Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26
27 /* Standard C++ includes. */
28 #include <algorithm>
29
30 /* Local non-gdb includes. */
31 #include "arch-utils.h"
32 #include "dis-asm.h"
33 #include "frame-base.h"
34 #include "frame-unwind.h"
35 #include "frame.h"
36 #include "gdbcmd.h"
37 #include "gdbcore.h"
38 #include "gdbtypes.h"
39 #include "inferior.h"
40 #include "objfiles.h"
41 #include "regcache.h"
42 #include "symfile.h"
43 #include "trad-frame.h"
44
45 /* AVR Background:
46
47 (AVR micros are pure Harvard Architecture processors.)
48
49 The AVR family of microcontrollers have three distinctly different memory
50 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
51 the most part to store program instructions. The sram is 8 bits wide and is
52 used for the stack and the heap. Some devices lack sram and some can have
53 an additional external sram added on as a peripheral.
54
55 The eeprom is 8 bits wide and is used to store data when the device is
56 powered down. Eeprom is not directly accessible, it can only be accessed
57 via io-registers using a special algorithm. Accessing eeprom via gdb's
58 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
59 not included at this time.
60
61 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
62 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
63 work, the remote target must be able to handle eeprom accesses and perform
64 the address translation.]
65
66 All three memory spaces have physical addresses beginning at 0x0. In
67 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
68 bytes instead of the 16 bit wide words used by the real device for the
69 Program Counter.
70
71 In order for remote targets to work correctly, extra bits must be added to
72 addresses before they are send to the target or received from the target
73 via the remote serial protocol. The extra bits are the MSBs and are used to
74 decode which memory space the address is referring to. */
75
76 /* Constants: prefixed with AVR_ to avoid name space clashes */
77
78 /* Address space flags */
79
80 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
81 space. */
82
83 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
84 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
85 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
86
87
88 enum
89 {
90 AVR_REG_W = 24,
91 AVR_REG_X = 26,
92 AVR_REG_Y = 28,
93 AVR_FP_REGNUM = 28,
94 AVR_REG_Z = 30,
95
96 AVR_SREG_REGNUM = 32,
97 AVR_SP_REGNUM = 33,
98 AVR_PC_REGNUM = 34,
99
100 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
101 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
102
103 /* Pseudo registers. */
104 AVR_PSEUDO_PC_REGNUM = 35,
105 AVR_NUM_PSEUDO_REGS = 1,
106
107 AVR_PC_REG_INDEX = 35, /* index into array of registers */
108
109 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
110
111 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
112 AVR_MAX_PUSHES = 18,
113
114 /* Number of the last pushed register. r17 for current avr-gcc */
115 AVR_LAST_PUSHED_REGNUM = 17,
116
117 AVR_ARG1_REGNUM = 24, /* Single byte argument */
118 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
119 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
120
121 AVR_RET1_REGNUM = 24, /* Single byte return value */
122 AVR_RETN_REGNUM = 25, /* Multi byte return value */
123
124 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
125 bits? Do these have to match the bfd vma values? It sure would make
126 things easier in the future if they didn't need to match.
127
128 Note: I chose these values so as to be consistent with bfd vma
129 addresses.
130
131 TRoth/2002-04-08: There is already a conflict with very large programs
132 in the mega128. The mega128 has 128K instruction bytes (64K words),
133 thus the Most Significant Bit is 0x10000 which gets masked off my
134 AVR_MEM_MASK.
135
136 The problem manifests itself when trying to set a breakpoint in a
137 function which resides in the upper half of the instruction space and
138 thus requires a 17-bit address.
139
140 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
141 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
142 but could be for some remote targets by just adding the correct offset
143 to the address and letting the remote target handle the low-level
144 details of actually accessing the eeprom. */
145
146 AVR_IMEM_START = 0x00000000, /* INSN memory */
147 AVR_SMEM_START = 0x00800000, /* SRAM memory */
148 #if 1
149 /* No eeprom mask defined */
150 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
151 #else
152 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
153 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
154 #endif
155 };
156
157 /* Prologue types:
158
159 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
160 causes the generation of the CALL type prologues). */
161
162 enum {
163 AVR_PROLOGUE_NONE, /* No prologue */
164 AVR_PROLOGUE_NORMAL,
165 AVR_PROLOGUE_CALL, /* -mcall-prologues */
166 AVR_PROLOGUE_MAIN,
167 AVR_PROLOGUE_INTR, /* interrupt handler */
168 AVR_PROLOGUE_SIG, /* signal handler */
169 };
170
171 /* Any function with a frame looks like this
172 ....... <-SP POINTS HERE
173 LOCALS1 <-FP POINTS HERE
174 LOCALS0
175 SAVED FP
176 SAVED R3
177 SAVED R2
178 RET PC
179 FIRST ARG
180 SECOND ARG */
181
182 struct avr_unwind_cache
183 {
184 /* The previous frame's inner most stack address. Used as this
185 frame ID's stack_addr. */
186 CORE_ADDR prev_sp;
187 /* The frame's base, optionally used by the high-level debug info. */
188 CORE_ADDR base;
189 int size;
190 int prologue_type;
191 /* Table indicating the location of each and every register. */
192 struct trad_frame_saved_reg *saved_regs;
193 };
194
195 struct gdbarch_tdep
196 {
197 /* Number of bytes stored to the stack by call instructions.
198 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
199 int call_length;
200
201 /* Type for void. */
202 struct type *void_type;
203 /* Type for a function returning void. */
204 struct type *func_void_type;
205 /* Type for a pointer to a function. Used for the type of PC. */
206 struct type *pc_type;
207 };
208
209 /* Lookup the name of a register given it's number. */
210
211 static const char *
212 avr_register_name (struct gdbarch *gdbarch, int regnum)
213 {
214 static const char * const register_names[] = {
215 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
216 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
217 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
218 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
219 "SREG", "SP", "PC2",
220 "pc"
221 };
222 if (regnum < 0)
223 return NULL;
224 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
225 return NULL;
226 return register_names[regnum];
227 }
228
229 /* Return the GDB type object for the "standard" data type
230 of data in register N. */
231
232 static struct type *
233 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
234 {
235 if (reg_nr == AVR_PC_REGNUM)
236 return builtin_type (gdbarch)->builtin_uint32;
237 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
238 return gdbarch_tdep (gdbarch)->pc_type;
239 if (reg_nr == AVR_SP_REGNUM)
240 return builtin_type (gdbarch)->builtin_data_ptr;
241 return builtin_type (gdbarch)->builtin_uint8;
242 }
243
244 /* Instruction address checks and convertions. */
245
246 static CORE_ADDR
247 avr_make_iaddr (CORE_ADDR x)
248 {
249 return ((x) | AVR_IMEM_START);
250 }
251
252 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
253 devices are already up to 128KBytes of flash space.
254
255 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
256
257 static CORE_ADDR
258 avr_convert_iaddr_to_raw (CORE_ADDR x)
259 {
260 return ((x) & 0xffffffff);
261 }
262
263 /* SRAM address checks and convertions. */
264
265 static CORE_ADDR
266 avr_make_saddr (CORE_ADDR x)
267 {
268 /* Return 0 for NULL. */
269 if (x == 0)
270 return 0;
271
272 return ((x) | AVR_SMEM_START);
273 }
274
275 static CORE_ADDR
276 avr_convert_saddr_to_raw (CORE_ADDR x)
277 {
278 return ((x) & 0xffffffff);
279 }
280
281 /* EEPROM address checks and convertions. I don't know if these will ever
282 actually be used, but I've added them just the same. TRoth */
283
284 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
285 programs in the mega128. */
286
287 /* static CORE_ADDR */
288 /* avr_make_eaddr (CORE_ADDR x) */
289 /* { */
290 /* return ((x) | AVR_EMEM_START); */
291 /* } */
292
293 /* static int */
294 /* avr_eaddr_p (CORE_ADDR x) */
295 /* { */
296 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
297 /* } */
298
299 /* static CORE_ADDR */
300 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
301 /* { */
302 /* return ((x) & 0xffffffff); */
303 /* } */
304
305 /* Convert from address to pointer and vice-versa. */
306
307 static void
308 avr_address_to_pointer (struct gdbarch *gdbarch,
309 struct type *type, gdb_byte *buf, CORE_ADDR addr)
310 {
311 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
312
313 /* Is it a data address in flash? */
314 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
315 {
316 /* A data pointer in flash is byte addressed. */
317 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
318 avr_convert_iaddr_to_raw (addr));
319 }
320 /* Is it a code address? */
321 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
322 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
323 {
324 /* A code pointer is word (16 bits) addressed. We shift the address down
325 by 1 bit to convert it to a pointer. */
326 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
327 avr_convert_iaddr_to_raw (addr >> 1));
328 }
329 else
330 {
331 /* Strip off any upper segment bits. */
332 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
333 avr_convert_saddr_to_raw (addr));
334 }
335 }
336
337 static CORE_ADDR
338 avr_pointer_to_address (struct gdbarch *gdbarch,
339 struct type *type, const gdb_byte *buf)
340 {
341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
342 CORE_ADDR addr
343 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
344
345 /* Is it a data address in flash? */
346 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
347 {
348 /* A data pointer in flash is already byte addressed. */
349 return avr_make_iaddr (addr);
350 }
351 /* Is it a code address? */
352 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
353 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
354 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
355 {
356 /* A code pointer is word (16 bits) addressed so we shift it up
357 by 1 bit to convert it to an address. */
358 return avr_make_iaddr (addr << 1);
359 }
360 else
361 return avr_make_saddr (addr);
362 }
363
364 static CORE_ADDR
365 avr_integer_to_address (struct gdbarch *gdbarch,
366 struct type *type, const gdb_byte *buf)
367 {
368 ULONGEST addr = unpack_long (type, buf);
369
370 return avr_make_saddr (addr);
371 }
372
373 static CORE_ADDR
374 avr_read_pc (readable_regcache *regcache)
375 {
376 ULONGEST pc;
377
378 regcache->cooked_read (AVR_PC_REGNUM, &pc);
379 return avr_make_iaddr (pc);
380 }
381
382 static void
383 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
384 {
385 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
386 avr_convert_iaddr_to_raw (val));
387 }
388
389 static enum register_status
390 avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
391 int regnum, gdb_byte *buf)
392 {
393 ULONGEST val;
394 enum register_status status;
395
396 switch (regnum)
397 {
398 case AVR_PSEUDO_PC_REGNUM:
399 status = regcache->raw_read (AVR_PC_REGNUM, &val);
400 if (status != REG_VALID)
401 return status;
402 val >>= 1;
403 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
404 return status;
405 default:
406 internal_error (__FILE__, __LINE__, _("invalid regnum"));
407 }
408 }
409
410 static void
411 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
412 int regnum, const gdb_byte *buf)
413 {
414 ULONGEST val;
415
416 switch (regnum)
417 {
418 case AVR_PSEUDO_PC_REGNUM:
419 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
420 val <<= 1;
421 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
422 break;
423 default:
424 internal_error (__FILE__, __LINE__, _("invalid regnum"));
425 }
426 }
427
428 /* Function: avr_scan_prologue
429
430 This function decodes an AVR function prologue to determine:
431 1) the size of the stack frame
432 2) which registers are saved on it
433 3) the offsets of saved regs
434 This information is stored in the avr_unwind_cache structure.
435
436 Some devices lack the sbiw instruction, so on those replace this:
437 sbiw r28, XX
438 with this:
439 subi r28,lo8(XX)
440 sbci r29,hi8(XX)
441
442 A typical AVR function prologue with a frame pointer might look like this:
443 push rXX ; saved regs
444 ...
445 push r28
446 push r29
447 in r28,__SP_L__
448 in r29,__SP_H__
449 sbiw r28,<LOCALS_SIZE>
450 in __tmp_reg__,__SREG__
451 cli
452 out __SP_H__,r29
453 out __SREG__,__tmp_reg__
454 out __SP_L__,r28
455
456 A typical AVR function prologue without a frame pointer might look like
457 this:
458 push rXX ; saved regs
459 ...
460
461 A main function prologue looks like this:
462 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
463 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
464 out __SP_H__,r29
465 out __SP_L__,r28
466
467 A signal handler prologue looks like this:
468 push __zero_reg__
469 push __tmp_reg__
470 in __tmp_reg__, __SREG__
471 push __tmp_reg__
472 clr __zero_reg__
473 push rXX ; save registers r18:r27, r30:r31
474 ...
475 push r28 ; save frame pointer
476 push r29
477 in r28, __SP_L__
478 in r29, __SP_H__
479 sbiw r28, <LOCALS_SIZE>
480 out __SP_H__, r29
481 out __SP_L__, r28
482
483 A interrupt handler prologue looks like this:
484 sei
485 push __zero_reg__
486 push __tmp_reg__
487 in __tmp_reg__, __SREG__
488 push __tmp_reg__
489 clr __zero_reg__
490 push rXX ; save registers r18:r27, r30:r31
491 ...
492 push r28 ; save frame pointer
493 push r29
494 in r28, __SP_L__
495 in r29, __SP_H__
496 sbiw r28, <LOCALS_SIZE>
497 cli
498 out __SP_H__, r29
499 sei
500 out __SP_L__, r28
501
502 A `-mcall-prologues' prologue looks like this (Note that the megas use a
503 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
504 32 bit insn and rjmp is a 16 bit insn):
505 ldi r26,lo8(<LOCALS_SIZE>)
506 ldi r27,hi8(<LOCALS_SIZE>)
507 ldi r30,pm_lo8(.L_foo_body)
508 ldi r31,pm_hi8(.L_foo_body)
509 rjmp __prologue_saves__+RRR
510 .L_foo_body: */
511
512 /* Not really part of a prologue, but still need to scan for it, is when a
513 function prologue moves values passed via registers as arguments to new
514 registers. In this case, all local variables live in registers, so there
515 may be some register saves. This is what it looks like:
516 movw rMM, rNN
517 ...
518
519 There could be multiple movw's. If the target doesn't have a movw insn, it
520 will use two mov insns. This could be done after any of the above prologue
521 types. */
522
523 static CORE_ADDR
524 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
525 struct avr_unwind_cache *info)
526 {
527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
528 int i;
529 unsigned short insn;
530 int scan_stage = 0;
531 struct bound_minimal_symbol msymbol;
532 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
533 int vpc = 0;
534 int len;
535
536 len = pc_end - pc_beg;
537 if (len > AVR_MAX_PROLOGUE_SIZE)
538 len = AVR_MAX_PROLOGUE_SIZE;
539
540 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
541 reading in the bytes of the prologue. The problem is that the figuring
542 out where the end of the prologue is is a bit difficult. The old code
543 tried to do that, but failed quite often. */
544 read_memory (pc_beg, prologue, len);
545
546 /* Scanning main()'s prologue
547 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
548 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
549 out __SP_H__,r29
550 out __SP_L__,r28 */
551
552 if (len >= 4)
553 {
554 CORE_ADDR locals;
555 static const unsigned char img[] = {
556 0xde, 0xbf, /* out __SP_H__,r29 */
557 0xcd, 0xbf /* out __SP_L__,r28 */
558 };
559
560 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
561 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
562 if ((insn & 0xf0f0) == 0xe0c0)
563 {
564 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
565 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
566 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
567 if ((insn & 0xf0f0) == 0xe0d0)
568 {
569 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
570 if (vpc + 4 + sizeof (img) < len
571 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
572 {
573 info->prologue_type = AVR_PROLOGUE_MAIN;
574 info->base = locals;
575 return pc_beg + 4;
576 }
577 }
578 }
579 }
580
581 /* Scanning `-mcall-prologues' prologue
582 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
583
584 while (1) /* Using a while to avoid many goto's */
585 {
586 int loc_size;
587 int body_addr;
588 unsigned num_pushes;
589 int pc_offset = 0;
590
591 /* At least the fifth instruction must have been executed to
592 modify frame shape. */
593 if (len < 10)
594 break;
595
596 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
597 /* ldi r26,<LOCALS_SIZE> */
598 if ((insn & 0xf0f0) != 0xe0a0)
599 break;
600 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
601 pc_offset += 2;
602
603 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
604 /* ldi r27,<LOCALS_SIZE> / 256 */
605 if ((insn & 0xf0f0) != 0xe0b0)
606 break;
607 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
608 pc_offset += 2;
609
610 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
611 /* ldi r30,pm_lo8(.L_foo_body) */
612 if ((insn & 0xf0f0) != 0xe0e0)
613 break;
614 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
615 pc_offset += 2;
616
617 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
618 /* ldi r31,pm_hi8(.L_foo_body) */
619 if ((insn & 0xf0f0) != 0xe0f0)
620 break;
621 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
622 pc_offset += 2;
623
624 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
625 if (!msymbol.minsym)
626 break;
627
628 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
629 /* rjmp __prologue_saves__+RRR */
630 if ((insn & 0xf000) == 0xc000)
631 {
632 /* Extract PC relative offset from RJMP */
633 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
634 /* Convert offset to byte addressable mode */
635 i *= 2;
636 /* Destination address */
637 i += pc_beg + 10;
638
639 if (body_addr != (pc_beg + 10)/2)
640 break;
641
642 pc_offset += 2;
643 }
644 else if ((insn & 0xfe0e) == 0x940c)
645 {
646 /* Extract absolute PC address from JMP */
647 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
648 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
649 & 0xffff));
650 /* Convert address to byte addressable mode */
651 i *= 2;
652
653 if (body_addr != (pc_beg + 12)/2)
654 break;
655
656 pc_offset += 4;
657 }
658 else
659 break;
660
661 /* Resolve offset (in words) from __prologue_saves__ symbol.
662 Which is a pushes count in `-mcall-prologues' mode */
663 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
664
665 if (num_pushes > AVR_MAX_PUSHES)
666 {
667 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
668 num_pushes);
669 num_pushes = 0;
670 }
671
672 if (num_pushes)
673 {
674 int from;
675
676 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
677 if (num_pushes >= 2)
678 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
679
680 i = 0;
681 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
682 from <= AVR_LAST_PUSHED_REGNUM; ++from)
683 info->saved_regs [from].addr = ++i;
684 }
685 info->size = loc_size + num_pushes;
686 info->prologue_type = AVR_PROLOGUE_CALL;
687
688 return pc_beg + pc_offset;
689 }
690
691 /* Scan for the beginning of the prologue for an interrupt or signal
692 function. Note that we have to set the prologue type here since the
693 third stage of the prologue may not be present (e.g. no saved registered
694 or changing of the SP register). */
695
696 if (1)
697 {
698 static const unsigned char img[] = {
699 0x78, 0x94, /* sei */
700 0x1f, 0x92, /* push r1 */
701 0x0f, 0x92, /* push r0 */
702 0x0f, 0xb6, /* in r0,0x3f SREG */
703 0x0f, 0x92, /* push r0 */
704 0x11, 0x24 /* clr r1 */
705 };
706 if (len >= sizeof (img)
707 && memcmp (prologue, img, sizeof (img)) == 0)
708 {
709 info->prologue_type = AVR_PROLOGUE_INTR;
710 vpc += sizeof (img);
711 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
712 info->saved_regs[0].addr = 2;
713 info->saved_regs[1].addr = 1;
714 info->size += 3;
715 }
716 else if (len >= sizeof (img) - 2
717 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
718 {
719 info->prologue_type = AVR_PROLOGUE_SIG;
720 vpc += sizeof (img) - 2;
721 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
722 info->saved_regs[0].addr = 2;
723 info->saved_regs[1].addr = 1;
724 info->size += 2;
725 }
726 }
727
728 /* First stage of the prologue scanning.
729 Scan pushes (saved registers) */
730
731 for (; vpc < len; vpc += 2)
732 {
733 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
734 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
735 {
736 /* Bits 4-9 contain a mask for registers R0-R32. */
737 int regno = (insn & 0x1f0) >> 4;
738 info->size++;
739 info->saved_regs[regno].addr = info->size;
740 scan_stage = 1;
741 }
742 else
743 break;
744 }
745
746 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
747
748 /* Handle static small stack allocation using rcall or push. */
749
750 while (scan_stage == 1 && vpc < len)
751 {
752 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
753 if (insn == 0xd000) /* rcall .+0 */
754 {
755 info->size += gdbarch_tdep (gdbarch)->call_length;
756 vpc += 2;
757 }
758 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
759 {
760 info->size += 1;
761 vpc += 2;
762 }
763 else
764 break;
765 }
766
767 /* Second stage of the prologue scanning.
768 Scan:
769 in r28,__SP_L__
770 in r29,__SP_H__ */
771
772 if (scan_stage == 1 && vpc < len)
773 {
774 static const unsigned char img[] = {
775 0xcd, 0xb7, /* in r28,__SP_L__ */
776 0xde, 0xb7 /* in r29,__SP_H__ */
777 };
778
779 if (vpc + sizeof (img) < len
780 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
781 {
782 vpc += 4;
783 scan_stage = 2;
784 }
785 }
786
787 /* Third stage of the prologue scanning. (Really two stages).
788 Scan for:
789 sbiw r28,XX or subi r28,lo8(XX)
790 sbci r29,hi8(XX)
791 in __tmp_reg__,__SREG__
792 cli
793 out __SP_H__,r29
794 out __SREG__,__tmp_reg__
795 out __SP_L__,r28 */
796
797 if (scan_stage == 2 && vpc < len)
798 {
799 int locals_size = 0;
800 static const unsigned char img[] = {
801 0x0f, 0xb6, /* in r0,0x3f */
802 0xf8, 0x94, /* cli */
803 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
804 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
805 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
806 };
807 static const unsigned char img_sig[] = {
808 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
809 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
810 };
811 static const unsigned char img_int[] = {
812 0xf8, 0x94, /* cli */
813 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
814 0x78, 0x94, /* sei */
815 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
816 };
817
818 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
819 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
820 {
821 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
822 vpc += 2;
823 }
824 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
825 {
826 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
827 vpc += 2;
828 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
829 vpc += 2;
830 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
831 }
832 else
833 return pc_beg + vpc;
834
835 /* Scan the last part of the prologue. May not be present for interrupt
836 or signal handler functions, which is why we set the prologue type
837 when we saw the beginning of the prologue previously. */
838
839 if (vpc + sizeof (img_sig) < len
840 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
841 {
842 vpc += sizeof (img_sig);
843 }
844 else if (vpc + sizeof (img_int) < len
845 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
846 {
847 vpc += sizeof (img_int);
848 }
849 if (vpc + sizeof (img) < len
850 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
851 {
852 info->prologue_type = AVR_PROLOGUE_NORMAL;
853 vpc += sizeof (img);
854 }
855
856 info->size += locals_size;
857
858 /* Fall through. */
859 }
860
861 /* If we got this far, we could not scan the prologue, so just return the pc
862 of the frame plus an adjustment for argument move insns. */
863
864 for (; vpc < len; vpc += 2)
865 {
866 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
867 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
868 continue;
869 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
870 continue;
871 else
872 break;
873 }
874
875 return pc_beg + vpc;
876 }
877
878 static CORE_ADDR
879 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
880 {
881 CORE_ADDR func_addr, func_end;
882 CORE_ADDR post_prologue_pc;
883
884 /* See what the symbol table says */
885
886 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
887 return pc;
888
889 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
890 if (post_prologue_pc != 0)
891 return std::max (pc, post_prologue_pc);
892
893 {
894 CORE_ADDR prologue_end = pc;
895 struct avr_unwind_cache info = {0};
896 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
897
898 info.saved_regs = saved_regs;
899
900 /* Need to run the prologue scanner to figure out if the function has a
901 prologue and possibly skip over moving arguments passed via registers
902 to other registers. */
903
904 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
905
906 if (info.prologue_type != AVR_PROLOGUE_NONE)
907 return prologue_end;
908 }
909
910 /* Either we didn't find the start of this function (nothing we can do),
911 or there's no line info, or the line after the prologue is after
912 the end of the function (there probably isn't a prologue). */
913
914 return pc;
915 }
916
917 /* Not all avr devices support the BREAK insn. Those that don't should treat
918 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
919 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
920
921 constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
922
923 typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
924
925 /* Determine, for architecture GDBARCH, how a return value of TYPE
926 should be returned. If it is supposed to be returned in registers,
927 and READBUF is non-zero, read the appropriate value from REGCACHE,
928 and copy it into READBUF. If WRITEBUF is non-zero, write the value
929 from WRITEBUF into REGCACHE. */
930
931 static enum return_value_convention
932 avr_return_value (struct gdbarch *gdbarch, struct value *function,
933 struct type *valtype, struct regcache *regcache,
934 gdb_byte *readbuf, const gdb_byte *writebuf)
935 {
936 int i;
937 /* Single byte are returned in r24.
938 Otherwise, the MSB of the return value is always in r25, calculate which
939 register holds the LSB. */
940 int lsb_reg;
941
942 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
943 || TYPE_CODE (valtype) == TYPE_CODE_UNION
944 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
945 && TYPE_LENGTH (valtype) > 8)
946 return RETURN_VALUE_STRUCT_CONVENTION;
947
948 if (TYPE_LENGTH (valtype) <= 2)
949 lsb_reg = 24;
950 else if (TYPE_LENGTH (valtype) <= 4)
951 lsb_reg = 22;
952 else if (TYPE_LENGTH (valtype) <= 8)
953 lsb_reg = 18;
954 else
955 gdb_assert_not_reached ("unexpected type length");
956
957 if (writebuf != NULL)
958 {
959 for (i = 0; i < TYPE_LENGTH (valtype); i++)
960 regcache->cooked_write (lsb_reg + i, writebuf + i);
961 }
962
963 if (readbuf != NULL)
964 {
965 for (i = 0; i < TYPE_LENGTH (valtype); i++)
966 regcache->cooked_read (lsb_reg + i, readbuf + i);
967 }
968
969 return RETURN_VALUE_REGISTER_CONVENTION;
970 }
971
972
973 /* Put here the code to store, into fi->saved_regs, the addresses of
974 the saved registers of frame described by FRAME_INFO. This
975 includes special registers such as pc and fp saved in special ways
976 in the stack frame. sp is even more special: the address we return
977 for it IS the sp for the next frame. */
978
979 static struct avr_unwind_cache *
980 avr_frame_unwind_cache (struct frame_info *this_frame,
981 void **this_prologue_cache)
982 {
983 CORE_ADDR start_pc, current_pc;
984 ULONGEST prev_sp;
985 ULONGEST this_base;
986 struct avr_unwind_cache *info;
987 struct gdbarch *gdbarch;
988 struct gdbarch_tdep *tdep;
989 int i;
990
991 if (*this_prologue_cache)
992 return (struct avr_unwind_cache *) *this_prologue_cache;
993
994 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
995 *this_prologue_cache = info;
996 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
997
998 info->size = 0;
999 info->prologue_type = AVR_PROLOGUE_NONE;
1000
1001 start_pc = get_frame_func (this_frame);
1002 current_pc = get_frame_pc (this_frame);
1003 if ((start_pc > 0) && (start_pc <= current_pc))
1004 avr_scan_prologue (get_frame_arch (this_frame),
1005 start_pc, current_pc, info);
1006
1007 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1008 && (info->prologue_type != AVR_PROLOGUE_MAIN))
1009 {
1010 ULONGEST high_base; /* High byte of FP */
1011
1012 /* The SP was moved to the FP. This indicates that a new frame
1013 was created. Get THIS frame's FP value by unwinding it from
1014 the next frame. */
1015 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1016 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1017 this_base += (high_base << 8);
1018
1019 /* The FP points at the last saved register. Adjust the FP back
1020 to before the first saved register giving the SP. */
1021 prev_sp = this_base + info->size;
1022 }
1023 else
1024 {
1025 /* Assume that the FP is this frame's SP but with that pushed
1026 stack space added back. */
1027 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1028 prev_sp = this_base + info->size;
1029 }
1030
1031 /* Add 1 here to adjust for the post-decrement nature of the push
1032 instruction.*/
1033 info->prev_sp = avr_make_saddr (prev_sp + 1);
1034 info->base = avr_make_saddr (this_base);
1035
1036 gdbarch = get_frame_arch (this_frame);
1037
1038 /* Adjust all the saved registers so that they contain addresses and not
1039 offsets. */
1040 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1041 if (info->saved_regs[i].addr > 0)
1042 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1043
1044 /* Except for the main and startup code, the return PC is always saved on
1045 the stack and is at the base of the frame. */
1046
1047 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1048 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1049
1050 /* The previous frame's SP needed to be computed. Save the computed
1051 value. */
1052 tdep = gdbarch_tdep (gdbarch);
1053 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1054 info->prev_sp - 1 + tdep->call_length);
1055
1056 return info;
1057 }
1058
1059 static CORE_ADDR
1060 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1061 {
1062 ULONGEST pc;
1063
1064 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1065
1066 return avr_make_iaddr (pc);
1067 }
1068
1069 static CORE_ADDR
1070 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1071 {
1072 ULONGEST sp;
1073
1074 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1075
1076 return avr_make_saddr (sp);
1077 }
1078
1079 /* Given a GDB frame, determine the address of the calling function's
1080 frame. This will be used to create a new GDB frame struct. */
1081
1082 static void
1083 avr_frame_this_id (struct frame_info *this_frame,
1084 void **this_prologue_cache,
1085 struct frame_id *this_id)
1086 {
1087 struct avr_unwind_cache *info
1088 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1089 CORE_ADDR base;
1090 CORE_ADDR func;
1091 struct frame_id id;
1092
1093 /* The FUNC is easy. */
1094 func = get_frame_func (this_frame);
1095
1096 /* Hopefully the prologue analysis either correctly determined the
1097 frame's base (which is the SP from the previous frame), or set
1098 that base to "NULL". */
1099 base = info->prev_sp;
1100 if (base == 0)
1101 return;
1102
1103 id = frame_id_build (base, func);
1104 (*this_id) = id;
1105 }
1106
1107 static struct value *
1108 avr_frame_prev_register (struct frame_info *this_frame,
1109 void **this_prologue_cache, int regnum)
1110 {
1111 struct avr_unwind_cache *info
1112 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1113
1114 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1115 {
1116 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1117 {
1118 /* Reading the return PC from the PC register is slightly
1119 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1120 but in reality, only two bytes (3 in upcoming mega256) are
1121 stored on the stack.
1122
1123 Also, note that the value on the stack is an addr to a word
1124 not a byte, so we will need to multiply it by two at some
1125 point.
1126
1127 And to confuse matters even more, the return address stored
1128 on the stack is in big endian byte order, even though most
1129 everything else about the avr is little endian. Ick! */
1130 ULONGEST pc;
1131 int i;
1132 gdb_byte buf[3];
1133 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1135
1136 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1137 buf, tdep->call_length);
1138
1139 /* Extract the PC read from memory as a big-endian. */
1140 pc = 0;
1141 for (i = 0; i < tdep->call_length; i++)
1142 pc = (pc << 8) | buf[i];
1143
1144 if (regnum == AVR_PC_REGNUM)
1145 pc <<= 1;
1146
1147 return frame_unwind_got_constant (this_frame, regnum, pc);
1148 }
1149
1150 return frame_unwind_got_optimized (this_frame, regnum);
1151 }
1152
1153 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1154 }
1155
1156 static const struct frame_unwind avr_frame_unwind = {
1157 NORMAL_FRAME,
1158 default_frame_unwind_stop_reason,
1159 avr_frame_this_id,
1160 avr_frame_prev_register,
1161 NULL,
1162 default_frame_sniffer
1163 };
1164
1165 static CORE_ADDR
1166 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1167 {
1168 struct avr_unwind_cache *info
1169 = avr_frame_unwind_cache (this_frame, this_cache);
1170
1171 return info->base;
1172 }
1173
1174 static const struct frame_base avr_frame_base = {
1175 &avr_frame_unwind,
1176 avr_frame_base_address,
1177 avr_frame_base_address,
1178 avr_frame_base_address
1179 };
1180
1181 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1182 frame. The frame ID's base needs to match the TOS value saved by
1183 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1184
1185 static struct frame_id
1186 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1187 {
1188 ULONGEST base;
1189
1190 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1191 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1192 }
1193
1194 /* When arguments must be pushed onto the stack, they go on in reverse
1195 order. The below implements a FILO (stack) to do this. */
1196
1197 struct stack_item
1198 {
1199 int len;
1200 struct stack_item *prev;
1201 gdb_byte *data;
1202 };
1203
1204 static struct stack_item *
1205 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1206 {
1207 struct stack_item *si;
1208 si = XNEW (struct stack_item);
1209 si->data = (gdb_byte *) xmalloc (len);
1210 si->len = len;
1211 si->prev = prev;
1212 memcpy (si->data, contents, len);
1213 return si;
1214 }
1215
1216 static struct stack_item *pop_stack_item (struct stack_item *si);
1217 static struct stack_item *
1218 pop_stack_item (struct stack_item *si)
1219 {
1220 struct stack_item *dead = si;
1221 si = si->prev;
1222 xfree (dead->data);
1223 xfree (dead);
1224 return si;
1225 }
1226
1227 /* Setup the function arguments for calling a function in the inferior.
1228
1229 On the AVR architecture, there are 18 registers (R25 to R8) which are
1230 dedicated for passing function arguments. Up to the first 18 arguments
1231 (depending on size) may go into these registers. The rest go on the stack.
1232
1233 All arguments are aligned to start in even-numbered registers (odd-sized
1234 arguments, including char, have one free register above them). For example,
1235 an int in arg1 and a char in arg2 would be passed as such:
1236
1237 arg1 -> r25:r24
1238 arg2 -> r22
1239
1240 Arguments that are larger than 2 bytes will be split between two or more
1241 registers as available, but will NOT be split between a register and the
1242 stack. Arguments that go onto the stack are pushed last arg first (this is
1243 similar to the d10v). */
1244
1245 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1246 inaccurate.
1247
1248 An exceptional case exists for struct arguments (and possibly other
1249 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1250 not a multiple of WORDSIZE bytes. In this case the argument is never split
1251 between the registers and the stack, but instead is copied in its entirety
1252 onto the stack, AND also copied into as many registers as there is room
1253 for. In other words, space in registers permitting, two copies of the same
1254 argument are passed in. As far as I can tell, only the one on the stack is
1255 used, although that may be a function of the level of compiler
1256 optimization. I suspect this is a compiler bug. Arguments of these odd
1257 sizes are left-justified within the word (as opposed to arguments smaller
1258 than WORDSIZE bytes, which are right-justified).
1259
1260 If the function is to return an aggregate type such as a struct, the caller
1261 must allocate space into which the callee will copy the return value. In
1262 this case, a pointer to the return value location is passed into the callee
1263 in register R0, which displaces one of the other arguments passed in via
1264 registers R0 to R2. */
1265
1266 static CORE_ADDR
1267 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1268 struct regcache *regcache, CORE_ADDR bp_addr,
1269 int nargs, struct value **args, CORE_ADDR sp,
1270 function_call_return_method return_method,
1271 CORE_ADDR struct_addr)
1272 {
1273 int i;
1274 gdb_byte buf[3];
1275 int call_length = gdbarch_tdep (gdbarch)->call_length;
1276 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1277 int regnum = AVR_ARGN_REGNUM;
1278 struct stack_item *si = NULL;
1279
1280 if (return_method == return_method_struct)
1281 {
1282 regcache_cooked_write_unsigned
1283 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1284 regcache_cooked_write_unsigned
1285 (regcache, regnum--, struct_addr & 0xff);
1286 /* SP being post decremented, we need to reserve one byte so that the
1287 return address won't overwrite the result (or vice-versa). */
1288 if (sp == struct_addr)
1289 sp--;
1290 }
1291
1292 for (i = 0; i < nargs; i++)
1293 {
1294 int last_regnum;
1295 int j;
1296 struct value *arg = args[i];
1297 struct type *type = check_typedef (value_type (arg));
1298 const bfd_byte *contents = value_contents (arg);
1299 int len = TYPE_LENGTH (type);
1300
1301 /* Calculate the potential last register needed.
1302 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1303 shall be used. So, last needed register will be regnum-1(24). */
1304 last_regnum = regnum - (len + (len & 1)) + 1;
1305
1306 /* If there are registers available, use them. Once we start putting
1307 stuff on the stack, all subsequent args go on stack. */
1308 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1309 {
1310 /* Skip a register for odd length args. */
1311 if (len & 1)
1312 regnum--;
1313
1314 /* Write MSB of argument into register and subsequent bytes in
1315 decreasing register numbers. */
1316 for (j = 0; j < len; j++)
1317 regcache_cooked_write_unsigned
1318 (regcache, regnum--, contents[len - j - 1]);
1319 }
1320 /* No registers available, push the args onto the stack. */
1321 else
1322 {
1323 /* From here on, we don't care about regnum. */
1324 si = push_stack_item (si, contents, len);
1325 }
1326 }
1327
1328 /* Push args onto the stack. */
1329 while (si)
1330 {
1331 sp -= si->len;
1332 /* Add 1 to sp here to account for post decr nature of pushes. */
1333 write_memory (sp + 1, si->data, si->len);
1334 si = pop_stack_item (si);
1335 }
1336
1337 /* Set the return address. For the avr, the return address is the BP_ADDR.
1338 Need to push the return address onto the stack noting that it needs to be
1339 in big-endian order on the stack. */
1340 for (i = 1; i <= call_length; i++)
1341 {
1342 buf[call_length - i] = return_pc & 0xff;
1343 return_pc >>= 8;
1344 }
1345
1346 sp -= call_length;
1347 /* Use 'sp + 1' since pushes are post decr ops. */
1348 write_memory (sp + 1, buf, call_length);
1349
1350 /* Finally, update the SP register. */
1351 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1352 avr_convert_saddr_to_raw (sp));
1353
1354 /* Return SP value for the dummy frame, where the return address hasn't been
1355 pushed. */
1356 return sp + call_length;
1357 }
1358
1359 /* Unfortunately dwarf2 register for SP is 32. */
1360
1361 static int
1362 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1363 {
1364 if (reg >= 0 && reg < 32)
1365 return reg;
1366 if (reg == 32)
1367 return AVR_SP_REGNUM;
1368 return -1;
1369 }
1370
1371 /* Implementation of `address_class_type_flags' gdbarch method.
1372
1373 This method maps DW_AT_address_class attributes to a
1374 type_instance_flag_value. */
1375
1376 static int
1377 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1378 {
1379 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1380 __flash qualifier. Note that this attribute is only valid with
1381 pointer types and therefore the flag is set to the pointer type and
1382 not its target type. */
1383 if (dwarf2_addr_class == 1 && byte_size == 2)
1384 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1385 return 0;
1386 }
1387
1388 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1389
1390 Convert a type_instance_flag_value to an address space qualifier. */
1391
1392 static const char*
1393 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1394 {
1395 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1396 return "flash";
1397 else
1398 return NULL;
1399 }
1400
1401 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1402
1403 Convert an address space qualifier to a type_instance_flag_value. */
1404
1405 static int
1406 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1407 const char* name,
1408 int *type_flags_ptr)
1409 {
1410 if (strcmp (name, "flash") == 0)
1411 {
1412 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1413 return 1;
1414 }
1415 else
1416 return 0;
1417 }
1418
1419 /* Initialize the gdbarch structure for the AVR's. */
1420
1421 static struct gdbarch *
1422 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1423 {
1424 struct gdbarch *gdbarch;
1425 struct gdbarch_tdep *tdep;
1426 struct gdbarch_list *best_arch;
1427 int call_length;
1428
1429 /* Avr-6 call instructions save 3 bytes. */
1430 switch (info.bfd_arch_info->mach)
1431 {
1432 case bfd_mach_avr1:
1433 case bfd_mach_avrxmega1:
1434 case bfd_mach_avr2:
1435 case bfd_mach_avrxmega2:
1436 case bfd_mach_avr3:
1437 case bfd_mach_avrxmega3:
1438 case bfd_mach_avr4:
1439 case bfd_mach_avrxmega4:
1440 case bfd_mach_avr5:
1441 case bfd_mach_avrxmega5:
1442 default:
1443 call_length = 2;
1444 break;
1445 case bfd_mach_avr6:
1446 case bfd_mach_avrxmega6:
1447 case bfd_mach_avrxmega7:
1448 call_length = 3;
1449 break;
1450 }
1451
1452 /* If there is already a candidate, use it. */
1453 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1454 best_arch != NULL;
1455 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1456 {
1457 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1458 return best_arch->gdbarch;
1459 }
1460
1461 /* None found, create a new architecture from the information provided. */
1462 tdep = XCNEW (struct gdbarch_tdep);
1463 gdbarch = gdbarch_alloc (&info, tdep);
1464
1465 tdep->call_length = call_length;
1466
1467 /* Create a type for PC. We can't use builtin types here, as they may not
1468 be defined. */
1469 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1470 "void");
1471 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1472 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1473 tdep->func_void_type);
1474
1475 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1476 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1477 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1478 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1479 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1480 set_gdbarch_addr_bit (gdbarch, 32);
1481
1482 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1483 set_gdbarch_wchar_signed (gdbarch, 1);
1484
1485 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1486 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1487 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1488
1489 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1490 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1491 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1492
1493 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1494 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1495
1496 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1497
1498 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1499 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1500
1501 set_gdbarch_register_name (gdbarch, avr_register_name);
1502 set_gdbarch_register_type (gdbarch, avr_register_type);
1503
1504 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1505 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1506 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1507
1508 set_gdbarch_return_value (gdbarch, avr_return_value);
1509
1510 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1511
1512 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1513
1514 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1515 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1516 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1517
1518 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1519 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1520
1521 set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1522 set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
1523
1524 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1525 frame_base_set_default (gdbarch, &avr_frame_base);
1526
1527 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1528
1529 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1530 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1531
1532 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1533 set_gdbarch_address_class_name_to_type_flags
1534 (gdbarch, avr_address_class_name_to_type_flags);
1535 set_gdbarch_address_class_type_flags_to_name
1536 (gdbarch, avr_address_class_type_flags_to_name);
1537
1538 return gdbarch;
1539 }
1540
1541 /* Send a query request to the avr remote target asking for values of the io
1542 registers. If args parameter is not NULL, then the user has requested info
1543 on a specific io register [This still needs implemented and is ignored for
1544 now]. The query string should be one of these forms:
1545
1546 "Ravr.io_reg" -> reply is "NN" number of io registers
1547
1548 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1549 registers to be read. The reply should be "<NAME>,VV;" for each io register
1550 where, <NAME> is a string, and VV is the hex value of the register.
1551
1552 All io registers are 8-bit. */
1553
1554 static void
1555 avr_io_reg_read_command (const char *args, int from_tty)
1556 {
1557 char query[400];
1558 unsigned int nreg = 0;
1559 unsigned int val;
1560
1561 /* Find out how many io registers the target has. */
1562 gdb::optional<gdb::byte_vector> buf
1563 = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, "avr.io_reg");
1564
1565 if (!buf)
1566 {
1567 fprintf_unfiltered (gdb_stderr,
1568 _("ERR: info io_registers NOT supported "
1569 "by current target\n"));
1570 return;
1571 }
1572
1573 const char *bufstr = (const char *) buf->data ();
1574
1575 if (sscanf (bufstr, "%x", &nreg) != 1)
1576 {
1577 fprintf_unfiltered (gdb_stderr,
1578 _("Error fetching number of io registers\n"));
1579 return;
1580 }
1581
1582 reinitialize_more_filter ();
1583
1584 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1585
1586 /* only fetch up to 8 registers at a time to keep the buffer small */
1587 int step = 8;
1588
1589 for (int i = 0; i < nreg; i += step)
1590 {
1591 /* how many registers this round? */
1592 int j = step;
1593 if ((i+j) >= nreg)
1594 j = nreg - i; /* last block is less than 8 registers */
1595
1596 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1597 buf = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, query);
1598
1599 if (!buf)
1600 {
1601 fprintf_unfiltered (gdb_stderr,
1602 _("ERR: error reading avr.io_reg:%x,%x\n"),
1603 i, j);
1604 return;
1605 }
1606
1607 const char *p = (const char *) buf->data ();
1608 for (int k = i; k < (i + j); k++)
1609 {
1610 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1611 {
1612 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1613 while ((*p != ';') && (*p != '\0'))
1614 p++;
1615 p++; /* skip over ';' */
1616 if (*p == '\0')
1617 break;
1618 }
1619 }
1620 }
1621 }
1622
1623 void
1624 _initialize_avr_tdep (void)
1625 {
1626 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1627
1628 /* Add a new command to allow the user to query the avr remote target for
1629 the values of the io space registers in a saner way than just using
1630 `x/NNNb ADDR`. */
1631
1632 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1633 io_registers' to signify it is not available on other platforms. */
1634
1635 add_info ("io_registers", avr_io_reg_read_command,
1636 _("query remote avr target for io space register values"));
1637 }
This page took 0.078775 seconds and 5 git commands to generate.