* ax-gdb.c (gen_cast): Remove redundant assignment to
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "expression.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "gdb_string.h"
34 #include "block.h"
35 #include "regcache.h"
36
37 /* To make sense of this file, you should read doc/agentexpr.texi.
38 Then look at the types and enums in ax-gdb.h. For the code itself,
39 look at gen_expr, towards the bottom; that's the main function that
40 looks at the GDB expressions and calls everything else to generate
41 code.
42
43 I'm beginning to wonder whether it wouldn't be nicer to internally
44 generate trees, with types, and then spit out the bytecode in
45 linear form afterwards; we could generate fewer `swap', `ext', and
46 `zero_ext' bytecodes that way; it would make good constant folding
47 easier, too. But at the moment, I think we should be willing to
48 pay for the simplicity of this code with less-than-optimal bytecode
49 strings.
50
51 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
52 \f
53
54
55 /* Prototypes for local functions. */
56
57 /* There's a standard order to the arguments of these functions:
58 union exp_element ** --- pointer into expression
59 struct agent_expr * --- agent expression buffer to generate code into
60 struct axs_value * --- describes value left on top of stack */
61
62 static struct value *const_var_ref (struct symbol *var);
63 static struct value *const_expr (union exp_element **pc);
64 static struct value *maybe_const_expr (union exp_element **pc);
65
66 static void gen_traced_pop (struct agent_expr *, struct axs_value *);
67
68 static void gen_sign_extend (struct agent_expr *, struct type *);
69 static void gen_extend (struct agent_expr *, struct type *);
70 static void gen_fetch (struct agent_expr *, struct type *);
71 static void gen_left_shift (struct agent_expr *, int);
72
73
74 static void gen_frame_args_address (struct agent_expr *);
75 static void gen_frame_locals_address (struct agent_expr *);
76 static void gen_offset (struct agent_expr *ax, int offset);
77 static void gen_sym_offset (struct agent_expr *, struct symbol *);
78 static void gen_var_ref (struct agent_expr *ax,
79 struct axs_value *value, struct symbol *var);
80
81
82 static void gen_int_literal (struct agent_expr *ax,
83 struct axs_value *value,
84 LONGEST k, struct type *type);
85
86
87 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
88 static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
89 static int type_wider_than (struct type *type1, struct type *type2);
90 static struct type *max_type (struct type *type1, struct type *type2);
91 static void gen_conversion (struct agent_expr *ax,
92 struct type *from, struct type *to);
93 static int is_nontrivial_conversion (struct type *from, struct type *to);
94 static void gen_usual_arithmetic (struct agent_expr *ax,
95 struct axs_value *value1,
96 struct axs_value *value2);
97 static void gen_integral_promotions (struct agent_expr *ax,
98 struct axs_value *value);
99 static void gen_cast (struct agent_expr *ax,
100 struct axs_value *value, struct type *type);
101 static void gen_scale (struct agent_expr *ax,
102 enum agent_op op, struct type *type);
103 static void gen_add (struct agent_expr *ax,
104 struct axs_value *value,
105 struct axs_value *value1,
106 struct axs_value *value2, char *name);
107 static void gen_sub (struct agent_expr *ax,
108 struct axs_value *value,
109 struct axs_value *value1, struct axs_value *value2);
110 static void gen_binop (struct agent_expr *ax,
111 struct axs_value *value,
112 struct axs_value *value1,
113 struct axs_value *value2,
114 enum agent_op op,
115 enum agent_op op_unsigned, int may_carry, char *name);
116 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
117 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
118 static void gen_deref (struct agent_expr *, struct axs_value *);
119 static void gen_address_of (struct agent_expr *, struct axs_value *);
120 static int find_field (struct type *type, char *name);
121 static void gen_bitfield_ref (struct agent_expr *ax,
122 struct axs_value *value,
123 struct type *type, int start, int end);
124 static void gen_struct_ref (struct agent_expr *ax,
125 struct axs_value *value,
126 char *field,
127 char *operator_name, char *operand_name);
128 static void gen_repeat (union exp_element **pc,
129 struct agent_expr *ax, struct axs_value *value);
130 static void gen_sizeof (union exp_element **pc,
131 struct agent_expr *ax, struct axs_value *value);
132 static void gen_expr (union exp_element **pc,
133 struct agent_expr *ax, struct axs_value *value);
134
135 static void agent_command (char *exp, int from_tty);
136 \f
137
138 /* Detecting constant expressions. */
139
140 /* If the variable reference at *PC is a constant, return its value.
141 Otherwise, return zero.
142
143 Hey, Wally! How can a variable reference be a constant?
144
145 Well, Beav, this function really handles the OP_VAR_VALUE operator,
146 not specifically variable references. GDB uses OP_VAR_VALUE to
147 refer to any kind of symbolic reference: function names, enum
148 elements, and goto labels are all handled through the OP_VAR_VALUE
149 operator, even though they're constants. It makes sense given the
150 situation.
151
152 Gee, Wally, don'cha wonder sometimes if data representations that
153 subvert commonly accepted definitions of terms in favor of heavily
154 context-specific interpretations are really just a tool of the
155 programming hegemony to preserve their power and exclude the
156 proletariat? */
157
158 static struct value *
159 const_var_ref (struct symbol *var)
160 {
161 struct type *type = SYMBOL_TYPE (var);
162
163 switch (SYMBOL_CLASS (var))
164 {
165 case LOC_CONST:
166 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
167
168 case LOC_LABEL:
169 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
170
171 default:
172 return 0;
173 }
174 }
175
176
177 /* If the expression starting at *PC has a constant value, return it.
178 Otherwise, return zero. If we return a value, then *PC will be
179 advanced to the end of it. If we return zero, *PC could be
180 anywhere. */
181 static struct value *
182 const_expr (union exp_element **pc)
183 {
184 enum exp_opcode op = (*pc)->opcode;
185 struct value *v1;
186
187 switch (op)
188 {
189 case OP_LONG:
190 {
191 struct type *type = (*pc)[1].type;
192 LONGEST k = (*pc)[2].longconst;
193 (*pc) += 4;
194 return value_from_longest (type, k);
195 }
196
197 case OP_VAR_VALUE:
198 {
199 struct value *v = const_var_ref ((*pc)[2].symbol);
200 (*pc) += 4;
201 return v;
202 }
203
204 /* We could add more operators in here. */
205
206 case UNOP_NEG:
207 (*pc)++;
208 v1 = const_expr (pc);
209 if (v1)
210 return value_neg (v1);
211 else
212 return 0;
213
214 default:
215 return 0;
216 }
217 }
218
219
220 /* Like const_expr, but guarantee also that *PC is undisturbed if the
221 expression is not constant. */
222 static struct value *
223 maybe_const_expr (union exp_element **pc)
224 {
225 union exp_element *tentative_pc = *pc;
226 struct value *v = const_expr (&tentative_pc);
227
228 /* If we got a value, then update the real PC. */
229 if (v)
230 *pc = tentative_pc;
231
232 return v;
233 }
234 \f
235
236 /* Generating bytecode from GDB expressions: general assumptions */
237
238 /* Here are a few general assumptions made throughout the code; if you
239 want to make a change that contradicts one of these, then you'd
240 better scan things pretty thoroughly.
241
242 - We assume that all values occupy one stack element. For example,
243 sometimes we'll swap to get at the left argument to a binary
244 operator. If we decide that void values should occupy no stack
245 elements, or that synthetic arrays (whose size is determined at
246 run time, created by the `@' operator) should occupy two stack
247 elements (address and length), then this will cause trouble.
248
249 - We assume the stack elements are infinitely wide, and that we
250 don't have to worry what happens if the user requests an
251 operation that is wider than the actual interpreter's stack.
252 That is, it's up to the interpreter to handle directly all the
253 integer widths the user has access to. (Woe betide the language
254 with bignums!)
255
256 - We don't support side effects. Thus, we don't have to worry about
257 GCC's generalized lvalues, function calls, etc.
258
259 - We don't support floating point. Many places where we switch on
260 some type don't bother to include cases for floating point; there
261 may be even more subtle ways this assumption exists. For
262 example, the arguments to % must be integers.
263
264 - We assume all subexpressions have a static, unchanging type. If
265 we tried to support convenience variables, this would be a
266 problem.
267
268 - All values on the stack should always be fully zero- or
269 sign-extended.
270
271 (I wasn't sure whether to choose this or its opposite --- that
272 only addresses are assumed extended --- but it turns out that
273 neither convention completely eliminates spurious extend
274 operations (if everything is always extended, then you have to
275 extend after add, because it could overflow; if nothing is
276 extended, then you end up producing extends whenever you change
277 sizes), and this is simpler.) */
278 \f
279
280 /* Generating bytecode from GDB expressions: the `trace' kludge */
281
282 /* The compiler in this file is a general-purpose mechanism for
283 translating GDB expressions into bytecode. One ought to be able to
284 find a million and one uses for it.
285
286 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
287 of expediency. Let he who is without sin cast the first stone.
288
289 For the data tracing facility, we need to insert `trace' bytecodes
290 before each data fetch; this records all the memory that the
291 expression touches in the course of evaluation, so that memory will
292 be available when the user later tries to evaluate the expression
293 in GDB.
294
295 This should be done (I think) in a post-processing pass, that walks
296 an arbitrary agent expression and inserts `trace' operations at the
297 appropriate points. But it's much faster to just hack them
298 directly into the code. And since we're in a crunch, that's what
299 I've done.
300
301 Setting the flag trace_kludge to non-zero enables the code that
302 emits the trace bytecodes at the appropriate points. */
303 static int trace_kludge;
304
305 /* Trace the lvalue on the stack, if it needs it. In either case, pop
306 the value. Useful on the left side of a comma, and at the end of
307 an expression being used for tracing. */
308 static void
309 gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
310 {
311 if (trace_kludge)
312 switch (value->kind)
313 {
314 case axs_rvalue:
315 /* We don't trace rvalues, just the lvalues necessary to
316 produce them. So just dispose of this value. */
317 ax_simple (ax, aop_pop);
318 break;
319
320 case axs_lvalue_memory:
321 {
322 int length = TYPE_LENGTH (check_typedef (value->type));
323
324 /* There's no point in trying to use a trace_quick bytecode
325 here, since "trace_quick SIZE pop" is three bytes, whereas
326 "const8 SIZE trace" is also three bytes, does the same
327 thing, and the simplest code which generates that will also
328 work correctly for objects with large sizes. */
329 ax_const_l (ax, length);
330 ax_simple (ax, aop_trace);
331 }
332 break;
333
334 case axs_lvalue_register:
335 /* We need to mention the register somewhere in the bytecode,
336 so ax_reqs will pick it up and add it to the mask of
337 registers used. */
338 ax_reg (ax, value->u.reg);
339 ax_simple (ax, aop_pop);
340 break;
341 }
342 else
343 /* If we're not tracing, just pop the value. */
344 ax_simple (ax, aop_pop);
345 }
346 \f
347
348
349 /* Generating bytecode from GDB expressions: helper functions */
350
351 /* Assume that the lower bits of the top of the stack is a value of
352 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
353 static void
354 gen_sign_extend (struct agent_expr *ax, struct type *type)
355 {
356 /* Do we need to sign-extend this? */
357 if (!TYPE_UNSIGNED (type))
358 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
359 }
360
361
362 /* Assume the lower bits of the top of the stack hold a value of type
363 TYPE, and the upper bits are garbage. Sign-extend or truncate as
364 needed. */
365 static void
366 gen_extend (struct agent_expr *ax, struct type *type)
367 {
368 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
369 /* I just had to. */
370 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
371 }
372
373
374 /* Assume that the top of the stack contains a value of type "pointer
375 to TYPE"; generate code to fetch its value. Note that TYPE is the
376 target type, not the pointer type. */
377 static void
378 gen_fetch (struct agent_expr *ax, struct type *type)
379 {
380 if (trace_kludge)
381 {
382 /* Record the area of memory we're about to fetch. */
383 ax_trace_quick (ax, TYPE_LENGTH (type));
384 }
385
386 switch (TYPE_CODE (type))
387 {
388 case TYPE_CODE_PTR:
389 case TYPE_CODE_ENUM:
390 case TYPE_CODE_INT:
391 case TYPE_CODE_CHAR:
392 /* It's a scalar value, so we know how to dereference it. How
393 many bytes long is it? */
394 switch (TYPE_LENGTH (type))
395 {
396 case 8 / TARGET_CHAR_BIT:
397 ax_simple (ax, aop_ref8);
398 break;
399 case 16 / TARGET_CHAR_BIT:
400 ax_simple (ax, aop_ref16);
401 break;
402 case 32 / TARGET_CHAR_BIT:
403 ax_simple (ax, aop_ref32);
404 break;
405 case 64 / TARGET_CHAR_BIT:
406 ax_simple (ax, aop_ref64);
407 break;
408
409 /* Either our caller shouldn't have asked us to dereference
410 that pointer (other code's fault), or we're not
411 implementing something we should be (this code's fault).
412 In any case, it's a bug the user shouldn't see. */
413 default:
414 internal_error (__FILE__, __LINE__,
415 _("gen_fetch: strange size"));
416 }
417
418 gen_sign_extend (ax, type);
419 break;
420
421 default:
422 /* Either our caller shouldn't have asked us to dereference that
423 pointer (other code's fault), or we're not implementing
424 something we should be (this code's fault). In any case,
425 it's a bug the user shouldn't see. */
426 internal_error (__FILE__, __LINE__,
427 _("gen_fetch: bad type code"));
428 }
429 }
430
431
432 /* Generate code to left shift the top of the stack by DISTANCE bits, or
433 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
434 unsigned (logical) right shifts. */
435 static void
436 gen_left_shift (struct agent_expr *ax, int distance)
437 {
438 if (distance > 0)
439 {
440 ax_const_l (ax, distance);
441 ax_simple (ax, aop_lsh);
442 }
443 else if (distance < 0)
444 {
445 ax_const_l (ax, -distance);
446 ax_simple (ax, aop_rsh_unsigned);
447 }
448 }
449 \f
450
451
452 /* Generating bytecode from GDB expressions: symbol references */
453
454 /* Generate code to push the base address of the argument portion of
455 the top stack frame. */
456 static void
457 gen_frame_args_address (struct agent_expr *ax)
458 {
459 int frame_reg;
460 LONGEST frame_offset;
461
462 gdbarch_virtual_frame_pointer (current_gdbarch,
463 ax->scope, &frame_reg, &frame_offset);
464 ax_reg (ax, frame_reg);
465 gen_offset (ax, frame_offset);
466 }
467
468
469 /* Generate code to push the base address of the locals portion of the
470 top stack frame. */
471 static void
472 gen_frame_locals_address (struct agent_expr *ax)
473 {
474 int frame_reg;
475 LONGEST frame_offset;
476
477 gdbarch_virtual_frame_pointer (current_gdbarch,
478 ax->scope, &frame_reg, &frame_offset);
479 ax_reg (ax, frame_reg);
480 gen_offset (ax, frame_offset);
481 }
482
483
484 /* Generate code to add OFFSET to the top of the stack. Try to
485 generate short and readable code. We use this for getting to
486 variables on the stack, and structure members. If we were
487 programming in ML, it would be clearer why these are the same
488 thing. */
489 static void
490 gen_offset (struct agent_expr *ax, int offset)
491 {
492 /* It would suffice to simply push the offset and add it, but this
493 makes it easier to read positive and negative offsets in the
494 bytecode. */
495 if (offset > 0)
496 {
497 ax_const_l (ax, offset);
498 ax_simple (ax, aop_add);
499 }
500 else if (offset < 0)
501 {
502 ax_const_l (ax, -offset);
503 ax_simple (ax, aop_sub);
504 }
505 }
506
507
508 /* In many cases, a symbol's value is the offset from some other
509 address (stack frame, base register, etc.) Generate code to add
510 VAR's value to the top of the stack. */
511 static void
512 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
513 {
514 gen_offset (ax, SYMBOL_VALUE (var));
515 }
516
517
518 /* Generate code for a variable reference to AX. The variable is the
519 symbol VAR. Set VALUE to describe the result. */
520
521 static void
522 gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
523 {
524 /* Dereference any typedefs. */
525 value->type = check_typedef (SYMBOL_TYPE (var));
526
527 /* I'm imitating the code in read_var_value. */
528 switch (SYMBOL_CLASS (var))
529 {
530 case LOC_CONST: /* A constant, like an enum value. */
531 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
532 value->kind = axs_rvalue;
533 break;
534
535 case LOC_LABEL: /* A goto label, being used as a value. */
536 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
537 value->kind = axs_rvalue;
538 break;
539
540 case LOC_CONST_BYTES:
541 internal_error (__FILE__, __LINE__,
542 _("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
543
544 /* Variable at a fixed location in memory. Easy. */
545 case LOC_STATIC:
546 /* Push the address of the variable. */
547 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
548 value->kind = axs_lvalue_memory;
549 break;
550
551 case LOC_ARG: /* var lives in argument area of frame */
552 gen_frame_args_address (ax);
553 gen_sym_offset (ax, var);
554 value->kind = axs_lvalue_memory;
555 break;
556
557 case LOC_REF_ARG: /* As above, but the frame slot really
558 holds the address of the variable. */
559 gen_frame_args_address (ax);
560 gen_sym_offset (ax, var);
561 /* Don't assume any particular pointer size. */
562 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
563 value->kind = axs_lvalue_memory;
564 break;
565
566 case LOC_LOCAL: /* var lives in locals area of frame */
567 case LOC_LOCAL_ARG:
568 gen_frame_locals_address (ax);
569 gen_sym_offset (ax, var);
570 value->kind = axs_lvalue_memory;
571 break;
572
573 case LOC_BASEREG: /* relative to some base register */
574 case LOC_BASEREG_ARG:
575 ax_reg (ax, SYMBOL_BASEREG (var));
576 gen_sym_offset (ax, var);
577 value->kind = axs_lvalue_memory;
578 break;
579
580 case LOC_TYPEDEF:
581 error (_("Cannot compute value of typedef `%s'."),
582 SYMBOL_PRINT_NAME (var));
583 break;
584
585 case LOC_BLOCK:
586 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
587 value->kind = axs_rvalue;
588 break;
589
590 case LOC_REGISTER:
591 case LOC_REGPARM:
592 /* Don't generate any code at all; in the process of treating
593 this as an lvalue or rvalue, the caller will generate the
594 right code. */
595 value->kind = axs_lvalue_register;
596 value->u.reg = SYMBOL_VALUE (var);
597 break;
598
599 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
600 register, not on the stack. Simpler than LOC_REGISTER and
601 LOC_REGPARM, because it's just like any other case where the
602 thing has a real address. */
603 case LOC_REGPARM_ADDR:
604 ax_reg (ax, SYMBOL_VALUE (var));
605 value->kind = axs_lvalue_memory;
606 break;
607
608 case LOC_UNRESOLVED:
609 {
610 struct minimal_symbol *msym
611 = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL);
612 if (!msym)
613 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
614
615 /* Push the address of the variable. */
616 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
617 value->kind = axs_lvalue_memory;
618 }
619 break;
620
621 case LOC_COMPUTED:
622 case LOC_COMPUTED_ARG:
623 /* FIXME: cagney/2004-01-26: It should be possible to
624 unconditionally call the SYMBOL_OPS method when available.
625 Unfortunately DWARF 2 stores the frame-base (instead of the
626 function) location in a function's symbol. Oops! For the
627 moment enable this when/where applicable. */
628 SYMBOL_OPS (var)->tracepoint_var_ref (var, ax, value);
629 break;
630
631 case LOC_OPTIMIZED_OUT:
632 error (_("The variable `%s' has been optimized out."),
633 SYMBOL_PRINT_NAME (var));
634 break;
635
636 default:
637 error (_("Cannot find value of botched symbol `%s'."),
638 SYMBOL_PRINT_NAME (var));
639 break;
640 }
641 }
642 \f
643
644
645 /* Generating bytecode from GDB expressions: literals */
646
647 static void
648 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
649 struct type *type)
650 {
651 ax_const_l (ax, k);
652 value->kind = axs_rvalue;
653 value->type = check_typedef (type);
654 }
655 \f
656
657
658 /* Generating bytecode from GDB expressions: unary conversions, casts */
659
660 /* Take what's on the top of the stack (as described by VALUE), and
661 try to make an rvalue out of it. Signal an error if we can't do
662 that. */
663 static void
664 require_rvalue (struct agent_expr *ax, struct axs_value *value)
665 {
666 switch (value->kind)
667 {
668 case axs_rvalue:
669 /* It's already an rvalue. */
670 break;
671
672 case axs_lvalue_memory:
673 /* The top of stack is the address of the object. Dereference. */
674 gen_fetch (ax, value->type);
675 break;
676
677 case axs_lvalue_register:
678 /* There's nothing on the stack, but value->u.reg is the
679 register number containing the value.
680
681 When we add floating-point support, this is going to have to
682 change. What about SPARC register pairs, for example? */
683 ax_reg (ax, value->u.reg);
684 gen_extend (ax, value->type);
685 break;
686 }
687
688 value->kind = axs_rvalue;
689 }
690
691
692 /* Assume the top of the stack is described by VALUE, and perform the
693 usual unary conversions. This is motivated by ANSI 6.2.2, but of
694 course GDB expressions are not ANSI; they're the mishmash union of
695 a bunch of languages. Rah.
696
697 NOTE! This function promises to produce an rvalue only when the
698 incoming value is of an appropriate type. In other words, the
699 consumer of the value this function produces may assume the value
700 is an rvalue only after checking its type.
701
702 The immediate issue is that if the user tries to use a structure or
703 union as an operand of, say, the `+' operator, we don't want to try
704 to convert that structure to an rvalue; require_rvalue will bomb on
705 structs and unions. Rather, we want to simply pass the struct
706 lvalue through unchanged, and let `+' raise an error. */
707
708 static void
709 gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
710 {
711 /* We don't have to generate any code for the usual integral
712 conversions, since values are always represented as full-width on
713 the stack. Should we tweak the type? */
714
715 /* Some types require special handling. */
716 switch (TYPE_CODE (value->type))
717 {
718 /* Functions get converted to a pointer to the function. */
719 case TYPE_CODE_FUNC:
720 value->type = lookup_pointer_type (value->type);
721 value->kind = axs_rvalue; /* Should always be true, but just in case. */
722 break;
723
724 /* Arrays get converted to a pointer to their first element, and
725 are no longer an lvalue. */
726 case TYPE_CODE_ARRAY:
727 {
728 struct type *elements = TYPE_TARGET_TYPE (value->type);
729 value->type = lookup_pointer_type (elements);
730 value->kind = axs_rvalue;
731 /* We don't need to generate any code; the address of the array
732 is also the address of its first element. */
733 }
734 break;
735
736 /* Don't try to convert structures and unions to rvalues. Let the
737 consumer signal an error. */
738 case TYPE_CODE_STRUCT:
739 case TYPE_CODE_UNION:
740 return;
741
742 /* If the value is an enum, call it an integer. */
743 case TYPE_CODE_ENUM:
744 value->type = builtin_type_int;
745 break;
746 }
747
748 /* If the value is an lvalue, dereference it. */
749 require_rvalue (ax, value);
750 }
751
752
753 /* Return non-zero iff the type TYPE1 is considered "wider" than the
754 type TYPE2, according to the rules described in gen_usual_arithmetic. */
755 static int
756 type_wider_than (struct type *type1, struct type *type2)
757 {
758 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
759 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
760 && TYPE_UNSIGNED (type1)
761 && !TYPE_UNSIGNED (type2)));
762 }
763
764
765 /* Return the "wider" of the two types TYPE1 and TYPE2. */
766 static struct type *
767 max_type (struct type *type1, struct type *type2)
768 {
769 return type_wider_than (type1, type2) ? type1 : type2;
770 }
771
772
773 /* Generate code to convert a scalar value of type FROM to type TO. */
774 static void
775 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
776 {
777 /* Perhaps there is a more graceful way to state these rules. */
778
779 /* If we're converting to a narrower type, then we need to clear out
780 the upper bits. */
781 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
782 gen_extend (ax, from);
783
784 /* If the two values have equal width, but different signednesses,
785 then we need to extend. */
786 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
787 {
788 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
789 gen_extend (ax, to);
790 }
791
792 /* If we're converting to a wider type, and becoming unsigned, then
793 we need to zero out any possible sign bits. */
794 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
795 {
796 if (TYPE_UNSIGNED (to))
797 gen_extend (ax, to);
798 }
799 }
800
801
802 /* Return non-zero iff the type FROM will require any bytecodes to be
803 emitted to be converted to the type TO. */
804 static int
805 is_nontrivial_conversion (struct type *from, struct type *to)
806 {
807 struct agent_expr *ax = new_agent_expr (0);
808 int nontrivial;
809
810 /* Actually generate the code, and see if anything came out. At the
811 moment, it would be trivial to replicate the code in
812 gen_conversion here, but in the future, when we're supporting
813 floating point and the like, it may not be. Doing things this
814 way allows this function to be independent of the logic in
815 gen_conversion. */
816 gen_conversion (ax, from, to);
817 nontrivial = ax->len > 0;
818 free_agent_expr (ax);
819 return nontrivial;
820 }
821
822
823 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
824 6.2.1.5) for the two operands of an arithmetic operator. This
825 effectively finds a "least upper bound" type for the two arguments,
826 and promotes each argument to that type. *VALUE1 and *VALUE2
827 describe the values as they are passed in, and as they are left. */
828 static void
829 gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
830 struct axs_value *value2)
831 {
832 /* Do the usual binary conversions. */
833 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
834 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
835 {
836 /* The ANSI integral promotions seem to work this way: Order the
837 integer types by size, and then by signedness: an n-bit
838 unsigned type is considered "wider" than an n-bit signed
839 type. Promote to the "wider" of the two types, and always
840 promote at least to int. */
841 struct type *target = max_type (builtin_type_int,
842 max_type (value1->type, value2->type));
843
844 /* Deal with value2, on the top of the stack. */
845 gen_conversion (ax, value2->type, target);
846
847 /* Deal with value1, not on the top of the stack. Don't
848 generate the `swap' instructions if we're not actually going
849 to do anything. */
850 if (is_nontrivial_conversion (value1->type, target))
851 {
852 ax_simple (ax, aop_swap);
853 gen_conversion (ax, value1->type, target);
854 ax_simple (ax, aop_swap);
855 }
856
857 value1->type = value2->type = check_typedef (target);
858 }
859 }
860
861
862 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
863 the value on the top of the stack, as described by VALUE. Assume
864 the value has integral type. */
865 static void
866 gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
867 {
868 if (!type_wider_than (value->type, builtin_type_int))
869 {
870 gen_conversion (ax, value->type, builtin_type_int);
871 value->type = builtin_type_int;
872 }
873 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
874 {
875 gen_conversion (ax, value->type, builtin_type_unsigned_int);
876 value->type = builtin_type_unsigned_int;
877 }
878 }
879
880
881 /* Generate code for a cast to TYPE. */
882 static void
883 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
884 {
885 /* GCC does allow casts to yield lvalues, so this should be fixed
886 before merging these changes into the trunk. */
887 require_rvalue (ax, value);
888 /* Dereference typedefs. */
889 type = check_typedef (type);
890
891 switch (TYPE_CODE (type))
892 {
893 case TYPE_CODE_PTR:
894 /* It's implementation-defined, and I'll bet this is what GCC
895 does. */
896 break;
897
898 case TYPE_CODE_ARRAY:
899 case TYPE_CODE_STRUCT:
900 case TYPE_CODE_UNION:
901 case TYPE_CODE_FUNC:
902 error (_("Invalid type cast: intended type must be scalar."));
903
904 case TYPE_CODE_ENUM:
905 /* We don't have to worry about the size of the value, because
906 all our integral values are fully sign-extended, and when
907 casting pointers we can do anything we like. Is there any
908 way for us to know what GCC actually does with a cast like
909 this? */
910 break;
911
912 case TYPE_CODE_INT:
913 gen_conversion (ax, value->type, type);
914 break;
915
916 case TYPE_CODE_VOID:
917 /* We could pop the value, and rely on everyone else to check
918 the type and notice that this value doesn't occupy a stack
919 slot. But for now, leave the value on the stack, and
920 preserve the "value == stack element" assumption. */
921 break;
922
923 default:
924 error (_("Casts to requested type are not yet implemented."));
925 }
926
927 value->type = type;
928 }
929 \f
930
931
932 /* Generating bytecode from GDB expressions: arithmetic */
933
934 /* Scale the integer on the top of the stack by the size of the target
935 of the pointer type TYPE. */
936 static void
937 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
938 {
939 struct type *element = TYPE_TARGET_TYPE (type);
940
941 if (TYPE_LENGTH (element) != 1)
942 {
943 ax_const_l (ax, TYPE_LENGTH (element));
944 ax_simple (ax, op);
945 }
946 }
947
948
949 /* Generate code for an addition; non-trivial because we deal with
950 pointer arithmetic. We set VALUE to describe the result value; we
951 assume VALUE1 and VALUE2 describe the two operands, and that
952 they've undergone the usual binary conversions. Used by both
953 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
954 static void
955 gen_add (struct agent_expr *ax, struct axs_value *value,
956 struct axs_value *value1, struct axs_value *value2, char *name)
957 {
958 /* Is it INT+PTR? */
959 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
960 && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
961 {
962 /* Swap the values and proceed normally. */
963 ax_simple (ax, aop_swap);
964 gen_scale (ax, aop_mul, value2->type);
965 ax_simple (ax, aop_add);
966 gen_extend (ax, value2->type); /* Catch overflow. */
967 value->type = value2->type;
968 }
969
970 /* Is it PTR+INT? */
971 else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
972 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
973 {
974 gen_scale (ax, aop_mul, value1->type);
975 ax_simple (ax, aop_add);
976 gen_extend (ax, value1->type); /* Catch overflow. */
977 value->type = value1->type;
978 }
979
980 /* Must be number + number; the usual binary conversions will have
981 brought them both to the same width. */
982 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
983 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
984 {
985 ax_simple (ax, aop_add);
986 gen_extend (ax, value1->type); /* Catch overflow. */
987 value->type = value1->type;
988 }
989
990 else
991 error (_("Invalid combination of types in %s."), name);
992
993 value->kind = axs_rvalue;
994 }
995
996
997 /* Generate code for an addition; non-trivial because we have to deal
998 with pointer arithmetic. We set VALUE to describe the result
999 value; we assume VALUE1 and VALUE2 describe the two operands, and
1000 that they've undergone the usual binary conversions. */
1001 static void
1002 gen_sub (struct agent_expr *ax, struct axs_value *value,
1003 struct axs_value *value1, struct axs_value *value2)
1004 {
1005 if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
1006 {
1007 /* Is it PTR - INT? */
1008 if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
1009 {
1010 gen_scale (ax, aop_mul, value1->type);
1011 ax_simple (ax, aop_sub);
1012 gen_extend (ax, value1->type); /* Catch overflow. */
1013 value->type = value1->type;
1014 }
1015
1016 /* Is it PTR - PTR? Strictly speaking, the types ought to
1017 match, but this is what the normal GDB expression evaluator
1018 tests for. */
1019 else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
1020 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1021 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1022 {
1023 ax_simple (ax, aop_sub);
1024 gen_scale (ax, aop_div_unsigned, value1->type);
1025 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
1026 }
1027 else
1028 error (_("\
1029 First argument of `-' is a pointer, but second argument is neither\n\
1030 an integer nor a pointer of the same type."));
1031 }
1032
1033 /* Must be number + number. */
1034 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1035 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
1036 {
1037 ax_simple (ax, aop_sub);
1038 gen_extend (ax, value1->type); /* Catch overflow. */
1039 value->type = value1->type;
1040 }
1041
1042 else
1043 error (_("Invalid combination of types in subtraction."));
1044
1045 value->kind = axs_rvalue;
1046 }
1047
1048 /* Generate code for a binary operator that doesn't do pointer magic.
1049 We set VALUE to describe the result value; we assume VALUE1 and
1050 VALUE2 describe the two operands, and that they've undergone the
1051 usual binary conversions. MAY_CARRY should be non-zero iff the
1052 result needs to be extended. NAME is the English name of the
1053 operator, used in error messages */
1054 static void
1055 gen_binop (struct agent_expr *ax, struct axs_value *value,
1056 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1057 enum agent_op op_unsigned, int may_carry, char *name)
1058 {
1059 /* We only handle INT op INT. */
1060 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1061 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1062 error (_("Invalid combination of types in %s."), name);
1063
1064 ax_simple (ax,
1065 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1066 if (may_carry)
1067 gen_extend (ax, value1->type); /* catch overflow */
1068 value->type = value1->type;
1069 value->kind = axs_rvalue;
1070 }
1071
1072
1073 static void
1074 gen_logical_not (struct agent_expr *ax, struct axs_value *value)
1075 {
1076 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1077 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1078 error (_("Invalid type of operand to `!'."));
1079
1080 gen_usual_unary (ax, value);
1081 ax_simple (ax, aop_log_not);
1082 value->type = builtin_type_int;
1083 }
1084
1085
1086 static void
1087 gen_complement (struct agent_expr *ax, struct axs_value *value)
1088 {
1089 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1090 error (_("Invalid type of operand to `~'."));
1091
1092 gen_usual_unary (ax, value);
1093 gen_integral_promotions (ax, value);
1094 ax_simple (ax, aop_bit_not);
1095 gen_extend (ax, value->type);
1096 }
1097 \f
1098
1099
1100 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1101
1102 /* Dereference the value on the top of the stack. */
1103 static void
1104 gen_deref (struct agent_expr *ax, struct axs_value *value)
1105 {
1106 /* The caller should check the type, because several operators use
1107 this, and we don't know what error message to generate. */
1108 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1109 internal_error (__FILE__, __LINE__,
1110 _("gen_deref: expected a pointer"));
1111
1112 /* We've got an rvalue now, which is a pointer. We want to yield an
1113 lvalue, whose address is exactly that pointer. So we don't
1114 actually emit any code; we just change the type from "Pointer to
1115 T" to "T", and mark the value as an lvalue in memory. Leave it
1116 to the consumer to actually dereference it. */
1117 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1118 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1119 ? axs_rvalue : axs_lvalue_memory);
1120 }
1121
1122
1123 /* Produce the address of the lvalue on the top of the stack. */
1124 static void
1125 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1126 {
1127 /* Special case for taking the address of a function. The ANSI
1128 standard describes this as a special case, too, so this
1129 arrangement is not without motivation. */
1130 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1131 /* The value's already an rvalue on the stack, so we just need to
1132 change the type. */
1133 value->type = lookup_pointer_type (value->type);
1134 else
1135 switch (value->kind)
1136 {
1137 case axs_rvalue:
1138 error (_("Operand of `&' is an rvalue, which has no address."));
1139
1140 case axs_lvalue_register:
1141 error (_("Operand of `&' is in a register, and has no address."));
1142
1143 case axs_lvalue_memory:
1144 value->kind = axs_rvalue;
1145 value->type = lookup_pointer_type (value->type);
1146 break;
1147 }
1148 }
1149
1150
1151 /* A lot of this stuff will have to change to support C++. But we're
1152 not going to deal with that at the moment. */
1153
1154 /* Find the field in the structure type TYPE named NAME, and return
1155 its index in TYPE's field array. */
1156 static int
1157 find_field (struct type *type, char *name)
1158 {
1159 int i;
1160
1161 CHECK_TYPEDEF (type);
1162
1163 /* Make sure this isn't C++. */
1164 if (TYPE_N_BASECLASSES (type) != 0)
1165 internal_error (__FILE__, __LINE__,
1166 _("find_field: derived classes supported"));
1167
1168 for (i = 0; i < TYPE_NFIELDS (type); i++)
1169 {
1170 char *this_name = TYPE_FIELD_NAME (type, i);
1171
1172 if (this_name)
1173 {
1174 if (strcmp (name, this_name) == 0)
1175 return i;
1176
1177 if (this_name[0] == '\0')
1178 internal_error (__FILE__, __LINE__,
1179 _("find_field: anonymous unions not supported"));
1180 }
1181 }
1182
1183 error (_("Couldn't find member named `%s' in struct/union `%s'"),
1184 name, TYPE_TAG_NAME (type));
1185
1186 return 0;
1187 }
1188
1189
1190 /* Generate code to push the value of a bitfield of a structure whose
1191 address is on the top of the stack. START and END give the
1192 starting and one-past-ending *bit* numbers of the field within the
1193 structure. */
1194 static void
1195 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1196 struct type *type, int start, int end)
1197 {
1198 /* Note that ops[i] fetches 8 << i bits. */
1199 static enum agent_op ops[]
1200 =
1201 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1202 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1203
1204 /* We don't want to touch any byte that the bitfield doesn't
1205 actually occupy; we shouldn't make any accesses we're not
1206 explicitly permitted to. We rely here on the fact that the
1207 bytecode `ref' operators work on unaligned addresses.
1208
1209 It takes some fancy footwork to get the stack to work the way
1210 we'd like. Say we're retrieving a bitfield that requires three
1211 fetches. Initially, the stack just contains the address:
1212 addr
1213 For the first fetch, we duplicate the address
1214 addr addr
1215 then add the byte offset, do the fetch, and shift and mask as
1216 needed, yielding a fragment of the value, properly aligned for
1217 the final bitwise or:
1218 addr frag1
1219 then we swap, and repeat the process:
1220 frag1 addr --- address on top
1221 frag1 addr addr --- duplicate it
1222 frag1 addr frag2 --- get second fragment
1223 frag1 frag2 addr --- swap again
1224 frag1 frag2 frag3 --- get third fragment
1225 Notice that, since the third fragment is the last one, we don't
1226 bother duplicating the address this time. Now we have all the
1227 fragments on the stack, and we can simply `or' them together,
1228 yielding the final value of the bitfield. */
1229
1230 /* The first and one-after-last bits in the field, but rounded down
1231 and up to byte boundaries. */
1232 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1233 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1234 / TARGET_CHAR_BIT)
1235 * TARGET_CHAR_BIT);
1236
1237 /* current bit offset within the structure */
1238 int offset;
1239
1240 /* The index in ops of the opcode we're considering. */
1241 int op;
1242
1243 /* The number of fragments we generated in the process. Probably
1244 equal to the number of `one' bits in bytesize, but who cares? */
1245 int fragment_count;
1246
1247 /* Dereference any typedefs. */
1248 type = check_typedef (type);
1249
1250 /* Can we fetch the number of bits requested at all? */
1251 if ((end - start) > ((1 << num_ops) * 8))
1252 internal_error (__FILE__, __LINE__,
1253 _("gen_bitfield_ref: bitfield too wide"));
1254
1255 /* Note that we know here that we only need to try each opcode once.
1256 That may not be true on machines with weird byte sizes. */
1257 offset = bound_start;
1258 fragment_count = 0;
1259 for (op = num_ops - 1; op >= 0; op--)
1260 {
1261 /* number of bits that ops[op] would fetch */
1262 int op_size = 8 << op;
1263
1264 /* The stack at this point, from bottom to top, contains zero or
1265 more fragments, then the address. */
1266
1267 /* Does this fetch fit within the bitfield? */
1268 if (offset + op_size <= bound_end)
1269 {
1270 /* Is this the last fragment? */
1271 int last_frag = (offset + op_size == bound_end);
1272
1273 if (!last_frag)
1274 ax_simple (ax, aop_dup); /* keep a copy of the address */
1275
1276 /* Add the offset. */
1277 gen_offset (ax, offset / TARGET_CHAR_BIT);
1278
1279 if (trace_kludge)
1280 {
1281 /* Record the area of memory we're about to fetch. */
1282 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1283 }
1284
1285 /* Perform the fetch. */
1286 ax_simple (ax, ops[op]);
1287
1288 /* Shift the bits we have to their proper position.
1289 gen_left_shift will generate right shifts when the operand
1290 is negative.
1291
1292 A big-endian field diagram to ponder:
1293 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1294 +------++------++------++------++------++------++------++------+
1295 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1296 ^ ^ ^ ^
1297 bit number 16 32 48 53
1298 These are bit numbers as supplied by GDB. Note that the
1299 bit numbers run from right to left once you've fetched the
1300 value!
1301
1302 A little-endian field diagram to ponder:
1303 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1304 +------++------++------++------++------++------++------++------+
1305 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1306 ^ ^ ^ ^ ^
1307 bit number 48 32 16 4 0
1308
1309 In both cases, the most significant end is on the left
1310 (i.e. normal numeric writing order), which means that you
1311 don't go crazy thinking about `left' and `right' shifts.
1312
1313 We don't have to worry about masking yet:
1314 - If they contain garbage off the least significant end, then we
1315 must be looking at the low end of the field, and the right
1316 shift will wipe them out.
1317 - If they contain garbage off the most significant end, then we
1318 must be looking at the most significant end of the word, and
1319 the sign/zero extension will wipe them out.
1320 - If we're in the interior of the word, then there is no garbage
1321 on either end, because the ref operators zero-extend. */
1322 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1323 gen_left_shift (ax, end - (offset + op_size));
1324 else
1325 gen_left_shift (ax, offset - start);
1326
1327 if (!last_frag)
1328 /* Bring the copy of the address up to the top. */
1329 ax_simple (ax, aop_swap);
1330
1331 offset += op_size;
1332 fragment_count++;
1333 }
1334 }
1335
1336 /* Generate enough bitwise `or' operations to combine all the
1337 fragments we left on the stack. */
1338 while (fragment_count-- > 1)
1339 ax_simple (ax, aop_bit_or);
1340
1341 /* Sign- or zero-extend the value as appropriate. */
1342 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1343
1344 /* This is *not* an lvalue. Ugh. */
1345 value->kind = axs_rvalue;
1346 value->type = type;
1347 }
1348
1349
1350 /* Generate code to reference the member named FIELD of a structure or
1351 union. The top of the stack, as described by VALUE, should have
1352 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1353 the operator being compiled, and OPERAND_NAME is the kind of thing
1354 it operates on; we use them in error messages. */
1355 static void
1356 gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1357 char *operator_name, char *operand_name)
1358 {
1359 struct type *type;
1360 int i;
1361
1362 /* Follow pointers until we reach a non-pointer. These aren't the C
1363 semantics, but they're what the normal GDB evaluator does, so we
1364 should at least be consistent. */
1365 while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
1366 {
1367 gen_usual_unary (ax, value);
1368 gen_deref (ax, value);
1369 }
1370 type = check_typedef (value->type);
1371
1372 /* This must yield a structure or a union. */
1373 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1374 && TYPE_CODE (type) != TYPE_CODE_UNION)
1375 error (_("The left operand of `%s' is not a %s."),
1376 operator_name, operand_name);
1377
1378 /* And it must be in memory; we don't deal with structure rvalues,
1379 or structures living in registers. */
1380 if (value->kind != axs_lvalue_memory)
1381 error (_("Structure does not live in memory."));
1382
1383 i = find_field (type, field);
1384
1385 /* Is this a bitfield? */
1386 if (TYPE_FIELD_PACKED (type, i))
1387 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1388 TYPE_FIELD_BITPOS (type, i),
1389 (TYPE_FIELD_BITPOS (type, i)
1390 + TYPE_FIELD_BITSIZE (type, i)));
1391 else
1392 {
1393 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1394 value->kind = axs_lvalue_memory;
1395 value->type = TYPE_FIELD_TYPE (type, i);
1396 }
1397 }
1398
1399
1400 /* Generate code for GDB's magical `repeat' operator.
1401 LVALUE @ INT creates an array INT elements long, and whose elements
1402 have the same type as LVALUE, located in memory so that LVALUE is
1403 its first element. For example, argv[0]@argc gives you the array
1404 of command-line arguments.
1405
1406 Unfortunately, because we have to know the types before we actually
1407 have a value for the expression, we can't implement this perfectly
1408 without changing the type system, having values that occupy two
1409 stack slots, doing weird things with sizeof, etc. So we require
1410 the right operand to be a constant expression. */
1411 static void
1412 gen_repeat (union exp_element **pc, struct agent_expr *ax,
1413 struct axs_value *value)
1414 {
1415 struct axs_value value1;
1416 /* We don't want to turn this into an rvalue, so no conversions
1417 here. */
1418 gen_expr (pc, ax, &value1);
1419 if (value1.kind != axs_lvalue_memory)
1420 error (_("Left operand of `@' must be an object in memory."));
1421
1422 /* Evaluate the length; it had better be a constant. */
1423 {
1424 struct value *v = const_expr (pc);
1425 int length;
1426
1427 if (!v)
1428 error (_("Right operand of `@' must be a constant, in agent expressions."));
1429 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1430 error (_("Right operand of `@' must be an integer."));
1431 length = value_as_long (v);
1432 if (length <= 0)
1433 error (_("Right operand of `@' must be positive."));
1434
1435 /* The top of the stack is already the address of the object, so
1436 all we need to do is frob the type of the lvalue. */
1437 {
1438 /* FIXME-type-allocation: need a way to free this type when we are
1439 done with it. */
1440 struct type *range
1441 = create_range_type (0, builtin_type_int, 0, length - 1);
1442 struct type *array = create_array_type (0, value1.type, range);
1443
1444 value->kind = axs_lvalue_memory;
1445 value->type = array;
1446 }
1447 }
1448 }
1449
1450
1451 /* Emit code for the `sizeof' operator.
1452 *PC should point at the start of the operand expression; we advance it
1453 to the first instruction after the operand. */
1454 static void
1455 gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1456 struct axs_value *value)
1457 {
1458 /* We don't care about the value of the operand expression; we only
1459 care about its type. However, in the current arrangement, the
1460 only way to find an expression's type is to generate code for it.
1461 So we generate code for the operand, and then throw it away,
1462 replacing it with code that simply pushes its size. */
1463 int start = ax->len;
1464 gen_expr (pc, ax, value);
1465
1466 /* Throw away the code we just generated. */
1467 ax->len = start;
1468
1469 ax_const_l (ax, TYPE_LENGTH (value->type));
1470 value->kind = axs_rvalue;
1471 value->type = builtin_type_int;
1472 }
1473 \f
1474
1475 /* Generating bytecode from GDB expressions: general recursive thingy */
1476
1477 /* XXX: i18n */
1478 /* A gen_expr function written by a Gen-X'er guy.
1479 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1480 static void
1481 gen_expr (union exp_element **pc, struct agent_expr *ax,
1482 struct axs_value *value)
1483 {
1484 /* Used to hold the descriptions of operand expressions. */
1485 struct axs_value value1, value2;
1486 enum exp_opcode op = (*pc)[0].opcode;
1487
1488 /* If we're looking at a constant expression, just push its value. */
1489 {
1490 struct value *v = maybe_const_expr (pc);
1491
1492 if (v)
1493 {
1494 ax_const_l (ax, value_as_long (v));
1495 value->kind = axs_rvalue;
1496 value->type = check_typedef (value_type (v));
1497 return;
1498 }
1499 }
1500
1501 /* Otherwise, go ahead and generate code for it. */
1502 switch (op)
1503 {
1504 /* Binary arithmetic operators. */
1505 case BINOP_ADD:
1506 case BINOP_SUB:
1507 case BINOP_MUL:
1508 case BINOP_DIV:
1509 case BINOP_REM:
1510 case BINOP_SUBSCRIPT:
1511 case BINOP_BITWISE_AND:
1512 case BINOP_BITWISE_IOR:
1513 case BINOP_BITWISE_XOR:
1514 (*pc)++;
1515 gen_expr (pc, ax, &value1);
1516 gen_usual_unary (ax, &value1);
1517 gen_expr (pc, ax, &value2);
1518 gen_usual_unary (ax, &value2);
1519 gen_usual_arithmetic (ax, &value1, &value2);
1520 switch (op)
1521 {
1522 case BINOP_ADD:
1523 gen_add (ax, value, &value1, &value2, "addition");
1524 break;
1525 case BINOP_SUB:
1526 gen_sub (ax, value, &value1, &value2);
1527 break;
1528 case BINOP_MUL:
1529 gen_binop (ax, value, &value1, &value2,
1530 aop_mul, aop_mul, 1, "multiplication");
1531 break;
1532 case BINOP_DIV:
1533 gen_binop (ax, value, &value1, &value2,
1534 aop_div_signed, aop_div_unsigned, 1, "division");
1535 break;
1536 case BINOP_REM:
1537 gen_binop (ax, value, &value1, &value2,
1538 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1539 break;
1540 case BINOP_SUBSCRIPT:
1541 gen_add (ax, value, &value1, &value2, "array subscripting");
1542 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1543 error (_("Invalid combination of types in array subscripting."));
1544 gen_deref (ax, value);
1545 break;
1546 case BINOP_BITWISE_AND:
1547 gen_binop (ax, value, &value1, &value2,
1548 aop_bit_and, aop_bit_and, 0, "bitwise and");
1549 break;
1550
1551 case BINOP_BITWISE_IOR:
1552 gen_binop (ax, value, &value1, &value2,
1553 aop_bit_or, aop_bit_or, 0, "bitwise or");
1554 break;
1555
1556 case BINOP_BITWISE_XOR:
1557 gen_binop (ax, value, &value1, &value2,
1558 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1559 break;
1560
1561 default:
1562 /* We should only list operators in the outer case statement
1563 that we actually handle in the inner case statement. */
1564 internal_error (__FILE__, __LINE__,
1565 _("gen_expr: op case sets don't match"));
1566 }
1567 break;
1568
1569 /* Note that we need to be a little subtle about generating code
1570 for comma. In C, we can do some optimizations here because
1571 we know the left operand is only being evaluated for effect.
1572 However, if the tracing kludge is in effect, then we always
1573 need to evaluate the left hand side fully, so that all the
1574 variables it mentions get traced. */
1575 case BINOP_COMMA:
1576 (*pc)++;
1577 gen_expr (pc, ax, &value1);
1578 /* Don't just dispose of the left operand. We might be tracing,
1579 in which case we want to emit code to trace it if it's an
1580 lvalue. */
1581 gen_traced_pop (ax, &value1);
1582 gen_expr (pc, ax, value);
1583 /* It's the consumer's responsibility to trace the right operand. */
1584 break;
1585
1586 case OP_LONG: /* some integer constant */
1587 {
1588 struct type *type = (*pc)[1].type;
1589 LONGEST k = (*pc)[2].longconst;
1590 (*pc) += 4;
1591 gen_int_literal (ax, value, k, type);
1592 }
1593 break;
1594
1595 case OP_VAR_VALUE:
1596 gen_var_ref (ax, value, (*pc)[2].symbol);
1597 (*pc) += 4;
1598 break;
1599
1600 case OP_REGISTER:
1601 {
1602 const char *name = &(*pc)[2].string;
1603 int reg;
1604 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1605 reg = frame_map_name_to_regnum (deprecated_safe_get_selected_frame (),
1606 name, strlen (name));
1607 if (reg == -1)
1608 internal_error (__FILE__, __LINE__,
1609 _("Register $%s not available"), name);
1610 value->kind = axs_lvalue_register;
1611 value->u.reg = reg;
1612 value->type = register_type (current_gdbarch, reg);
1613 }
1614 break;
1615
1616 case OP_INTERNALVAR:
1617 error (_("GDB agent expressions cannot use convenience variables."));
1618
1619 /* Weirdo operator: see comments for gen_repeat for details. */
1620 case BINOP_REPEAT:
1621 /* Note that gen_repeat handles its own argument evaluation. */
1622 (*pc)++;
1623 gen_repeat (pc, ax, value);
1624 break;
1625
1626 case UNOP_CAST:
1627 {
1628 struct type *type = (*pc)[1].type;
1629 (*pc) += 3;
1630 gen_expr (pc, ax, value);
1631 gen_cast (ax, value, type);
1632 }
1633 break;
1634
1635 case UNOP_MEMVAL:
1636 {
1637 struct type *type = check_typedef ((*pc)[1].type);
1638 (*pc) += 3;
1639 gen_expr (pc, ax, value);
1640 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1641 it's just a hack for dealing with minsyms; you take some
1642 integer constant, pretend it's the address of an lvalue of
1643 the given type, and dereference it. */
1644 if (value->kind != axs_rvalue)
1645 /* This would be weird. */
1646 internal_error (__FILE__, __LINE__,
1647 _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
1648 value->type = type;
1649 value->kind = axs_lvalue_memory;
1650 }
1651 break;
1652
1653 case UNOP_PLUS:
1654 (*pc)++;
1655 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
1656 gen_expr (pc, ax, value);
1657 gen_usual_unary (ax, value);
1658 break;
1659
1660 case UNOP_NEG:
1661 (*pc)++;
1662 /* -FOO is equivalent to 0 - FOO. */
1663 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
1664 gen_usual_unary (ax, &value1); /* shouldn't do much */
1665 gen_expr (pc, ax, &value2);
1666 gen_usual_unary (ax, &value2);
1667 gen_usual_arithmetic (ax, &value1, &value2);
1668 gen_sub (ax, value, &value1, &value2);
1669 break;
1670
1671 case UNOP_LOGICAL_NOT:
1672 (*pc)++;
1673 gen_expr (pc, ax, value);
1674 gen_logical_not (ax, value);
1675 break;
1676
1677 case UNOP_COMPLEMENT:
1678 (*pc)++;
1679 gen_expr (pc, ax, value);
1680 gen_complement (ax, value);
1681 break;
1682
1683 case UNOP_IND:
1684 (*pc)++;
1685 gen_expr (pc, ax, value);
1686 gen_usual_unary (ax, value);
1687 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1688 error (_("Argument of unary `*' is not a pointer."));
1689 gen_deref (ax, value);
1690 break;
1691
1692 case UNOP_ADDR:
1693 (*pc)++;
1694 gen_expr (pc, ax, value);
1695 gen_address_of (ax, value);
1696 break;
1697
1698 case UNOP_SIZEOF:
1699 (*pc)++;
1700 /* Notice that gen_sizeof handles its own operand, unlike most
1701 of the other unary operator functions. This is because we
1702 have to throw away the code we generate. */
1703 gen_sizeof (pc, ax, value);
1704 break;
1705
1706 case STRUCTOP_STRUCT:
1707 case STRUCTOP_PTR:
1708 {
1709 int length = (*pc)[1].longconst;
1710 char *name = &(*pc)[2].string;
1711
1712 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1713 gen_expr (pc, ax, value);
1714 if (op == STRUCTOP_STRUCT)
1715 gen_struct_ref (ax, value, name, ".", "structure or union");
1716 else if (op == STRUCTOP_PTR)
1717 gen_struct_ref (ax, value, name, "->",
1718 "pointer to a structure or union");
1719 else
1720 /* If this `if' chain doesn't handle it, then the case list
1721 shouldn't mention it, and we shouldn't be here. */
1722 internal_error (__FILE__, __LINE__,
1723 _("gen_expr: unhandled struct case"));
1724 }
1725 break;
1726
1727 case OP_TYPE:
1728 error (_("Attempt to use a type name as an expression."));
1729
1730 default:
1731 error (_("Unsupported operator in expression."));
1732 }
1733 }
1734 \f
1735
1736
1737 /* Generating bytecode from GDB expressions: driver */
1738
1739 /* Given a GDB expression EXPR, produce a string of agent bytecode
1740 which computes its value. Return the agent expression, and set
1741 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1742 struct agent_expr *
1743 expr_to_agent (struct expression *expr, struct axs_value *value)
1744 {
1745 struct cleanup *old_chain = 0;
1746 struct agent_expr *ax = new_agent_expr (0);
1747 union exp_element *pc;
1748
1749 old_chain = make_cleanup_free_agent_expr (ax);
1750
1751 pc = expr->elts;
1752 trace_kludge = 0;
1753 gen_expr (&pc, ax, value);
1754
1755 /* We have successfully built the agent expr, so cancel the cleanup
1756 request. If we add more cleanups that we always want done, this
1757 will have to get more complicated. */
1758 discard_cleanups (old_chain);
1759 return ax;
1760 }
1761
1762
1763 #if 0 /* not used */
1764 /* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1765 string of agent bytecode which will leave its address and size on
1766 the top of stack. Return the agent expression.
1767
1768 Not sure this function is useful at all. */
1769 struct agent_expr *
1770 expr_to_address_and_size (struct expression *expr)
1771 {
1772 struct axs_value value;
1773 struct agent_expr *ax = expr_to_agent (expr, &value);
1774
1775 /* Complain if the result is not a memory lvalue. */
1776 if (value.kind != axs_lvalue_memory)
1777 {
1778 free_agent_expr (ax);
1779 error (_("Expression does not denote an object in memory."));
1780 }
1781
1782 /* Push the object's size on the stack. */
1783 ax_const_l (ax, TYPE_LENGTH (value.type));
1784
1785 return ax;
1786 }
1787 #endif
1788
1789 /* Given a GDB expression EXPR, return bytecode to trace its value.
1790 The result will use the `trace' and `trace_quick' bytecodes to
1791 record the value of all memory touched by the expression. The
1792 caller can then use the ax_reqs function to discover which
1793 registers it relies upon. */
1794 struct agent_expr *
1795 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
1796 {
1797 struct cleanup *old_chain = 0;
1798 struct agent_expr *ax = new_agent_expr (scope);
1799 union exp_element *pc;
1800 struct axs_value value;
1801
1802 old_chain = make_cleanup_free_agent_expr (ax);
1803
1804 pc = expr->elts;
1805 trace_kludge = 1;
1806 gen_expr (&pc, ax, &value);
1807
1808 /* Make sure we record the final object, and get rid of it. */
1809 gen_traced_pop (ax, &value);
1810
1811 /* Oh, and terminate. */
1812 ax_simple (ax, aop_end);
1813
1814 /* We have successfully built the agent expr, so cancel the cleanup
1815 request. If we add more cleanups that we always want done, this
1816 will have to get more complicated. */
1817 discard_cleanups (old_chain);
1818 return ax;
1819 }
1820
1821 static void
1822 agent_command (char *exp, int from_tty)
1823 {
1824 struct cleanup *old_chain = 0;
1825 struct expression *expr;
1826 struct agent_expr *agent;
1827 struct frame_info *fi = get_current_frame (); /* need current scope */
1828
1829 /* We don't deal with overlay debugging at the moment. We need to
1830 think more carefully about this. If you copy this code into
1831 another command, change the error message; the user shouldn't
1832 have to know anything about agent expressions. */
1833 if (overlay_debugging)
1834 error (_("GDB can't do agent expression translation with overlays."));
1835
1836 if (exp == 0)
1837 error_no_arg (_("expression to translate"));
1838
1839 expr = parse_expression (exp);
1840 old_chain = make_cleanup (free_current_contents, &expr);
1841 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
1842 make_cleanup_free_agent_expr (agent);
1843 ax_print (gdb_stdout, agent);
1844
1845 /* It would be nice to call ax_reqs here to gather some general info
1846 about the expression, and then print out the result. */
1847
1848 do_cleanups (old_chain);
1849 dont_repeat ();
1850 }
1851 \f
1852
1853 /* Initialization code. */
1854
1855 void _initialize_ax_gdb (void);
1856 void
1857 _initialize_ax_gdb (void)
1858 {
1859 add_cmd ("agent", class_maintenance, agent_command,
1860 _("Translate an expression into remote agent bytecode."),
1861 &maintenancelist);
1862 }
This page took 0.067761 seconds and 4 git commands to generate.