2002-05-13 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "expression.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33
34 /* To make sense of this file, you should read doc/agentexpr.texi.
35 Then look at the types and enums in ax-gdb.h. For the code itself,
36 look at gen_expr, towards the bottom; that's the main function that
37 looks at the GDB expressions and calls everything else to generate
38 code.
39
40 I'm beginning to wonder whether it wouldn't be nicer to internally
41 generate trees, with types, and then spit out the bytecode in
42 linear form afterwards; we could generate fewer `swap', `ext', and
43 `zero_ext' bytecodes that way; it would make good constant folding
44 easier, too. But at the moment, I think we should be willing to
45 pay for the simplicity of this code with less-than-optimal bytecode
46 strings.
47
48 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
49 \f
50
51
52 /* Prototypes for local functions. */
53
54 /* There's a standard order to the arguments of these functions:
55 union exp_element ** --- pointer into expression
56 struct agent_expr * --- agent expression buffer to generate code into
57 struct axs_value * --- describes value left on top of stack */
58
59 static struct value *const_var_ref (struct symbol *var);
60 static struct value *const_expr (union exp_element **pc);
61 static struct value *maybe_const_expr (union exp_element **pc);
62
63 static void gen_traced_pop (struct agent_expr *, struct axs_value *);
64
65 static void gen_sign_extend (struct agent_expr *, struct type *);
66 static void gen_extend (struct agent_expr *, struct type *);
67 static void gen_fetch (struct agent_expr *, struct type *);
68 static void gen_left_shift (struct agent_expr *, int);
69
70
71 static void gen_frame_args_address (struct agent_expr *);
72 static void gen_frame_locals_address (struct agent_expr *);
73 static void gen_offset (struct agent_expr *ax, int offset);
74 static void gen_sym_offset (struct agent_expr *, struct symbol *);
75 static void gen_var_ref (struct agent_expr *ax,
76 struct axs_value *value, struct symbol *var);
77
78
79 static void gen_int_literal (struct agent_expr *ax,
80 struct axs_value *value,
81 LONGEST k, struct type *type);
82
83
84 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
85 static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
86 static int type_wider_than (struct type *type1, struct type *type2);
87 static struct type *max_type (struct type *type1, struct type *type2);
88 static void gen_conversion (struct agent_expr *ax,
89 struct type *from, struct type *to);
90 static int is_nontrivial_conversion (struct type *from, struct type *to);
91 static void gen_usual_arithmetic (struct agent_expr *ax,
92 struct axs_value *value1,
93 struct axs_value *value2);
94 static void gen_integral_promotions (struct agent_expr *ax,
95 struct axs_value *value);
96 static void gen_cast (struct agent_expr *ax,
97 struct axs_value *value, struct type *type);
98 static void gen_scale (struct agent_expr *ax,
99 enum agent_op op, struct type *type);
100 static void gen_add (struct agent_expr *ax,
101 struct axs_value *value,
102 struct axs_value *value1,
103 struct axs_value *value2, char *name);
104 static void gen_sub (struct agent_expr *ax,
105 struct axs_value *value,
106 struct axs_value *value1, struct axs_value *value2);
107 static void gen_binop (struct agent_expr *ax,
108 struct axs_value *value,
109 struct axs_value *value1,
110 struct axs_value *value2,
111 enum agent_op op,
112 enum agent_op op_unsigned, int may_carry, char *name);
113 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
114 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
115 static void gen_deref (struct agent_expr *, struct axs_value *);
116 static void gen_address_of (struct agent_expr *, struct axs_value *);
117 static int find_field (struct type *type, char *name);
118 static void gen_bitfield_ref (struct agent_expr *ax,
119 struct axs_value *value,
120 struct type *type, int start, int end);
121 static void gen_struct_ref (struct agent_expr *ax,
122 struct axs_value *value,
123 char *field,
124 char *operator_name, char *operand_name);
125 static void gen_repeat (union exp_element **pc,
126 struct agent_expr *ax, struct axs_value *value);
127 static void gen_sizeof (union exp_element **pc,
128 struct agent_expr *ax, struct axs_value *value);
129 static void gen_expr (union exp_element **pc,
130 struct agent_expr *ax, struct axs_value *value);
131
132 static void print_axs_value (struct ui_file *f, struct axs_value * value);
133 static void agent_command (char *exp, int from_tty);
134 \f
135
136 /* Detecting constant expressions. */
137
138 /* If the variable reference at *PC is a constant, return its value.
139 Otherwise, return zero.
140
141 Hey, Wally! How can a variable reference be a constant?
142
143 Well, Beav, this function really handles the OP_VAR_VALUE operator,
144 not specifically variable references. GDB uses OP_VAR_VALUE to
145 refer to any kind of symbolic reference: function names, enum
146 elements, and goto labels are all handled through the OP_VAR_VALUE
147 operator, even though they're constants. It makes sense given the
148 situation.
149
150 Gee, Wally, don'cha wonder sometimes if data representations that
151 subvert commonly accepted definitions of terms in favor of heavily
152 context-specific interpretations are really just a tool of the
153 programming hegemony to preserve their power and exclude the
154 proletariat? */
155
156 static struct value *
157 const_var_ref (struct symbol *var)
158 {
159 struct type *type = SYMBOL_TYPE (var);
160
161 switch (SYMBOL_CLASS (var))
162 {
163 case LOC_CONST:
164 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
165
166 case LOC_LABEL:
167 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
168
169 default:
170 return 0;
171 }
172 }
173
174
175 /* If the expression starting at *PC has a constant value, return it.
176 Otherwise, return zero. If we return a value, then *PC will be
177 advanced to the end of it. If we return zero, *PC could be
178 anywhere. */
179 static struct value *
180 const_expr (union exp_element **pc)
181 {
182 enum exp_opcode op = (*pc)->opcode;
183 struct value *v1;
184
185 switch (op)
186 {
187 case OP_LONG:
188 {
189 struct type *type = (*pc)[1].type;
190 LONGEST k = (*pc)[2].longconst;
191 (*pc) += 4;
192 return value_from_longest (type, k);
193 }
194
195 case OP_VAR_VALUE:
196 {
197 struct value *v = const_var_ref ((*pc)[2].symbol);
198 (*pc) += 4;
199 return v;
200 }
201
202 /* We could add more operators in here. */
203
204 case UNOP_NEG:
205 (*pc)++;
206 v1 = const_expr (pc);
207 if (v1)
208 return value_neg (v1);
209 else
210 return 0;
211
212 default:
213 return 0;
214 }
215 }
216
217
218 /* Like const_expr, but guarantee also that *PC is undisturbed if the
219 expression is not constant. */
220 static struct value *
221 maybe_const_expr (union exp_element **pc)
222 {
223 union exp_element *tentative_pc = *pc;
224 struct value *v = const_expr (&tentative_pc);
225
226 /* If we got a value, then update the real PC. */
227 if (v)
228 *pc = tentative_pc;
229
230 return v;
231 }
232 \f
233
234 /* Generating bytecode from GDB expressions: general assumptions */
235
236 /* Here are a few general assumptions made throughout the code; if you
237 want to make a change that contradicts one of these, then you'd
238 better scan things pretty thoroughly.
239
240 - We assume that all values occupy one stack element. For example,
241 sometimes we'll swap to get at the left argument to a binary
242 operator. If we decide that void values should occupy no stack
243 elements, or that synthetic arrays (whose size is determined at
244 run time, created by the `@' operator) should occupy two stack
245 elements (address and length), then this will cause trouble.
246
247 - We assume the stack elements are infinitely wide, and that we
248 don't have to worry what happens if the user requests an
249 operation that is wider than the actual interpreter's stack.
250 That is, it's up to the interpreter to handle directly all the
251 integer widths the user has access to. (Woe betide the language
252 with bignums!)
253
254 - We don't support side effects. Thus, we don't have to worry about
255 GCC's generalized lvalues, function calls, etc.
256
257 - We don't support floating point. Many places where we switch on
258 some type don't bother to include cases for floating point; there
259 may be even more subtle ways this assumption exists. For
260 example, the arguments to % must be integers.
261
262 - We assume all subexpressions have a static, unchanging type. If
263 we tried to support convenience variables, this would be a
264 problem.
265
266 - All values on the stack should always be fully zero- or
267 sign-extended.
268
269 (I wasn't sure whether to choose this or its opposite --- that
270 only addresses are assumed extended --- but it turns out that
271 neither convention completely eliminates spurious extend
272 operations (if everything is always extended, then you have to
273 extend after add, because it could overflow; if nothing is
274 extended, then you end up producing extends whenever you change
275 sizes), and this is simpler.) */
276 \f
277
278 /* Generating bytecode from GDB expressions: the `trace' kludge */
279
280 /* The compiler in this file is a general-purpose mechanism for
281 translating GDB expressions into bytecode. One ought to be able to
282 find a million and one uses for it.
283
284 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
285 of expediency. Let he who is without sin cast the first stone.
286
287 For the data tracing facility, we need to insert `trace' bytecodes
288 before each data fetch; this records all the memory that the
289 expression touches in the course of evaluation, so that memory will
290 be available when the user later tries to evaluate the expression
291 in GDB.
292
293 This should be done (I think) in a post-processing pass, that walks
294 an arbitrary agent expression and inserts `trace' operations at the
295 appropriate points. But it's much faster to just hack them
296 directly into the code. And since we're in a crunch, that's what
297 I've done.
298
299 Setting the flag trace_kludge to non-zero enables the code that
300 emits the trace bytecodes at the appropriate points. */
301 static int trace_kludge;
302
303 /* Trace the lvalue on the stack, if it needs it. In either case, pop
304 the value. Useful on the left side of a comma, and at the end of
305 an expression being used for tracing. */
306 static void
307 gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
308 {
309 if (trace_kludge)
310 switch (value->kind)
311 {
312 case axs_rvalue:
313 /* We don't trace rvalues, just the lvalues necessary to
314 produce them. So just dispose of this value. */
315 ax_simple (ax, aop_pop);
316 break;
317
318 case axs_lvalue_memory:
319 {
320 int length = TYPE_LENGTH (value->type);
321
322 /* There's no point in trying to use a trace_quick bytecode
323 here, since "trace_quick SIZE pop" is three bytes, whereas
324 "const8 SIZE trace" is also three bytes, does the same
325 thing, and the simplest code which generates that will also
326 work correctly for objects with large sizes. */
327 ax_const_l (ax, length);
328 ax_simple (ax, aop_trace);
329 }
330 break;
331
332 case axs_lvalue_register:
333 /* We need to mention the register somewhere in the bytecode,
334 so ax_reqs will pick it up and add it to the mask of
335 registers used. */
336 ax_reg (ax, value->u.reg);
337 ax_simple (ax, aop_pop);
338 break;
339 }
340 else
341 /* If we're not tracing, just pop the value. */
342 ax_simple (ax, aop_pop);
343 }
344 \f
345
346
347 /* Generating bytecode from GDB expressions: helper functions */
348
349 /* Assume that the lower bits of the top of the stack is a value of
350 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
351 static void
352 gen_sign_extend (struct agent_expr *ax, struct type *type)
353 {
354 /* Do we need to sign-extend this? */
355 if (!TYPE_UNSIGNED (type))
356 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
357 }
358
359
360 /* Assume the lower bits of the top of the stack hold a value of type
361 TYPE, and the upper bits are garbage. Sign-extend or truncate as
362 needed. */
363 static void
364 gen_extend (struct agent_expr *ax, struct type *type)
365 {
366 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
367 /* I just had to. */
368 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
369 }
370
371
372 /* Assume that the top of the stack contains a value of type "pointer
373 to TYPE"; generate code to fetch its value. Note that TYPE is the
374 target type, not the pointer type. */
375 static void
376 gen_fetch (struct agent_expr *ax, struct type *type)
377 {
378 if (trace_kludge)
379 {
380 /* Record the area of memory we're about to fetch. */
381 ax_trace_quick (ax, TYPE_LENGTH (type));
382 }
383
384 switch (TYPE_CODE (type))
385 {
386 case TYPE_CODE_PTR:
387 case TYPE_CODE_ENUM:
388 case TYPE_CODE_INT:
389 case TYPE_CODE_CHAR:
390 /* It's a scalar value, so we know how to dereference it. How
391 many bytes long is it? */
392 switch (TYPE_LENGTH (type))
393 {
394 case 8 / TARGET_CHAR_BIT:
395 ax_simple (ax, aop_ref8);
396 break;
397 case 16 / TARGET_CHAR_BIT:
398 ax_simple (ax, aop_ref16);
399 break;
400 case 32 / TARGET_CHAR_BIT:
401 ax_simple (ax, aop_ref32);
402 break;
403 case 64 / TARGET_CHAR_BIT:
404 ax_simple (ax, aop_ref64);
405 break;
406
407 /* Either our caller shouldn't have asked us to dereference
408 that pointer (other code's fault), or we're not
409 implementing something we should be (this code's fault).
410 In any case, it's a bug the user shouldn't see. */
411 default:
412 internal_error (__FILE__, __LINE__,
413 "gen_fetch: strange size");
414 }
415
416 gen_sign_extend (ax, type);
417 break;
418
419 default:
420 /* Either our caller shouldn't have asked us to dereference that
421 pointer (other code's fault), or we're not implementing
422 something we should be (this code's fault). In any case,
423 it's a bug the user shouldn't see. */
424 internal_error (__FILE__, __LINE__,
425 "gen_fetch: bad type code");
426 }
427 }
428
429
430 /* Generate code to left shift the top of the stack by DISTANCE bits, or
431 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
432 unsigned (logical) right shifts. */
433 static void
434 gen_left_shift (struct agent_expr *ax, int distance)
435 {
436 if (distance > 0)
437 {
438 ax_const_l (ax, distance);
439 ax_simple (ax, aop_lsh);
440 }
441 else if (distance < 0)
442 {
443 ax_const_l (ax, -distance);
444 ax_simple (ax, aop_rsh_unsigned);
445 }
446 }
447 \f
448
449
450 /* Generating bytecode from GDB expressions: symbol references */
451
452 /* Generate code to push the base address of the argument portion of
453 the top stack frame. */
454 static void
455 gen_frame_args_address (struct agent_expr *ax)
456 {
457 int frame_reg;
458 LONGEST frame_offset;
459
460 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
461 ax_reg (ax, frame_reg);
462 gen_offset (ax, frame_offset);
463 }
464
465
466 /* Generate code to push the base address of the locals portion of the
467 top stack frame. */
468 static void
469 gen_frame_locals_address (struct agent_expr *ax)
470 {
471 int frame_reg;
472 LONGEST frame_offset;
473
474 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
475 ax_reg (ax, frame_reg);
476 gen_offset (ax, frame_offset);
477 }
478
479
480 /* Generate code to add OFFSET to the top of the stack. Try to
481 generate short and readable code. We use this for getting to
482 variables on the stack, and structure members. If we were
483 programming in ML, it would be clearer why these are the same
484 thing. */
485 static void
486 gen_offset (struct agent_expr *ax, int offset)
487 {
488 /* It would suffice to simply push the offset and add it, but this
489 makes it easier to read positive and negative offsets in the
490 bytecode. */
491 if (offset > 0)
492 {
493 ax_const_l (ax, offset);
494 ax_simple (ax, aop_add);
495 }
496 else if (offset < 0)
497 {
498 ax_const_l (ax, -offset);
499 ax_simple (ax, aop_sub);
500 }
501 }
502
503
504 /* In many cases, a symbol's value is the offset from some other
505 address (stack frame, base register, etc.) Generate code to add
506 VAR's value to the top of the stack. */
507 static void
508 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
509 {
510 gen_offset (ax, SYMBOL_VALUE (var));
511 }
512
513
514 /* Generate code for a variable reference to AX. The variable is the
515 symbol VAR. Set VALUE to describe the result. */
516
517 static void
518 gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
519 {
520 /* Dereference any typedefs. */
521 value->type = check_typedef (SYMBOL_TYPE (var));
522
523 /* I'm imitating the code in read_var_value. */
524 switch (SYMBOL_CLASS (var))
525 {
526 case LOC_CONST: /* A constant, like an enum value. */
527 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
528 value->kind = axs_rvalue;
529 break;
530
531 case LOC_LABEL: /* A goto label, being used as a value. */
532 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
533 value->kind = axs_rvalue;
534 break;
535
536 case LOC_CONST_BYTES:
537 internal_error (__FILE__, __LINE__,
538 "gen_var_ref: LOC_CONST_BYTES symbols are not supported");
539
540 /* Variable at a fixed location in memory. Easy. */
541 case LOC_STATIC:
542 /* Push the address of the variable. */
543 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
544 value->kind = axs_lvalue_memory;
545 break;
546
547 case LOC_ARG: /* var lives in argument area of frame */
548 gen_frame_args_address (ax);
549 gen_sym_offset (ax, var);
550 value->kind = axs_lvalue_memory;
551 break;
552
553 case LOC_REF_ARG: /* As above, but the frame slot really
554 holds the address of the variable. */
555 gen_frame_args_address (ax);
556 gen_sym_offset (ax, var);
557 /* Don't assume any particular pointer size. */
558 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
559 value->kind = axs_lvalue_memory;
560 break;
561
562 case LOC_LOCAL: /* var lives in locals area of frame */
563 case LOC_LOCAL_ARG:
564 gen_frame_locals_address (ax);
565 gen_sym_offset (ax, var);
566 value->kind = axs_lvalue_memory;
567 break;
568
569 case LOC_BASEREG: /* relative to some base register */
570 case LOC_BASEREG_ARG:
571 ax_reg (ax, SYMBOL_BASEREG (var));
572 gen_sym_offset (ax, var);
573 value->kind = axs_lvalue_memory;
574 break;
575
576 case LOC_TYPEDEF:
577 error ("Cannot compute value of typedef `%s'.",
578 SYMBOL_SOURCE_NAME (var));
579 break;
580
581 case LOC_BLOCK:
582 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
583 value->kind = axs_rvalue;
584 break;
585
586 case LOC_REGISTER:
587 case LOC_REGPARM:
588 /* Don't generate any code at all; in the process of treating
589 this as an lvalue or rvalue, the caller will generate the
590 right code. */
591 value->kind = axs_lvalue_register;
592 value->u.reg = SYMBOL_VALUE (var);
593 break;
594
595 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
596 register, not on the stack. Simpler than LOC_REGISTER and
597 LOC_REGPARM, because it's just like any other case where the
598 thing has a real address. */
599 case LOC_REGPARM_ADDR:
600 ax_reg (ax, SYMBOL_VALUE (var));
601 value->kind = axs_lvalue_memory;
602 break;
603
604 case LOC_UNRESOLVED:
605 {
606 struct minimal_symbol *msym
607 = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
608 if (!msym)
609 error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
610
611 /* Push the address of the variable. */
612 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
613 value->kind = axs_lvalue_memory;
614 }
615 break;
616
617 case LOC_OPTIMIZED_OUT:
618 error ("The variable `%s' has been optimized out.",
619 SYMBOL_SOURCE_NAME (var));
620 break;
621
622 default:
623 error ("Cannot find value of botched symbol `%s'.",
624 SYMBOL_SOURCE_NAME (var));
625 break;
626 }
627 }
628 \f
629
630
631 /* Generating bytecode from GDB expressions: literals */
632
633 static void
634 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
635 struct type *type)
636 {
637 ax_const_l (ax, k);
638 value->kind = axs_rvalue;
639 value->type = type;
640 }
641 \f
642
643
644 /* Generating bytecode from GDB expressions: unary conversions, casts */
645
646 /* Take what's on the top of the stack (as described by VALUE), and
647 try to make an rvalue out of it. Signal an error if we can't do
648 that. */
649 static void
650 require_rvalue (struct agent_expr *ax, struct axs_value *value)
651 {
652 switch (value->kind)
653 {
654 case axs_rvalue:
655 /* It's already an rvalue. */
656 break;
657
658 case axs_lvalue_memory:
659 /* The top of stack is the address of the object. Dereference. */
660 gen_fetch (ax, value->type);
661 break;
662
663 case axs_lvalue_register:
664 /* There's nothing on the stack, but value->u.reg is the
665 register number containing the value.
666
667 When we add floating-point support, this is going to have to
668 change. What about SPARC register pairs, for example? */
669 ax_reg (ax, value->u.reg);
670 gen_extend (ax, value->type);
671 break;
672 }
673
674 value->kind = axs_rvalue;
675 }
676
677
678 /* Assume the top of the stack is described by VALUE, and perform the
679 usual unary conversions. This is motivated by ANSI 6.2.2, but of
680 course GDB expressions are not ANSI; they're the mishmash union of
681 a bunch of languages. Rah.
682
683 NOTE! This function promises to produce an rvalue only when the
684 incoming value is of an appropriate type. In other words, the
685 consumer of the value this function produces may assume the value
686 is an rvalue only after checking its type.
687
688 The immediate issue is that if the user tries to use a structure or
689 union as an operand of, say, the `+' operator, we don't want to try
690 to convert that structure to an rvalue; require_rvalue will bomb on
691 structs and unions. Rather, we want to simply pass the struct
692 lvalue through unchanged, and let `+' raise an error. */
693
694 static void
695 gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
696 {
697 /* We don't have to generate any code for the usual integral
698 conversions, since values are always represented as full-width on
699 the stack. Should we tweak the type? */
700
701 /* Some types require special handling. */
702 switch (TYPE_CODE (value->type))
703 {
704 /* Functions get converted to a pointer to the function. */
705 case TYPE_CODE_FUNC:
706 value->type = lookup_pointer_type (value->type);
707 value->kind = axs_rvalue; /* Should always be true, but just in case. */
708 break;
709
710 /* Arrays get converted to a pointer to their first element, and
711 are no longer an lvalue. */
712 case TYPE_CODE_ARRAY:
713 {
714 struct type *elements = TYPE_TARGET_TYPE (value->type);
715 value->type = lookup_pointer_type (elements);
716 value->kind = axs_rvalue;
717 /* We don't need to generate any code; the address of the array
718 is also the address of its first element. */
719 }
720 break;
721
722 /* Don't try to convert structures and unions to rvalues. Let the
723 consumer signal an error. */
724 case TYPE_CODE_STRUCT:
725 case TYPE_CODE_UNION:
726 return;
727
728 /* If the value is an enum, call it an integer. */
729 case TYPE_CODE_ENUM:
730 value->type = builtin_type_int;
731 break;
732 }
733
734 /* If the value is an lvalue, dereference it. */
735 require_rvalue (ax, value);
736 }
737
738
739 /* Return non-zero iff the type TYPE1 is considered "wider" than the
740 type TYPE2, according to the rules described in gen_usual_arithmetic. */
741 static int
742 type_wider_than (struct type *type1, struct type *type2)
743 {
744 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
745 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
746 && TYPE_UNSIGNED (type1)
747 && !TYPE_UNSIGNED (type2)));
748 }
749
750
751 /* Return the "wider" of the two types TYPE1 and TYPE2. */
752 static struct type *
753 max_type (struct type *type1, struct type *type2)
754 {
755 return type_wider_than (type1, type2) ? type1 : type2;
756 }
757
758
759 /* Generate code to convert a scalar value of type FROM to type TO. */
760 static void
761 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
762 {
763 /* Perhaps there is a more graceful way to state these rules. */
764
765 /* If we're converting to a narrower type, then we need to clear out
766 the upper bits. */
767 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
768 gen_extend (ax, from);
769
770 /* If the two values have equal width, but different signednesses,
771 then we need to extend. */
772 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
773 {
774 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
775 gen_extend (ax, to);
776 }
777
778 /* If we're converting to a wider type, and becoming unsigned, then
779 we need to zero out any possible sign bits. */
780 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
781 {
782 if (TYPE_UNSIGNED (to))
783 gen_extend (ax, to);
784 }
785 }
786
787
788 /* Return non-zero iff the type FROM will require any bytecodes to be
789 emitted to be converted to the type TO. */
790 static int
791 is_nontrivial_conversion (struct type *from, struct type *to)
792 {
793 struct agent_expr *ax = new_agent_expr (0);
794 int nontrivial;
795
796 /* Actually generate the code, and see if anything came out. At the
797 moment, it would be trivial to replicate the code in
798 gen_conversion here, but in the future, when we're supporting
799 floating point and the like, it may not be. Doing things this
800 way allows this function to be independent of the logic in
801 gen_conversion. */
802 gen_conversion (ax, from, to);
803 nontrivial = ax->len > 0;
804 free_agent_expr (ax);
805 return nontrivial;
806 }
807
808
809 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
810 6.2.1.5) for the two operands of an arithmetic operator. This
811 effectively finds a "least upper bound" type for the two arguments,
812 and promotes each argument to that type. *VALUE1 and *VALUE2
813 describe the values as they are passed in, and as they are left. */
814 static void
815 gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
816 struct axs_value *value2)
817 {
818 /* Do the usual binary conversions. */
819 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
820 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
821 {
822 /* The ANSI integral promotions seem to work this way: Order the
823 integer types by size, and then by signedness: an n-bit
824 unsigned type is considered "wider" than an n-bit signed
825 type. Promote to the "wider" of the two types, and always
826 promote at least to int. */
827 struct type *target = max_type (builtin_type_int,
828 max_type (value1->type, value2->type));
829
830 /* Deal with value2, on the top of the stack. */
831 gen_conversion (ax, value2->type, target);
832
833 /* Deal with value1, not on the top of the stack. Don't
834 generate the `swap' instructions if we're not actually going
835 to do anything. */
836 if (is_nontrivial_conversion (value1->type, target))
837 {
838 ax_simple (ax, aop_swap);
839 gen_conversion (ax, value1->type, target);
840 ax_simple (ax, aop_swap);
841 }
842
843 value1->type = value2->type = target;
844 }
845 }
846
847
848 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
849 the value on the top of the stack, as described by VALUE. Assume
850 the value has integral type. */
851 static void
852 gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
853 {
854 if (!type_wider_than (value->type, builtin_type_int))
855 {
856 gen_conversion (ax, value->type, builtin_type_int);
857 value->type = builtin_type_int;
858 }
859 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
860 {
861 gen_conversion (ax, value->type, builtin_type_unsigned_int);
862 value->type = builtin_type_unsigned_int;
863 }
864 }
865
866
867 /* Generate code for a cast to TYPE. */
868 static void
869 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
870 {
871 /* GCC does allow casts to yield lvalues, so this should be fixed
872 before merging these changes into the trunk. */
873 require_rvalue (ax, value);
874 /* Dereference typedefs. */
875 type = check_typedef (type);
876
877 switch (TYPE_CODE (type))
878 {
879 case TYPE_CODE_PTR:
880 /* It's implementation-defined, and I'll bet this is what GCC
881 does. */
882 break;
883
884 case TYPE_CODE_ARRAY:
885 case TYPE_CODE_STRUCT:
886 case TYPE_CODE_UNION:
887 case TYPE_CODE_FUNC:
888 error ("Illegal type cast: intended type must be scalar.");
889
890 case TYPE_CODE_ENUM:
891 /* We don't have to worry about the size of the value, because
892 all our integral values are fully sign-extended, and when
893 casting pointers we can do anything we like. Is there any
894 way for us to actually know what GCC actually does with a
895 cast like this? */
896 value->type = type;
897 break;
898
899 case TYPE_CODE_INT:
900 gen_conversion (ax, value->type, type);
901 break;
902
903 case TYPE_CODE_VOID:
904 /* We could pop the value, and rely on everyone else to check
905 the type and notice that this value doesn't occupy a stack
906 slot. But for now, leave the value on the stack, and
907 preserve the "value == stack element" assumption. */
908 break;
909
910 default:
911 error ("Casts to requested type are not yet implemented.");
912 }
913
914 value->type = type;
915 }
916 \f
917
918
919 /* Generating bytecode from GDB expressions: arithmetic */
920
921 /* Scale the integer on the top of the stack by the size of the target
922 of the pointer type TYPE. */
923 static void
924 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
925 {
926 struct type *element = TYPE_TARGET_TYPE (type);
927
928 if (TYPE_LENGTH (element) != 1)
929 {
930 ax_const_l (ax, TYPE_LENGTH (element));
931 ax_simple (ax, op);
932 }
933 }
934
935
936 /* Generate code for an addition; non-trivial because we deal with
937 pointer arithmetic. We set VALUE to describe the result value; we
938 assume VALUE1 and VALUE2 describe the two operands, and that
939 they've undergone the usual binary conversions. Used by both
940 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
941 static void
942 gen_add (struct agent_expr *ax, struct axs_value *value,
943 struct axs_value *value1, struct axs_value *value2, char *name)
944 {
945 /* Is it INT+PTR? */
946 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
947 && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
948 {
949 /* Swap the values and proceed normally. */
950 ax_simple (ax, aop_swap);
951 gen_scale (ax, aop_mul, value2->type);
952 ax_simple (ax, aop_add);
953 gen_extend (ax, value2->type); /* Catch overflow. */
954 value->type = value2->type;
955 }
956
957 /* Is it PTR+INT? */
958 else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
959 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
960 {
961 gen_scale (ax, aop_mul, value1->type);
962 ax_simple (ax, aop_add);
963 gen_extend (ax, value1->type); /* Catch overflow. */
964 value->type = value1->type;
965 }
966
967 /* Must be number + number; the usual binary conversions will have
968 brought them both to the same width. */
969 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
970 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
971 {
972 ax_simple (ax, aop_add);
973 gen_extend (ax, value1->type); /* Catch overflow. */
974 value->type = value1->type;
975 }
976
977 else
978 error ("Illegal combination of types in %s.", name);
979
980 value->kind = axs_rvalue;
981 }
982
983
984 /* Generate code for an addition; non-trivial because we have to deal
985 with pointer arithmetic. We set VALUE to describe the result
986 value; we assume VALUE1 and VALUE2 describe the two operands, and
987 that they've undergone the usual binary conversions. */
988 static void
989 gen_sub (struct agent_expr *ax, struct axs_value *value,
990 struct axs_value *value1, struct axs_value *value2)
991 {
992 if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
993 {
994 /* Is it PTR - INT? */
995 if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
996 {
997 gen_scale (ax, aop_mul, value1->type);
998 ax_simple (ax, aop_sub);
999 gen_extend (ax, value1->type); /* Catch overflow. */
1000 value->type = value1->type;
1001 }
1002
1003 /* Is it PTR - PTR? Strictly speaking, the types ought to
1004 match, but this is what the normal GDB expression evaluator
1005 tests for. */
1006 else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
1007 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1008 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1009 {
1010 ax_simple (ax, aop_sub);
1011 gen_scale (ax, aop_div_unsigned, value1->type);
1012 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
1013 }
1014 else
1015 error ("\
1016 First argument of `-' is a pointer, but second argument is neither\n\
1017 an integer nor a pointer of the same type.");
1018 }
1019
1020 /* Must be number + number. */
1021 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1022 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
1023 {
1024 ax_simple (ax, aop_sub);
1025 gen_extend (ax, value1->type); /* Catch overflow. */
1026 value->type = value1->type;
1027 }
1028
1029 else
1030 error ("Illegal combination of types in subtraction.");
1031
1032 value->kind = axs_rvalue;
1033 }
1034
1035 /* Generate code for a binary operator that doesn't do pointer magic.
1036 We set VALUE to describe the result value; we assume VALUE1 and
1037 VALUE2 describe the two operands, and that they've undergone the
1038 usual binary conversions. MAY_CARRY should be non-zero iff the
1039 result needs to be extended. NAME is the English name of the
1040 operator, used in error messages */
1041 static void
1042 gen_binop (struct agent_expr *ax, struct axs_value *value,
1043 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1044 enum agent_op op_unsigned, int may_carry, char *name)
1045 {
1046 /* We only handle INT op INT. */
1047 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1048 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1049 error ("Illegal combination of types in %s.", name);
1050
1051 ax_simple (ax,
1052 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1053 if (may_carry)
1054 gen_extend (ax, value1->type); /* catch overflow */
1055 value->type = value1->type;
1056 value->kind = axs_rvalue;
1057 }
1058
1059
1060 static void
1061 gen_logical_not (struct agent_expr *ax, struct axs_value *value)
1062 {
1063 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1064 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1065 error ("Illegal type of operand to `!'.");
1066
1067 gen_usual_unary (ax, value);
1068 ax_simple (ax, aop_log_not);
1069 value->type = builtin_type_int;
1070 }
1071
1072
1073 static void
1074 gen_complement (struct agent_expr *ax, struct axs_value *value)
1075 {
1076 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1077 error ("Illegal type of operand to `~'.");
1078
1079 gen_usual_unary (ax, value);
1080 gen_integral_promotions (ax, value);
1081 ax_simple (ax, aop_bit_not);
1082 gen_extend (ax, value->type);
1083 }
1084 \f
1085
1086
1087 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1088
1089 /* Dereference the value on the top of the stack. */
1090 static void
1091 gen_deref (struct agent_expr *ax, struct axs_value *value)
1092 {
1093 /* The caller should check the type, because several operators use
1094 this, and we don't know what error message to generate. */
1095 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1096 internal_error (__FILE__, __LINE__,
1097 "gen_deref: expected a pointer");
1098
1099 /* We've got an rvalue now, which is a pointer. We want to yield an
1100 lvalue, whose address is exactly that pointer. So we don't
1101 actually emit any code; we just change the type from "Pointer to
1102 T" to "T", and mark the value as an lvalue in memory. Leave it
1103 to the consumer to actually dereference it. */
1104 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1105 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1106 ? axs_rvalue : axs_lvalue_memory);
1107 }
1108
1109
1110 /* Produce the address of the lvalue on the top of the stack. */
1111 static void
1112 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1113 {
1114 /* Special case for taking the address of a function. The ANSI
1115 standard describes this as a special case, too, so this
1116 arrangement is not without motivation. */
1117 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1118 /* The value's already an rvalue on the stack, so we just need to
1119 change the type. */
1120 value->type = lookup_pointer_type (value->type);
1121 else
1122 switch (value->kind)
1123 {
1124 case axs_rvalue:
1125 error ("Operand of `&' is an rvalue, which has no address.");
1126
1127 case axs_lvalue_register:
1128 error ("Operand of `&' is in a register, and has no address.");
1129
1130 case axs_lvalue_memory:
1131 value->kind = axs_rvalue;
1132 value->type = lookup_pointer_type (value->type);
1133 break;
1134 }
1135 }
1136
1137
1138 /* A lot of this stuff will have to change to support C++. But we're
1139 not going to deal with that at the moment. */
1140
1141 /* Find the field in the structure type TYPE named NAME, and return
1142 its index in TYPE's field array. */
1143 static int
1144 find_field (struct type *type, char *name)
1145 {
1146 int i;
1147
1148 CHECK_TYPEDEF (type);
1149
1150 /* Make sure this isn't C++. */
1151 if (TYPE_N_BASECLASSES (type) != 0)
1152 internal_error (__FILE__, __LINE__,
1153 "find_field: derived classes supported");
1154
1155 for (i = 0; i < TYPE_NFIELDS (type); i++)
1156 {
1157 char *this_name = TYPE_FIELD_NAME (type, i);
1158
1159 if (this_name && STREQ (name, this_name))
1160 return i;
1161
1162 if (this_name[0] == '\0')
1163 internal_error (__FILE__, __LINE__,
1164 "find_field: anonymous unions not supported");
1165 }
1166
1167 error ("Couldn't find member named `%s' in struct/union `%s'",
1168 name, TYPE_TAG_NAME (type));
1169
1170 return 0;
1171 }
1172
1173
1174 /* Generate code to push the value of a bitfield of a structure whose
1175 address is on the top of the stack. START and END give the
1176 starting and one-past-ending *bit* numbers of the field within the
1177 structure. */
1178 static void
1179 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1180 struct type *type, int start, int end)
1181 {
1182 /* Note that ops[i] fetches 8 << i bits. */
1183 static enum agent_op ops[]
1184 =
1185 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1186 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1187
1188 /* We don't want to touch any byte that the bitfield doesn't
1189 actually occupy; we shouldn't make any accesses we're not
1190 explicitly permitted to. We rely here on the fact that the
1191 bytecode `ref' operators work on unaligned addresses.
1192
1193 It takes some fancy footwork to get the stack to work the way
1194 we'd like. Say we're retrieving a bitfield that requires three
1195 fetches. Initially, the stack just contains the address:
1196 addr
1197 For the first fetch, we duplicate the address
1198 addr addr
1199 then add the byte offset, do the fetch, and shift and mask as
1200 needed, yielding a fragment of the value, properly aligned for
1201 the final bitwise or:
1202 addr frag1
1203 then we swap, and repeat the process:
1204 frag1 addr --- address on top
1205 frag1 addr addr --- duplicate it
1206 frag1 addr frag2 --- get second fragment
1207 frag1 frag2 addr --- swap again
1208 frag1 frag2 frag3 --- get third fragment
1209 Notice that, since the third fragment is the last one, we don't
1210 bother duplicating the address this time. Now we have all the
1211 fragments on the stack, and we can simply `or' them together,
1212 yielding the final value of the bitfield. */
1213
1214 /* The first and one-after-last bits in the field, but rounded down
1215 and up to byte boundaries. */
1216 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1217 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1218 / TARGET_CHAR_BIT)
1219 * TARGET_CHAR_BIT);
1220
1221 /* current bit offset within the structure */
1222 int offset;
1223
1224 /* The index in ops of the opcode we're considering. */
1225 int op;
1226
1227 /* The number of fragments we generated in the process. Probably
1228 equal to the number of `one' bits in bytesize, but who cares? */
1229 int fragment_count;
1230
1231 /* Dereference any typedefs. */
1232 type = check_typedef (type);
1233
1234 /* Can we fetch the number of bits requested at all? */
1235 if ((end - start) > ((1 << num_ops) * 8))
1236 internal_error (__FILE__, __LINE__,
1237 "gen_bitfield_ref: bitfield too wide");
1238
1239 /* Note that we know here that we only need to try each opcode once.
1240 That may not be true on machines with weird byte sizes. */
1241 offset = bound_start;
1242 fragment_count = 0;
1243 for (op = num_ops - 1; op >= 0; op--)
1244 {
1245 /* number of bits that ops[op] would fetch */
1246 int op_size = 8 << op;
1247
1248 /* The stack at this point, from bottom to top, contains zero or
1249 more fragments, then the address. */
1250
1251 /* Does this fetch fit within the bitfield? */
1252 if (offset + op_size <= bound_end)
1253 {
1254 /* Is this the last fragment? */
1255 int last_frag = (offset + op_size == bound_end);
1256
1257 if (!last_frag)
1258 ax_simple (ax, aop_dup); /* keep a copy of the address */
1259
1260 /* Add the offset. */
1261 gen_offset (ax, offset / TARGET_CHAR_BIT);
1262
1263 if (trace_kludge)
1264 {
1265 /* Record the area of memory we're about to fetch. */
1266 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1267 }
1268
1269 /* Perform the fetch. */
1270 ax_simple (ax, ops[op]);
1271
1272 /* Shift the bits we have to their proper position.
1273 gen_left_shift will generate right shifts when the operand
1274 is negative.
1275
1276 A big-endian field diagram to ponder:
1277 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1278 +------++------++------++------++------++------++------++------+
1279 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1280 ^ ^ ^ ^
1281 bit number 16 32 48 53
1282 These are bit numbers as supplied by GDB. Note that the
1283 bit numbers run from right to left once you've fetched the
1284 value!
1285
1286 A little-endian field diagram to ponder:
1287 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1288 +------++------++------++------++------++------++------++------+
1289 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1290 ^ ^ ^ ^ ^
1291 bit number 48 32 16 4 0
1292
1293 In both cases, the most significant end is on the left
1294 (i.e. normal numeric writing order), which means that you
1295 don't go crazy thinking about `left' and `right' shifts.
1296
1297 We don't have to worry about masking yet:
1298 - If they contain garbage off the least significant end, then we
1299 must be looking at the low end of the field, and the right
1300 shift will wipe them out.
1301 - If they contain garbage off the most significant end, then we
1302 must be looking at the most significant end of the word, and
1303 the sign/zero extension will wipe them out.
1304 - If we're in the interior of the word, then there is no garbage
1305 on either end, because the ref operators zero-extend. */
1306 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1307 gen_left_shift (ax, end - (offset + op_size));
1308 else
1309 gen_left_shift (ax, offset - start);
1310
1311 if (!last_frag)
1312 /* Bring the copy of the address up to the top. */
1313 ax_simple (ax, aop_swap);
1314
1315 offset += op_size;
1316 fragment_count++;
1317 }
1318 }
1319
1320 /* Generate enough bitwise `or' operations to combine all the
1321 fragments we left on the stack. */
1322 while (fragment_count-- > 1)
1323 ax_simple (ax, aop_bit_or);
1324
1325 /* Sign- or zero-extend the value as appropriate. */
1326 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1327
1328 /* This is *not* an lvalue. Ugh. */
1329 value->kind = axs_rvalue;
1330 value->type = type;
1331 }
1332
1333
1334 /* Generate code to reference the member named FIELD of a structure or
1335 union. The top of the stack, as described by VALUE, should have
1336 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1337 the operator being compiled, and OPERAND_NAME is the kind of thing
1338 it operates on; we use them in error messages. */
1339 static void
1340 gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1341 char *operator_name, char *operand_name)
1342 {
1343 struct type *type;
1344 int i;
1345
1346 /* Follow pointers until we reach a non-pointer. These aren't the C
1347 semantics, but they're what the normal GDB evaluator does, so we
1348 should at least be consistent. */
1349 while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
1350 {
1351 gen_usual_unary (ax, value);
1352 gen_deref (ax, value);
1353 }
1354 type = check_typedef (value->type);
1355
1356 /* This must yield a structure or a union. */
1357 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1358 && TYPE_CODE (type) != TYPE_CODE_UNION)
1359 error ("The left operand of `%s' is not a %s.",
1360 operator_name, operand_name);
1361
1362 /* And it must be in memory; we don't deal with structure rvalues,
1363 or structures living in registers. */
1364 if (value->kind != axs_lvalue_memory)
1365 error ("Structure does not live in memory.");
1366
1367 i = find_field (type, field);
1368
1369 /* Is this a bitfield? */
1370 if (TYPE_FIELD_PACKED (type, i))
1371 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1372 TYPE_FIELD_BITPOS (type, i),
1373 (TYPE_FIELD_BITPOS (type, i)
1374 + TYPE_FIELD_BITSIZE (type, i)));
1375 else
1376 {
1377 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1378 value->kind = axs_lvalue_memory;
1379 value->type = TYPE_FIELD_TYPE (type, i);
1380 }
1381 }
1382
1383
1384 /* Generate code for GDB's magical `repeat' operator.
1385 LVALUE @ INT creates an array INT elements long, and whose elements
1386 have the same type as LVALUE, located in memory so that LVALUE is
1387 its first element. For example, argv[0]@argc gives you the array
1388 of command-line arguments.
1389
1390 Unfortunately, because we have to know the types before we actually
1391 have a value for the expression, we can't implement this perfectly
1392 without changing the type system, having values that occupy two
1393 stack slots, doing weird things with sizeof, etc. So we require
1394 the right operand to be a constant expression. */
1395 static void
1396 gen_repeat (union exp_element **pc, struct agent_expr *ax,
1397 struct axs_value *value)
1398 {
1399 struct axs_value value1;
1400 /* We don't want to turn this into an rvalue, so no conversions
1401 here. */
1402 gen_expr (pc, ax, &value1);
1403 if (value1.kind != axs_lvalue_memory)
1404 error ("Left operand of `@' must be an object in memory.");
1405
1406 /* Evaluate the length; it had better be a constant. */
1407 {
1408 struct value *v = const_expr (pc);
1409 int length;
1410
1411 if (!v)
1412 error ("Right operand of `@' must be a constant, in agent expressions.");
1413 if (TYPE_CODE (v->type) != TYPE_CODE_INT)
1414 error ("Right operand of `@' must be an integer.");
1415 length = value_as_long (v);
1416 if (length <= 0)
1417 error ("Right operand of `@' must be positive.");
1418
1419 /* The top of the stack is already the address of the object, so
1420 all we need to do is frob the type of the lvalue. */
1421 {
1422 /* FIXME-type-allocation: need a way to free this type when we are
1423 done with it. */
1424 struct type *range
1425 = create_range_type (0, builtin_type_int, 0, length - 1);
1426 struct type *array = create_array_type (0, value1.type, range);
1427
1428 value->kind = axs_lvalue_memory;
1429 value->type = array;
1430 }
1431 }
1432 }
1433
1434
1435 /* Emit code for the `sizeof' operator.
1436 *PC should point at the start of the operand expression; we advance it
1437 to the first instruction after the operand. */
1438 static void
1439 gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1440 struct axs_value *value)
1441 {
1442 /* We don't care about the value of the operand expression; we only
1443 care about its type. However, in the current arrangement, the
1444 only way to find an expression's type is to generate code for it.
1445 So we generate code for the operand, and then throw it away,
1446 replacing it with code that simply pushes its size. */
1447 int start = ax->len;
1448 gen_expr (pc, ax, value);
1449
1450 /* Throw away the code we just generated. */
1451 ax->len = start;
1452
1453 ax_const_l (ax, TYPE_LENGTH (value->type));
1454 value->kind = axs_rvalue;
1455 value->type = builtin_type_int;
1456 }
1457 \f
1458
1459 /* Generating bytecode from GDB expressions: general recursive thingy */
1460
1461 /* A gen_expr function written by a Gen-X'er guy.
1462 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1463 static void
1464 gen_expr (union exp_element **pc, struct agent_expr *ax,
1465 struct axs_value *value)
1466 {
1467 /* Used to hold the descriptions of operand expressions. */
1468 struct axs_value value1, value2;
1469 enum exp_opcode op = (*pc)[0].opcode;
1470
1471 /* If we're looking at a constant expression, just push its value. */
1472 {
1473 struct value *v = maybe_const_expr (pc);
1474
1475 if (v)
1476 {
1477 ax_const_l (ax, value_as_long (v));
1478 value->kind = axs_rvalue;
1479 value->type = check_typedef (VALUE_TYPE (v));
1480 return;
1481 }
1482 }
1483
1484 /* Otherwise, go ahead and generate code for it. */
1485 switch (op)
1486 {
1487 /* Binary arithmetic operators. */
1488 case BINOP_ADD:
1489 case BINOP_SUB:
1490 case BINOP_MUL:
1491 case BINOP_DIV:
1492 case BINOP_REM:
1493 case BINOP_SUBSCRIPT:
1494 case BINOP_BITWISE_AND:
1495 case BINOP_BITWISE_IOR:
1496 case BINOP_BITWISE_XOR:
1497 (*pc)++;
1498 gen_expr (pc, ax, &value1);
1499 gen_usual_unary (ax, &value1);
1500 gen_expr (pc, ax, &value2);
1501 gen_usual_unary (ax, &value2);
1502 gen_usual_arithmetic (ax, &value1, &value2);
1503 switch (op)
1504 {
1505 case BINOP_ADD:
1506 gen_add (ax, value, &value1, &value2, "addition");
1507 break;
1508 case BINOP_SUB:
1509 gen_sub (ax, value, &value1, &value2);
1510 break;
1511 case BINOP_MUL:
1512 gen_binop (ax, value, &value1, &value2,
1513 aop_mul, aop_mul, 1, "multiplication");
1514 break;
1515 case BINOP_DIV:
1516 gen_binop (ax, value, &value1, &value2,
1517 aop_div_signed, aop_div_unsigned, 1, "division");
1518 break;
1519 case BINOP_REM:
1520 gen_binop (ax, value, &value1, &value2,
1521 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1522 break;
1523 case BINOP_SUBSCRIPT:
1524 gen_add (ax, value, &value1, &value2, "array subscripting");
1525 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1526 error ("Illegal combination of types in array subscripting.");
1527 gen_deref (ax, value);
1528 break;
1529 case BINOP_BITWISE_AND:
1530 gen_binop (ax, value, &value1, &value2,
1531 aop_bit_and, aop_bit_and, 0, "bitwise and");
1532 break;
1533
1534 case BINOP_BITWISE_IOR:
1535 gen_binop (ax, value, &value1, &value2,
1536 aop_bit_or, aop_bit_or, 0, "bitwise or");
1537 break;
1538
1539 case BINOP_BITWISE_XOR:
1540 gen_binop (ax, value, &value1, &value2,
1541 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1542 break;
1543
1544 default:
1545 /* We should only list operators in the outer case statement
1546 that we actually handle in the inner case statement. */
1547 internal_error (__FILE__, __LINE__,
1548 "gen_expr: op case sets don't match");
1549 }
1550 break;
1551
1552 /* Note that we need to be a little subtle about generating code
1553 for comma. In C, we can do some optimizations here because
1554 we know the left operand is only being evaluated for effect.
1555 However, if the tracing kludge is in effect, then we always
1556 need to evaluate the left hand side fully, so that all the
1557 variables it mentions get traced. */
1558 case BINOP_COMMA:
1559 (*pc)++;
1560 gen_expr (pc, ax, &value1);
1561 /* Don't just dispose of the left operand. We might be tracing,
1562 in which case we want to emit code to trace it if it's an
1563 lvalue. */
1564 gen_traced_pop (ax, &value1);
1565 gen_expr (pc, ax, value);
1566 /* It's the consumer's responsibility to trace the right operand. */
1567 break;
1568
1569 case OP_LONG: /* some integer constant */
1570 {
1571 struct type *type = (*pc)[1].type;
1572 LONGEST k = (*pc)[2].longconst;
1573 (*pc) += 4;
1574 gen_int_literal (ax, value, k, type);
1575 }
1576 break;
1577
1578 case OP_VAR_VALUE:
1579 gen_var_ref (ax, value, (*pc)[2].symbol);
1580 (*pc) += 4;
1581 break;
1582
1583 case OP_REGISTER:
1584 {
1585 int reg = (int) (*pc)[1].longconst;
1586 (*pc) += 3;
1587 value->kind = axs_lvalue_register;
1588 value->u.reg = reg;
1589 value->type = REGISTER_VIRTUAL_TYPE (reg);
1590 }
1591 break;
1592
1593 case OP_INTERNALVAR:
1594 error ("GDB agent expressions cannot use convenience variables.");
1595
1596 /* Weirdo operator: see comments for gen_repeat for details. */
1597 case BINOP_REPEAT:
1598 /* Note that gen_repeat handles its own argument evaluation. */
1599 (*pc)++;
1600 gen_repeat (pc, ax, value);
1601 break;
1602
1603 case UNOP_CAST:
1604 {
1605 struct type *type = (*pc)[1].type;
1606 (*pc) += 3;
1607 gen_expr (pc, ax, value);
1608 gen_cast (ax, value, type);
1609 }
1610 break;
1611
1612 case UNOP_MEMVAL:
1613 {
1614 struct type *type = check_typedef ((*pc)[1].type);
1615 (*pc) += 3;
1616 gen_expr (pc, ax, value);
1617 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1618 it's just a hack for dealing with minsyms; you take some
1619 integer constant, pretend it's the address of an lvalue of
1620 the given type, and dereference it. */
1621 if (value->kind != axs_rvalue)
1622 /* This would be weird. */
1623 internal_error (__FILE__, __LINE__,
1624 "gen_expr: OP_MEMVAL operand isn't an rvalue???");
1625 value->type = type;
1626 value->kind = axs_lvalue_memory;
1627 }
1628 break;
1629
1630 case UNOP_NEG:
1631 (*pc)++;
1632 /* -FOO is equivalent to 0 - FOO. */
1633 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
1634 gen_usual_unary (ax, &value1); /* shouldn't do much */
1635 gen_expr (pc, ax, &value2);
1636 gen_usual_unary (ax, &value2);
1637 gen_usual_arithmetic (ax, &value1, &value2);
1638 gen_sub (ax, value, &value1, &value2);
1639 break;
1640
1641 case UNOP_LOGICAL_NOT:
1642 (*pc)++;
1643 gen_expr (pc, ax, value);
1644 gen_logical_not (ax, value);
1645 break;
1646
1647 case UNOP_COMPLEMENT:
1648 (*pc)++;
1649 gen_expr (pc, ax, value);
1650 gen_complement (ax, value);
1651 break;
1652
1653 case UNOP_IND:
1654 (*pc)++;
1655 gen_expr (pc, ax, value);
1656 gen_usual_unary (ax, value);
1657 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1658 error ("Argument of unary `*' is not a pointer.");
1659 gen_deref (ax, value);
1660 break;
1661
1662 case UNOP_ADDR:
1663 (*pc)++;
1664 gen_expr (pc, ax, value);
1665 gen_address_of (ax, value);
1666 break;
1667
1668 case UNOP_SIZEOF:
1669 (*pc)++;
1670 /* Notice that gen_sizeof handles its own operand, unlike most
1671 of the other unary operator functions. This is because we
1672 have to throw away the code we generate. */
1673 gen_sizeof (pc, ax, value);
1674 break;
1675
1676 case STRUCTOP_STRUCT:
1677 case STRUCTOP_PTR:
1678 {
1679 int length = (*pc)[1].longconst;
1680 char *name = &(*pc)[2].string;
1681
1682 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1683 gen_expr (pc, ax, value);
1684 if (op == STRUCTOP_STRUCT)
1685 gen_struct_ref (ax, value, name, ".", "structure or union");
1686 else if (op == STRUCTOP_PTR)
1687 gen_struct_ref (ax, value, name, "->",
1688 "pointer to a structure or union");
1689 else
1690 /* If this `if' chain doesn't handle it, then the case list
1691 shouldn't mention it, and we shouldn't be here. */
1692 internal_error (__FILE__, __LINE__,
1693 "gen_expr: unhandled struct case");
1694 }
1695 break;
1696
1697 case OP_TYPE:
1698 error ("Attempt to use a type name as an expression.");
1699
1700 default:
1701 error ("Unsupported operator in expression.");
1702 }
1703 }
1704 \f
1705
1706
1707 /* Generating bytecode from GDB expressions: driver */
1708
1709 /* Given a GDB expression EXPR, produce a string of agent bytecode
1710 which computes its value. Return the agent expression, and set
1711 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1712 struct agent_expr *
1713 expr_to_agent (struct expression *expr, struct axs_value *value)
1714 {
1715 struct cleanup *old_chain = 0;
1716 struct agent_expr *ax = new_agent_expr (0);
1717 union exp_element *pc;
1718
1719 old_chain = make_cleanup_free_agent_expr (ax);
1720
1721 pc = expr->elts;
1722 trace_kludge = 0;
1723 gen_expr (&pc, ax, value);
1724
1725 /* We have successfully built the agent expr, so cancel the cleanup
1726 request. If we add more cleanups that we always want done, this
1727 will have to get more complicated. */
1728 discard_cleanups (old_chain);
1729 return ax;
1730 }
1731
1732
1733 #if 0 /* not used */
1734 /* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1735 string of agent bytecode which will leave its address and size on
1736 the top of stack. Return the agent expression.
1737
1738 Not sure this function is useful at all. */
1739 struct agent_expr *
1740 expr_to_address_and_size (struct expression *expr)
1741 {
1742 struct axs_value value;
1743 struct agent_expr *ax = expr_to_agent (expr, &value);
1744
1745 /* Complain if the result is not a memory lvalue. */
1746 if (value.kind != axs_lvalue_memory)
1747 {
1748 free_agent_expr (ax);
1749 error ("Expression does not denote an object in memory.");
1750 }
1751
1752 /* Push the object's size on the stack. */
1753 ax_const_l (ax, TYPE_LENGTH (value.type));
1754
1755 return ax;
1756 }
1757 #endif
1758
1759 /* Given a GDB expression EXPR, return bytecode to trace its value.
1760 The result will use the `trace' and `trace_quick' bytecodes to
1761 record the value of all memory touched by the expression. The
1762 caller can then use the ax_reqs function to discover which
1763 registers it relies upon. */
1764 struct agent_expr *
1765 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
1766 {
1767 struct cleanup *old_chain = 0;
1768 struct agent_expr *ax = new_agent_expr (scope);
1769 union exp_element *pc;
1770 struct axs_value value;
1771
1772 old_chain = make_cleanup_free_agent_expr (ax);
1773
1774 pc = expr->elts;
1775 trace_kludge = 1;
1776 gen_expr (&pc, ax, &value);
1777
1778 /* Make sure we record the final object, and get rid of it. */
1779 gen_traced_pop (ax, &value);
1780
1781 /* Oh, and terminate. */
1782 ax_simple (ax, aop_end);
1783
1784 /* We have successfully built the agent expr, so cancel the cleanup
1785 request. If we add more cleanups that we always want done, this
1786 will have to get more complicated. */
1787 discard_cleanups (old_chain);
1788 return ax;
1789 }
1790 \f
1791
1792
1793 /* The "agent" command, for testing: compile and disassemble an expression. */
1794
1795 static void
1796 print_axs_value (struct ui_file *f, struct axs_value *value)
1797 {
1798 switch (value->kind)
1799 {
1800 case axs_rvalue:
1801 fputs_filtered ("rvalue", f);
1802 break;
1803
1804 case axs_lvalue_memory:
1805 fputs_filtered ("memory lvalue", f);
1806 break;
1807
1808 case axs_lvalue_register:
1809 fprintf_filtered (f, "register %d lvalue", value->u.reg);
1810 break;
1811 }
1812
1813 fputs_filtered (" : ", f);
1814 type_print (value->type, "", f, -1);
1815 }
1816
1817
1818 static void
1819 agent_command (char *exp, int from_tty)
1820 {
1821 struct cleanup *old_chain = 0;
1822 struct expression *expr;
1823 struct agent_expr *agent;
1824 struct frame_info *fi = get_current_frame (); /* need current scope */
1825
1826 /* We don't deal with overlay debugging at the moment. We need to
1827 think more carefully about this. If you copy this code into
1828 another command, change the error message; the user shouldn't
1829 have to know anything about agent expressions. */
1830 if (overlay_debugging)
1831 error ("GDB can't do agent expression translation with overlays.");
1832
1833 if (exp == 0)
1834 error_no_arg ("expression to translate");
1835
1836 expr = parse_expression (exp);
1837 old_chain = make_cleanup (free_current_contents, &expr);
1838 agent = gen_trace_for_expr (fi->pc, expr);
1839 make_cleanup_free_agent_expr (agent);
1840 ax_print (gdb_stdout, agent);
1841
1842 /* It would be nice to call ax_reqs here to gather some general info
1843 about the expression, and then print out the result. */
1844
1845 do_cleanups (old_chain);
1846 dont_repeat ();
1847 }
1848 \f
1849
1850 /* Initialization code. */
1851
1852 void _initialize_ax_gdb (void);
1853 void
1854 _initialize_ax_gdb (void)
1855 {
1856 add_cmd ("agent", class_maintenance, agent_command,
1857 "Translate an expression into remote agent bytecode.",
1858 &maintenancelist);
1859 }
This page took 0.067728 seconds and 4 git commands to generate.