C++: dlsym casts in gdb/linux-thread-db.c and gdb/gdbserver/thread-db.c
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39
40 /* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71 /* Constants: prefixed with AVR_ to avoid name space clashes */
72
73 /* Address space flags */
74
75 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
76 space. */
77
78 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
79 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
80 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
81
82
83 enum
84 {
85 AVR_REG_W = 24,
86 AVR_REG_X = 26,
87 AVR_REG_Y = 28,
88 AVR_FP_REGNUM = 28,
89 AVR_REG_Z = 30,
90
91 AVR_SREG_REGNUM = 32,
92 AVR_SP_REGNUM = 33,
93 AVR_PC_REGNUM = 34,
94
95 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
96 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
97
98 /* Pseudo registers. */
99 AVR_PSEUDO_PC_REGNUM = 35,
100 AVR_NUM_PSEUDO_REGS = 1,
101
102 AVR_PC_REG_INDEX = 35, /* index into array of registers */
103
104 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
105
106 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
107 AVR_MAX_PUSHES = 18,
108
109 /* Number of the last pushed register. r17 for current avr-gcc */
110 AVR_LAST_PUSHED_REGNUM = 17,
111
112 AVR_ARG1_REGNUM = 24, /* Single byte argument */
113 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
114
115 AVR_RET1_REGNUM = 24, /* Single byte return value */
116 AVR_RETN_REGNUM = 25, /* Multi byte return value */
117
118 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
119 bits? Do these have to match the bfd vma values? It sure would make
120 things easier in the future if they didn't need to match.
121
122 Note: I chose these values so as to be consistent with bfd vma
123 addresses.
124
125 TRoth/2002-04-08: There is already a conflict with very large programs
126 in the mega128. The mega128 has 128K instruction bytes (64K words),
127 thus the Most Significant Bit is 0x10000 which gets masked off my
128 AVR_MEM_MASK.
129
130 The problem manifests itself when trying to set a breakpoint in a
131 function which resides in the upper half of the instruction space and
132 thus requires a 17-bit address.
133
134 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
135 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
136 but could be for some remote targets by just adding the correct offset
137 to the address and letting the remote target handle the low-level
138 details of actually accessing the eeprom. */
139
140 AVR_IMEM_START = 0x00000000, /* INSN memory */
141 AVR_SMEM_START = 0x00800000, /* SRAM memory */
142 #if 1
143 /* No eeprom mask defined */
144 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
145 #else
146 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
147 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
148 #endif
149 };
150
151 /* Prologue types:
152
153 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
154 causes the generation of the CALL type prologues). */
155
156 enum {
157 AVR_PROLOGUE_NONE, /* No prologue */
158 AVR_PROLOGUE_NORMAL,
159 AVR_PROLOGUE_CALL, /* -mcall-prologues */
160 AVR_PROLOGUE_MAIN,
161 AVR_PROLOGUE_INTR, /* interrupt handler */
162 AVR_PROLOGUE_SIG, /* signal handler */
163 };
164
165 /* Any function with a frame looks like this
166 ....... <-SP POINTS HERE
167 LOCALS1 <-FP POINTS HERE
168 LOCALS0
169 SAVED FP
170 SAVED R3
171 SAVED R2
172 RET PC
173 FIRST ARG
174 SECOND ARG */
175
176 struct avr_unwind_cache
177 {
178 /* The previous frame's inner most stack address. Used as this
179 frame ID's stack_addr. */
180 CORE_ADDR prev_sp;
181 /* The frame's base, optionally used by the high-level debug info. */
182 CORE_ADDR base;
183 int size;
184 int prologue_type;
185 /* Table indicating the location of each and every register. */
186 struct trad_frame_saved_reg *saved_regs;
187 };
188
189 struct gdbarch_tdep
190 {
191 /* Number of bytes stored to the stack by call instructions.
192 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
193 int call_length;
194
195 /* Type for void. */
196 struct type *void_type;
197 /* Type for a function returning void. */
198 struct type *func_void_type;
199 /* Type for a pointer to a function. Used for the type of PC. */
200 struct type *pc_type;
201 };
202
203 /* Lookup the name of a register given it's number. */
204
205 static const char *
206 avr_register_name (struct gdbarch *gdbarch, int regnum)
207 {
208 static const char * const register_names[] = {
209 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
210 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
211 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
212 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
213 "SREG", "SP", "PC2",
214 "pc"
215 };
216 if (regnum < 0)
217 return NULL;
218 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
219 return NULL;
220 return register_names[regnum];
221 }
222
223 /* Return the GDB type object for the "standard" data type
224 of data in register N. */
225
226 static struct type *
227 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
228 {
229 if (reg_nr == AVR_PC_REGNUM)
230 return builtin_type (gdbarch)->builtin_uint32;
231 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
232 return gdbarch_tdep (gdbarch)->pc_type;
233 if (reg_nr == AVR_SP_REGNUM)
234 return builtin_type (gdbarch)->builtin_data_ptr;
235 return builtin_type (gdbarch)->builtin_uint8;
236 }
237
238 /* Instruction address checks and convertions. */
239
240 static CORE_ADDR
241 avr_make_iaddr (CORE_ADDR x)
242 {
243 return ((x) | AVR_IMEM_START);
244 }
245
246 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
247 devices are already up to 128KBytes of flash space.
248
249 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
250
251 static CORE_ADDR
252 avr_convert_iaddr_to_raw (CORE_ADDR x)
253 {
254 return ((x) & 0xffffffff);
255 }
256
257 /* SRAM address checks and convertions. */
258
259 static CORE_ADDR
260 avr_make_saddr (CORE_ADDR x)
261 {
262 /* Return 0 for NULL. */
263 if (x == 0)
264 return 0;
265
266 return ((x) | AVR_SMEM_START);
267 }
268
269 static CORE_ADDR
270 avr_convert_saddr_to_raw (CORE_ADDR x)
271 {
272 return ((x) & 0xffffffff);
273 }
274
275 /* EEPROM address checks and convertions. I don't know if these will ever
276 actually be used, but I've added them just the same. TRoth */
277
278 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
279 programs in the mega128. */
280
281 /* static CORE_ADDR */
282 /* avr_make_eaddr (CORE_ADDR x) */
283 /* { */
284 /* return ((x) | AVR_EMEM_START); */
285 /* } */
286
287 /* static int */
288 /* avr_eaddr_p (CORE_ADDR x) */
289 /* { */
290 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
291 /* } */
292
293 /* static CORE_ADDR */
294 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
295 /* { */
296 /* return ((x) & 0xffffffff); */
297 /* } */
298
299 /* Convert from address to pointer and vice-versa. */
300
301 static void
302 avr_address_to_pointer (struct gdbarch *gdbarch,
303 struct type *type, gdb_byte *buf, CORE_ADDR addr)
304 {
305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
306
307 /* Is it a data address in flash? */
308 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
309 {
310 /* A data pointer in flash is byte addressed. */
311 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
312 avr_convert_iaddr_to_raw (addr));
313 }
314 /* Is it a code address? */
315 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
316 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
317 {
318 /* A code pointer is word (16 bits) addressed. We shift the address down
319 by 1 bit to convert it to a pointer. */
320 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
321 avr_convert_iaddr_to_raw (addr >> 1));
322 }
323 else
324 {
325 /* Strip off any upper segment bits. */
326 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
327 avr_convert_saddr_to_raw (addr));
328 }
329 }
330
331 static CORE_ADDR
332 avr_pointer_to_address (struct gdbarch *gdbarch,
333 struct type *type, const gdb_byte *buf)
334 {
335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
336 CORE_ADDR addr
337 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
338
339 /* Is it a data address in flash? */
340 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
341 {
342 /* A data pointer in flash is already byte addressed. */
343 return avr_make_iaddr (addr);
344 }
345 /* Is it a code address? */
346 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
347 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
348 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
349 {
350 /* A code pointer is word (16 bits) addressed so we shift it up
351 by 1 bit to convert it to an address. */
352 return avr_make_iaddr (addr << 1);
353 }
354 else
355 return avr_make_saddr (addr);
356 }
357
358 static CORE_ADDR
359 avr_integer_to_address (struct gdbarch *gdbarch,
360 struct type *type, const gdb_byte *buf)
361 {
362 ULONGEST addr = unpack_long (type, buf);
363
364 return avr_make_saddr (addr);
365 }
366
367 static CORE_ADDR
368 avr_read_pc (struct regcache *regcache)
369 {
370 ULONGEST pc;
371 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
372 return avr_make_iaddr (pc);
373 }
374
375 static void
376 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
377 {
378 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
379 avr_convert_iaddr_to_raw (val));
380 }
381
382 static enum register_status
383 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
384 int regnum, gdb_byte *buf)
385 {
386 ULONGEST val;
387 enum register_status status;
388
389 switch (regnum)
390 {
391 case AVR_PSEUDO_PC_REGNUM:
392 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
393 if (status != REG_VALID)
394 return status;
395 val >>= 1;
396 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
397 return status;
398 default:
399 internal_error (__FILE__, __LINE__, _("invalid regnum"));
400 }
401 }
402
403 static void
404 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
405 int regnum, const gdb_byte *buf)
406 {
407 ULONGEST val;
408
409 switch (regnum)
410 {
411 case AVR_PSEUDO_PC_REGNUM:
412 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
413 val <<= 1;
414 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
415 break;
416 default:
417 internal_error (__FILE__, __LINE__, _("invalid regnum"));
418 }
419 }
420
421 /* Function: avr_scan_prologue
422
423 This function decodes an AVR function prologue to determine:
424 1) the size of the stack frame
425 2) which registers are saved on it
426 3) the offsets of saved regs
427 This information is stored in the avr_unwind_cache structure.
428
429 Some devices lack the sbiw instruction, so on those replace this:
430 sbiw r28, XX
431 with this:
432 subi r28,lo8(XX)
433 sbci r29,hi8(XX)
434
435 A typical AVR function prologue with a frame pointer might look like this:
436 push rXX ; saved regs
437 ...
438 push r28
439 push r29
440 in r28,__SP_L__
441 in r29,__SP_H__
442 sbiw r28,<LOCALS_SIZE>
443 in __tmp_reg__,__SREG__
444 cli
445 out __SP_H__,r29
446 out __SREG__,__tmp_reg__
447 out __SP_L__,r28
448
449 A typical AVR function prologue without a frame pointer might look like
450 this:
451 push rXX ; saved regs
452 ...
453
454 A main function prologue looks like this:
455 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
456 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
457 out __SP_H__,r29
458 out __SP_L__,r28
459
460 A signal handler prologue looks like this:
461 push __zero_reg__
462 push __tmp_reg__
463 in __tmp_reg__, __SREG__
464 push __tmp_reg__
465 clr __zero_reg__
466 push rXX ; save registers r18:r27, r30:r31
467 ...
468 push r28 ; save frame pointer
469 push r29
470 in r28, __SP_L__
471 in r29, __SP_H__
472 sbiw r28, <LOCALS_SIZE>
473 out __SP_H__, r29
474 out __SP_L__, r28
475
476 A interrupt handler prologue looks like this:
477 sei
478 push __zero_reg__
479 push __tmp_reg__
480 in __tmp_reg__, __SREG__
481 push __tmp_reg__
482 clr __zero_reg__
483 push rXX ; save registers r18:r27, r30:r31
484 ...
485 push r28 ; save frame pointer
486 push r29
487 in r28, __SP_L__
488 in r29, __SP_H__
489 sbiw r28, <LOCALS_SIZE>
490 cli
491 out __SP_H__, r29
492 sei
493 out __SP_L__, r28
494
495 A `-mcall-prologues' prologue looks like this (Note that the megas use a
496 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
497 32 bit insn and rjmp is a 16 bit insn):
498 ldi r26,lo8(<LOCALS_SIZE>)
499 ldi r27,hi8(<LOCALS_SIZE>)
500 ldi r30,pm_lo8(.L_foo_body)
501 ldi r31,pm_hi8(.L_foo_body)
502 rjmp __prologue_saves__+RRR
503 .L_foo_body: */
504
505 /* Not really part of a prologue, but still need to scan for it, is when a
506 function prologue moves values passed via registers as arguments to new
507 registers. In this case, all local variables live in registers, so there
508 may be some register saves. This is what it looks like:
509 movw rMM, rNN
510 ...
511
512 There could be multiple movw's. If the target doesn't have a movw insn, it
513 will use two mov insns. This could be done after any of the above prologue
514 types. */
515
516 static CORE_ADDR
517 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
518 struct avr_unwind_cache *info)
519 {
520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
521 int i;
522 unsigned short insn;
523 int scan_stage = 0;
524 struct bound_minimal_symbol msymbol;
525 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
526 int vpc = 0;
527 int len;
528
529 len = pc_end - pc_beg;
530 if (len > AVR_MAX_PROLOGUE_SIZE)
531 len = AVR_MAX_PROLOGUE_SIZE;
532
533 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
534 reading in the bytes of the prologue. The problem is that the figuring
535 out where the end of the prologue is is a bit difficult. The old code
536 tried to do that, but failed quite often. */
537 read_memory (pc_beg, prologue, len);
538
539 /* Scanning main()'s prologue
540 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
541 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
542 out __SP_H__,r29
543 out __SP_L__,r28 */
544
545 if (len >= 4)
546 {
547 CORE_ADDR locals;
548 static const unsigned char img[] = {
549 0xde, 0xbf, /* out __SP_H__,r29 */
550 0xcd, 0xbf /* out __SP_L__,r28 */
551 };
552
553 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
554 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
555 if ((insn & 0xf0f0) == 0xe0c0)
556 {
557 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
558 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
559 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
560 if ((insn & 0xf0f0) == 0xe0d0)
561 {
562 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
563 if (vpc + 4 + sizeof (img) < len
564 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
565 {
566 info->prologue_type = AVR_PROLOGUE_MAIN;
567 info->base = locals;
568 return pc_beg + 4;
569 }
570 }
571 }
572 }
573
574 /* Scanning `-mcall-prologues' prologue
575 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
576
577 while (1) /* Using a while to avoid many goto's */
578 {
579 int loc_size;
580 int body_addr;
581 unsigned num_pushes;
582 int pc_offset = 0;
583
584 /* At least the fifth instruction must have been executed to
585 modify frame shape. */
586 if (len < 10)
587 break;
588
589 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
590 /* ldi r26,<LOCALS_SIZE> */
591 if ((insn & 0xf0f0) != 0xe0a0)
592 break;
593 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
594 pc_offset += 2;
595
596 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
597 /* ldi r27,<LOCALS_SIZE> / 256 */
598 if ((insn & 0xf0f0) != 0xe0b0)
599 break;
600 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
601 pc_offset += 2;
602
603 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
604 /* ldi r30,pm_lo8(.L_foo_body) */
605 if ((insn & 0xf0f0) != 0xe0e0)
606 break;
607 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
608 pc_offset += 2;
609
610 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
611 /* ldi r31,pm_hi8(.L_foo_body) */
612 if ((insn & 0xf0f0) != 0xe0f0)
613 break;
614 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
615 pc_offset += 2;
616
617 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
618 if (!msymbol.minsym)
619 break;
620
621 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
622 /* rjmp __prologue_saves__+RRR */
623 if ((insn & 0xf000) == 0xc000)
624 {
625 /* Extract PC relative offset from RJMP */
626 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
627 /* Convert offset to byte addressable mode */
628 i *= 2;
629 /* Destination address */
630 i += pc_beg + 10;
631
632 if (body_addr != (pc_beg + 10)/2)
633 break;
634
635 pc_offset += 2;
636 }
637 else if ((insn & 0xfe0e) == 0x940c)
638 {
639 /* Extract absolute PC address from JMP */
640 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
641 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
642 & 0xffff));
643 /* Convert address to byte addressable mode */
644 i *= 2;
645
646 if (body_addr != (pc_beg + 12)/2)
647 break;
648
649 pc_offset += 4;
650 }
651 else
652 break;
653
654 /* Resolve offset (in words) from __prologue_saves__ symbol.
655 Which is a pushes count in `-mcall-prologues' mode */
656 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
657
658 if (num_pushes > AVR_MAX_PUSHES)
659 {
660 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
661 num_pushes);
662 num_pushes = 0;
663 }
664
665 if (num_pushes)
666 {
667 int from;
668
669 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
670 if (num_pushes >= 2)
671 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
672
673 i = 0;
674 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
675 from <= AVR_LAST_PUSHED_REGNUM; ++from)
676 info->saved_regs [from].addr = ++i;
677 }
678 info->size = loc_size + num_pushes;
679 info->prologue_type = AVR_PROLOGUE_CALL;
680
681 return pc_beg + pc_offset;
682 }
683
684 /* Scan for the beginning of the prologue for an interrupt or signal
685 function. Note that we have to set the prologue type here since the
686 third stage of the prologue may not be present (e.g. no saved registered
687 or changing of the SP register). */
688
689 if (1)
690 {
691 static const unsigned char img[] = {
692 0x78, 0x94, /* sei */
693 0x1f, 0x92, /* push r1 */
694 0x0f, 0x92, /* push r0 */
695 0x0f, 0xb6, /* in r0,0x3f SREG */
696 0x0f, 0x92, /* push r0 */
697 0x11, 0x24 /* clr r1 */
698 };
699 if (len >= sizeof (img)
700 && memcmp (prologue, img, sizeof (img)) == 0)
701 {
702 info->prologue_type = AVR_PROLOGUE_INTR;
703 vpc += sizeof (img);
704 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
705 info->saved_regs[0].addr = 2;
706 info->saved_regs[1].addr = 1;
707 info->size += 3;
708 }
709 else if (len >= sizeof (img) - 2
710 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
711 {
712 info->prologue_type = AVR_PROLOGUE_SIG;
713 vpc += sizeof (img) - 2;
714 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
715 info->saved_regs[0].addr = 2;
716 info->saved_regs[1].addr = 1;
717 info->size += 2;
718 }
719 }
720
721 /* First stage of the prologue scanning.
722 Scan pushes (saved registers) */
723
724 for (; vpc < len; vpc += 2)
725 {
726 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
727 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
728 {
729 /* Bits 4-9 contain a mask for registers R0-R32. */
730 int regno = (insn & 0x1f0) >> 4;
731 info->size++;
732 info->saved_regs[regno].addr = info->size;
733 scan_stage = 1;
734 }
735 else
736 break;
737 }
738
739 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
740
741 /* Handle static small stack allocation using rcall or push. */
742
743 while (scan_stage == 1 && vpc < len)
744 {
745 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
746 if (insn == 0xd000) /* rcall .+0 */
747 {
748 info->size += gdbarch_tdep (gdbarch)->call_length;
749 vpc += 2;
750 }
751 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
752 {
753 info->size += 1;
754 vpc += 2;
755 }
756 else
757 break;
758 }
759
760 /* Second stage of the prologue scanning.
761 Scan:
762 in r28,__SP_L__
763 in r29,__SP_H__ */
764
765 if (scan_stage == 1 && vpc < len)
766 {
767 static const unsigned char img[] = {
768 0xcd, 0xb7, /* in r28,__SP_L__ */
769 0xde, 0xb7 /* in r29,__SP_H__ */
770 };
771
772 if (vpc + sizeof (img) < len
773 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
774 {
775 vpc += 4;
776 scan_stage = 2;
777 }
778 }
779
780 /* Third stage of the prologue scanning. (Really two stages).
781 Scan for:
782 sbiw r28,XX or subi r28,lo8(XX)
783 sbci r29,hi8(XX)
784 in __tmp_reg__,__SREG__
785 cli
786 out __SP_H__,r29
787 out __SREG__,__tmp_reg__
788 out __SP_L__,r28 */
789
790 if (scan_stage == 2 && vpc < len)
791 {
792 int locals_size = 0;
793 static const unsigned char img[] = {
794 0x0f, 0xb6, /* in r0,0x3f */
795 0xf8, 0x94, /* cli */
796 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
797 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
798 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
799 };
800 static const unsigned char img_sig[] = {
801 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
802 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
803 };
804 static const unsigned char img_int[] = {
805 0xf8, 0x94, /* cli */
806 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
807 0x78, 0x94, /* sei */
808 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
809 };
810
811 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
812 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
813 {
814 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
815 vpc += 2;
816 }
817 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
818 {
819 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
820 vpc += 2;
821 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
822 vpc += 2;
823 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
824 }
825 else
826 return pc_beg + vpc;
827
828 /* Scan the last part of the prologue. May not be present for interrupt
829 or signal handler functions, which is why we set the prologue type
830 when we saw the beginning of the prologue previously. */
831
832 if (vpc + sizeof (img_sig) < len
833 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
834 {
835 vpc += sizeof (img_sig);
836 }
837 else if (vpc + sizeof (img_int) < len
838 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
839 {
840 vpc += sizeof (img_int);
841 }
842 if (vpc + sizeof (img) < len
843 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
844 {
845 info->prologue_type = AVR_PROLOGUE_NORMAL;
846 vpc += sizeof (img);
847 }
848
849 info->size += locals_size;
850
851 /* Fall through. */
852 }
853
854 /* If we got this far, we could not scan the prologue, so just return the pc
855 of the frame plus an adjustment for argument move insns. */
856
857 for (; vpc < len; vpc += 2)
858 {
859 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
860 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
861 continue;
862 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
863 continue;
864 else
865 break;
866 }
867
868 return pc_beg + vpc;
869 }
870
871 static CORE_ADDR
872 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
873 {
874 CORE_ADDR func_addr, func_end;
875 CORE_ADDR post_prologue_pc;
876
877 /* See what the symbol table says */
878
879 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
880 return pc;
881
882 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
883 if (post_prologue_pc != 0)
884 return max (pc, post_prologue_pc);
885
886 {
887 CORE_ADDR prologue_end = pc;
888 struct avr_unwind_cache info = {0};
889 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
890
891 info.saved_regs = saved_regs;
892
893 /* Need to run the prologue scanner to figure out if the function has a
894 prologue and possibly skip over moving arguments passed via registers
895 to other registers. */
896
897 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
898
899 if (info.prologue_type != AVR_PROLOGUE_NONE)
900 return prologue_end;
901 }
902
903 /* Either we didn't find the start of this function (nothing we can do),
904 or there's no line info, or the line after the prologue is after
905 the end of the function (there probably isn't a prologue). */
906
907 return pc;
908 }
909
910 /* Not all avr devices support the BREAK insn. Those that don't should treat
911 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
912 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
913
914 static const unsigned char *
915 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
916 CORE_ADDR *pcptr, int *lenptr)
917 {
918 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
919 *lenptr = sizeof (avr_break_insn);
920 return avr_break_insn;
921 }
922
923 /* Determine, for architecture GDBARCH, how a return value of TYPE
924 should be returned. If it is supposed to be returned in registers,
925 and READBUF is non-zero, read the appropriate value from REGCACHE,
926 and copy it into READBUF. If WRITEBUF is non-zero, write the value
927 from WRITEBUF into REGCACHE. */
928
929 static enum return_value_convention
930 avr_return_value (struct gdbarch *gdbarch, struct value *function,
931 struct type *valtype, struct regcache *regcache,
932 gdb_byte *readbuf, const gdb_byte *writebuf)
933 {
934 int i;
935 /* Single byte are returned in r24.
936 Otherwise, the MSB of the return value is always in r25, calculate which
937 register holds the LSB. */
938 int lsb_reg;
939
940 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
941 || TYPE_CODE (valtype) == TYPE_CODE_UNION
942 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
943 && TYPE_LENGTH (valtype) > 8)
944 return RETURN_VALUE_STRUCT_CONVENTION;
945
946 if (TYPE_LENGTH (valtype) <= 2)
947 lsb_reg = 24;
948 else if (TYPE_LENGTH (valtype) <= 4)
949 lsb_reg = 22;
950 else if (TYPE_LENGTH (valtype) <= 8)
951 lsb_reg = 18;
952 else
953 gdb_assert_not_reached ("unexpected type length");
954
955 if (writebuf != NULL)
956 {
957 for (i = 0; i < TYPE_LENGTH (valtype); i++)
958 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
959 }
960
961 if (readbuf != NULL)
962 {
963 for (i = 0; i < TYPE_LENGTH (valtype); i++)
964 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
965 }
966
967 return RETURN_VALUE_REGISTER_CONVENTION;
968 }
969
970
971 /* Put here the code to store, into fi->saved_regs, the addresses of
972 the saved registers of frame described by FRAME_INFO. This
973 includes special registers such as pc and fp saved in special ways
974 in the stack frame. sp is even more special: the address we return
975 for it IS the sp for the next frame. */
976
977 static struct avr_unwind_cache *
978 avr_frame_unwind_cache (struct frame_info *this_frame,
979 void **this_prologue_cache)
980 {
981 CORE_ADDR start_pc, current_pc;
982 ULONGEST prev_sp;
983 ULONGEST this_base;
984 struct avr_unwind_cache *info;
985 struct gdbarch *gdbarch;
986 struct gdbarch_tdep *tdep;
987 int i;
988
989 if (*this_prologue_cache)
990 return *this_prologue_cache;
991
992 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
993 *this_prologue_cache = info;
994 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
995
996 info->size = 0;
997 info->prologue_type = AVR_PROLOGUE_NONE;
998
999 start_pc = get_frame_func (this_frame);
1000 current_pc = get_frame_pc (this_frame);
1001 if ((start_pc > 0) && (start_pc <= current_pc))
1002 avr_scan_prologue (get_frame_arch (this_frame),
1003 start_pc, current_pc, info);
1004
1005 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1006 && (info->prologue_type != AVR_PROLOGUE_MAIN))
1007 {
1008 ULONGEST high_base; /* High byte of FP */
1009
1010 /* The SP was moved to the FP. This indicates that a new frame
1011 was created. Get THIS frame's FP value by unwinding it from
1012 the next frame. */
1013 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1014 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1015 this_base += (high_base << 8);
1016
1017 /* The FP points at the last saved register. Adjust the FP back
1018 to before the first saved register giving the SP. */
1019 prev_sp = this_base + info->size;
1020 }
1021 else
1022 {
1023 /* Assume that the FP is this frame's SP but with that pushed
1024 stack space added back. */
1025 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1026 prev_sp = this_base + info->size;
1027 }
1028
1029 /* Add 1 here to adjust for the post-decrement nature of the push
1030 instruction.*/
1031 info->prev_sp = avr_make_saddr (prev_sp + 1);
1032 info->base = avr_make_saddr (this_base);
1033
1034 gdbarch = get_frame_arch (this_frame);
1035
1036 /* Adjust all the saved registers so that they contain addresses and not
1037 offsets. */
1038 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1039 if (info->saved_regs[i].addr > 0)
1040 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1041
1042 /* Except for the main and startup code, the return PC is always saved on
1043 the stack and is at the base of the frame. */
1044
1045 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1046 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1047
1048 /* The previous frame's SP needed to be computed. Save the computed
1049 value. */
1050 tdep = gdbarch_tdep (gdbarch);
1051 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1052 info->prev_sp - 1 + tdep->call_length);
1053
1054 return info;
1055 }
1056
1057 static CORE_ADDR
1058 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1059 {
1060 ULONGEST pc;
1061
1062 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1063
1064 return avr_make_iaddr (pc);
1065 }
1066
1067 static CORE_ADDR
1068 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1069 {
1070 ULONGEST sp;
1071
1072 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1073
1074 return avr_make_saddr (sp);
1075 }
1076
1077 /* Given a GDB frame, determine the address of the calling function's
1078 frame. This will be used to create a new GDB frame struct. */
1079
1080 static void
1081 avr_frame_this_id (struct frame_info *this_frame,
1082 void **this_prologue_cache,
1083 struct frame_id *this_id)
1084 {
1085 struct avr_unwind_cache *info
1086 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1087 CORE_ADDR base;
1088 CORE_ADDR func;
1089 struct frame_id id;
1090
1091 /* The FUNC is easy. */
1092 func = get_frame_func (this_frame);
1093
1094 /* Hopefully the prologue analysis either correctly determined the
1095 frame's base (which is the SP from the previous frame), or set
1096 that base to "NULL". */
1097 base = info->prev_sp;
1098 if (base == 0)
1099 return;
1100
1101 id = frame_id_build (base, func);
1102 (*this_id) = id;
1103 }
1104
1105 static struct value *
1106 avr_frame_prev_register (struct frame_info *this_frame,
1107 void **this_prologue_cache, int regnum)
1108 {
1109 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1110 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1111 struct avr_unwind_cache *info
1112 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1113
1114 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1115 {
1116 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1117 {
1118 /* Reading the return PC from the PC register is slightly
1119 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1120 but in reality, only two bytes (3 in upcoming mega256) are
1121 stored on the stack.
1122
1123 Also, note that the value on the stack is an addr to a word
1124 not a byte, so we will need to multiply it by two at some
1125 point.
1126
1127 And to confuse matters even more, the return address stored
1128 on the stack is in big endian byte order, even though most
1129 everything else about the avr is little endian. Ick! */
1130 ULONGEST pc;
1131 int i;
1132 gdb_byte buf[3];
1133 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1135
1136 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1137 buf, tdep->call_length);
1138
1139 /* Extract the PC read from memory as a big-endian. */
1140 pc = 0;
1141 for (i = 0; i < tdep->call_length; i++)
1142 pc = (pc << 8) | buf[i];
1143
1144 if (regnum == AVR_PC_REGNUM)
1145 pc <<= 1;
1146
1147 return frame_unwind_got_constant (this_frame, regnum, pc);
1148 }
1149
1150 return frame_unwind_got_optimized (this_frame, regnum);
1151 }
1152
1153 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1154 }
1155
1156 static const struct frame_unwind avr_frame_unwind = {
1157 NORMAL_FRAME,
1158 default_frame_unwind_stop_reason,
1159 avr_frame_this_id,
1160 avr_frame_prev_register,
1161 NULL,
1162 default_frame_sniffer
1163 };
1164
1165 static CORE_ADDR
1166 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1167 {
1168 struct avr_unwind_cache *info
1169 = avr_frame_unwind_cache (this_frame, this_cache);
1170
1171 return info->base;
1172 }
1173
1174 static const struct frame_base avr_frame_base = {
1175 &avr_frame_unwind,
1176 avr_frame_base_address,
1177 avr_frame_base_address,
1178 avr_frame_base_address
1179 };
1180
1181 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1182 frame. The frame ID's base needs to match the TOS value saved by
1183 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1184
1185 static struct frame_id
1186 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1187 {
1188 ULONGEST base;
1189
1190 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1191 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1192 }
1193
1194 /* When arguments must be pushed onto the stack, they go on in reverse
1195 order. The below implements a FILO (stack) to do this. */
1196
1197 struct stack_item
1198 {
1199 int len;
1200 struct stack_item *prev;
1201 void *data;
1202 };
1203
1204 static struct stack_item *
1205 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1206 {
1207 struct stack_item *si;
1208 si = xmalloc (sizeof (struct stack_item));
1209 si->data = xmalloc (len);
1210 si->len = len;
1211 si->prev = prev;
1212 memcpy (si->data, contents, len);
1213 return si;
1214 }
1215
1216 static struct stack_item *pop_stack_item (struct stack_item *si);
1217 static struct stack_item *
1218 pop_stack_item (struct stack_item *si)
1219 {
1220 struct stack_item *dead = si;
1221 si = si->prev;
1222 xfree (dead->data);
1223 xfree (dead);
1224 return si;
1225 }
1226
1227 /* Setup the function arguments for calling a function in the inferior.
1228
1229 On the AVR architecture, there are 18 registers (R25 to R8) which are
1230 dedicated for passing function arguments. Up to the first 18 arguments
1231 (depending on size) may go into these registers. The rest go on the stack.
1232
1233 All arguments are aligned to start in even-numbered registers (odd-sized
1234 arguments, including char, have one free register above them). For example,
1235 an int in arg1 and a char in arg2 would be passed as such:
1236
1237 arg1 -> r25:r24
1238 arg2 -> r22
1239
1240 Arguments that are larger than 2 bytes will be split between two or more
1241 registers as available, but will NOT be split between a register and the
1242 stack. Arguments that go onto the stack are pushed last arg first (this is
1243 similar to the d10v). */
1244
1245 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1246 inaccurate.
1247
1248 An exceptional case exists for struct arguments (and possibly other
1249 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1250 not a multiple of WORDSIZE bytes. In this case the argument is never split
1251 between the registers and the stack, but instead is copied in its entirety
1252 onto the stack, AND also copied into as many registers as there is room
1253 for. In other words, space in registers permitting, two copies of the same
1254 argument are passed in. As far as I can tell, only the one on the stack is
1255 used, although that may be a function of the level of compiler
1256 optimization. I suspect this is a compiler bug. Arguments of these odd
1257 sizes are left-justified within the word (as opposed to arguments smaller
1258 than WORDSIZE bytes, which are right-justified).
1259
1260 If the function is to return an aggregate type such as a struct, the caller
1261 must allocate space into which the callee will copy the return value. In
1262 this case, a pointer to the return value location is passed into the callee
1263 in register R0, which displaces one of the other arguments passed in via
1264 registers R0 to R2. */
1265
1266 static CORE_ADDR
1267 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1268 struct regcache *regcache, CORE_ADDR bp_addr,
1269 int nargs, struct value **args, CORE_ADDR sp,
1270 int struct_return, CORE_ADDR struct_addr)
1271 {
1272 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1273 int i;
1274 gdb_byte buf[3];
1275 int call_length = gdbarch_tdep (gdbarch)->call_length;
1276 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1277 int regnum = AVR_ARGN_REGNUM;
1278 struct stack_item *si = NULL;
1279
1280 if (struct_return)
1281 {
1282 regcache_cooked_write_unsigned
1283 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1284 regcache_cooked_write_unsigned
1285 (regcache, regnum--, struct_addr & 0xff);
1286 /* SP being post decremented, we need to reserve one byte so that the
1287 return address won't overwrite the result (or vice-versa). */
1288 if (sp == struct_addr)
1289 sp--;
1290 }
1291
1292 for (i = 0; i < nargs; i++)
1293 {
1294 int last_regnum;
1295 int j;
1296 struct value *arg = args[i];
1297 struct type *type = check_typedef (value_type (arg));
1298 const bfd_byte *contents = value_contents (arg);
1299 int len = TYPE_LENGTH (type);
1300
1301 /* Calculate the potential last register needed. */
1302 last_regnum = regnum - (len + (len & 1));
1303
1304 /* If there are registers available, use them. Once we start putting
1305 stuff on the stack, all subsequent args go on stack. */
1306 if ((si == NULL) && (last_regnum >= 8))
1307 {
1308 ULONGEST val;
1309
1310 /* Skip a register for odd length args. */
1311 if (len & 1)
1312 regnum--;
1313
1314 val = extract_unsigned_integer (contents, len, byte_order);
1315 for (j = 0; j < len; j++)
1316 regcache_cooked_write_unsigned
1317 (regcache, regnum--, val >> (8 * (len - j - 1)));
1318 }
1319 /* No registers available, push the args onto the stack. */
1320 else
1321 {
1322 /* From here on, we don't care about regnum. */
1323 si = push_stack_item (si, contents, len);
1324 }
1325 }
1326
1327 /* Push args onto the stack. */
1328 while (si)
1329 {
1330 sp -= si->len;
1331 /* Add 1 to sp here to account for post decr nature of pushes. */
1332 write_memory (sp + 1, si->data, si->len);
1333 si = pop_stack_item (si);
1334 }
1335
1336 /* Set the return address. For the avr, the return address is the BP_ADDR.
1337 Need to push the return address onto the stack noting that it needs to be
1338 in big-endian order on the stack. */
1339 for (i = 1; i <= call_length; i++)
1340 {
1341 buf[call_length - i] = return_pc & 0xff;
1342 return_pc >>= 8;
1343 }
1344
1345 sp -= call_length;
1346 /* Use 'sp + 1' since pushes are post decr ops. */
1347 write_memory (sp + 1, buf, call_length);
1348
1349 /* Finally, update the SP register. */
1350 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1351 avr_convert_saddr_to_raw (sp));
1352
1353 /* Return SP value for the dummy frame, where the return address hasn't been
1354 pushed. */
1355 return sp + call_length;
1356 }
1357
1358 /* Unfortunately dwarf2 register for SP is 32. */
1359
1360 static int
1361 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1362 {
1363 if (reg >= 0 && reg < 32)
1364 return reg;
1365 if (reg == 32)
1366 return AVR_SP_REGNUM;
1367
1368 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1369
1370 return -1;
1371 }
1372
1373 /* Implementation of `address_class_type_flags' gdbarch method.
1374
1375 This method maps DW_AT_address_class attributes to a
1376 type_instance_flag_value. */
1377
1378 static int
1379 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1380 {
1381 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1382 __flash qualifier. Note that this attribute is only valid with
1383 pointer types and therefore the flag is set to the pointer type and
1384 not its target type. */
1385 if (dwarf2_addr_class == 1 && byte_size == 2)
1386 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1387 return 0;
1388 }
1389
1390 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1391
1392 Convert a type_instance_flag_value to an address space qualifier. */
1393
1394 static const char*
1395 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1396 {
1397 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1398 return "flash";
1399 else
1400 return NULL;
1401 }
1402
1403 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1404
1405 Convert an address space qualifier to a type_instance_flag_value. */
1406
1407 static int
1408 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1409 const char* name,
1410 int *type_flags_ptr)
1411 {
1412 if (strcmp (name, "flash") == 0)
1413 {
1414 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1415 return 1;
1416 }
1417 else
1418 return 0;
1419 }
1420
1421 /* Initialize the gdbarch structure for the AVR's. */
1422
1423 static struct gdbarch *
1424 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1425 {
1426 struct gdbarch *gdbarch;
1427 struct gdbarch_tdep *tdep;
1428 struct gdbarch_list *best_arch;
1429 int call_length;
1430
1431 /* Avr-6 call instructions save 3 bytes. */
1432 switch (info.bfd_arch_info->mach)
1433 {
1434 case bfd_mach_avr1:
1435 case bfd_mach_avrxmega1:
1436 case bfd_mach_avr2:
1437 case bfd_mach_avrxmega2:
1438 case bfd_mach_avr3:
1439 case bfd_mach_avrxmega3:
1440 case bfd_mach_avr4:
1441 case bfd_mach_avrxmega4:
1442 case bfd_mach_avr5:
1443 case bfd_mach_avrxmega5:
1444 default:
1445 call_length = 2;
1446 break;
1447 case bfd_mach_avr6:
1448 case bfd_mach_avrxmega6:
1449 case bfd_mach_avrxmega7:
1450 call_length = 3;
1451 break;
1452 }
1453
1454 /* If there is already a candidate, use it. */
1455 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1456 best_arch != NULL;
1457 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1458 {
1459 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1460 return best_arch->gdbarch;
1461 }
1462
1463 /* None found, create a new architecture from the information provided. */
1464 tdep = XNEW (struct gdbarch_tdep);
1465 gdbarch = gdbarch_alloc (&info, tdep);
1466
1467 tdep->call_length = call_length;
1468
1469 /* Create a type for PC. We can't use builtin types here, as they may not
1470 be defined. */
1471 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1472 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1473 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1474 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1475 TYPE_UNSIGNED (tdep->pc_type) = 1;
1476
1477 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1478 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1479 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1480 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1481 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1482 set_gdbarch_addr_bit (gdbarch, 32);
1483
1484 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1485 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1486 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1487
1488 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1489 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1490 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1491
1492 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1493 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1494
1495 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1496
1497 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1498 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1499
1500 set_gdbarch_register_name (gdbarch, avr_register_name);
1501 set_gdbarch_register_type (gdbarch, avr_register_type);
1502
1503 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1504 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1505 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1506
1507 set_gdbarch_return_value (gdbarch, avr_return_value);
1508 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1509
1510 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1511
1512 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1513
1514 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1515 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1516 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1517
1518 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1519 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1520
1521 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1522
1523 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1524 frame_base_set_default (gdbarch, &avr_frame_base);
1525
1526 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1527
1528 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1529 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1530
1531 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1532 set_gdbarch_address_class_name_to_type_flags
1533 (gdbarch, avr_address_class_name_to_type_flags);
1534 set_gdbarch_address_class_type_flags_to_name
1535 (gdbarch, avr_address_class_type_flags_to_name);
1536
1537 return gdbarch;
1538 }
1539
1540 /* Send a query request to the avr remote target asking for values of the io
1541 registers. If args parameter is not NULL, then the user has requested info
1542 on a specific io register [This still needs implemented and is ignored for
1543 now]. The query string should be one of these forms:
1544
1545 "Ravr.io_reg" -> reply is "NN" number of io registers
1546
1547 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1548 registers to be read. The reply should be "<NAME>,VV;" for each io register
1549 where, <NAME> is a string, and VV is the hex value of the register.
1550
1551 All io registers are 8-bit. */
1552
1553 static void
1554 avr_io_reg_read_command (char *args, int from_tty)
1555 {
1556 LONGEST bufsiz = 0;
1557 gdb_byte *buf;
1558 const char *bufstr;
1559 char query[400];
1560 const char *p;
1561 unsigned int nreg = 0;
1562 unsigned int val;
1563 int i, j, k, step;
1564
1565 /* Find out how many io registers the target has. */
1566 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1567 "avr.io_reg", &buf);
1568 bufstr = (const char *) buf;
1569
1570 if (bufsiz <= 0)
1571 {
1572 fprintf_unfiltered (gdb_stderr,
1573 _("ERR: info io_registers NOT supported "
1574 "by current target\n"));
1575 return;
1576 }
1577
1578 if (sscanf (bufstr, "%x", &nreg) != 1)
1579 {
1580 fprintf_unfiltered (gdb_stderr,
1581 _("Error fetching number of io registers\n"));
1582 xfree (buf);
1583 return;
1584 }
1585
1586 xfree (buf);
1587
1588 reinitialize_more_filter ();
1589
1590 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1591
1592 /* only fetch up to 8 registers at a time to keep the buffer small */
1593 step = 8;
1594
1595 for (i = 0; i < nreg; i += step)
1596 {
1597 /* how many registers this round? */
1598 j = step;
1599 if ((i+j) >= nreg)
1600 j = nreg - i; /* last block is less than 8 registers */
1601
1602 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1603 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1604 query, &buf);
1605
1606 p = (const char *) buf;
1607 for (k = i; k < (i + j); k++)
1608 {
1609 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1610 {
1611 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1612 while ((*p != ';') && (*p != '\0'))
1613 p++;
1614 p++; /* skip over ';' */
1615 if (*p == '\0')
1616 break;
1617 }
1618 }
1619
1620 xfree (buf);
1621 }
1622 }
1623
1624 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1625
1626 void
1627 _initialize_avr_tdep (void)
1628 {
1629 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1630
1631 /* Add a new command to allow the user to query the avr remote target for
1632 the values of the io space registers in a saner way than just using
1633 `x/NNNb ADDR`. */
1634
1635 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1636 io_registers' to signify it is not available on other platforms. */
1637
1638 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1639 _("query remote avr target for io space register values"),
1640 &infolist);
1641 }
This page took 0.064864 seconds and 4 git commands to generate.