DUMMY */
799 {
800 CORE_ADDR addr;
801 int i;
802
803 addr = fi->frame + fi->extra_info->framesize + 1;
804
805 /* Return address in stack in different endianness */
806
807 fi->extra_info->return_pc =
808 read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
809 fi->extra_info->return_pc |=
810 read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
811
812 /* This return address in words,
813 must be converted to the bytes address */
814 fi->extra_info->return_pc *= 2;
815
816 /* Resolve a pushed registers addresses */
817 for (i = 0; i < NUM_REGS; i++)
818 {
819 if (fi->saved_regs[i])
820 fi->saved_regs[i] = addr - fi->saved_regs[i];
821 }
822 }
823 }
824
825 /* Restore the machine to the state it had before the current frame was
826 created. Usually used either by the "RETURN" command, or by
827 call_function_by_hand after the dummy_frame is finished. */
828
829 static void
830 avr_pop_frame (void)
831 {
832 unsigned regnum;
833 CORE_ADDR saddr;
834 struct frame_info *frame = get_current_frame ();
835
836 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
837 {
838 generic_pop_dummy_frame ();
839 }
840 else
841 {
842 /* TRoth: Why only loop over 8 registers? */
843
844 for (regnum = 0; regnum < 8; regnum++)
845 {
846 /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
847 actual value we want, not the address of the value we want. */
848 if (frame->saved_regs[regnum] && regnum != AVR_SP_REGNUM)
849 {
850 saddr = avr_make_saddr (frame->saved_regs[regnum]);
851 write_register (regnum,
852 read_memory_unsigned_integer (saddr, 1));
853 }
854 else if (frame->saved_regs[regnum] && regnum == AVR_SP_REGNUM)
855 write_register (regnum, frame->frame + 2);
856 }
857
858 /* Don't forget the update the PC too! */
859 write_pc (frame->extra_info->return_pc);
860 }
861 flush_cached_frames ();
862 }
863
864 /* Return the saved PC from this frame. */
865
866 static CORE_ADDR
867 avr_frame_saved_pc (struct frame_info *frame)
868 {
869 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
870 return deprecated_read_register_dummy (frame->pc, frame->frame,
871 AVR_PC_REGNUM);
872 else
873 return frame->extra_info->return_pc;
874 }
875
876 static CORE_ADDR
877 avr_saved_pc_after_call (struct frame_info *frame)
878 {
879 unsigned char m1, m2;
880 unsigned int sp = read_register (AVR_SP_REGNUM);
881 m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
882 m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
883 return (m2 | (m1 << 8)) * 2;
884 }
885
886 /* Figure out where in REGBUF the called function has left its return value.
887 Copy that into VALBUF. */
888
889 static void
890 avr_extract_return_value (struct type *type, char *regbuf, char *valbuf)
891 {
892 int wordsize, len;
893
894 wordsize = 2;
895
896 len = TYPE_LENGTH (type);
897
898 switch (len)
899 {
900 case 1: /* (char) */
901 case 2: /* (short), (int) */
902 memcpy (valbuf, regbuf + REGISTER_BYTE (24), 2);
903 break;
904 case 4: /* (long), (float) */
905 memcpy (valbuf, regbuf + REGISTER_BYTE (22), 4);
906 break;
907 case 8: /* (double) (doesn't seem to happen, which is good,
908 because this almost certainly isn't right. */
909 error ("I don't know how a double is returned.");
910 break;
911 }
912 }
913
914 /* Returns the return address for a dummy. */
915
916 static CORE_ADDR
917 avr_call_dummy_address (void)
918 {
919 return entry_point_address ();
920 }
921
922 /* Place the appropriate value in the appropriate registers.
923 Primarily used by the RETURN command. */
924
925 static void
926 avr_store_return_value (struct type *type, char *valbuf)
927 {
928 int wordsize, len, regval;
929
930 wordsize = 2;
931
932 len = TYPE_LENGTH (type);
933 switch (len)
934 {
935 case 1: /* char */
936 case 2: /* short, int */
937 regval = extract_address (valbuf, len);
938 write_register (0, regval);
939 break;
940 case 4: /* long, float */
941 regval = extract_address (valbuf, len);
942 write_register (0, regval >> 16);
943 write_register (1, regval & 0xffff);
944 break;
945 case 8: /* presumeably double, but doesn't seem to happen */
946 error ("I don't know how to return a double.");
947 break;
948 }
949 }
950
951 /* Setup the return address for a dummy frame, as called by
952 call_function_by_hand. Only necessary when you are using an empty
953 CALL_DUMMY. */
954
955 static CORE_ADDR
956 avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
957 {
958 unsigned char buf[2];
959 int wordsize = 2;
960 #if 0
961 struct minimal_symbol *msymbol;
962 CORE_ADDR mon_brk;
963 #endif
964
965 buf[0] = 0;
966 buf[1] = 0;
967 sp -= wordsize;
968 write_memory (sp + 1, buf, 2);
969
970 #if 0
971 /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
972 left-over from Denis' original patch which used avr-mon for the target
973 instead of the generic remote target. */
974 if ((strcmp (target_shortname, "avr-mon") == 0)
975 && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
976 {
977 mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
978 store_unsigned_integer (buf, wordsize, mon_brk / 2);
979 sp -= wordsize;
980 write_memory (sp + 1, buf + 1, 1);
981 write_memory (sp + 2, buf, 1);
982 }
983 #endif
984 return sp;
985 }
986
987 static CORE_ADDR
988 avr_skip_prologue (CORE_ADDR pc)
989 {
990 CORE_ADDR func_addr, func_end;
991 struct symtab_and_line sal;
992
993 /* See what the symbol table says */
994
995 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
996 {
997 sal = find_pc_line (func_addr, 0);
998
999 /* troth/2002-08-05: For some very simple functions, gcc doesn't
1000 generate a prologue and the sal.end ends up being the 2-byte ``ret''
1001 instruction at the end of the function, but func_end ends up being
1002 the address of the first instruction of the _next_ function. By
1003 adjusting func_end by 2 bytes, we can catch these functions and not
1004 return sal.end if it is the ``ret'' instruction. */
1005
1006 if (sal.line != 0 && sal.end < (func_end-2))
1007 return sal.end;
1008 }
1009
1010 /* Either we didn't find the start of this function (nothing we can do),
1011 or there's no line info, or the line after the prologue is after
1012 the end of the function (there probably isn't a prologue). */
1013
1014 return pc;
1015 }
1016
1017 static CORE_ADDR
1018 avr_frame_address (struct frame_info *fi)
1019 {
1020 return avr_make_saddr (fi->frame);
1021 }
1022
1023 /* Given a GDB frame, determine the address of the calling function's frame.
1024 This will be used to create a new GDB frame struct, and then
1025 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1026
1027 For us, the frame address is its stack pointer value, so we look up
1028 the function prologue to determine the caller's sp value, and return it. */
1029
1030 static CORE_ADDR
1031 avr_frame_chain (struct frame_info *frame)
1032 {
1033 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1034 {
1035 /* initialize the return_pc now */
1036 frame->extra_info->return_pc
1037 = deprecated_read_register_dummy (frame->pc, frame->frame,
1038 AVR_PC_REGNUM);
1039 return frame->frame;
1040 }
1041 return (frame->extra_info->is_main ? 0
1042 : frame->frame + frame->extra_info->framesize + 2 /* ret addr */ );
1043 }
1044
1045 /* Store the address of the place in which to copy the structure the
1046 subroutine will return. This is called from call_function.
1047
1048 We store structs through a pointer passed in the first Argument
1049 register. */
1050
1051 static void
1052 avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1053 {
1054 write_register (0, addr);
1055 }
1056
1057 /* Extract from an array REGBUF containing the (raw) register state
1058 the address in which a function should return its structure value,
1059 as a CORE_ADDR (or an expression that can be used as one). */
1060
1061 static CORE_ADDR
1062 avr_extract_struct_value_address (char *regbuf)
1063 {
1064 return (extract_address ((regbuf) + REGISTER_BYTE (0),
1065 REGISTER_RAW_SIZE (0)) | AVR_SMEM_START);
1066 }
1067
1068 /* Setup the function arguments for calling a function in the inferior.
1069
1070 On the AVR architecture, there are 18 registers (R25 to R8) which are
1071 dedicated for passing function arguments. Up to the first 18 arguments
1072 (depending on size) may go into these registers. The rest go on the stack.
1073
1074 Arguments that are larger than WORDSIZE bytes will be split between two or
1075 more registers as available, but will NOT be split between a register and
1076 the stack.
1077
1078 An exceptional case exists for struct arguments (and possibly other
1079 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1080 not a multiple of WORDSIZE bytes. In this case the argument is never split
1081 between the registers and the stack, but instead is copied in its entirety
1082 onto the stack, AND also copied into as many registers as there is room
1083 for. In other words, space in registers permitting, two copies of the same
1084 argument are passed in. As far as I can tell, only the one on the stack is
1085 used, although that may be a function of the level of compiler
1086 optimization. I suspect this is a compiler bug. Arguments of these odd
1087 sizes are left-justified within the word (as opposed to arguments smaller
1088 than WORDSIZE bytes, which are right-justified).
1089
1090 If the function is to return an aggregate type such as a struct, the caller
1091 must allocate space into which the callee will copy the return value. In
1092 this case, a pointer to the return value location is passed into the callee
1093 in register R0, which displaces one of the other arguments passed in via
1094 registers R0 to R2. */
1095
1096 static CORE_ADDR
1097 avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1098 int struct_return, CORE_ADDR struct_addr)
1099 {
1100 int stack_alloc, stack_offset;
1101 int wordsize;
1102 int argreg;
1103 int argnum;
1104 struct type *type;
1105 CORE_ADDR regval;
1106 char *val;
1107 char valbuf[4];
1108 int len;
1109
1110 wordsize = 1;
1111 #if 0
1112 /* Now make sure there's space on the stack */
1113 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1114 stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1115 sp -= stack_alloc; /* make room on stack for args */
1116 /* we may over-allocate a little here, but that won't hurt anything */
1117 #endif
1118 argreg = 25;
1119 if (struct_return) /* "struct return" pointer takes up one argreg */
1120 {
1121 write_register (--argreg, struct_addr);
1122 }
1123
1124 /* Now load as many as possible of the first arguments into registers, and
1125 push the rest onto the stack. There are 3N bytes in three registers
1126 available. Loop thru args from first to last. */
1127
1128 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1129 {
1130 type = VALUE_TYPE (args[argnum]);
1131 len = TYPE_LENGTH (type);
1132 val = (char *) VALUE_CONTENTS (args[argnum]);
1133
1134 /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
1135 some *&^%$ things get passed on the stack AND in the registers! */
1136 while (len > 0)
1137 { /* there's room in registers */
1138 len -= wordsize;
1139 regval = extract_address (val + len, wordsize);
1140 write_register (argreg--, regval);
1141 }
1142 }
1143 return sp;
1144 }
1145
1146 /* Initialize the gdbarch structure for the AVR's. */
1147
1148 static struct gdbarch *
1149 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1150 {
1151 /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
1152 be bigger or not. Initial testing seems to show that `call my_func()`
1153 works and backtrace from a breakpoint within the call looks correct.
1154 Admittedly, I haven't tested with more than a very simple program. */
1155 static LONGEST avr_call_dummy_words[] = { 0 };
1156
1157 struct gdbarch *gdbarch;
1158 struct gdbarch_tdep *tdep;
1159
1160 /* Find a candidate among the list of pre-declared architectures. */
1161 arches = gdbarch_list_lookup_by_info (arches, &info);
1162 if (arches != NULL)
1163 return arches->gdbarch;
1164
1165 /* None found, create a new architecture from the information provided. */
1166 tdep = XMALLOC (struct gdbarch_tdep);
1167 gdbarch = gdbarch_alloc (&info, tdep);
1168
1169 /* If we ever need to differentiate the device types, do it here. */
1170 switch (info.bfd_arch_info->mach)
1171 {
1172 case bfd_mach_avr1:
1173 case bfd_mach_avr2:
1174 case bfd_mach_avr3:
1175 case bfd_mach_avr4:
1176 case bfd_mach_avr5:
1177 break;
1178 }
1179
1180 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1181 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1182 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1183 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1184 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1185 set_gdbarch_addr_bit (gdbarch, 32);
1186 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
1187
1188 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1189 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1190 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1191
1192 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1193 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1194 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1195
1196 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1197 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1198 set_gdbarch_read_fp (gdbarch, avr_read_fp);
1199 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1200 set_gdbarch_write_sp (gdbarch, avr_write_sp);
1201
1202 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1203
1204 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1205 set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
1206 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1207
1208 set_gdbarch_register_name (gdbarch, avr_register_name);
1209 set_gdbarch_register_size (gdbarch, 1);
1210 set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
1211 set_gdbarch_register_byte (gdbarch, avr_register_byte);
1212 set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
1213 set_gdbarch_max_register_raw_size (gdbarch, 4);
1214 set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
1215 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1216 set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
1217
1218 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1219
1220 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1221 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1222 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1223 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1224 set_gdbarch_call_dummy_length (gdbarch, 0);
1225 set_gdbarch_call_dummy_p (gdbarch, 1);
1226 set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
1227 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1228 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1229
1230 /* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
1231
1232 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1233 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1234 set_gdbarch_deprecated_extract_return_value (gdbarch, avr_extract_return_value);
1235 set_gdbarch_push_arguments (gdbarch, avr_push_arguments);
1236 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1237 set_gdbarch_push_return_address (gdbarch, avr_push_return_address);
1238 set_gdbarch_pop_frame (gdbarch, avr_pop_frame);
1239
1240 set_gdbarch_deprecated_store_return_value (gdbarch, avr_store_return_value);
1241
1242 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1243 set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return);
1244 set_gdbarch_deprecated_extract_struct_value_address
1245 (gdbarch, avr_extract_struct_value_address);
1246
1247 set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue);
1248 set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
1249 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1250 /* set_gdbarch_prologue_frameless_p (gdbarch, avr_prologue_frameless_p); */
1251 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1252
1253 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1254
1255 set_gdbarch_function_start_offset (gdbarch, 0);
1256 set_gdbarch_remote_translate_xfer_address (gdbarch,
1257 avr_remote_translate_xfer_address);
1258 set_gdbarch_frame_args_skip (gdbarch, 0);
1259 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
1260 set_gdbarch_frame_chain (gdbarch, avr_frame_chain);
1261 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1262 set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc);
1263 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1264 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1265 set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1266 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1267
1268 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1269 avr_convert_from_func_ptr_addr);
1270
1271 return gdbarch;
1272 }
1273
1274 /* Send a query request to the avr remote target asking for values of the io
1275 registers. If args parameter is not NULL, then the user has requested info
1276 on a specific io register [This still needs implemented and is ignored for
1277 now]. The query string should be one of these forms:
1278
1279 "Ravr.io_reg" -> reply is "NN" number of io registers
1280
1281 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1282 registers to be read. The reply should be "<NAME>,VV;" for each io register
1283 where, <NAME> is a string, and VV is the hex value of the register.
1284
1285 All io registers are 8-bit. */
1286
1287 static void
1288 avr_io_reg_read_command (char *args, int from_tty)
1289 {
1290 int bufsiz = 0;
1291 char buf[400];
1292 char query[400];
1293 char *p;
1294 unsigned int nreg = 0;
1295 unsigned int val;
1296 int i, j, k, step;
1297
1298 /* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
1299 /* args, from_tty); */
1300
1301 if (!current_target.to_query)
1302 {
1303 fprintf_unfiltered (gdb_stderr,
1304 "ERR: info io_registers NOT supported by current target\n");
1305 return;
1306 }
1307
1308 /* Just get the maximum buffer size. */
1309 target_query ((int) 'R', 0, 0, &bufsiz);
1310 if (bufsiz > sizeof (buf))
1311 bufsiz = sizeof (buf);
1312
1313 /* Find out how many io registers the target has. */
1314 strcpy (query, "avr.io_reg");
1315 target_query ((int) 'R', query, buf, &bufsiz);
1316
1317 if (strncmp (buf, "", bufsiz) == 0)
1318 {
1319 fprintf_unfiltered (gdb_stderr,
1320 "info io_registers NOT supported by target\n");
1321 return;
1322 }
1323
1324 if (sscanf (buf, "%x", &nreg) != 1)
1325 {
1326 fprintf_unfiltered (gdb_stderr,
1327 "Error fetching number of io registers\n");
1328 return;
1329 }
1330
1331 reinitialize_more_filter ();
1332
1333 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1334
1335 /* only fetch up to 8 registers at a time to keep the buffer small */
1336 step = 8;
1337
1338 for (i = 0; i < nreg; i += step)
1339 {
1340 j = step - (nreg % step); /* how many registers this round? */
1341
1342 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1343 target_query ((int) 'R', query, buf, &bufsiz);
1344
1345 p = buf;
1346 for (k = i; k < (i + j); k++)
1347 {
1348 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1349 {
1350 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1351 while ((*p != ';') && (*p != '\0'))
1352 p++;
1353 p++; /* skip over ';' */
1354 if (*p == '\0')
1355 break;
1356 }
1357 }
1358 }
1359 }
1360
1361 void
1362 _initialize_avr_tdep (void)
1363 {
1364 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1365
1366 /* Add a new command to allow the user to query the avr remote target for
1367 the values of the io space registers in a saner way than just using
1368 `x/NNNb ADDR`. */
1369
1370 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1371 io_registers' to signify it is not available on other platforms. */
1372
1373 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1374 "query remote avr target for io space register values", &infolist);
1375 }
This page took 0.081426 seconds and 4 git commands to generate.