run copyright.sh for 2011.
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Contributed by Theodore A. Roth, troth@openavr.org */
22
23 /* Portions of this file were taken from the original gdb-4.18 patch developed
24 by Denis Chertykov, denisc@overta.ru */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39 #include "dis-asm.h"
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 #undef XMALLOC
73 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75 /* Constants: prefixed with AVR_ to avoid name space clashes */
76
77 enum
78 {
79 AVR_REG_W = 24,
80 AVR_REG_X = 26,
81 AVR_REG_Y = 28,
82 AVR_FP_REGNUM = 28,
83 AVR_REG_Z = 30,
84
85 AVR_SREG_REGNUM = 32,
86 AVR_SP_REGNUM = 33,
87 AVR_PC_REGNUM = 34,
88
89 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
90 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
91
92 /* Pseudo registers. */
93 AVR_PSEUDO_PC_REGNUM = 35,
94 AVR_NUM_PSEUDO_REGS = 1,
95
96 AVR_PC_REG_INDEX = 35, /* index into array of registers */
97
98 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
99
100 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
101 AVR_MAX_PUSHES = 18,
102
103 /* Number of the last pushed register. r17 for current avr-gcc */
104 AVR_LAST_PUSHED_REGNUM = 17,
105
106 AVR_ARG1_REGNUM = 24, /* Single byte argument */
107 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
108
109 AVR_RET1_REGNUM = 24, /* Single byte return value */
110 AVR_RETN_REGNUM = 25, /* Multi byte return value */
111
112 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
113 bits? Do these have to match the bfd vma values?. It sure would make
114 things easier in the future if they didn't need to match.
115
116 Note: I chose these values so as to be consistent with bfd vma
117 addresses.
118
119 TRoth/2002-04-08: There is already a conflict with very large programs
120 in the mega128. The mega128 has 128K instruction bytes (64K words),
121 thus the Most Significant Bit is 0x10000 which gets masked off my
122 AVR_MEM_MASK.
123
124 The problem manifests itself when trying to set a breakpoint in a
125 function which resides in the upper half of the instruction space and
126 thus requires a 17-bit address.
127
128 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
129 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
130 but could be for some remote targets by just adding the correct offset
131 to the address and letting the remote target handle the low-level
132 details of actually accessing the eeprom. */
133
134 AVR_IMEM_START = 0x00000000, /* INSN memory */
135 AVR_SMEM_START = 0x00800000, /* SRAM memory */
136 #if 1
137 /* No eeprom mask defined */
138 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
139 #else
140 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
141 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
142 #endif
143 };
144
145 /* Prologue types:
146
147 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
148 causes the generation of the CALL type prologues). */
149
150 enum {
151 AVR_PROLOGUE_NONE, /* No prologue */
152 AVR_PROLOGUE_NORMAL,
153 AVR_PROLOGUE_CALL, /* -mcall-prologues */
154 AVR_PROLOGUE_MAIN,
155 AVR_PROLOGUE_INTR, /* interrupt handler */
156 AVR_PROLOGUE_SIG, /* signal handler */
157 };
158
159 /* Any function with a frame looks like this
160 ....... <-SP POINTS HERE
161 LOCALS1 <-FP POINTS HERE
162 LOCALS0
163 SAVED FP
164 SAVED R3
165 SAVED R2
166 RET PC
167 FIRST ARG
168 SECOND ARG */
169
170 struct avr_unwind_cache
171 {
172 /* The previous frame's inner most stack address. Used as this
173 frame ID's stack_addr. */
174 CORE_ADDR prev_sp;
175 /* The frame's base, optionally used by the high-level debug info. */
176 CORE_ADDR base;
177 int size;
178 int prologue_type;
179 /* Table indicating the location of each and every register. */
180 struct trad_frame_saved_reg *saved_regs;
181 };
182
183 struct gdbarch_tdep
184 {
185 /* Number of bytes stored to the stack by call instructions.
186 2 bytes for avr1-5, 3 bytes for avr6. */
187 int call_length;
188
189 /* Type for void. */
190 struct type *void_type;
191 /* Type for a function returning void. */
192 struct type *func_void_type;
193 /* Type for a pointer to a function. Used for the type of PC. */
194 struct type *pc_type;
195 };
196
197 /* Lookup the name of a register given it's number. */
198
199 static const char *
200 avr_register_name (struct gdbarch *gdbarch, int regnum)
201 {
202 static const char * const register_names[] = {
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
206 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
207 "SREG", "SP", "PC2",
208 "pc"
209 };
210 if (regnum < 0)
211 return NULL;
212 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
213 return NULL;
214 return register_names[regnum];
215 }
216
217 /* Return the GDB type object for the "standard" data type
218 of data in register N. */
219
220 static struct type *
221 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
222 {
223 if (reg_nr == AVR_PC_REGNUM)
224 return builtin_type (gdbarch)->builtin_uint32;
225 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
226 return gdbarch_tdep (gdbarch)->pc_type;
227 if (reg_nr == AVR_SP_REGNUM)
228 return builtin_type (gdbarch)->builtin_data_ptr;
229 return builtin_type (gdbarch)->builtin_uint8;
230 }
231
232 /* Instruction address checks and convertions. */
233
234 static CORE_ADDR
235 avr_make_iaddr (CORE_ADDR x)
236 {
237 return ((x) | AVR_IMEM_START);
238 }
239
240 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
241 devices are already up to 128KBytes of flash space.
242
243 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
244
245 static CORE_ADDR
246 avr_convert_iaddr_to_raw (CORE_ADDR x)
247 {
248 return ((x) & 0xffffffff);
249 }
250
251 /* SRAM address checks and convertions. */
252
253 static CORE_ADDR
254 avr_make_saddr (CORE_ADDR x)
255 {
256 /* Return 0 for NULL. */
257 if (x == 0)
258 return 0;
259
260 return ((x) | AVR_SMEM_START);
261 }
262
263 static CORE_ADDR
264 avr_convert_saddr_to_raw (CORE_ADDR x)
265 {
266 return ((x) & 0xffffffff);
267 }
268
269 /* EEPROM address checks and convertions. I don't know if these will ever
270 actually be used, but I've added them just the same. TRoth */
271
272 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
273 programs in the mega128. */
274
275 /* static CORE_ADDR */
276 /* avr_make_eaddr (CORE_ADDR x) */
277 /* { */
278 /* return ((x) | AVR_EMEM_START); */
279 /* } */
280
281 /* static int */
282 /* avr_eaddr_p (CORE_ADDR x) */
283 /* { */
284 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
285 /* } */
286
287 /* static CORE_ADDR */
288 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
289 /* { */
290 /* return ((x) & 0xffffffff); */
291 /* } */
292
293 /* Convert from address to pointer and vice-versa. */
294
295 static void
296 avr_address_to_pointer (struct gdbarch *gdbarch,
297 struct type *type, gdb_byte *buf, CORE_ADDR addr)
298 {
299 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
300
301 /* Is it a code address? */
302 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
303 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
304 {
305 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
306 avr_convert_iaddr_to_raw (addr >> 1));
307 }
308 else
309 {
310 /* Strip off any upper segment bits. */
311 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
312 avr_convert_saddr_to_raw (addr));
313 }
314 }
315
316 static CORE_ADDR
317 avr_pointer_to_address (struct gdbarch *gdbarch,
318 struct type *type, const gdb_byte *buf)
319 {
320 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
321 CORE_ADDR addr
322 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
323
324 /* Is it a code address? */
325 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
326 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
327 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
328 return avr_make_iaddr (addr << 1);
329 else
330 return avr_make_saddr (addr);
331 }
332
333 static CORE_ADDR
334 avr_integer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
336 {
337 ULONGEST addr = unpack_long (type, buf);
338
339 return avr_make_saddr (addr);
340 }
341
342 static CORE_ADDR
343 avr_read_pc (struct regcache *regcache)
344 {
345 ULONGEST pc;
346 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
347 return avr_make_iaddr (pc);
348 }
349
350 static void
351 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
352 {
353 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
354 avr_convert_iaddr_to_raw (val));
355 }
356
357 static void
358 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
359 int regnum, gdb_byte *buf)
360 {
361 ULONGEST val;
362
363 switch (regnum)
364 {
365 case AVR_PSEUDO_PC_REGNUM:
366 regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
367 val >>= 1;
368 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
369 break;
370 default:
371 internal_error (__FILE__, __LINE__, _("invalid regnum"));
372 }
373 }
374
375 static void
376 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
377 int regnum, const gdb_byte *buf)
378 {
379 ULONGEST val;
380
381 switch (regnum)
382 {
383 case AVR_PSEUDO_PC_REGNUM:
384 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
385 val <<= 1;
386 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
387 break;
388 default:
389 internal_error (__FILE__, __LINE__, _("invalid regnum"));
390 }
391 }
392
393 /* Function: avr_scan_prologue
394
395 This function decodes an AVR function prologue to determine:
396 1) the size of the stack frame
397 2) which registers are saved on it
398 3) the offsets of saved regs
399 This information is stored in the avr_unwind_cache structure.
400
401 Some devices lack the sbiw instruction, so on those replace this:
402 sbiw r28, XX
403 with this:
404 subi r28,lo8(XX)
405 sbci r29,hi8(XX)
406
407 A typical AVR function prologue with a frame pointer might look like this:
408 push rXX ; saved regs
409 ...
410 push r28
411 push r29
412 in r28,__SP_L__
413 in r29,__SP_H__
414 sbiw r28,<LOCALS_SIZE>
415 in __tmp_reg__,__SREG__
416 cli
417 out __SP_H__,r29
418 out __SREG__,__tmp_reg__
419 out __SP_L__,r28
420
421 A typical AVR function prologue without a frame pointer might look like
422 this:
423 push rXX ; saved regs
424 ...
425
426 A main function prologue looks like this:
427 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
428 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
429 out __SP_H__,r29
430 out __SP_L__,r28
431
432 A signal handler prologue looks like this:
433 push __zero_reg__
434 push __tmp_reg__
435 in __tmp_reg__, __SREG__
436 push __tmp_reg__
437 clr __zero_reg__
438 push rXX ; save registers r18:r27, r30:r31
439 ...
440 push r28 ; save frame pointer
441 push r29
442 in r28, __SP_L__
443 in r29, __SP_H__
444 sbiw r28, <LOCALS_SIZE>
445 out __SP_H__, r29
446 out __SP_L__, r28
447
448 A interrupt handler prologue looks like this:
449 sei
450 push __zero_reg__
451 push __tmp_reg__
452 in __tmp_reg__, __SREG__
453 push __tmp_reg__
454 clr __zero_reg__
455 push rXX ; save registers r18:r27, r30:r31
456 ...
457 push r28 ; save frame pointer
458 push r29
459 in r28, __SP_L__
460 in r29, __SP_H__
461 sbiw r28, <LOCALS_SIZE>
462 cli
463 out __SP_H__, r29
464 sei
465 out __SP_L__, r28
466
467 A `-mcall-prologues' prologue looks like this (Note that the megas use a
468 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
469 32 bit insn and rjmp is a 16 bit insn):
470 ldi r26,lo8(<LOCALS_SIZE>)
471 ldi r27,hi8(<LOCALS_SIZE>)
472 ldi r30,pm_lo8(.L_foo_body)
473 ldi r31,pm_hi8(.L_foo_body)
474 rjmp __prologue_saves__+RRR
475 .L_foo_body: */
476
477 /* Not really part of a prologue, but still need to scan for it, is when a
478 function prologue moves values passed via registers as arguments to new
479 registers. In this case, all local variables live in registers, so there
480 may be some register saves. This is what it looks like:
481 movw rMM, rNN
482 ...
483
484 There could be multiple movw's. If the target doesn't have a movw insn, it
485 will use two mov insns. This could be done after any of the above prologue
486 types. */
487
488 static CORE_ADDR
489 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
490 struct avr_unwind_cache *info)
491 {
492 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
493 int i;
494 unsigned short insn;
495 int scan_stage = 0;
496 struct minimal_symbol *msymbol;
497 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
498 int vpc = 0;
499 int len;
500
501 len = pc_end - pc_beg;
502 if (len > AVR_MAX_PROLOGUE_SIZE)
503 len = AVR_MAX_PROLOGUE_SIZE;
504
505 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
506 reading in the bytes of the prologue. The problem is that the figuring
507 out where the end of the prologue is is a bit difficult. The old code
508 tried to do that, but failed quite often. */
509 read_memory (pc_beg, prologue, len);
510
511 /* Scanning main()'s prologue
512 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
513 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
514 out __SP_H__,r29
515 out __SP_L__,r28 */
516
517 if (len >= 4)
518 {
519 CORE_ADDR locals;
520 static const unsigned char img[] = {
521 0xde, 0xbf, /* out __SP_H__,r29 */
522 0xcd, 0xbf /* out __SP_L__,r28 */
523 };
524
525 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
526 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
527 if ((insn & 0xf0f0) == 0xe0c0)
528 {
529 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
530 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
531 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
532 if ((insn & 0xf0f0) == 0xe0d0)
533 {
534 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
535 if (vpc + 4 + sizeof (img) < len
536 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
537 {
538 info->prologue_type = AVR_PROLOGUE_MAIN;
539 info->base = locals;
540 return pc_beg + 4;
541 }
542 }
543 }
544 }
545
546 /* Scanning `-mcall-prologues' prologue
547 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
548
549 while (1) /* Using a while to avoid many goto's */
550 {
551 int loc_size;
552 int body_addr;
553 unsigned num_pushes;
554 int pc_offset = 0;
555
556 /* At least the fifth instruction must have been executed to
557 modify frame shape. */
558 if (len < 10)
559 break;
560
561 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
562 /* ldi r26,<LOCALS_SIZE> */
563 if ((insn & 0xf0f0) != 0xe0a0)
564 break;
565 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
566 pc_offset += 2;
567
568 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
569 /* ldi r27,<LOCALS_SIZE> / 256 */
570 if ((insn & 0xf0f0) != 0xe0b0)
571 break;
572 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
573 pc_offset += 2;
574
575 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
576 /* ldi r30,pm_lo8(.L_foo_body) */
577 if ((insn & 0xf0f0) != 0xe0e0)
578 break;
579 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
580 pc_offset += 2;
581
582 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
583 /* ldi r31,pm_hi8(.L_foo_body) */
584 if ((insn & 0xf0f0) != 0xe0f0)
585 break;
586 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
587 pc_offset += 2;
588
589 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
590 if (!msymbol)
591 break;
592
593 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
594 /* rjmp __prologue_saves__+RRR */
595 if ((insn & 0xf000) == 0xc000)
596 {
597 /* Extract PC relative offset from RJMP */
598 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
599 /* Convert offset to byte addressable mode */
600 i *= 2;
601 /* Destination address */
602 i += pc_beg + 10;
603
604 if (body_addr != (pc_beg + 10)/2)
605 break;
606
607 pc_offset += 2;
608 }
609 else if ((insn & 0xfe0e) == 0x940c)
610 {
611 /* Extract absolute PC address from JMP */
612 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
613 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
614 & 0xffff));
615 /* Convert address to byte addressable mode */
616 i *= 2;
617
618 if (body_addr != (pc_beg + 12)/2)
619 break;
620
621 pc_offset += 4;
622 }
623 else
624 break;
625
626 /* Resolve offset (in words) from __prologue_saves__ symbol.
627 Which is a pushes count in `-mcall-prologues' mode */
628 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
629
630 if (num_pushes > AVR_MAX_PUSHES)
631 {
632 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
633 num_pushes);
634 num_pushes = 0;
635 }
636
637 if (num_pushes)
638 {
639 int from;
640
641 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
642 if (num_pushes >= 2)
643 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
644
645 i = 0;
646 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
647 from <= AVR_LAST_PUSHED_REGNUM; ++from)
648 info->saved_regs [from].addr = ++i;
649 }
650 info->size = loc_size + num_pushes;
651 info->prologue_type = AVR_PROLOGUE_CALL;
652
653 return pc_beg + pc_offset;
654 }
655
656 /* Scan for the beginning of the prologue for an interrupt or signal
657 function. Note that we have to set the prologue type here since the
658 third stage of the prologue may not be present (e.g. no saved registered
659 or changing of the SP register). */
660
661 if (1)
662 {
663 static const unsigned char img[] = {
664 0x78, 0x94, /* sei */
665 0x1f, 0x92, /* push r1 */
666 0x0f, 0x92, /* push r0 */
667 0x0f, 0xb6, /* in r0,0x3f SREG */
668 0x0f, 0x92, /* push r0 */
669 0x11, 0x24 /* clr r1 */
670 };
671 if (len >= sizeof (img)
672 && memcmp (prologue, img, sizeof (img)) == 0)
673 {
674 info->prologue_type = AVR_PROLOGUE_INTR;
675 vpc += sizeof (img);
676 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
677 info->saved_regs[0].addr = 2;
678 info->saved_regs[1].addr = 1;
679 info->size += 3;
680 }
681 else if (len >= sizeof (img) - 2
682 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
683 {
684 info->prologue_type = AVR_PROLOGUE_SIG;
685 vpc += sizeof (img) - 2;
686 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
687 info->saved_regs[0].addr = 2;
688 info->saved_regs[1].addr = 1;
689 info->size += 2;
690 }
691 }
692
693 /* First stage of the prologue scanning.
694 Scan pushes (saved registers) */
695
696 for (; vpc < len; vpc += 2)
697 {
698 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
699 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
700 {
701 /* Bits 4-9 contain a mask for registers R0-R32. */
702 int regno = (insn & 0x1f0) >> 4;
703 info->size++;
704 info->saved_regs[regno].addr = info->size;
705 scan_stage = 1;
706 }
707 else
708 break;
709 }
710
711 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
712
713 /* Handle static small stack allocation using rcall or push. */
714
715 while (scan_stage == 1 && vpc < len)
716 {
717 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
718 if (insn == 0xd000) /* rcall .+0 */
719 {
720 info->size += gdbarch_tdep (gdbarch)->call_length;
721 vpc += 2;
722 }
723 else if (insn == 0x920f) /* push r0 */
724 {
725 info->size += 1;
726 vpc += 2;
727 }
728 else
729 break;
730 }
731
732 /* Second stage of the prologue scanning.
733 Scan:
734 in r28,__SP_L__
735 in r29,__SP_H__ */
736
737 if (scan_stage == 1 && vpc < len)
738 {
739 static const unsigned char img[] = {
740 0xcd, 0xb7, /* in r28,__SP_L__ */
741 0xde, 0xb7 /* in r29,__SP_H__ */
742 };
743 unsigned short insn1;
744
745 if (vpc + sizeof (img) < len
746 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
747 {
748 vpc += 4;
749 scan_stage = 2;
750 }
751 }
752
753 /* Third stage of the prologue scanning. (Really two stages)
754 Scan for:
755 sbiw r28,XX or subi r28,lo8(XX)
756 sbci r29,hi8(XX)
757 in __tmp_reg__,__SREG__
758 cli
759 out __SP_H__,r29
760 out __SREG__,__tmp_reg__
761 out __SP_L__,r28 */
762
763 if (scan_stage == 2 && vpc < len)
764 {
765 int locals_size = 0;
766 static const unsigned char img[] = {
767 0x0f, 0xb6, /* in r0,0x3f */
768 0xf8, 0x94, /* cli */
769 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
770 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
771 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
772 };
773 static const unsigned char img_sig[] = {
774 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
775 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
776 };
777 static const unsigned char img_int[] = {
778 0xf8, 0x94, /* cli */
779 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
780 0x78, 0x94, /* sei */
781 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
782 };
783
784 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
785 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
786 {
787 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
788 vpc += 2;
789 }
790 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
791 {
792 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
793 vpc += 2;
794 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
795 vpc += 2;
796 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
797 }
798 else
799 return pc_beg + vpc;
800
801 /* Scan the last part of the prologue. May not be present for interrupt
802 or signal handler functions, which is why we set the prologue type
803 when we saw the beginning of the prologue previously. */
804
805 if (vpc + sizeof (img_sig) < len
806 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
807 {
808 vpc += sizeof (img_sig);
809 }
810 else if (vpc + sizeof (img_int) < len
811 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
812 {
813 vpc += sizeof (img_int);
814 }
815 if (vpc + sizeof (img) < len
816 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
817 {
818 info->prologue_type = AVR_PROLOGUE_NORMAL;
819 vpc += sizeof (img);
820 }
821
822 info->size += locals_size;
823
824 /* Fall through. */
825 }
826
827 /* If we got this far, we could not scan the prologue, so just return the pc
828 of the frame plus an adjustment for argument move insns. */
829
830 for (; vpc < len; vpc += 2)
831 {
832 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
833 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
834 continue;
835 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
836 continue;
837 else
838 break;
839 }
840
841 return pc_beg + vpc;
842 }
843
844 static CORE_ADDR
845 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
846 {
847 CORE_ADDR func_addr, func_end;
848 CORE_ADDR post_prologue_pc;
849
850 /* See what the symbol table says */
851
852 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
853 return pc;
854
855 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
856 if (post_prologue_pc != 0)
857 return max (pc, post_prologue_pc);
858
859 {
860 CORE_ADDR prologue_end = pc;
861 struct avr_unwind_cache info = {0};
862 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
863
864 info.saved_regs = saved_regs;
865
866 /* Need to run the prologue scanner to figure out if the function has a
867 prologue and possibly skip over moving arguments passed via registers
868 to other registers. */
869
870 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
871
872 if (info.prologue_type != AVR_PROLOGUE_NONE)
873 return prologue_end;
874 }
875
876 /* Either we didn't find the start of this function (nothing we can do),
877 or there's no line info, or the line after the prologue is after
878 the end of the function (there probably isn't a prologue). */
879
880 return pc;
881 }
882
883 /* Not all avr devices support the BREAK insn. Those that don't should treat
884 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
885 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
886
887 static const unsigned char *
888 avr_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
889 {
890 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
891 *lenptr = sizeof (avr_break_insn);
892 return avr_break_insn;
893 }
894
895 /* Determine, for architecture GDBARCH, how a return value of TYPE
896 should be returned. If it is supposed to be returned in registers,
897 and READBUF is non-zero, read the appropriate value from REGCACHE,
898 and copy it into READBUF. If WRITEBUF is non-zero, write the value
899 from WRITEBUF into REGCACHE. */
900
901 static enum return_value_convention
902 avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
903 struct type *valtype, struct regcache *regcache,
904 gdb_byte *readbuf, const gdb_byte *writebuf)
905 {
906 int i;
907 /* Single byte are returned in r24.
908 Otherwise, the MSB of the return value is always in r25, calculate which
909 register holds the LSB. */
910 int lsb_reg;
911
912 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
913 || TYPE_CODE (valtype) == TYPE_CODE_UNION
914 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
915 && TYPE_LENGTH (valtype) > 8)
916 return RETURN_VALUE_STRUCT_CONVENTION;
917
918 if (TYPE_LENGTH (valtype) <= 2)
919 lsb_reg = 24;
920 else if (TYPE_LENGTH (valtype) <= 4)
921 lsb_reg = 22;
922 else if (TYPE_LENGTH (valtype) <= 8)
923 lsb_reg = 18;
924 else
925 gdb_assert_not_reached ("unexpected type length");
926
927 if (writebuf != NULL)
928 {
929 for (i = 0; i < TYPE_LENGTH (valtype); i++)
930 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
931 }
932
933 if (readbuf != NULL)
934 {
935 for (i = 0; i < TYPE_LENGTH (valtype); i++)
936 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
937 }
938
939 return RETURN_VALUE_REGISTER_CONVENTION;
940 }
941
942
943 /* Put here the code to store, into fi->saved_regs, the addresses of
944 the saved registers of frame described by FRAME_INFO. This
945 includes special registers such as pc and fp saved in special ways
946 in the stack frame. sp is even more special: the address we return
947 for it IS the sp for the next frame. */
948
949 static struct avr_unwind_cache *
950 avr_frame_unwind_cache (struct frame_info *this_frame,
951 void **this_prologue_cache)
952 {
953 CORE_ADDR start_pc, current_pc;
954 ULONGEST prev_sp;
955 ULONGEST this_base;
956 struct avr_unwind_cache *info;
957 struct gdbarch *gdbarch;
958 struct gdbarch_tdep *tdep;
959 int i;
960
961 if (*this_prologue_cache)
962 return *this_prologue_cache;
963
964 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
965 *this_prologue_cache = info;
966 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
967
968 info->size = 0;
969 info->prologue_type = AVR_PROLOGUE_NONE;
970
971 start_pc = get_frame_func (this_frame);
972 current_pc = get_frame_pc (this_frame);
973 if ((start_pc > 0) && (start_pc <= current_pc))
974 avr_scan_prologue (get_frame_arch (this_frame),
975 start_pc, current_pc, info);
976
977 if ((info->prologue_type != AVR_PROLOGUE_NONE)
978 && (info->prologue_type != AVR_PROLOGUE_MAIN))
979 {
980 ULONGEST high_base; /* High byte of FP */
981
982 /* The SP was moved to the FP. This indicates that a new frame
983 was created. Get THIS frame's FP value by unwinding it from
984 the next frame. */
985 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
986 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
987 this_base += (high_base << 8);
988
989 /* The FP points at the last saved register. Adjust the FP back
990 to before the first saved register giving the SP. */
991 prev_sp = this_base + info->size;
992 }
993 else
994 {
995 /* Assume that the FP is this frame's SP but with that pushed
996 stack space added back. */
997 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
998 prev_sp = this_base + info->size;
999 }
1000
1001 /* Add 1 here to adjust for the post-decrement nature of the push
1002 instruction.*/
1003 info->prev_sp = avr_make_saddr (prev_sp + 1);
1004 info->base = avr_make_saddr (this_base);
1005
1006 gdbarch = get_frame_arch (this_frame);
1007
1008 /* Adjust all the saved registers so that they contain addresses and not
1009 offsets. */
1010 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1011 if (info->saved_regs[i].addr > 0)
1012 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1013
1014 /* Except for the main and startup code, the return PC is always saved on
1015 the stack and is at the base of the frame. */
1016
1017 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1018 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1019
1020 /* The previous frame's SP needed to be computed. Save the computed
1021 value. */
1022 tdep = gdbarch_tdep (gdbarch);
1023 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1024 info->prev_sp - 1 + tdep->call_length);
1025
1026 return info;
1027 }
1028
1029 static CORE_ADDR
1030 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1031 {
1032 ULONGEST pc;
1033
1034 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1035
1036 return avr_make_iaddr (pc);
1037 }
1038
1039 static CORE_ADDR
1040 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1041 {
1042 ULONGEST sp;
1043
1044 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1045
1046 return avr_make_saddr (sp);
1047 }
1048
1049 /* Given a GDB frame, determine the address of the calling function's
1050 frame. This will be used to create a new GDB frame struct. */
1051
1052 static void
1053 avr_frame_this_id (struct frame_info *this_frame,
1054 void **this_prologue_cache,
1055 struct frame_id *this_id)
1056 {
1057 struct avr_unwind_cache *info
1058 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1059 CORE_ADDR base;
1060 CORE_ADDR func;
1061 struct frame_id id;
1062
1063 /* The FUNC is easy. */
1064 func = get_frame_func (this_frame);
1065
1066 /* Hopefully the prologue analysis either correctly determined the
1067 frame's base (which is the SP from the previous frame), or set
1068 that base to "NULL". */
1069 base = info->prev_sp;
1070 if (base == 0)
1071 return;
1072
1073 id = frame_id_build (base, func);
1074 (*this_id) = id;
1075 }
1076
1077 static struct value *
1078 avr_frame_prev_register (struct frame_info *this_frame,
1079 void **this_prologue_cache, int regnum)
1080 {
1081 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1082 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1083 struct avr_unwind_cache *info
1084 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1085
1086 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1087 {
1088 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1089 {
1090 /* Reading the return PC from the PC register is slightly
1091 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1092 but in reality, only two bytes (3 in upcoming mega256) are
1093 stored on the stack.
1094
1095 Also, note that the value on the stack is an addr to a word
1096 not a byte, so we will need to multiply it by two at some
1097 point.
1098
1099 And to confuse matters even more, the return address stored
1100 on the stack is in big endian byte order, even though most
1101 everything else about the avr is little endian. Ick! */
1102 ULONGEST pc;
1103 int i;
1104 unsigned char buf[3];
1105 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1107
1108 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1109 buf, tdep->call_length);
1110
1111 /* Extract the PC read from memory as a big-endian. */
1112 pc = 0;
1113 for (i = 0; i < tdep->call_length; i++)
1114 pc = (pc << 8) | buf[i];
1115
1116 if (regnum == AVR_PC_REGNUM)
1117 pc <<= 1;
1118
1119 return frame_unwind_got_constant (this_frame, regnum, pc);
1120 }
1121
1122 return frame_unwind_got_optimized (this_frame, regnum);
1123 }
1124
1125 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1126 }
1127
1128 static const struct frame_unwind avr_frame_unwind = {
1129 NORMAL_FRAME,
1130 avr_frame_this_id,
1131 avr_frame_prev_register,
1132 NULL,
1133 default_frame_sniffer
1134 };
1135
1136 static CORE_ADDR
1137 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1138 {
1139 struct avr_unwind_cache *info
1140 = avr_frame_unwind_cache (this_frame, this_cache);
1141
1142 return info->base;
1143 }
1144
1145 static const struct frame_base avr_frame_base = {
1146 &avr_frame_unwind,
1147 avr_frame_base_address,
1148 avr_frame_base_address,
1149 avr_frame_base_address
1150 };
1151
1152 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1153 frame. The frame ID's base needs to match the TOS value saved by
1154 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1155
1156 static struct frame_id
1157 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1158 {
1159 ULONGEST base;
1160
1161 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1162 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1163 }
1164
1165 /* When arguments must be pushed onto the stack, they go on in reverse
1166 order. The below implements a FILO (stack) to do this. */
1167
1168 struct stack_item
1169 {
1170 int len;
1171 struct stack_item *prev;
1172 void *data;
1173 };
1174
1175 static struct stack_item *
1176 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1177 {
1178 struct stack_item *si;
1179 si = xmalloc (sizeof (struct stack_item));
1180 si->data = xmalloc (len);
1181 si->len = len;
1182 si->prev = prev;
1183 memcpy (si->data, contents, len);
1184 return si;
1185 }
1186
1187 static struct stack_item *pop_stack_item (struct stack_item *si);
1188 static struct stack_item *
1189 pop_stack_item (struct stack_item *si)
1190 {
1191 struct stack_item *dead = si;
1192 si = si->prev;
1193 xfree (dead->data);
1194 xfree (dead);
1195 return si;
1196 }
1197
1198 /* Setup the function arguments for calling a function in the inferior.
1199
1200 On the AVR architecture, there are 18 registers (R25 to R8) which are
1201 dedicated for passing function arguments. Up to the first 18 arguments
1202 (depending on size) may go into these registers. The rest go on the stack.
1203
1204 All arguments are aligned to start in even-numbered registers (odd-sized
1205 arguments, including char, have one free register above them). For example,
1206 an int in arg1 and a char in arg2 would be passed as such:
1207
1208 arg1 -> r25:r24
1209 arg2 -> r22
1210
1211 Arguments that are larger than 2 bytes will be split between two or more
1212 registers as available, but will NOT be split between a register and the
1213 stack. Arguments that go onto the stack are pushed last arg first (this is
1214 similar to the d10v). */
1215
1216 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1217 inaccurate.
1218
1219 An exceptional case exists for struct arguments (and possibly other
1220 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1221 not a multiple of WORDSIZE bytes. In this case the argument is never split
1222 between the registers and the stack, but instead is copied in its entirety
1223 onto the stack, AND also copied into as many registers as there is room
1224 for. In other words, space in registers permitting, two copies of the same
1225 argument are passed in. As far as I can tell, only the one on the stack is
1226 used, although that may be a function of the level of compiler
1227 optimization. I suspect this is a compiler bug. Arguments of these odd
1228 sizes are left-justified within the word (as opposed to arguments smaller
1229 than WORDSIZE bytes, which are right-justified).
1230
1231 If the function is to return an aggregate type such as a struct, the caller
1232 must allocate space into which the callee will copy the return value. In
1233 this case, a pointer to the return value location is passed into the callee
1234 in register R0, which displaces one of the other arguments passed in via
1235 registers R0 to R2. */
1236
1237 static CORE_ADDR
1238 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1239 struct regcache *regcache, CORE_ADDR bp_addr,
1240 int nargs, struct value **args, CORE_ADDR sp,
1241 int struct_return, CORE_ADDR struct_addr)
1242 {
1243 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1244 int i;
1245 unsigned char buf[3];
1246 int call_length = gdbarch_tdep (gdbarch)->call_length;
1247 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1248 int regnum = AVR_ARGN_REGNUM;
1249 struct stack_item *si = NULL;
1250
1251 if (struct_return)
1252 {
1253 regcache_cooked_write_unsigned
1254 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1255 regcache_cooked_write_unsigned
1256 (regcache, regnum--, struct_addr & 0xff);
1257 /* SP being post decremented, we need to reserve one byte so that the
1258 return address won't overwrite the result (or vice-versa). */
1259 if (sp == struct_addr)
1260 sp--;
1261 }
1262
1263 for (i = 0; i < nargs; i++)
1264 {
1265 int last_regnum;
1266 int j;
1267 struct value *arg = args[i];
1268 struct type *type = check_typedef (value_type (arg));
1269 const bfd_byte *contents = value_contents (arg);
1270 int len = TYPE_LENGTH (type);
1271
1272 /* Calculate the potential last register needed. */
1273 last_regnum = regnum - (len + (len & 1));
1274
1275 /* If there are registers available, use them. Once we start putting
1276 stuff on the stack, all subsequent args go on stack. */
1277 if ((si == NULL) && (last_regnum >= 8))
1278 {
1279 ULONGEST val;
1280
1281 /* Skip a register for odd length args. */
1282 if (len & 1)
1283 regnum--;
1284
1285 val = extract_unsigned_integer (contents, len, byte_order);
1286 for (j = 0; j < len; j++)
1287 regcache_cooked_write_unsigned
1288 (regcache, regnum--, val >> (8 * (len - j - 1)));
1289 }
1290 /* No registers available, push the args onto the stack. */
1291 else
1292 {
1293 /* From here on, we don't care about regnum. */
1294 si = push_stack_item (si, contents, len);
1295 }
1296 }
1297
1298 /* Push args onto the stack. */
1299 while (si)
1300 {
1301 sp -= si->len;
1302 /* Add 1 to sp here to account for post decr nature of pushes. */
1303 write_memory (sp + 1, si->data, si->len);
1304 si = pop_stack_item (si);
1305 }
1306
1307 /* Set the return address. For the avr, the return address is the BP_ADDR.
1308 Need to push the return address onto the stack noting that it needs to be
1309 in big-endian order on the stack. */
1310 for (i = 1; i <= call_length; i++)
1311 {
1312 buf[call_length - i] = return_pc & 0xff;
1313 return_pc >>= 8;
1314 }
1315
1316 sp -= call_length;
1317 /* Use 'sp + 1' since pushes are post decr ops. */
1318 write_memory (sp + 1, buf, call_length);
1319
1320 /* Finally, update the SP register. */
1321 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1322 avr_convert_saddr_to_raw (sp));
1323
1324 /* Return SP value for the dummy frame, where the return address hasn't been
1325 pushed. */
1326 return sp + call_length;
1327 }
1328
1329 /* Unfortunately dwarf2 register for SP is 32. */
1330
1331 static int
1332 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1333 {
1334 if (reg >= 0 && reg < 32)
1335 return reg;
1336 if (reg == 32)
1337 return AVR_SP_REGNUM;
1338
1339 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1340
1341 return -1;
1342 }
1343
1344 /* Initialize the gdbarch structure for the AVR's. */
1345
1346 static struct gdbarch *
1347 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1348 {
1349 struct gdbarch *gdbarch;
1350 struct gdbarch_tdep *tdep;
1351 struct gdbarch_list *best_arch;
1352 int call_length;
1353
1354 /* Avr-6 call instructions save 3 bytes. */
1355 switch (info.bfd_arch_info->mach)
1356 {
1357 case bfd_mach_avr1:
1358 case bfd_mach_avr2:
1359 case bfd_mach_avr3:
1360 case bfd_mach_avr4:
1361 case bfd_mach_avr5:
1362 default:
1363 call_length = 2;
1364 break;
1365 case bfd_mach_avr6:
1366 call_length = 3;
1367 break;
1368 }
1369
1370 /* If there is already a candidate, use it. */
1371 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1372 best_arch != NULL;
1373 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1374 {
1375 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1376 return best_arch->gdbarch;
1377 }
1378
1379 /* None found, create a new architecture from the information provided. */
1380 tdep = XMALLOC (struct gdbarch_tdep);
1381 gdbarch = gdbarch_alloc (&info, tdep);
1382
1383 tdep->call_length = call_length;
1384
1385 /* Create a type for PC. We can't use builtin types here, as they may not
1386 be defined. */
1387 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1388 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1389 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1390 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1391 TYPE_UNSIGNED (tdep->pc_type) = 1;
1392
1393 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1394 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1395 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1396 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1397 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1398 set_gdbarch_addr_bit (gdbarch, 32);
1399
1400 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1401 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1402 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1403
1404 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1405 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1406 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1407
1408 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1409 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1410
1411 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1412
1413 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1414 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1415
1416 set_gdbarch_register_name (gdbarch, avr_register_name);
1417 set_gdbarch_register_type (gdbarch, avr_register_type);
1418
1419 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1420 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1421 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1422
1423 set_gdbarch_return_value (gdbarch, avr_return_value);
1424 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1425
1426 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1427
1428 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1429
1430 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1431 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1432 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1433
1434 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1435 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1436
1437 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1438
1439 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1440 frame_base_set_default (gdbarch, &avr_frame_base);
1441
1442 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1443
1444 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1445 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1446
1447 return gdbarch;
1448 }
1449
1450 /* Send a query request to the avr remote target asking for values of the io
1451 registers. If args parameter is not NULL, then the user has requested info
1452 on a specific io register [This still needs implemented and is ignored for
1453 now]. The query string should be one of these forms:
1454
1455 "Ravr.io_reg" -> reply is "NN" number of io registers
1456
1457 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1458 registers to be read. The reply should be "<NAME>,VV;" for each io register
1459 where, <NAME> is a string, and VV is the hex value of the register.
1460
1461 All io registers are 8-bit. */
1462
1463 static void
1464 avr_io_reg_read_command (char *args, int from_tty)
1465 {
1466 LONGEST bufsiz = 0;
1467 gdb_byte *buf;
1468 char query[400];
1469 char *p;
1470 unsigned int nreg = 0;
1471 unsigned int val;
1472 int i, j, k, step;
1473
1474 /* Find out how many io registers the target has. */
1475 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1476 "avr.io_reg", &buf);
1477
1478 if (bufsiz <= 0)
1479 {
1480 fprintf_unfiltered (gdb_stderr,
1481 _("ERR: info io_registers NOT supported "
1482 "by current target\n"));
1483 return;
1484 }
1485
1486 if (sscanf (buf, "%x", &nreg) != 1)
1487 {
1488 fprintf_unfiltered (gdb_stderr,
1489 _("Error fetching number of io registers\n"));
1490 xfree (buf);
1491 return;
1492 }
1493
1494 xfree (buf);
1495
1496 reinitialize_more_filter ();
1497
1498 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1499
1500 /* only fetch up to 8 registers at a time to keep the buffer small */
1501 step = 8;
1502
1503 for (i = 0; i < nreg; i += step)
1504 {
1505 /* how many registers this round? */
1506 j = step;
1507 if ((i+j) >= nreg)
1508 j = nreg - i; /* last block is less than 8 registers */
1509
1510 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1511 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1512 query, &buf);
1513
1514 p = buf;
1515 for (k = i; k < (i + j); k++)
1516 {
1517 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1518 {
1519 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1520 while ((*p != ';') && (*p != '\0'))
1521 p++;
1522 p++; /* skip over ';' */
1523 if (*p == '\0')
1524 break;
1525 }
1526 }
1527
1528 xfree (buf);
1529 }
1530 }
1531
1532 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1533
1534 void
1535 _initialize_avr_tdep (void)
1536 {
1537 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1538
1539 /* Add a new command to allow the user to query the avr remote target for
1540 the values of the io space registers in a saner way than just using
1541 `x/NNNb ADDR`. */
1542
1543 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1544 io_registers' to signify it is not available on other platforms. */
1545
1546 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1547 _("query remote avr target for io space register values"),
1548 &infolist);
1549 }
This page took 0.078227 seconds and 5 git commands to generate.