* MAINTAINERS (Responsible Maintainers): Add info about the microblaze
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Contributed by Theodore A. Roth, troth@openavr.org */
22
23 /* Portions of this file were taken from the original gdb-4.18 patch developed
24 by Denis Chertykov, denisc@overta.ru */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39 #include "dis-asm.h"
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 #undef XMALLOC
73 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75 /* Constants: prefixed with AVR_ to avoid name space clashes */
76
77 enum
78 {
79 AVR_REG_W = 24,
80 AVR_REG_X = 26,
81 AVR_REG_Y = 28,
82 AVR_FP_REGNUM = 28,
83 AVR_REG_Z = 30,
84
85 AVR_SREG_REGNUM = 32,
86 AVR_SP_REGNUM = 33,
87 AVR_PC_REGNUM = 34,
88
89 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
90 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
91
92 AVR_PC_REG_INDEX = 35, /* index into array of registers */
93
94 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
95
96 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
97 AVR_MAX_PUSHES = 18,
98
99 /* Number of the last pushed register. r17 for current avr-gcc */
100 AVR_LAST_PUSHED_REGNUM = 17,
101
102 AVR_ARG1_REGNUM = 24, /* Single byte argument */
103 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
104
105 AVR_RET1_REGNUM = 24, /* Single byte return value */
106 AVR_RETN_REGNUM = 25, /* Multi byte return value */
107
108 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
109 bits? Do these have to match the bfd vma values?. It sure would make
110 things easier in the future if they didn't need to match.
111
112 Note: I chose these values so as to be consistent with bfd vma
113 addresses.
114
115 TRoth/2002-04-08: There is already a conflict with very large programs
116 in the mega128. The mega128 has 128K instruction bytes (64K words),
117 thus the Most Significant Bit is 0x10000 which gets masked off my
118 AVR_MEM_MASK.
119
120 The problem manifests itself when trying to set a breakpoint in a
121 function which resides in the upper half of the instruction space and
122 thus requires a 17-bit address.
123
124 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
125 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
126 but could be for some remote targets by just adding the correct offset
127 to the address and letting the remote target handle the low-level
128 details of actually accessing the eeprom. */
129
130 AVR_IMEM_START = 0x00000000, /* INSN memory */
131 AVR_SMEM_START = 0x00800000, /* SRAM memory */
132 #if 1
133 /* No eeprom mask defined */
134 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
135 #else
136 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
137 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
138 #endif
139 };
140
141 /* Prologue types:
142
143 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
144 causes the generation of the CALL type prologues). */
145
146 enum {
147 AVR_PROLOGUE_NONE, /* No prologue */
148 AVR_PROLOGUE_NORMAL,
149 AVR_PROLOGUE_CALL, /* -mcall-prologues */
150 AVR_PROLOGUE_MAIN,
151 AVR_PROLOGUE_INTR, /* interrupt handler */
152 AVR_PROLOGUE_SIG, /* signal handler */
153 };
154
155 /* Any function with a frame looks like this
156 ....... <-SP POINTS HERE
157 LOCALS1 <-FP POINTS HERE
158 LOCALS0
159 SAVED FP
160 SAVED R3
161 SAVED R2
162 RET PC
163 FIRST ARG
164 SECOND ARG */
165
166 struct avr_unwind_cache
167 {
168 /* The previous frame's inner most stack address. Used as this
169 frame ID's stack_addr. */
170 CORE_ADDR prev_sp;
171 /* The frame's base, optionally used by the high-level debug info. */
172 CORE_ADDR base;
173 int size;
174 int prologue_type;
175 /* Table indicating the location of each and every register. */
176 struct trad_frame_saved_reg *saved_regs;
177 };
178
179 struct gdbarch_tdep
180 {
181 /* Number of bytes stored to the stack by call instructions.
182 2 bytes for avr1-5, 3 bytes for avr6. */
183 int call_length;
184 };
185
186 /* Lookup the name of a register given it's number. */
187
188 static const char *
189 avr_register_name (struct gdbarch *gdbarch, int regnum)
190 {
191 static const char * const register_names[] = {
192 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
193 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
194 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
195 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
196 "SREG", "SP", "PC"
197 };
198 if (regnum < 0)
199 return NULL;
200 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
201 return NULL;
202 return register_names[regnum];
203 }
204
205 /* Return the GDB type object for the "standard" data type
206 of data in register N. */
207
208 static struct type *
209 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
210 {
211 if (reg_nr == AVR_PC_REGNUM)
212 return builtin_type (gdbarch)->builtin_uint32;
213 if (reg_nr == AVR_SP_REGNUM)
214 return builtin_type (gdbarch)->builtin_data_ptr;
215 else
216 return builtin_type (gdbarch)->builtin_uint8;
217 }
218
219 /* Instruction address checks and convertions. */
220
221 static CORE_ADDR
222 avr_make_iaddr (CORE_ADDR x)
223 {
224 return ((x) | AVR_IMEM_START);
225 }
226
227 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
228 devices are already up to 128KBytes of flash space.
229
230 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
231
232 static CORE_ADDR
233 avr_convert_iaddr_to_raw (CORE_ADDR x)
234 {
235 return ((x) & 0xffffffff);
236 }
237
238 /* SRAM address checks and convertions. */
239
240 static CORE_ADDR
241 avr_make_saddr (CORE_ADDR x)
242 {
243 return ((x) | AVR_SMEM_START);
244 }
245
246 static CORE_ADDR
247 avr_convert_saddr_to_raw (CORE_ADDR x)
248 {
249 return ((x) & 0xffffffff);
250 }
251
252 /* EEPROM address checks and convertions. I don't know if these will ever
253 actually be used, but I've added them just the same. TRoth */
254
255 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
256 programs in the mega128. */
257
258 /* static CORE_ADDR */
259 /* avr_make_eaddr (CORE_ADDR x) */
260 /* { */
261 /* return ((x) | AVR_EMEM_START); */
262 /* } */
263
264 /* static int */
265 /* avr_eaddr_p (CORE_ADDR x) */
266 /* { */
267 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
268 /* } */
269
270 /* static CORE_ADDR */
271 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
272 /* { */
273 /* return ((x) & 0xffffffff); */
274 /* } */
275
276 /* Convert from address to pointer and vice-versa. */
277
278 static void
279 avr_address_to_pointer (struct gdbarch *gdbarch,
280 struct type *type, gdb_byte *buf, CORE_ADDR addr)
281 {
282 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
283
284 /* Is it a code address? */
285 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
286 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
287 {
288 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
289 avr_convert_iaddr_to_raw (addr >> 1));
290 }
291 else
292 {
293 /* Strip off any upper segment bits. */
294 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
295 avr_convert_saddr_to_raw (addr));
296 }
297 }
298
299 static CORE_ADDR
300 avr_pointer_to_address (struct gdbarch *gdbarch,
301 struct type *type, const gdb_byte *buf)
302 {
303 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
304 CORE_ADDR addr
305 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
306
307 /* Is it a code address? */
308 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
309 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
310 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
311 return avr_make_iaddr (addr << 1);
312 else
313 return avr_make_saddr (addr);
314 }
315
316 static CORE_ADDR
317 avr_read_pc (struct regcache *regcache)
318 {
319 ULONGEST pc;
320 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
321 return avr_make_iaddr (pc);
322 }
323
324 static void
325 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
326 {
327 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
328 avr_convert_iaddr_to_raw (val));
329 }
330
331 /* Function: avr_scan_prologue
332
333 This function decodes an AVR function prologue to determine:
334 1) the size of the stack frame
335 2) which registers are saved on it
336 3) the offsets of saved regs
337 This information is stored in the avr_unwind_cache structure.
338
339 Some devices lack the sbiw instruction, so on those replace this:
340 sbiw r28, XX
341 with this:
342 subi r28,lo8(XX)
343 sbci r29,hi8(XX)
344
345 A typical AVR function prologue with a frame pointer might look like this:
346 push rXX ; saved regs
347 ...
348 push r28
349 push r29
350 in r28,__SP_L__
351 in r29,__SP_H__
352 sbiw r28,<LOCALS_SIZE>
353 in __tmp_reg__,__SREG__
354 cli
355 out __SP_H__,r29
356 out __SREG__,__tmp_reg__
357 out __SP_L__,r28
358
359 A typical AVR function prologue without a frame pointer might look like
360 this:
361 push rXX ; saved regs
362 ...
363
364 A main function prologue looks like this:
365 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
366 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
367 out __SP_H__,r29
368 out __SP_L__,r28
369
370 A signal handler prologue looks like this:
371 push __zero_reg__
372 push __tmp_reg__
373 in __tmp_reg__, __SREG__
374 push __tmp_reg__
375 clr __zero_reg__
376 push rXX ; save registers r18:r27, r30:r31
377 ...
378 push r28 ; save frame pointer
379 push r29
380 in r28, __SP_L__
381 in r29, __SP_H__
382 sbiw r28, <LOCALS_SIZE>
383 out __SP_H__, r29
384 out __SP_L__, r28
385
386 A interrupt handler prologue looks like this:
387 sei
388 push __zero_reg__
389 push __tmp_reg__
390 in __tmp_reg__, __SREG__
391 push __tmp_reg__
392 clr __zero_reg__
393 push rXX ; save registers r18:r27, r30:r31
394 ...
395 push r28 ; save frame pointer
396 push r29
397 in r28, __SP_L__
398 in r29, __SP_H__
399 sbiw r28, <LOCALS_SIZE>
400 cli
401 out __SP_H__, r29
402 sei
403 out __SP_L__, r28
404
405 A `-mcall-prologues' prologue looks like this (Note that the megas use a
406 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
407 32 bit insn and rjmp is a 16 bit insn):
408 ldi r26,lo8(<LOCALS_SIZE>)
409 ldi r27,hi8(<LOCALS_SIZE>)
410 ldi r30,pm_lo8(.L_foo_body)
411 ldi r31,pm_hi8(.L_foo_body)
412 rjmp __prologue_saves__+RRR
413 .L_foo_body: */
414
415 /* Not really part of a prologue, but still need to scan for it, is when a
416 function prologue moves values passed via registers as arguments to new
417 registers. In this case, all local variables live in registers, so there
418 may be some register saves. This is what it looks like:
419 movw rMM, rNN
420 ...
421
422 There could be multiple movw's. If the target doesn't have a movw insn, it
423 will use two mov insns. This could be done after any of the above prologue
424 types. */
425
426 static CORE_ADDR
427 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
428 struct avr_unwind_cache *info)
429 {
430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
431 int i;
432 unsigned short insn;
433 int scan_stage = 0;
434 struct minimal_symbol *msymbol;
435 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
436 int vpc = 0;
437 int len;
438
439 len = pc_end - pc_beg;
440 if (len > AVR_MAX_PROLOGUE_SIZE)
441 len = AVR_MAX_PROLOGUE_SIZE;
442
443 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
444 reading in the bytes of the prologue. The problem is that the figuring
445 out where the end of the prologue is is a bit difficult. The old code
446 tried to do that, but failed quite often. */
447 read_memory (pc_beg, prologue, len);
448
449 /* Scanning main()'s prologue
450 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
451 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
452 out __SP_H__,r29
453 out __SP_L__,r28 */
454
455 if (len >= 4)
456 {
457 CORE_ADDR locals;
458 static const unsigned char img[] = {
459 0xde, 0xbf, /* out __SP_H__,r29 */
460 0xcd, 0xbf /* out __SP_L__,r28 */
461 };
462
463 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
464 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
465 if ((insn & 0xf0f0) == 0xe0c0)
466 {
467 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
468 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
469 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
470 if ((insn & 0xf0f0) == 0xe0d0)
471 {
472 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
473 if (vpc + 4 + sizeof (img) < len
474 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
475 {
476 info->prologue_type = AVR_PROLOGUE_MAIN;
477 info->base = locals;
478 return pc_beg + 4;
479 }
480 }
481 }
482 }
483
484 /* Scanning `-mcall-prologues' prologue
485 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
486
487 while (1) /* Using a while to avoid many goto's */
488 {
489 int loc_size;
490 int body_addr;
491 unsigned num_pushes;
492 int pc_offset = 0;
493
494 /* At least the fifth instruction must have been executed to
495 modify frame shape. */
496 if (len < 10)
497 break;
498
499 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
500 /* ldi r26,<LOCALS_SIZE> */
501 if ((insn & 0xf0f0) != 0xe0a0)
502 break;
503 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
504 pc_offset += 2;
505
506 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
507 /* ldi r27,<LOCALS_SIZE> / 256 */
508 if ((insn & 0xf0f0) != 0xe0b0)
509 break;
510 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
511 pc_offset += 2;
512
513 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
514 /* ldi r30,pm_lo8(.L_foo_body) */
515 if ((insn & 0xf0f0) != 0xe0e0)
516 break;
517 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
518 pc_offset += 2;
519
520 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
521 /* ldi r31,pm_hi8(.L_foo_body) */
522 if ((insn & 0xf0f0) != 0xe0f0)
523 break;
524 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
525 pc_offset += 2;
526
527 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
528 if (!msymbol)
529 break;
530
531 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
532 /* rjmp __prologue_saves__+RRR */
533 if ((insn & 0xf000) == 0xc000)
534 {
535 /* Extract PC relative offset from RJMP */
536 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
537 /* Convert offset to byte addressable mode */
538 i *= 2;
539 /* Destination address */
540 i += pc_beg + 10;
541
542 if (body_addr != (pc_beg + 10)/2)
543 break;
544
545 pc_offset += 2;
546 }
547 else if ((insn & 0xfe0e) == 0x940c)
548 {
549 /* Extract absolute PC address from JMP */
550 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
551 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
552 & 0xffff));
553 /* Convert address to byte addressable mode */
554 i *= 2;
555
556 if (body_addr != (pc_beg + 12)/2)
557 break;
558
559 pc_offset += 4;
560 }
561 else
562 break;
563
564 /* Resolve offset (in words) from __prologue_saves__ symbol.
565 Which is a pushes count in `-mcall-prologues' mode */
566 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
567
568 if (num_pushes > AVR_MAX_PUSHES)
569 {
570 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
571 num_pushes);
572 num_pushes = 0;
573 }
574
575 if (num_pushes)
576 {
577 int from;
578
579 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
580 if (num_pushes >= 2)
581 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
582
583 i = 0;
584 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
585 from <= AVR_LAST_PUSHED_REGNUM; ++from)
586 info->saved_regs [from].addr = ++i;
587 }
588 info->size = loc_size + num_pushes;
589 info->prologue_type = AVR_PROLOGUE_CALL;
590
591 return pc_beg + pc_offset;
592 }
593
594 /* Scan for the beginning of the prologue for an interrupt or signal
595 function. Note that we have to set the prologue type here since the
596 third stage of the prologue may not be present (e.g. no saved registered
597 or changing of the SP register). */
598
599 if (1)
600 {
601 static const unsigned char img[] = {
602 0x78, 0x94, /* sei */
603 0x1f, 0x92, /* push r1 */
604 0x0f, 0x92, /* push r0 */
605 0x0f, 0xb6, /* in r0,0x3f SREG */
606 0x0f, 0x92, /* push r0 */
607 0x11, 0x24 /* clr r1 */
608 };
609 if (len >= sizeof (img)
610 && memcmp (prologue, img, sizeof (img)) == 0)
611 {
612 info->prologue_type = AVR_PROLOGUE_INTR;
613 vpc += sizeof (img);
614 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
615 info->saved_regs[0].addr = 2;
616 info->saved_regs[1].addr = 1;
617 info->size += 3;
618 }
619 else if (len >= sizeof (img) - 2
620 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
621 {
622 info->prologue_type = AVR_PROLOGUE_SIG;
623 vpc += sizeof (img) - 2;
624 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
625 info->saved_regs[0].addr = 2;
626 info->saved_regs[1].addr = 1;
627 info->size += 3;
628 }
629 }
630
631 /* First stage of the prologue scanning.
632 Scan pushes (saved registers) */
633
634 for (; vpc < len; vpc += 2)
635 {
636 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
637 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
638 {
639 /* Bits 4-9 contain a mask for registers R0-R32. */
640 int regno = (insn & 0x1f0) >> 4;
641 info->size++;
642 info->saved_regs[regno].addr = info->size;
643 scan_stage = 1;
644 }
645 else
646 break;
647 }
648
649 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
650 fprintf_unfiltered (gdb_stderr,
651 _("Hit end of prologue while scanning pushes\n"));
652
653 /* Second stage of the prologue scanning.
654 Scan:
655 in r28,__SP_L__
656 in r29,__SP_H__ */
657
658 if (scan_stage == 1 && vpc < len)
659 {
660 static const unsigned char img[] = {
661 0xcd, 0xb7, /* in r28,__SP_L__ */
662 0xde, 0xb7 /* in r29,__SP_H__ */
663 };
664 unsigned short insn1;
665
666 if (vpc + sizeof (img) < len
667 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
668 {
669 vpc += 4;
670 scan_stage = 2;
671 }
672 }
673
674 /* Third stage of the prologue scanning. (Really two stages)
675 Scan for:
676 sbiw r28,XX or subi r28,lo8(XX)
677 sbci r29,hi8(XX)
678 in __tmp_reg__,__SREG__
679 cli
680 out __SP_H__,r29
681 out __SREG__,__tmp_reg__
682 out __SP_L__,r28 */
683
684 if (scan_stage == 2 && vpc < len)
685 {
686 int locals_size = 0;
687 static const unsigned char img[] = {
688 0x0f, 0xb6, /* in r0,0x3f */
689 0xf8, 0x94, /* cli */
690 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
691 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
692 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
693 };
694 static const unsigned char img_sig[] = {
695 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
696 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
697 };
698 static const unsigned char img_int[] = {
699 0xf8, 0x94, /* cli */
700 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
701 0x78, 0x94, /* sei */
702 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
703 };
704
705 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
706 vpc += 2;
707 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
708 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
709 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
710 {
711 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
712 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
713 vpc += 2;
714 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
715 }
716 else
717 return pc_beg + vpc;
718
719 /* Scan the last part of the prologue. May not be present for interrupt
720 or signal handler functions, which is why we set the prologue type
721 when we saw the beginning of the prologue previously. */
722
723 if (vpc + sizeof (img_sig) < len
724 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
725 {
726 vpc += sizeof (img_sig);
727 }
728 else if (vpc + sizeof (img_int) < len
729 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
730 {
731 vpc += sizeof (img_int);
732 }
733 if (vpc + sizeof (img) < len
734 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
735 {
736 info->prologue_type = AVR_PROLOGUE_NORMAL;
737 vpc += sizeof (img);
738 }
739
740 info->size += locals_size;
741
742 /* Fall through. */
743 }
744
745 /* If we got this far, we could not scan the prologue, so just return the pc
746 of the frame plus an adjustment for argument move insns. */
747
748 for (; vpc < len; vpc += 2)
749 {
750 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
751 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
752 continue;
753 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
754 continue;
755 else
756 break;
757 }
758
759 return pc_beg + vpc;
760 }
761
762 static CORE_ADDR
763 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
764 {
765 CORE_ADDR func_addr, func_end;
766 CORE_ADDR prologue_end = pc;
767
768 /* See what the symbol table says */
769
770 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
771 {
772 struct symtab_and_line sal;
773 struct avr_unwind_cache info = {0};
774 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
775
776 info.saved_regs = saved_regs;
777
778 /* Need to run the prologue scanner to figure out if the function has a
779 prologue and possibly skip over moving arguments passed via registers
780 to other registers. */
781
782 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
783
784 if (info.prologue_type == AVR_PROLOGUE_NONE)
785 return pc;
786 else
787 {
788 sal = find_pc_line (func_addr, 0);
789
790 if (sal.line != 0 && sal.end < func_end)
791 return sal.end;
792 }
793 }
794
795 /* Either we didn't find the start of this function (nothing we can do),
796 or there's no line info, or the line after the prologue is after
797 the end of the function (there probably isn't a prologue). */
798
799 return prologue_end;
800 }
801
802 /* Not all avr devices support the BREAK insn. Those that don't should treat
803 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
804 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
805
806 static const unsigned char *
807 avr_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
808 {
809 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
810 *lenptr = sizeof (avr_break_insn);
811 return avr_break_insn;
812 }
813
814 /* Given a return value in `regcache' with a type `type',
815 extract and copy its value into `valbuf'.
816
817 Return values are always passed via registers r25:r24:... */
818
819 static void
820 avr_extract_return_value (struct type *type, struct regcache *regcache,
821 gdb_byte *valbuf)
822 {
823 struct gdbarch *gdbarch = get_regcache_arch (regcache);
824 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
825 ULONGEST r24, r25;
826 ULONGEST c;
827 int len;
828 if (TYPE_LENGTH (type) == 1)
829 {
830 regcache_cooked_read_unsigned (regcache, 24, &c);
831 store_unsigned_integer (valbuf, 1, byte_order, c);
832 }
833 else
834 {
835 int i;
836 /* The MSB of the return value is always in r25, calculate which
837 register holds the LSB. */
838 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
839
840 for (i=0; i< TYPE_LENGTH (type); i++)
841 {
842 regcache_cooked_read (regcache, lsb_reg + i,
843 (bfd_byte *) valbuf + i);
844 }
845 }
846 }
847
848 /* Determine, for architecture GDBARCH, how a return value of TYPE
849 should be returned. If it is supposed to be returned in registers,
850 and READBUF is non-zero, read the appropriate value from REGCACHE,
851 and copy it into READBUF. If WRITEBUF is non-zero, write the value
852 from WRITEBUF into REGCACHE. */
853
854 static enum return_value_convention
855 avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
856 struct type *valtype, struct regcache *regcache,
857 gdb_byte *readbuf, const gdb_byte *writebuf)
858 {
859 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
860 || TYPE_CODE (valtype) == TYPE_CODE_UNION
861 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
862 && !(TYPE_LENGTH (valtype) == 1
863 || TYPE_LENGTH (valtype) == 2
864 || TYPE_LENGTH (valtype) == 4
865 || TYPE_LENGTH (valtype) == 8));
866
867 if (writebuf != NULL)
868 {
869 gdb_assert (!struct_return);
870 error (_("Cannot store return value."));
871 }
872
873 if (readbuf != NULL)
874 {
875 gdb_assert (!struct_return);
876 avr_extract_return_value (valtype, regcache, readbuf);
877 }
878
879 if (struct_return)
880 return RETURN_VALUE_STRUCT_CONVENTION;
881 else
882 return RETURN_VALUE_REGISTER_CONVENTION;
883 }
884
885
886 /* Put here the code to store, into fi->saved_regs, the addresses of
887 the saved registers of frame described by FRAME_INFO. This
888 includes special registers such as pc and fp saved in special ways
889 in the stack frame. sp is even more special: the address we return
890 for it IS the sp for the next frame. */
891
892 static struct avr_unwind_cache *
893 avr_frame_unwind_cache (struct frame_info *this_frame,
894 void **this_prologue_cache)
895 {
896 CORE_ADDR start_pc, current_pc;
897 ULONGEST prev_sp;
898 ULONGEST this_base;
899 struct avr_unwind_cache *info;
900 struct gdbarch *gdbarch;
901 struct gdbarch_tdep *tdep;
902 int i;
903
904 if (*this_prologue_cache)
905 return *this_prologue_cache;
906
907 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
908 *this_prologue_cache = info;
909 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
910
911 info->size = 0;
912 info->prologue_type = AVR_PROLOGUE_NONE;
913
914 start_pc = get_frame_func (this_frame);
915 current_pc = get_frame_pc (this_frame);
916 if ((start_pc > 0) && (start_pc <= current_pc))
917 avr_scan_prologue (get_frame_arch (this_frame),
918 start_pc, current_pc, info);
919
920 if ((info->prologue_type != AVR_PROLOGUE_NONE)
921 && (info->prologue_type != AVR_PROLOGUE_MAIN))
922 {
923 ULONGEST high_base; /* High byte of FP */
924
925 /* The SP was moved to the FP. This indicates that a new frame
926 was created. Get THIS frame's FP value by unwinding it from
927 the next frame. */
928 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
929 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
930 this_base += (high_base << 8);
931
932 /* The FP points at the last saved register. Adjust the FP back
933 to before the first saved register giving the SP. */
934 prev_sp = this_base + info->size;
935 }
936 else
937 {
938 /* Assume that the FP is this frame's SP but with that pushed
939 stack space added back. */
940 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
941 prev_sp = this_base + info->size;
942 }
943
944 /* Add 1 here to adjust for the post-decrement nature of the push
945 instruction.*/
946 info->prev_sp = avr_make_saddr (prev_sp + 1);
947 info->base = avr_make_saddr (this_base);
948
949 gdbarch = get_frame_arch (this_frame);
950
951 /* Adjust all the saved registers so that they contain addresses and not
952 offsets. */
953 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
954 if (info->saved_regs[i].addr > 0)
955 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
956
957 /* Except for the main and startup code, the return PC is always saved on
958 the stack and is at the base of the frame. */
959
960 if (info->prologue_type != AVR_PROLOGUE_MAIN)
961 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
962
963 /* The previous frame's SP needed to be computed. Save the computed
964 value. */
965 tdep = gdbarch_tdep (gdbarch);
966 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
967 info->prev_sp - 1 + tdep->call_length);
968
969 return info;
970 }
971
972 static CORE_ADDR
973 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
974 {
975 ULONGEST pc;
976
977 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
978
979 return avr_make_iaddr (pc);
980 }
981
982 static CORE_ADDR
983 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
984 {
985 ULONGEST sp;
986
987 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
988
989 return avr_make_saddr (sp);
990 }
991
992 /* Given a GDB frame, determine the address of the calling function's
993 frame. This will be used to create a new GDB frame struct. */
994
995 static void
996 avr_frame_this_id (struct frame_info *this_frame,
997 void **this_prologue_cache,
998 struct frame_id *this_id)
999 {
1000 struct avr_unwind_cache *info
1001 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1002 CORE_ADDR base;
1003 CORE_ADDR func;
1004 struct frame_id id;
1005
1006 /* The FUNC is easy. */
1007 func = get_frame_func (this_frame);
1008
1009 /* Hopefully the prologue analysis either correctly determined the
1010 frame's base (which is the SP from the previous frame), or set
1011 that base to "NULL". */
1012 base = info->prev_sp;
1013 if (base == 0)
1014 return;
1015
1016 id = frame_id_build (base, func);
1017 (*this_id) = id;
1018 }
1019
1020 static struct value *
1021 avr_frame_prev_register (struct frame_info *this_frame,
1022 void **this_prologue_cache, int regnum)
1023 {
1024 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1025 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1026 struct avr_unwind_cache *info
1027 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1028
1029 if (regnum == AVR_PC_REGNUM)
1030 {
1031 if (trad_frame_addr_p (info->saved_regs, regnum))
1032 {
1033 /* Reading the return PC from the PC register is slightly
1034 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1035 but in reality, only two bytes (3 in upcoming mega256) are
1036 stored on the stack.
1037
1038 Also, note that the value on the stack is an addr to a word
1039 not a byte, so we will need to multiply it by two at some
1040 point.
1041
1042 And to confuse matters even more, the return address stored
1043 on the stack is in big endian byte order, even though most
1044 everything else about the avr is little endian. Ick! */
1045 ULONGEST pc;
1046 int i;
1047 unsigned char buf[3];
1048 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1050
1051 read_memory (info->saved_regs[regnum].addr, buf, tdep->call_length);
1052
1053 /* Extract the PC read from memory as a big-endian. */
1054 pc = 0;
1055 for (i = 0; i < tdep->call_length; i++)
1056 pc = (pc << 8) | buf[i];
1057
1058 return frame_unwind_got_constant (this_frame, regnum, pc << 1);
1059 }
1060
1061 return frame_unwind_got_optimized (this_frame, regnum);
1062 }
1063
1064 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1065 }
1066
1067 static const struct frame_unwind avr_frame_unwind = {
1068 NORMAL_FRAME,
1069 avr_frame_this_id,
1070 avr_frame_prev_register,
1071 NULL,
1072 default_frame_sniffer
1073 };
1074
1075 static CORE_ADDR
1076 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1077 {
1078 struct avr_unwind_cache *info
1079 = avr_frame_unwind_cache (this_frame, this_cache);
1080
1081 return info->base;
1082 }
1083
1084 static const struct frame_base avr_frame_base = {
1085 &avr_frame_unwind,
1086 avr_frame_base_address,
1087 avr_frame_base_address,
1088 avr_frame_base_address
1089 };
1090
1091 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1092 frame. The frame ID's base needs to match the TOS value saved by
1093 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1094
1095 static struct frame_id
1096 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1097 {
1098 ULONGEST base;
1099
1100 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1101 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1102 }
1103
1104 /* When arguments must be pushed onto the stack, they go on in reverse
1105 order. The below implements a FILO (stack) to do this. */
1106
1107 struct stack_item
1108 {
1109 int len;
1110 struct stack_item *prev;
1111 void *data;
1112 };
1113
1114 static struct stack_item *
1115 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1116 {
1117 struct stack_item *si;
1118 si = xmalloc (sizeof (struct stack_item));
1119 si->data = xmalloc (len);
1120 si->len = len;
1121 si->prev = prev;
1122 memcpy (si->data, contents, len);
1123 return si;
1124 }
1125
1126 static struct stack_item *pop_stack_item (struct stack_item *si);
1127 static struct stack_item *
1128 pop_stack_item (struct stack_item *si)
1129 {
1130 struct stack_item *dead = si;
1131 si = si->prev;
1132 xfree (dead->data);
1133 xfree (dead);
1134 return si;
1135 }
1136
1137 /* Setup the function arguments for calling a function in the inferior.
1138
1139 On the AVR architecture, there are 18 registers (R25 to R8) which are
1140 dedicated for passing function arguments. Up to the first 18 arguments
1141 (depending on size) may go into these registers. The rest go on the stack.
1142
1143 All arguments are aligned to start in even-numbered registers (odd-sized
1144 arguments, including char, have one free register above them). For example,
1145 an int in arg1 and a char in arg2 would be passed as such:
1146
1147 arg1 -> r25:r24
1148 arg2 -> r22
1149
1150 Arguments that are larger than 2 bytes will be split between two or more
1151 registers as available, but will NOT be split between a register and the
1152 stack. Arguments that go onto the stack are pushed last arg first (this is
1153 similar to the d10v). */
1154
1155 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1156 inaccurate.
1157
1158 An exceptional case exists for struct arguments (and possibly other
1159 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1160 not a multiple of WORDSIZE bytes. In this case the argument is never split
1161 between the registers and the stack, but instead is copied in its entirety
1162 onto the stack, AND also copied into as many registers as there is room
1163 for. In other words, space in registers permitting, two copies of the same
1164 argument are passed in. As far as I can tell, only the one on the stack is
1165 used, although that may be a function of the level of compiler
1166 optimization. I suspect this is a compiler bug. Arguments of these odd
1167 sizes are left-justified within the word (as opposed to arguments smaller
1168 than WORDSIZE bytes, which are right-justified).
1169
1170 If the function is to return an aggregate type such as a struct, the caller
1171 must allocate space into which the callee will copy the return value. In
1172 this case, a pointer to the return value location is passed into the callee
1173 in register R0, which displaces one of the other arguments passed in via
1174 registers R0 to R2. */
1175
1176 static CORE_ADDR
1177 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1178 struct regcache *regcache, CORE_ADDR bp_addr,
1179 int nargs, struct value **args, CORE_ADDR sp,
1180 int struct_return, CORE_ADDR struct_addr)
1181 {
1182 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1183 int i;
1184 unsigned char buf[2];
1185 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1186 int regnum = AVR_ARGN_REGNUM;
1187 struct stack_item *si = NULL;
1188
1189 #if 0
1190 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1191 if (struct_return)
1192 {
1193 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1194 regcache_cooked_write_unsigned (regcache, argreg--, struct_addr & 0xff);
1195 regcache_cooked_write_unsigned (regcache, argreg--, (struct_addr >>8) & 0xff);
1196 }
1197 #endif
1198
1199 for (i = 0; i < nargs; i++)
1200 {
1201 int last_regnum;
1202 int j;
1203 struct value *arg = args[i];
1204 struct type *type = check_typedef (value_type (arg));
1205 const bfd_byte *contents = value_contents (arg);
1206 int len = TYPE_LENGTH (type);
1207
1208 /* Calculate the potential last register needed. */
1209 last_regnum = regnum - (len + (len & 1));
1210
1211 /* If there are registers available, use them. Once we start putting
1212 stuff on the stack, all subsequent args go on stack. */
1213 if ((si == NULL) && (last_regnum >= 8))
1214 {
1215 ULONGEST val;
1216
1217 /* Skip a register for odd length args. */
1218 if (len & 1)
1219 regnum--;
1220
1221 val = extract_unsigned_integer (contents, len, byte_order);
1222 for (j=0; j<len; j++)
1223 {
1224 regcache_cooked_write_unsigned (regcache, regnum--,
1225 val >> (8*(len-j-1)));
1226 }
1227 }
1228 /* No registers available, push the args onto the stack. */
1229 else
1230 {
1231 /* From here on, we don't care about regnum. */
1232 si = push_stack_item (si, contents, len);
1233 }
1234 }
1235
1236 /* Push args onto the stack. */
1237 while (si)
1238 {
1239 sp -= si->len;
1240 /* Add 1 to sp here to account for post decr nature of pushes. */
1241 write_memory (sp + 1, si->data, si->len);
1242 si = pop_stack_item (si);
1243 }
1244
1245 /* Set the return address. For the avr, the return address is the BP_ADDR.
1246 Need to push the return address onto the stack noting that it needs to be
1247 in big-endian order on the stack. */
1248 buf[0] = (return_pc >> 8) & 0xff;
1249 buf[1] = return_pc & 0xff;
1250
1251 sp -= 2;
1252 write_memory (sp + 1, buf, 2); /* Add one since pushes are post decr ops. */
1253
1254 /* Finally, update the SP register. */
1255 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1256 avr_convert_saddr_to_raw (sp));
1257
1258 return sp;
1259 }
1260
1261 /* Initialize the gdbarch structure for the AVR's. */
1262
1263 static struct gdbarch *
1264 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1265 {
1266 struct gdbarch *gdbarch;
1267 struct gdbarch_tdep *tdep;
1268 struct gdbarch_list *best_arch;
1269 int call_length;
1270
1271 /* Avr-6 call instructions save 3 bytes. */
1272 switch (info.bfd_arch_info->mach)
1273 {
1274 case bfd_mach_avr1:
1275 case bfd_mach_avr2:
1276 case bfd_mach_avr3:
1277 case bfd_mach_avr4:
1278 case bfd_mach_avr5:
1279 default:
1280 call_length = 2;
1281 break;
1282 case bfd_mach_avr6:
1283 call_length = 3;
1284 break;
1285 }
1286
1287 /* If there is already a candidate, use it. */
1288 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1289 best_arch != NULL;
1290 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1291 {
1292 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1293 return best_arch->gdbarch;
1294 }
1295
1296 /* None found, create a new architecture from the information provided. */
1297 tdep = XMALLOC (struct gdbarch_tdep);
1298 gdbarch = gdbarch_alloc (&info, tdep);
1299
1300 tdep->call_length = call_length;
1301
1302 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1303 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1304 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1305 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1306 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1307 set_gdbarch_addr_bit (gdbarch, 32);
1308
1309 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1310 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1311 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1312
1313 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1314 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1315 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1316
1317 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1318 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1319
1320 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1321
1322 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1323 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1324
1325 set_gdbarch_register_name (gdbarch, avr_register_name);
1326 set_gdbarch_register_type (gdbarch, avr_register_type);
1327
1328 set_gdbarch_return_value (gdbarch, avr_return_value);
1329 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1330
1331 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1332
1333 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1334 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1335
1336 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1337 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1338
1339 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1340
1341 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1342 frame_base_set_default (gdbarch, &avr_frame_base);
1343
1344 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1345
1346 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1347 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1348
1349 return gdbarch;
1350 }
1351
1352 /* Send a query request to the avr remote target asking for values of the io
1353 registers. If args parameter is not NULL, then the user has requested info
1354 on a specific io register [This still needs implemented and is ignored for
1355 now]. The query string should be one of these forms:
1356
1357 "Ravr.io_reg" -> reply is "NN" number of io registers
1358
1359 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1360 registers to be read. The reply should be "<NAME>,VV;" for each io register
1361 where, <NAME> is a string, and VV is the hex value of the register.
1362
1363 All io registers are 8-bit. */
1364
1365 static void
1366 avr_io_reg_read_command (char *args, int from_tty)
1367 {
1368 LONGEST bufsiz = 0;
1369 gdb_byte *buf;
1370 char query[400];
1371 char *p;
1372 unsigned int nreg = 0;
1373 unsigned int val;
1374 int i, j, k, step;
1375
1376 /* Find out how many io registers the target has. */
1377 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1378 "avr.io_reg", &buf);
1379
1380 if (bufsiz <= 0)
1381 {
1382 fprintf_unfiltered (gdb_stderr,
1383 _("ERR: info io_registers NOT supported "
1384 "by current target\n"));
1385 return;
1386 }
1387
1388 if (sscanf (buf, "%x", &nreg) != 1)
1389 {
1390 fprintf_unfiltered (gdb_stderr,
1391 _("Error fetching number of io registers\n"));
1392 xfree (buf);
1393 return;
1394 }
1395
1396 xfree (buf);
1397
1398 reinitialize_more_filter ();
1399
1400 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1401
1402 /* only fetch up to 8 registers at a time to keep the buffer small */
1403 step = 8;
1404
1405 for (i = 0; i < nreg; i += step)
1406 {
1407 /* how many registers this round? */
1408 j = step;
1409 if ((i+j) >= nreg)
1410 j = nreg - i; /* last block is less than 8 registers */
1411
1412 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1413 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1414 query, &buf);
1415
1416 p = buf;
1417 for (k = i; k < (i + j); k++)
1418 {
1419 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1420 {
1421 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1422 while ((*p != ';') && (*p != '\0'))
1423 p++;
1424 p++; /* skip over ';' */
1425 if (*p == '\0')
1426 break;
1427 }
1428 }
1429
1430 xfree (buf);
1431 }
1432 }
1433
1434 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1435
1436 void
1437 _initialize_avr_tdep (void)
1438 {
1439 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1440
1441 /* Add a new command to allow the user to query the avr remote target for
1442 the values of the io space registers in a saner way than just using
1443 `x/NNNb ADDR`. */
1444
1445 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1446 io_registers' to signify it is not available on other platforms. */
1447
1448 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1449 _("query remote avr target for io space register values"),
1450 &infolist);
1451 }
This page took 0.057229 seconds and 5 git commands to generate.