[GDB/Linux] Avoid stale errno
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include <string.h>
38 #include "dis-asm.h"
39 #include "objfiles.h"
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 /* Constants: prefixed with AVR_ to avoid name space clashes */
73
74 enum
75 {
76 AVR_REG_W = 24,
77 AVR_REG_X = 26,
78 AVR_REG_Y = 28,
79 AVR_FP_REGNUM = 28,
80 AVR_REG_Z = 30,
81
82 AVR_SREG_REGNUM = 32,
83 AVR_SP_REGNUM = 33,
84 AVR_PC_REGNUM = 34,
85
86 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
87 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
88
89 /* Pseudo registers. */
90 AVR_PSEUDO_PC_REGNUM = 35,
91 AVR_NUM_PSEUDO_REGS = 1,
92
93 AVR_PC_REG_INDEX = 35, /* index into array of registers */
94
95 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
96
97 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
98 AVR_MAX_PUSHES = 18,
99
100 /* Number of the last pushed register. r17 for current avr-gcc */
101 AVR_LAST_PUSHED_REGNUM = 17,
102
103 AVR_ARG1_REGNUM = 24, /* Single byte argument */
104 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
105
106 AVR_RET1_REGNUM = 24, /* Single byte return value */
107 AVR_RETN_REGNUM = 25, /* Multi byte return value */
108
109 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
110 bits? Do these have to match the bfd vma values? It sure would make
111 things easier in the future if they didn't need to match.
112
113 Note: I chose these values so as to be consistent with bfd vma
114 addresses.
115
116 TRoth/2002-04-08: There is already a conflict with very large programs
117 in the mega128. The mega128 has 128K instruction bytes (64K words),
118 thus the Most Significant Bit is 0x10000 which gets masked off my
119 AVR_MEM_MASK.
120
121 The problem manifests itself when trying to set a breakpoint in a
122 function which resides in the upper half of the instruction space and
123 thus requires a 17-bit address.
124
125 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
126 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
127 but could be for some remote targets by just adding the correct offset
128 to the address and letting the remote target handle the low-level
129 details of actually accessing the eeprom. */
130
131 AVR_IMEM_START = 0x00000000, /* INSN memory */
132 AVR_SMEM_START = 0x00800000, /* SRAM memory */
133 #if 1
134 /* No eeprom mask defined */
135 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
136 #else
137 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
138 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
139 #endif
140 };
141
142 /* Prologue types:
143
144 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
145 causes the generation of the CALL type prologues). */
146
147 enum {
148 AVR_PROLOGUE_NONE, /* No prologue */
149 AVR_PROLOGUE_NORMAL,
150 AVR_PROLOGUE_CALL, /* -mcall-prologues */
151 AVR_PROLOGUE_MAIN,
152 AVR_PROLOGUE_INTR, /* interrupt handler */
153 AVR_PROLOGUE_SIG, /* signal handler */
154 };
155
156 /* Any function with a frame looks like this
157 ....... <-SP POINTS HERE
158 LOCALS1 <-FP POINTS HERE
159 LOCALS0
160 SAVED FP
161 SAVED R3
162 SAVED R2
163 RET PC
164 FIRST ARG
165 SECOND ARG */
166
167 struct avr_unwind_cache
168 {
169 /* The previous frame's inner most stack address. Used as this
170 frame ID's stack_addr. */
171 CORE_ADDR prev_sp;
172 /* The frame's base, optionally used by the high-level debug info. */
173 CORE_ADDR base;
174 int size;
175 int prologue_type;
176 /* Table indicating the location of each and every register. */
177 struct trad_frame_saved_reg *saved_regs;
178 };
179
180 struct gdbarch_tdep
181 {
182 /* Number of bytes stored to the stack by call instructions.
183 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
184 int call_length;
185
186 /* Type for void. */
187 struct type *void_type;
188 /* Type for a function returning void. */
189 struct type *func_void_type;
190 /* Type for a pointer to a function. Used for the type of PC. */
191 struct type *pc_type;
192 };
193
194 /* Lookup the name of a register given it's number. */
195
196 static const char *
197 avr_register_name (struct gdbarch *gdbarch, int regnum)
198 {
199 static const char * const register_names[] = {
200 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
201 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
202 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
203 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
204 "SREG", "SP", "PC2",
205 "pc"
206 };
207 if (regnum < 0)
208 return NULL;
209 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
210 return NULL;
211 return register_names[regnum];
212 }
213
214 /* Return the GDB type object for the "standard" data type
215 of data in register N. */
216
217 static struct type *
218 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
219 {
220 if (reg_nr == AVR_PC_REGNUM)
221 return builtin_type (gdbarch)->builtin_uint32;
222 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
223 return gdbarch_tdep (gdbarch)->pc_type;
224 if (reg_nr == AVR_SP_REGNUM)
225 return builtin_type (gdbarch)->builtin_data_ptr;
226 return builtin_type (gdbarch)->builtin_uint8;
227 }
228
229 /* Instruction address checks and convertions. */
230
231 static CORE_ADDR
232 avr_make_iaddr (CORE_ADDR x)
233 {
234 return ((x) | AVR_IMEM_START);
235 }
236
237 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
238 devices are already up to 128KBytes of flash space.
239
240 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
241
242 static CORE_ADDR
243 avr_convert_iaddr_to_raw (CORE_ADDR x)
244 {
245 return ((x) & 0xffffffff);
246 }
247
248 /* SRAM address checks and convertions. */
249
250 static CORE_ADDR
251 avr_make_saddr (CORE_ADDR x)
252 {
253 /* Return 0 for NULL. */
254 if (x == 0)
255 return 0;
256
257 return ((x) | AVR_SMEM_START);
258 }
259
260 static CORE_ADDR
261 avr_convert_saddr_to_raw (CORE_ADDR x)
262 {
263 return ((x) & 0xffffffff);
264 }
265
266 /* EEPROM address checks and convertions. I don't know if these will ever
267 actually be used, but I've added them just the same. TRoth */
268
269 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
270 programs in the mega128. */
271
272 /* static CORE_ADDR */
273 /* avr_make_eaddr (CORE_ADDR x) */
274 /* { */
275 /* return ((x) | AVR_EMEM_START); */
276 /* } */
277
278 /* static int */
279 /* avr_eaddr_p (CORE_ADDR x) */
280 /* { */
281 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
282 /* } */
283
284 /* static CORE_ADDR */
285 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
286 /* { */
287 /* return ((x) & 0xffffffff); */
288 /* } */
289
290 /* Convert from address to pointer and vice-versa. */
291
292 static void
293 avr_address_to_pointer (struct gdbarch *gdbarch,
294 struct type *type, gdb_byte *buf, CORE_ADDR addr)
295 {
296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
297
298 /* Is it a code address? */
299 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
300 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
301 {
302 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
303 avr_convert_iaddr_to_raw (addr >> 1));
304 }
305 else
306 {
307 /* Strip off any upper segment bits. */
308 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
309 avr_convert_saddr_to_raw (addr));
310 }
311 }
312
313 static CORE_ADDR
314 avr_pointer_to_address (struct gdbarch *gdbarch,
315 struct type *type, const gdb_byte *buf)
316 {
317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
318 CORE_ADDR addr
319 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
320
321 /* Is it a code address? */
322 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
323 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
324 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
325 return avr_make_iaddr (addr << 1);
326 else
327 return avr_make_saddr (addr);
328 }
329
330 static CORE_ADDR
331 avr_integer_to_address (struct gdbarch *gdbarch,
332 struct type *type, const gdb_byte *buf)
333 {
334 ULONGEST addr = unpack_long (type, buf);
335
336 return avr_make_saddr (addr);
337 }
338
339 static CORE_ADDR
340 avr_read_pc (struct regcache *regcache)
341 {
342 ULONGEST pc;
343 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
344 return avr_make_iaddr (pc);
345 }
346
347 static void
348 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
349 {
350 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
351 avr_convert_iaddr_to_raw (val));
352 }
353
354 static enum register_status
355 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
356 int regnum, gdb_byte *buf)
357 {
358 ULONGEST val;
359 enum register_status status;
360
361 switch (regnum)
362 {
363 case AVR_PSEUDO_PC_REGNUM:
364 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
365 if (status != REG_VALID)
366 return status;
367 val >>= 1;
368 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
369 return status;
370 default:
371 internal_error (__FILE__, __LINE__, _("invalid regnum"));
372 }
373 }
374
375 static void
376 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
377 int regnum, const gdb_byte *buf)
378 {
379 ULONGEST val;
380
381 switch (regnum)
382 {
383 case AVR_PSEUDO_PC_REGNUM:
384 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
385 val <<= 1;
386 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
387 break;
388 default:
389 internal_error (__FILE__, __LINE__, _("invalid regnum"));
390 }
391 }
392
393 /* Function: avr_scan_prologue
394
395 This function decodes an AVR function prologue to determine:
396 1) the size of the stack frame
397 2) which registers are saved on it
398 3) the offsets of saved regs
399 This information is stored in the avr_unwind_cache structure.
400
401 Some devices lack the sbiw instruction, so on those replace this:
402 sbiw r28, XX
403 with this:
404 subi r28,lo8(XX)
405 sbci r29,hi8(XX)
406
407 A typical AVR function prologue with a frame pointer might look like this:
408 push rXX ; saved regs
409 ...
410 push r28
411 push r29
412 in r28,__SP_L__
413 in r29,__SP_H__
414 sbiw r28,<LOCALS_SIZE>
415 in __tmp_reg__,__SREG__
416 cli
417 out __SP_H__,r29
418 out __SREG__,__tmp_reg__
419 out __SP_L__,r28
420
421 A typical AVR function prologue without a frame pointer might look like
422 this:
423 push rXX ; saved regs
424 ...
425
426 A main function prologue looks like this:
427 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
428 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
429 out __SP_H__,r29
430 out __SP_L__,r28
431
432 A signal handler prologue looks like this:
433 push __zero_reg__
434 push __tmp_reg__
435 in __tmp_reg__, __SREG__
436 push __tmp_reg__
437 clr __zero_reg__
438 push rXX ; save registers r18:r27, r30:r31
439 ...
440 push r28 ; save frame pointer
441 push r29
442 in r28, __SP_L__
443 in r29, __SP_H__
444 sbiw r28, <LOCALS_SIZE>
445 out __SP_H__, r29
446 out __SP_L__, r28
447
448 A interrupt handler prologue looks like this:
449 sei
450 push __zero_reg__
451 push __tmp_reg__
452 in __tmp_reg__, __SREG__
453 push __tmp_reg__
454 clr __zero_reg__
455 push rXX ; save registers r18:r27, r30:r31
456 ...
457 push r28 ; save frame pointer
458 push r29
459 in r28, __SP_L__
460 in r29, __SP_H__
461 sbiw r28, <LOCALS_SIZE>
462 cli
463 out __SP_H__, r29
464 sei
465 out __SP_L__, r28
466
467 A `-mcall-prologues' prologue looks like this (Note that the megas use a
468 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
469 32 bit insn and rjmp is a 16 bit insn):
470 ldi r26,lo8(<LOCALS_SIZE>)
471 ldi r27,hi8(<LOCALS_SIZE>)
472 ldi r30,pm_lo8(.L_foo_body)
473 ldi r31,pm_hi8(.L_foo_body)
474 rjmp __prologue_saves__+RRR
475 .L_foo_body: */
476
477 /* Not really part of a prologue, but still need to scan for it, is when a
478 function prologue moves values passed via registers as arguments to new
479 registers. In this case, all local variables live in registers, so there
480 may be some register saves. This is what it looks like:
481 movw rMM, rNN
482 ...
483
484 There could be multiple movw's. If the target doesn't have a movw insn, it
485 will use two mov insns. This could be done after any of the above prologue
486 types. */
487
488 static CORE_ADDR
489 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
490 struct avr_unwind_cache *info)
491 {
492 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
493 int i;
494 unsigned short insn;
495 int scan_stage = 0;
496 struct bound_minimal_symbol msymbol;
497 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
498 int vpc = 0;
499 int len;
500
501 len = pc_end - pc_beg;
502 if (len > AVR_MAX_PROLOGUE_SIZE)
503 len = AVR_MAX_PROLOGUE_SIZE;
504
505 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
506 reading in the bytes of the prologue. The problem is that the figuring
507 out where the end of the prologue is is a bit difficult. The old code
508 tried to do that, but failed quite often. */
509 read_memory (pc_beg, prologue, len);
510
511 /* Scanning main()'s prologue
512 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
513 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
514 out __SP_H__,r29
515 out __SP_L__,r28 */
516
517 if (len >= 4)
518 {
519 CORE_ADDR locals;
520 static const unsigned char img[] = {
521 0xde, 0xbf, /* out __SP_H__,r29 */
522 0xcd, 0xbf /* out __SP_L__,r28 */
523 };
524
525 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
526 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
527 if ((insn & 0xf0f0) == 0xe0c0)
528 {
529 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
530 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
531 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
532 if ((insn & 0xf0f0) == 0xe0d0)
533 {
534 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
535 if (vpc + 4 + sizeof (img) < len
536 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
537 {
538 info->prologue_type = AVR_PROLOGUE_MAIN;
539 info->base = locals;
540 return pc_beg + 4;
541 }
542 }
543 }
544 }
545
546 /* Scanning `-mcall-prologues' prologue
547 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
548
549 while (1) /* Using a while to avoid many goto's */
550 {
551 int loc_size;
552 int body_addr;
553 unsigned num_pushes;
554 int pc_offset = 0;
555
556 /* At least the fifth instruction must have been executed to
557 modify frame shape. */
558 if (len < 10)
559 break;
560
561 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
562 /* ldi r26,<LOCALS_SIZE> */
563 if ((insn & 0xf0f0) != 0xe0a0)
564 break;
565 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
566 pc_offset += 2;
567
568 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
569 /* ldi r27,<LOCALS_SIZE> / 256 */
570 if ((insn & 0xf0f0) != 0xe0b0)
571 break;
572 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
573 pc_offset += 2;
574
575 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
576 /* ldi r30,pm_lo8(.L_foo_body) */
577 if ((insn & 0xf0f0) != 0xe0e0)
578 break;
579 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
580 pc_offset += 2;
581
582 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
583 /* ldi r31,pm_hi8(.L_foo_body) */
584 if ((insn & 0xf0f0) != 0xe0f0)
585 break;
586 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
587 pc_offset += 2;
588
589 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
590 if (!msymbol.minsym)
591 break;
592
593 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
594 /* rjmp __prologue_saves__+RRR */
595 if ((insn & 0xf000) == 0xc000)
596 {
597 /* Extract PC relative offset from RJMP */
598 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
599 /* Convert offset to byte addressable mode */
600 i *= 2;
601 /* Destination address */
602 i += pc_beg + 10;
603
604 if (body_addr != (pc_beg + 10)/2)
605 break;
606
607 pc_offset += 2;
608 }
609 else if ((insn & 0xfe0e) == 0x940c)
610 {
611 /* Extract absolute PC address from JMP */
612 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
613 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
614 & 0xffff));
615 /* Convert address to byte addressable mode */
616 i *= 2;
617
618 if (body_addr != (pc_beg + 12)/2)
619 break;
620
621 pc_offset += 4;
622 }
623 else
624 break;
625
626 /* Resolve offset (in words) from __prologue_saves__ symbol.
627 Which is a pushes count in `-mcall-prologues' mode */
628 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
629
630 if (num_pushes > AVR_MAX_PUSHES)
631 {
632 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
633 num_pushes);
634 num_pushes = 0;
635 }
636
637 if (num_pushes)
638 {
639 int from;
640
641 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
642 if (num_pushes >= 2)
643 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
644
645 i = 0;
646 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
647 from <= AVR_LAST_PUSHED_REGNUM; ++from)
648 info->saved_regs [from].addr = ++i;
649 }
650 info->size = loc_size + num_pushes;
651 info->prologue_type = AVR_PROLOGUE_CALL;
652
653 return pc_beg + pc_offset;
654 }
655
656 /* Scan for the beginning of the prologue for an interrupt or signal
657 function. Note that we have to set the prologue type here since the
658 third stage of the prologue may not be present (e.g. no saved registered
659 or changing of the SP register). */
660
661 if (1)
662 {
663 static const unsigned char img[] = {
664 0x78, 0x94, /* sei */
665 0x1f, 0x92, /* push r1 */
666 0x0f, 0x92, /* push r0 */
667 0x0f, 0xb6, /* in r0,0x3f SREG */
668 0x0f, 0x92, /* push r0 */
669 0x11, 0x24 /* clr r1 */
670 };
671 if (len >= sizeof (img)
672 && memcmp (prologue, img, sizeof (img)) == 0)
673 {
674 info->prologue_type = AVR_PROLOGUE_INTR;
675 vpc += sizeof (img);
676 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
677 info->saved_regs[0].addr = 2;
678 info->saved_regs[1].addr = 1;
679 info->size += 3;
680 }
681 else if (len >= sizeof (img) - 2
682 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
683 {
684 info->prologue_type = AVR_PROLOGUE_SIG;
685 vpc += sizeof (img) - 2;
686 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
687 info->saved_regs[0].addr = 2;
688 info->saved_regs[1].addr = 1;
689 info->size += 2;
690 }
691 }
692
693 /* First stage of the prologue scanning.
694 Scan pushes (saved registers) */
695
696 for (; vpc < len; vpc += 2)
697 {
698 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
699 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
700 {
701 /* Bits 4-9 contain a mask for registers R0-R32. */
702 int regno = (insn & 0x1f0) >> 4;
703 info->size++;
704 info->saved_regs[regno].addr = info->size;
705 scan_stage = 1;
706 }
707 else
708 break;
709 }
710
711 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
712
713 /* Handle static small stack allocation using rcall or push. */
714
715 while (scan_stage == 1 && vpc < len)
716 {
717 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
718 if (insn == 0xd000) /* rcall .+0 */
719 {
720 info->size += gdbarch_tdep (gdbarch)->call_length;
721 vpc += 2;
722 }
723 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
724 {
725 info->size += 1;
726 vpc += 2;
727 }
728 else
729 break;
730 }
731
732 /* Second stage of the prologue scanning.
733 Scan:
734 in r28,__SP_L__
735 in r29,__SP_H__ */
736
737 if (scan_stage == 1 && vpc < len)
738 {
739 static const unsigned char img[] = {
740 0xcd, 0xb7, /* in r28,__SP_L__ */
741 0xde, 0xb7 /* in r29,__SP_H__ */
742 };
743
744 if (vpc + sizeof (img) < len
745 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
746 {
747 vpc += 4;
748 scan_stage = 2;
749 }
750 }
751
752 /* Third stage of the prologue scanning. (Really two stages).
753 Scan for:
754 sbiw r28,XX or subi r28,lo8(XX)
755 sbci r29,hi8(XX)
756 in __tmp_reg__,__SREG__
757 cli
758 out __SP_H__,r29
759 out __SREG__,__tmp_reg__
760 out __SP_L__,r28 */
761
762 if (scan_stage == 2 && vpc < len)
763 {
764 int locals_size = 0;
765 static const unsigned char img[] = {
766 0x0f, 0xb6, /* in r0,0x3f */
767 0xf8, 0x94, /* cli */
768 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
769 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
770 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
771 };
772 static const unsigned char img_sig[] = {
773 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
774 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
775 };
776 static const unsigned char img_int[] = {
777 0xf8, 0x94, /* cli */
778 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
779 0x78, 0x94, /* sei */
780 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
781 };
782
783 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
784 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
785 {
786 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
787 vpc += 2;
788 }
789 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
790 {
791 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
792 vpc += 2;
793 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
794 vpc += 2;
795 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
796 }
797 else
798 return pc_beg + vpc;
799
800 /* Scan the last part of the prologue. May not be present for interrupt
801 or signal handler functions, which is why we set the prologue type
802 when we saw the beginning of the prologue previously. */
803
804 if (vpc + sizeof (img_sig) < len
805 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
806 {
807 vpc += sizeof (img_sig);
808 }
809 else if (vpc + sizeof (img_int) < len
810 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
811 {
812 vpc += sizeof (img_int);
813 }
814 if (vpc + sizeof (img) < len
815 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
816 {
817 info->prologue_type = AVR_PROLOGUE_NORMAL;
818 vpc += sizeof (img);
819 }
820
821 info->size += locals_size;
822
823 /* Fall through. */
824 }
825
826 /* If we got this far, we could not scan the prologue, so just return the pc
827 of the frame plus an adjustment for argument move insns. */
828
829 for (; vpc < len; vpc += 2)
830 {
831 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
832 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
833 continue;
834 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
835 continue;
836 else
837 break;
838 }
839
840 return pc_beg + vpc;
841 }
842
843 static CORE_ADDR
844 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
845 {
846 CORE_ADDR func_addr, func_end;
847 CORE_ADDR post_prologue_pc;
848
849 /* See what the symbol table says */
850
851 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
852 return pc;
853
854 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
855 if (post_prologue_pc != 0)
856 return max (pc, post_prologue_pc);
857
858 {
859 CORE_ADDR prologue_end = pc;
860 struct avr_unwind_cache info = {0};
861 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
862
863 info.saved_regs = saved_regs;
864
865 /* Need to run the prologue scanner to figure out if the function has a
866 prologue and possibly skip over moving arguments passed via registers
867 to other registers. */
868
869 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
870
871 if (info.prologue_type != AVR_PROLOGUE_NONE)
872 return prologue_end;
873 }
874
875 /* Either we didn't find the start of this function (nothing we can do),
876 or there's no line info, or the line after the prologue is after
877 the end of the function (there probably isn't a prologue). */
878
879 return pc;
880 }
881
882 /* Not all avr devices support the BREAK insn. Those that don't should treat
883 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
884 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
885
886 static const unsigned char *
887 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
888 CORE_ADDR *pcptr, int *lenptr)
889 {
890 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
891 *lenptr = sizeof (avr_break_insn);
892 return avr_break_insn;
893 }
894
895 /* Determine, for architecture GDBARCH, how a return value of TYPE
896 should be returned. If it is supposed to be returned in registers,
897 and READBUF is non-zero, read the appropriate value from REGCACHE,
898 and copy it into READBUF. If WRITEBUF is non-zero, write the value
899 from WRITEBUF into REGCACHE. */
900
901 static enum return_value_convention
902 avr_return_value (struct gdbarch *gdbarch, struct value *function,
903 struct type *valtype, struct regcache *regcache,
904 gdb_byte *readbuf, const gdb_byte *writebuf)
905 {
906 int i;
907 /* Single byte are returned in r24.
908 Otherwise, the MSB of the return value is always in r25, calculate which
909 register holds the LSB. */
910 int lsb_reg;
911
912 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
913 || TYPE_CODE (valtype) == TYPE_CODE_UNION
914 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
915 && TYPE_LENGTH (valtype) > 8)
916 return RETURN_VALUE_STRUCT_CONVENTION;
917
918 if (TYPE_LENGTH (valtype) <= 2)
919 lsb_reg = 24;
920 else if (TYPE_LENGTH (valtype) <= 4)
921 lsb_reg = 22;
922 else if (TYPE_LENGTH (valtype) <= 8)
923 lsb_reg = 18;
924 else
925 gdb_assert_not_reached ("unexpected type length");
926
927 if (writebuf != NULL)
928 {
929 for (i = 0; i < TYPE_LENGTH (valtype); i++)
930 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
931 }
932
933 if (readbuf != NULL)
934 {
935 for (i = 0; i < TYPE_LENGTH (valtype); i++)
936 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
937 }
938
939 return RETURN_VALUE_REGISTER_CONVENTION;
940 }
941
942
943 /* Put here the code to store, into fi->saved_regs, the addresses of
944 the saved registers of frame described by FRAME_INFO. This
945 includes special registers such as pc and fp saved in special ways
946 in the stack frame. sp is even more special: the address we return
947 for it IS the sp for the next frame. */
948
949 static struct avr_unwind_cache *
950 avr_frame_unwind_cache (struct frame_info *this_frame,
951 void **this_prologue_cache)
952 {
953 CORE_ADDR start_pc, current_pc;
954 ULONGEST prev_sp;
955 ULONGEST this_base;
956 struct avr_unwind_cache *info;
957 struct gdbarch *gdbarch;
958 struct gdbarch_tdep *tdep;
959 int i;
960
961 if (*this_prologue_cache)
962 return *this_prologue_cache;
963
964 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
965 *this_prologue_cache = info;
966 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
967
968 info->size = 0;
969 info->prologue_type = AVR_PROLOGUE_NONE;
970
971 start_pc = get_frame_func (this_frame);
972 current_pc = get_frame_pc (this_frame);
973 if ((start_pc > 0) && (start_pc <= current_pc))
974 avr_scan_prologue (get_frame_arch (this_frame),
975 start_pc, current_pc, info);
976
977 if ((info->prologue_type != AVR_PROLOGUE_NONE)
978 && (info->prologue_type != AVR_PROLOGUE_MAIN))
979 {
980 ULONGEST high_base; /* High byte of FP */
981
982 /* The SP was moved to the FP. This indicates that a new frame
983 was created. Get THIS frame's FP value by unwinding it from
984 the next frame. */
985 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
986 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
987 this_base += (high_base << 8);
988
989 /* The FP points at the last saved register. Adjust the FP back
990 to before the first saved register giving the SP. */
991 prev_sp = this_base + info->size;
992 }
993 else
994 {
995 /* Assume that the FP is this frame's SP but with that pushed
996 stack space added back. */
997 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
998 prev_sp = this_base + info->size;
999 }
1000
1001 /* Add 1 here to adjust for the post-decrement nature of the push
1002 instruction.*/
1003 info->prev_sp = avr_make_saddr (prev_sp + 1);
1004 info->base = avr_make_saddr (this_base);
1005
1006 gdbarch = get_frame_arch (this_frame);
1007
1008 /* Adjust all the saved registers so that they contain addresses and not
1009 offsets. */
1010 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1011 if (info->saved_regs[i].addr > 0)
1012 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1013
1014 /* Except for the main and startup code, the return PC is always saved on
1015 the stack and is at the base of the frame. */
1016
1017 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1018 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1019
1020 /* The previous frame's SP needed to be computed. Save the computed
1021 value. */
1022 tdep = gdbarch_tdep (gdbarch);
1023 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1024 info->prev_sp - 1 + tdep->call_length);
1025
1026 return info;
1027 }
1028
1029 static CORE_ADDR
1030 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1031 {
1032 ULONGEST pc;
1033
1034 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1035
1036 return avr_make_iaddr (pc);
1037 }
1038
1039 static CORE_ADDR
1040 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1041 {
1042 ULONGEST sp;
1043
1044 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1045
1046 return avr_make_saddr (sp);
1047 }
1048
1049 /* Given a GDB frame, determine the address of the calling function's
1050 frame. This will be used to create a new GDB frame struct. */
1051
1052 static void
1053 avr_frame_this_id (struct frame_info *this_frame,
1054 void **this_prologue_cache,
1055 struct frame_id *this_id)
1056 {
1057 struct avr_unwind_cache *info
1058 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1059 CORE_ADDR base;
1060 CORE_ADDR func;
1061 struct frame_id id;
1062
1063 /* The FUNC is easy. */
1064 func = get_frame_func (this_frame);
1065
1066 /* Hopefully the prologue analysis either correctly determined the
1067 frame's base (which is the SP from the previous frame), or set
1068 that base to "NULL". */
1069 base = info->prev_sp;
1070 if (base == 0)
1071 return;
1072
1073 id = frame_id_build (base, func);
1074 (*this_id) = id;
1075 }
1076
1077 static struct value *
1078 avr_frame_prev_register (struct frame_info *this_frame,
1079 void **this_prologue_cache, int regnum)
1080 {
1081 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1082 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1083 struct avr_unwind_cache *info
1084 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1085
1086 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1087 {
1088 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1089 {
1090 /* Reading the return PC from the PC register is slightly
1091 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1092 but in reality, only two bytes (3 in upcoming mega256) are
1093 stored on the stack.
1094
1095 Also, note that the value on the stack is an addr to a word
1096 not a byte, so we will need to multiply it by two at some
1097 point.
1098
1099 And to confuse matters even more, the return address stored
1100 on the stack is in big endian byte order, even though most
1101 everything else about the avr is little endian. Ick! */
1102 ULONGEST pc;
1103 int i;
1104 gdb_byte buf[3];
1105 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1107
1108 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1109 buf, tdep->call_length);
1110
1111 /* Extract the PC read from memory as a big-endian. */
1112 pc = 0;
1113 for (i = 0; i < tdep->call_length; i++)
1114 pc = (pc << 8) | buf[i];
1115
1116 if (regnum == AVR_PC_REGNUM)
1117 pc <<= 1;
1118
1119 return frame_unwind_got_constant (this_frame, regnum, pc);
1120 }
1121
1122 return frame_unwind_got_optimized (this_frame, regnum);
1123 }
1124
1125 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1126 }
1127
1128 static const struct frame_unwind avr_frame_unwind = {
1129 NORMAL_FRAME,
1130 default_frame_unwind_stop_reason,
1131 avr_frame_this_id,
1132 avr_frame_prev_register,
1133 NULL,
1134 default_frame_sniffer
1135 };
1136
1137 static CORE_ADDR
1138 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1139 {
1140 struct avr_unwind_cache *info
1141 = avr_frame_unwind_cache (this_frame, this_cache);
1142
1143 return info->base;
1144 }
1145
1146 static const struct frame_base avr_frame_base = {
1147 &avr_frame_unwind,
1148 avr_frame_base_address,
1149 avr_frame_base_address,
1150 avr_frame_base_address
1151 };
1152
1153 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1154 frame. The frame ID's base needs to match the TOS value saved by
1155 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1156
1157 static struct frame_id
1158 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1159 {
1160 ULONGEST base;
1161
1162 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1163 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1164 }
1165
1166 /* When arguments must be pushed onto the stack, they go on in reverse
1167 order. The below implements a FILO (stack) to do this. */
1168
1169 struct stack_item
1170 {
1171 int len;
1172 struct stack_item *prev;
1173 void *data;
1174 };
1175
1176 static struct stack_item *
1177 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1178 {
1179 struct stack_item *si;
1180 si = xmalloc (sizeof (struct stack_item));
1181 si->data = xmalloc (len);
1182 si->len = len;
1183 si->prev = prev;
1184 memcpy (si->data, contents, len);
1185 return si;
1186 }
1187
1188 static struct stack_item *pop_stack_item (struct stack_item *si);
1189 static struct stack_item *
1190 pop_stack_item (struct stack_item *si)
1191 {
1192 struct stack_item *dead = si;
1193 si = si->prev;
1194 xfree (dead->data);
1195 xfree (dead);
1196 return si;
1197 }
1198
1199 /* Setup the function arguments for calling a function in the inferior.
1200
1201 On the AVR architecture, there are 18 registers (R25 to R8) which are
1202 dedicated for passing function arguments. Up to the first 18 arguments
1203 (depending on size) may go into these registers. The rest go on the stack.
1204
1205 All arguments are aligned to start in even-numbered registers (odd-sized
1206 arguments, including char, have one free register above them). For example,
1207 an int in arg1 and a char in arg2 would be passed as such:
1208
1209 arg1 -> r25:r24
1210 arg2 -> r22
1211
1212 Arguments that are larger than 2 bytes will be split between two or more
1213 registers as available, but will NOT be split between a register and the
1214 stack. Arguments that go onto the stack are pushed last arg first (this is
1215 similar to the d10v). */
1216
1217 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1218 inaccurate.
1219
1220 An exceptional case exists for struct arguments (and possibly other
1221 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1222 not a multiple of WORDSIZE bytes. In this case the argument is never split
1223 between the registers and the stack, but instead is copied in its entirety
1224 onto the stack, AND also copied into as many registers as there is room
1225 for. In other words, space in registers permitting, two copies of the same
1226 argument are passed in. As far as I can tell, only the one on the stack is
1227 used, although that may be a function of the level of compiler
1228 optimization. I suspect this is a compiler bug. Arguments of these odd
1229 sizes are left-justified within the word (as opposed to arguments smaller
1230 than WORDSIZE bytes, which are right-justified).
1231
1232 If the function is to return an aggregate type such as a struct, the caller
1233 must allocate space into which the callee will copy the return value. In
1234 this case, a pointer to the return value location is passed into the callee
1235 in register R0, which displaces one of the other arguments passed in via
1236 registers R0 to R2. */
1237
1238 static CORE_ADDR
1239 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1240 struct regcache *regcache, CORE_ADDR bp_addr,
1241 int nargs, struct value **args, CORE_ADDR sp,
1242 int struct_return, CORE_ADDR struct_addr)
1243 {
1244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1245 int i;
1246 gdb_byte buf[3];
1247 int call_length = gdbarch_tdep (gdbarch)->call_length;
1248 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1249 int regnum = AVR_ARGN_REGNUM;
1250 struct stack_item *si = NULL;
1251
1252 if (struct_return)
1253 {
1254 regcache_cooked_write_unsigned
1255 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1256 regcache_cooked_write_unsigned
1257 (regcache, regnum--, struct_addr & 0xff);
1258 /* SP being post decremented, we need to reserve one byte so that the
1259 return address won't overwrite the result (or vice-versa). */
1260 if (sp == struct_addr)
1261 sp--;
1262 }
1263
1264 for (i = 0; i < nargs; i++)
1265 {
1266 int last_regnum;
1267 int j;
1268 struct value *arg = args[i];
1269 struct type *type = check_typedef (value_type (arg));
1270 const bfd_byte *contents = value_contents (arg);
1271 int len = TYPE_LENGTH (type);
1272
1273 /* Calculate the potential last register needed. */
1274 last_regnum = regnum - (len + (len & 1));
1275
1276 /* If there are registers available, use them. Once we start putting
1277 stuff on the stack, all subsequent args go on stack. */
1278 if ((si == NULL) && (last_regnum >= 8))
1279 {
1280 ULONGEST val;
1281
1282 /* Skip a register for odd length args. */
1283 if (len & 1)
1284 regnum--;
1285
1286 val = extract_unsigned_integer (contents, len, byte_order);
1287 for (j = 0; j < len; j++)
1288 regcache_cooked_write_unsigned
1289 (regcache, regnum--, val >> (8 * (len - j - 1)));
1290 }
1291 /* No registers available, push the args onto the stack. */
1292 else
1293 {
1294 /* From here on, we don't care about regnum. */
1295 si = push_stack_item (si, contents, len);
1296 }
1297 }
1298
1299 /* Push args onto the stack. */
1300 while (si)
1301 {
1302 sp -= si->len;
1303 /* Add 1 to sp here to account for post decr nature of pushes. */
1304 write_memory (sp + 1, si->data, si->len);
1305 si = pop_stack_item (si);
1306 }
1307
1308 /* Set the return address. For the avr, the return address is the BP_ADDR.
1309 Need to push the return address onto the stack noting that it needs to be
1310 in big-endian order on the stack. */
1311 for (i = 1; i <= call_length; i++)
1312 {
1313 buf[call_length - i] = return_pc & 0xff;
1314 return_pc >>= 8;
1315 }
1316
1317 sp -= call_length;
1318 /* Use 'sp + 1' since pushes are post decr ops. */
1319 write_memory (sp + 1, buf, call_length);
1320
1321 /* Finally, update the SP register. */
1322 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1323 avr_convert_saddr_to_raw (sp));
1324
1325 /* Return SP value for the dummy frame, where the return address hasn't been
1326 pushed. */
1327 return sp + call_length;
1328 }
1329
1330 /* Unfortunately dwarf2 register for SP is 32. */
1331
1332 static int
1333 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1334 {
1335 if (reg >= 0 && reg < 32)
1336 return reg;
1337 if (reg == 32)
1338 return AVR_SP_REGNUM;
1339
1340 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1341
1342 return -1;
1343 }
1344
1345 /* Initialize the gdbarch structure for the AVR's. */
1346
1347 static struct gdbarch *
1348 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1349 {
1350 struct gdbarch *gdbarch;
1351 struct gdbarch_tdep *tdep;
1352 struct gdbarch_list *best_arch;
1353 int call_length;
1354
1355 /* Avr-6 call instructions save 3 bytes. */
1356 switch (info.bfd_arch_info->mach)
1357 {
1358 case bfd_mach_avr1:
1359 case bfd_mach_avrxmega1:
1360 case bfd_mach_avr2:
1361 case bfd_mach_avrxmega2:
1362 case bfd_mach_avr3:
1363 case bfd_mach_avrxmega3:
1364 case bfd_mach_avr4:
1365 case bfd_mach_avrxmega4:
1366 case bfd_mach_avr5:
1367 case bfd_mach_avrxmega5:
1368 default:
1369 call_length = 2;
1370 break;
1371 case bfd_mach_avr6:
1372 case bfd_mach_avrxmega6:
1373 case bfd_mach_avrxmega7:
1374 call_length = 3;
1375 break;
1376 }
1377
1378 /* If there is already a candidate, use it. */
1379 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1380 best_arch != NULL;
1381 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1382 {
1383 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1384 return best_arch->gdbarch;
1385 }
1386
1387 /* None found, create a new architecture from the information provided. */
1388 tdep = XNEW (struct gdbarch_tdep);
1389 gdbarch = gdbarch_alloc (&info, tdep);
1390
1391 tdep->call_length = call_length;
1392
1393 /* Create a type for PC. We can't use builtin types here, as they may not
1394 be defined. */
1395 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1396 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1397 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1398 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1399 TYPE_UNSIGNED (tdep->pc_type) = 1;
1400
1401 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1402 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1403 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1404 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1405 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1406 set_gdbarch_addr_bit (gdbarch, 32);
1407
1408 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1409 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1410 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1411
1412 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1413 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1414 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1415
1416 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1417 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1418
1419 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1420
1421 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1422 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1423
1424 set_gdbarch_register_name (gdbarch, avr_register_name);
1425 set_gdbarch_register_type (gdbarch, avr_register_type);
1426
1427 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1428 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1429 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1430
1431 set_gdbarch_return_value (gdbarch, avr_return_value);
1432 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1433
1434 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1435
1436 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1437
1438 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1439 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1440 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1441
1442 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1443 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1444
1445 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1446
1447 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1448 frame_base_set_default (gdbarch, &avr_frame_base);
1449
1450 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1451
1452 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1453 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1454
1455 return gdbarch;
1456 }
1457
1458 /* Send a query request to the avr remote target asking for values of the io
1459 registers. If args parameter is not NULL, then the user has requested info
1460 on a specific io register [This still needs implemented and is ignored for
1461 now]. The query string should be one of these forms:
1462
1463 "Ravr.io_reg" -> reply is "NN" number of io registers
1464
1465 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1466 registers to be read. The reply should be "<NAME>,VV;" for each io register
1467 where, <NAME> is a string, and VV is the hex value of the register.
1468
1469 All io registers are 8-bit. */
1470
1471 static void
1472 avr_io_reg_read_command (char *args, int from_tty)
1473 {
1474 LONGEST bufsiz = 0;
1475 gdb_byte *buf;
1476 const char *bufstr;
1477 char query[400];
1478 const char *p;
1479 unsigned int nreg = 0;
1480 unsigned int val;
1481 int i, j, k, step;
1482
1483 /* Find out how many io registers the target has. */
1484 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1485 "avr.io_reg", &buf);
1486 bufstr = (const char *) buf;
1487
1488 if (bufsiz <= 0)
1489 {
1490 fprintf_unfiltered (gdb_stderr,
1491 _("ERR: info io_registers NOT supported "
1492 "by current target\n"));
1493 return;
1494 }
1495
1496 if (sscanf (bufstr, "%x", &nreg) != 1)
1497 {
1498 fprintf_unfiltered (gdb_stderr,
1499 _("Error fetching number of io registers\n"));
1500 xfree (buf);
1501 return;
1502 }
1503
1504 xfree (buf);
1505
1506 reinitialize_more_filter ();
1507
1508 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1509
1510 /* only fetch up to 8 registers at a time to keep the buffer small */
1511 step = 8;
1512
1513 for (i = 0; i < nreg; i += step)
1514 {
1515 /* how many registers this round? */
1516 j = step;
1517 if ((i+j) >= nreg)
1518 j = nreg - i; /* last block is less than 8 registers */
1519
1520 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1521 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1522 query, &buf);
1523
1524 p = (const char *) buf;
1525 for (k = i; k < (i + j); k++)
1526 {
1527 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1528 {
1529 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1530 while ((*p != ';') && (*p != '\0'))
1531 p++;
1532 p++; /* skip over ';' */
1533 if (*p == '\0')
1534 break;
1535 }
1536 }
1537
1538 xfree (buf);
1539 }
1540 }
1541
1542 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1543
1544 void
1545 _initialize_avr_tdep (void)
1546 {
1547 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1548
1549 /* Add a new command to allow the user to query the avr remote target for
1550 the values of the io space registers in a saner way than just using
1551 `x/NNNb ADDR`. */
1552
1553 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1554 io_registers' to signify it is not available on other platforms. */
1555
1556 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1557 _("query remote avr target for io space register values"),
1558 &infolist);
1559 }
This page took 0.065238 seconds and 5 git commands to generate.