2003-11-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright 1998, 1999, 2000, 2001, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "expression.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "ax.h"
34 #include "ax-gdb.h"
35 #include "gdb_string.h"
36 #include "block.h"
37 #include "regcache.h"
38
39 /* To make sense of this file, you should read doc/agentexpr.texi.
40 Then look at the types and enums in ax-gdb.h. For the code itself,
41 look at gen_expr, towards the bottom; that's the main function that
42 looks at the GDB expressions and calls everything else to generate
43 code.
44
45 I'm beginning to wonder whether it wouldn't be nicer to internally
46 generate trees, with types, and then spit out the bytecode in
47 linear form afterwards; we could generate fewer `swap', `ext', and
48 `zero_ext' bytecodes that way; it would make good constant folding
49 easier, too. But at the moment, I think we should be willing to
50 pay for the simplicity of this code with less-than-optimal bytecode
51 strings.
52
53 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
54 \f
55
56
57 /* Prototypes for local functions. */
58
59 /* There's a standard order to the arguments of these functions:
60 union exp_element ** --- pointer into expression
61 struct agent_expr * --- agent expression buffer to generate code into
62 struct axs_value * --- describes value left on top of stack */
63
64 static struct value *const_var_ref (struct symbol *var);
65 static struct value *const_expr (union exp_element **pc);
66 static struct value *maybe_const_expr (union exp_element **pc);
67
68 static void gen_traced_pop (struct agent_expr *, struct axs_value *);
69
70 static void gen_sign_extend (struct agent_expr *, struct type *);
71 static void gen_extend (struct agent_expr *, struct type *);
72 static void gen_fetch (struct agent_expr *, struct type *);
73 static void gen_left_shift (struct agent_expr *, int);
74
75
76 static void gen_frame_args_address (struct agent_expr *);
77 static void gen_frame_locals_address (struct agent_expr *);
78 static void gen_offset (struct agent_expr *ax, int offset);
79 static void gen_sym_offset (struct agent_expr *, struct symbol *);
80 static void gen_var_ref (struct agent_expr *ax,
81 struct axs_value *value, struct symbol *var);
82
83
84 static void gen_int_literal (struct agent_expr *ax,
85 struct axs_value *value,
86 LONGEST k, struct type *type);
87
88
89 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
90 static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
91 static int type_wider_than (struct type *type1, struct type *type2);
92 static struct type *max_type (struct type *type1, struct type *type2);
93 static void gen_conversion (struct agent_expr *ax,
94 struct type *from, struct type *to);
95 static int is_nontrivial_conversion (struct type *from, struct type *to);
96 static void gen_usual_arithmetic (struct agent_expr *ax,
97 struct axs_value *value1,
98 struct axs_value *value2);
99 static void gen_integral_promotions (struct agent_expr *ax,
100 struct axs_value *value);
101 static void gen_cast (struct agent_expr *ax,
102 struct axs_value *value, struct type *type);
103 static void gen_scale (struct agent_expr *ax,
104 enum agent_op op, struct type *type);
105 static void gen_add (struct agent_expr *ax,
106 struct axs_value *value,
107 struct axs_value *value1,
108 struct axs_value *value2, char *name);
109 static void gen_sub (struct agent_expr *ax,
110 struct axs_value *value,
111 struct axs_value *value1, struct axs_value *value2);
112 static void gen_binop (struct agent_expr *ax,
113 struct axs_value *value,
114 struct axs_value *value1,
115 struct axs_value *value2,
116 enum agent_op op,
117 enum agent_op op_unsigned, int may_carry, char *name);
118 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
119 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
120 static void gen_deref (struct agent_expr *, struct axs_value *);
121 static void gen_address_of (struct agent_expr *, struct axs_value *);
122 static int find_field (struct type *type, char *name);
123 static void gen_bitfield_ref (struct agent_expr *ax,
124 struct axs_value *value,
125 struct type *type, int start, int end);
126 static void gen_struct_ref (struct agent_expr *ax,
127 struct axs_value *value,
128 char *field,
129 char *operator_name, char *operand_name);
130 static void gen_repeat (union exp_element **pc,
131 struct agent_expr *ax, struct axs_value *value);
132 static void gen_sizeof (union exp_element **pc,
133 struct agent_expr *ax, struct axs_value *value);
134 static void gen_expr (union exp_element **pc,
135 struct agent_expr *ax, struct axs_value *value);
136
137 static void print_axs_value (struct ui_file *f, struct axs_value * value);
138 static void agent_command (char *exp, int from_tty);
139 \f
140
141 /* Detecting constant expressions. */
142
143 /* If the variable reference at *PC is a constant, return its value.
144 Otherwise, return zero.
145
146 Hey, Wally! How can a variable reference be a constant?
147
148 Well, Beav, this function really handles the OP_VAR_VALUE operator,
149 not specifically variable references. GDB uses OP_VAR_VALUE to
150 refer to any kind of symbolic reference: function names, enum
151 elements, and goto labels are all handled through the OP_VAR_VALUE
152 operator, even though they're constants. It makes sense given the
153 situation.
154
155 Gee, Wally, don'cha wonder sometimes if data representations that
156 subvert commonly accepted definitions of terms in favor of heavily
157 context-specific interpretations are really just a tool of the
158 programming hegemony to preserve their power and exclude the
159 proletariat? */
160
161 static struct value *
162 const_var_ref (struct symbol *var)
163 {
164 struct type *type = SYMBOL_TYPE (var);
165
166 switch (SYMBOL_CLASS (var))
167 {
168 case LOC_CONST:
169 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
170
171 case LOC_LABEL:
172 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
173
174 default:
175 return 0;
176 }
177 }
178
179
180 /* If the expression starting at *PC has a constant value, return it.
181 Otherwise, return zero. If we return a value, then *PC will be
182 advanced to the end of it. If we return zero, *PC could be
183 anywhere. */
184 static struct value *
185 const_expr (union exp_element **pc)
186 {
187 enum exp_opcode op = (*pc)->opcode;
188 struct value *v1;
189
190 switch (op)
191 {
192 case OP_LONG:
193 {
194 struct type *type = (*pc)[1].type;
195 LONGEST k = (*pc)[2].longconst;
196 (*pc) += 4;
197 return value_from_longest (type, k);
198 }
199
200 case OP_VAR_VALUE:
201 {
202 struct value *v = const_var_ref ((*pc)[2].symbol);
203 (*pc) += 4;
204 return v;
205 }
206
207 /* We could add more operators in here. */
208
209 case UNOP_NEG:
210 (*pc)++;
211 v1 = const_expr (pc);
212 if (v1)
213 return value_neg (v1);
214 else
215 return 0;
216
217 default:
218 return 0;
219 }
220 }
221
222
223 /* Like const_expr, but guarantee also that *PC is undisturbed if the
224 expression is not constant. */
225 static struct value *
226 maybe_const_expr (union exp_element **pc)
227 {
228 union exp_element *tentative_pc = *pc;
229 struct value *v = const_expr (&tentative_pc);
230
231 /* If we got a value, then update the real PC. */
232 if (v)
233 *pc = tentative_pc;
234
235 return v;
236 }
237 \f
238
239 /* Generating bytecode from GDB expressions: general assumptions */
240
241 /* Here are a few general assumptions made throughout the code; if you
242 want to make a change that contradicts one of these, then you'd
243 better scan things pretty thoroughly.
244
245 - We assume that all values occupy one stack element. For example,
246 sometimes we'll swap to get at the left argument to a binary
247 operator. If we decide that void values should occupy no stack
248 elements, or that synthetic arrays (whose size is determined at
249 run time, created by the `@' operator) should occupy two stack
250 elements (address and length), then this will cause trouble.
251
252 - We assume the stack elements are infinitely wide, and that we
253 don't have to worry what happens if the user requests an
254 operation that is wider than the actual interpreter's stack.
255 That is, it's up to the interpreter to handle directly all the
256 integer widths the user has access to. (Woe betide the language
257 with bignums!)
258
259 - We don't support side effects. Thus, we don't have to worry about
260 GCC's generalized lvalues, function calls, etc.
261
262 - We don't support floating point. Many places where we switch on
263 some type don't bother to include cases for floating point; there
264 may be even more subtle ways this assumption exists. For
265 example, the arguments to % must be integers.
266
267 - We assume all subexpressions have a static, unchanging type. If
268 we tried to support convenience variables, this would be a
269 problem.
270
271 - All values on the stack should always be fully zero- or
272 sign-extended.
273
274 (I wasn't sure whether to choose this or its opposite --- that
275 only addresses are assumed extended --- but it turns out that
276 neither convention completely eliminates spurious extend
277 operations (if everything is always extended, then you have to
278 extend after add, because it could overflow; if nothing is
279 extended, then you end up producing extends whenever you change
280 sizes), and this is simpler.) */
281 \f
282
283 /* Generating bytecode from GDB expressions: the `trace' kludge */
284
285 /* The compiler in this file is a general-purpose mechanism for
286 translating GDB expressions into bytecode. One ought to be able to
287 find a million and one uses for it.
288
289 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
290 of expediency. Let he who is without sin cast the first stone.
291
292 For the data tracing facility, we need to insert `trace' bytecodes
293 before each data fetch; this records all the memory that the
294 expression touches in the course of evaluation, so that memory will
295 be available when the user later tries to evaluate the expression
296 in GDB.
297
298 This should be done (I think) in a post-processing pass, that walks
299 an arbitrary agent expression and inserts `trace' operations at the
300 appropriate points. But it's much faster to just hack them
301 directly into the code. And since we're in a crunch, that's what
302 I've done.
303
304 Setting the flag trace_kludge to non-zero enables the code that
305 emits the trace bytecodes at the appropriate points. */
306 static int trace_kludge;
307
308 /* Trace the lvalue on the stack, if it needs it. In either case, pop
309 the value. Useful on the left side of a comma, and at the end of
310 an expression being used for tracing. */
311 static void
312 gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
313 {
314 if (trace_kludge)
315 switch (value->kind)
316 {
317 case axs_rvalue:
318 /* We don't trace rvalues, just the lvalues necessary to
319 produce them. So just dispose of this value. */
320 ax_simple (ax, aop_pop);
321 break;
322
323 case axs_lvalue_memory:
324 {
325 int length = TYPE_LENGTH (value->type);
326
327 /* There's no point in trying to use a trace_quick bytecode
328 here, since "trace_quick SIZE pop" is three bytes, whereas
329 "const8 SIZE trace" is also three bytes, does the same
330 thing, and the simplest code which generates that will also
331 work correctly for objects with large sizes. */
332 ax_const_l (ax, length);
333 ax_simple (ax, aop_trace);
334 }
335 break;
336
337 case axs_lvalue_register:
338 /* We need to mention the register somewhere in the bytecode,
339 so ax_reqs will pick it up and add it to the mask of
340 registers used. */
341 ax_reg (ax, value->u.reg);
342 ax_simple (ax, aop_pop);
343 break;
344 }
345 else
346 /* If we're not tracing, just pop the value. */
347 ax_simple (ax, aop_pop);
348 }
349 \f
350
351
352 /* Generating bytecode from GDB expressions: helper functions */
353
354 /* Assume that the lower bits of the top of the stack is a value of
355 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
356 static void
357 gen_sign_extend (struct agent_expr *ax, struct type *type)
358 {
359 /* Do we need to sign-extend this? */
360 if (!TYPE_UNSIGNED (type))
361 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
362 }
363
364
365 /* Assume the lower bits of the top of the stack hold a value of type
366 TYPE, and the upper bits are garbage. Sign-extend or truncate as
367 needed. */
368 static void
369 gen_extend (struct agent_expr *ax, struct type *type)
370 {
371 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
372 /* I just had to. */
373 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
374 }
375
376
377 /* Assume that the top of the stack contains a value of type "pointer
378 to TYPE"; generate code to fetch its value. Note that TYPE is the
379 target type, not the pointer type. */
380 static void
381 gen_fetch (struct agent_expr *ax, struct type *type)
382 {
383 if (trace_kludge)
384 {
385 /* Record the area of memory we're about to fetch. */
386 ax_trace_quick (ax, TYPE_LENGTH (type));
387 }
388
389 switch (TYPE_CODE (type))
390 {
391 case TYPE_CODE_PTR:
392 case TYPE_CODE_ENUM:
393 case TYPE_CODE_INT:
394 case TYPE_CODE_CHAR:
395 /* It's a scalar value, so we know how to dereference it. How
396 many bytes long is it? */
397 switch (TYPE_LENGTH (type))
398 {
399 case 8 / TARGET_CHAR_BIT:
400 ax_simple (ax, aop_ref8);
401 break;
402 case 16 / TARGET_CHAR_BIT:
403 ax_simple (ax, aop_ref16);
404 break;
405 case 32 / TARGET_CHAR_BIT:
406 ax_simple (ax, aop_ref32);
407 break;
408 case 64 / TARGET_CHAR_BIT:
409 ax_simple (ax, aop_ref64);
410 break;
411
412 /* Either our caller shouldn't have asked us to dereference
413 that pointer (other code's fault), or we're not
414 implementing something we should be (this code's fault).
415 In any case, it's a bug the user shouldn't see. */
416 default:
417 internal_error (__FILE__, __LINE__,
418 "gen_fetch: strange size");
419 }
420
421 gen_sign_extend (ax, type);
422 break;
423
424 default:
425 /* Either our caller shouldn't have asked us to dereference that
426 pointer (other code's fault), or we're not implementing
427 something we should be (this code's fault). In any case,
428 it's a bug the user shouldn't see. */
429 internal_error (__FILE__, __LINE__,
430 "gen_fetch: bad type code");
431 }
432 }
433
434
435 /* Generate code to left shift the top of the stack by DISTANCE bits, or
436 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
437 unsigned (logical) right shifts. */
438 static void
439 gen_left_shift (struct agent_expr *ax, int distance)
440 {
441 if (distance > 0)
442 {
443 ax_const_l (ax, distance);
444 ax_simple (ax, aop_lsh);
445 }
446 else if (distance < 0)
447 {
448 ax_const_l (ax, -distance);
449 ax_simple (ax, aop_rsh_unsigned);
450 }
451 }
452 \f
453
454
455 /* Generating bytecode from GDB expressions: symbol references */
456
457 /* Generate code to push the base address of the argument portion of
458 the top stack frame. */
459 static void
460 gen_frame_args_address (struct agent_expr *ax)
461 {
462 int frame_reg;
463 LONGEST frame_offset;
464
465 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
466 ax_reg (ax, frame_reg);
467 gen_offset (ax, frame_offset);
468 }
469
470
471 /* Generate code to push the base address of the locals portion of the
472 top stack frame. */
473 static void
474 gen_frame_locals_address (struct agent_expr *ax)
475 {
476 int frame_reg;
477 LONGEST frame_offset;
478
479 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
480 ax_reg (ax, frame_reg);
481 gen_offset (ax, frame_offset);
482 }
483
484
485 /* Generate code to add OFFSET to the top of the stack. Try to
486 generate short and readable code. We use this for getting to
487 variables on the stack, and structure members. If we were
488 programming in ML, it would be clearer why these are the same
489 thing. */
490 static void
491 gen_offset (struct agent_expr *ax, int offset)
492 {
493 /* It would suffice to simply push the offset and add it, but this
494 makes it easier to read positive and negative offsets in the
495 bytecode. */
496 if (offset > 0)
497 {
498 ax_const_l (ax, offset);
499 ax_simple (ax, aop_add);
500 }
501 else if (offset < 0)
502 {
503 ax_const_l (ax, -offset);
504 ax_simple (ax, aop_sub);
505 }
506 }
507
508
509 /* In many cases, a symbol's value is the offset from some other
510 address (stack frame, base register, etc.) Generate code to add
511 VAR's value to the top of the stack. */
512 static void
513 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
514 {
515 gen_offset (ax, SYMBOL_VALUE (var));
516 }
517
518
519 /* Generate code for a variable reference to AX. The variable is the
520 symbol VAR. Set VALUE to describe the result. */
521
522 static void
523 gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
524 {
525 /* Dereference any typedefs. */
526 value->type = check_typedef (SYMBOL_TYPE (var));
527
528 /* I'm imitating the code in read_var_value. */
529 switch (SYMBOL_CLASS (var))
530 {
531 case LOC_CONST: /* A constant, like an enum value. */
532 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
533 value->kind = axs_rvalue;
534 break;
535
536 case LOC_LABEL: /* A goto label, being used as a value. */
537 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
538 value->kind = axs_rvalue;
539 break;
540
541 case LOC_CONST_BYTES:
542 internal_error (__FILE__, __LINE__,
543 "gen_var_ref: LOC_CONST_BYTES symbols are not supported");
544
545 /* Variable at a fixed location in memory. Easy. */
546 case LOC_STATIC:
547 /* Push the address of the variable. */
548 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
549 value->kind = axs_lvalue_memory;
550 break;
551
552 case LOC_ARG: /* var lives in argument area of frame */
553 gen_frame_args_address (ax);
554 gen_sym_offset (ax, var);
555 value->kind = axs_lvalue_memory;
556 break;
557
558 case LOC_REF_ARG: /* As above, but the frame slot really
559 holds the address of the variable. */
560 gen_frame_args_address (ax);
561 gen_sym_offset (ax, var);
562 /* Don't assume any particular pointer size. */
563 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
564 value->kind = axs_lvalue_memory;
565 break;
566
567 case LOC_LOCAL: /* var lives in locals area of frame */
568 case LOC_LOCAL_ARG:
569 gen_frame_locals_address (ax);
570 gen_sym_offset (ax, var);
571 value->kind = axs_lvalue_memory;
572 break;
573
574 case LOC_BASEREG: /* relative to some base register */
575 case LOC_BASEREG_ARG:
576 ax_reg (ax, SYMBOL_BASEREG (var));
577 gen_sym_offset (ax, var);
578 value->kind = axs_lvalue_memory;
579 break;
580
581 case LOC_TYPEDEF:
582 error ("Cannot compute value of typedef `%s'.",
583 SYMBOL_PRINT_NAME (var));
584 break;
585
586 case LOC_BLOCK:
587 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
588 value->kind = axs_rvalue;
589 break;
590
591 case LOC_REGISTER:
592 case LOC_REGPARM:
593 /* Don't generate any code at all; in the process of treating
594 this as an lvalue or rvalue, the caller will generate the
595 right code. */
596 value->kind = axs_lvalue_register;
597 value->u.reg = SYMBOL_VALUE (var);
598 break;
599
600 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
601 register, not on the stack. Simpler than LOC_REGISTER and
602 LOC_REGPARM, because it's just like any other case where the
603 thing has a real address. */
604 case LOC_REGPARM_ADDR:
605 ax_reg (ax, SYMBOL_VALUE (var));
606 value->kind = axs_lvalue_memory;
607 break;
608
609 case LOC_UNRESOLVED:
610 {
611 struct minimal_symbol *msym
612 = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL);
613 if (!msym)
614 error ("Couldn't resolve symbol `%s'.", SYMBOL_PRINT_NAME (var));
615
616 /* Push the address of the variable. */
617 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
618 value->kind = axs_lvalue_memory;
619 }
620 break;
621
622 case LOC_COMPUTED:
623 case LOC_COMPUTED_ARG:
624 (*SYMBOL_LOCATION_FUNCS (var)->tracepoint_var_ref) (var, ax, value);
625 break;
626
627 case LOC_OPTIMIZED_OUT:
628 error ("The variable `%s' has been optimized out.",
629 SYMBOL_PRINT_NAME (var));
630 break;
631
632 default:
633 error ("Cannot find value of botched symbol `%s'.",
634 SYMBOL_PRINT_NAME (var));
635 break;
636 }
637 }
638 \f
639
640
641 /* Generating bytecode from GDB expressions: literals */
642
643 static void
644 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
645 struct type *type)
646 {
647 ax_const_l (ax, k);
648 value->kind = axs_rvalue;
649 value->type = type;
650 }
651 \f
652
653
654 /* Generating bytecode from GDB expressions: unary conversions, casts */
655
656 /* Take what's on the top of the stack (as described by VALUE), and
657 try to make an rvalue out of it. Signal an error if we can't do
658 that. */
659 static void
660 require_rvalue (struct agent_expr *ax, struct axs_value *value)
661 {
662 switch (value->kind)
663 {
664 case axs_rvalue:
665 /* It's already an rvalue. */
666 break;
667
668 case axs_lvalue_memory:
669 /* The top of stack is the address of the object. Dereference. */
670 gen_fetch (ax, value->type);
671 break;
672
673 case axs_lvalue_register:
674 /* There's nothing on the stack, but value->u.reg is the
675 register number containing the value.
676
677 When we add floating-point support, this is going to have to
678 change. What about SPARC register pairs, for example? */
679 ax_reg (ax, value->u.reg);
680 gen_extend (ax, value->type);
681 break;
682 }
683
684 value->kind = axs_rvalue;
685 }
686
687
688 /* Assume the top of the stack is described by VALUE, and perform the
689 usual unary conversions. This is motivated by ANSI 6.2.2, but of
690 course GDB expressions are not ANSI; they're the mishmash union of
691 a bunch of languages. Rah.
692
693 NOTE! This function promises to produce an rvalue only when the
694 incoming value is of an appropriate type. In other words, the
695 consumer of the value this function produces may assume the value
696 is an rvalue only after checking its type.
697
698 The immediate issue is that if the user tries to use a structure or
699 union as an operand of, say, the `+' operator, we don't want to try
700 to convert that structure to an rvalue; require_rvalue will bomb on
701 structs and unions. Rather, we want to simply pass the struct
702 lvalue through unchanged, and let `+' raise an error. */
703
704 static void
705 gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
706 {
707 /* We don't have to generate any code for the usual integral
708 conversions, since values are always represented as full-width on
709 the stack. Should we tweak the type? */
710
711 /* Some types require special handling. */
712 switch (TYPE_CODE (value->type))
713 {
714 /* Functions get converted to a pointer to the function. */
715 case TYPE_CODE_FUNC:
716 value->type = lookup_pointer_type (value->type);
717 value->kind = axs_rvalue; /* Should always be true, but just in case. */
718 break;
719
720 /* Arrays get converted to a pointer to their first element, and
721 are no longer an lvalue. */
722 case TYPE_CODE_ARRAY:
723 {
724 struct type *elements = TYPE_TARGET_TYPE (value->type);
725 value->type = lookup_pointer_type (elements);
726 value->kind = axs_rvalue;
727 /* We don't need to generate any code; the address of the array
728 is also the address of its first element. */
729 }
730 break;
731
732 /* Don't try to convert structures and unions to rvalues. Let the
733 consumer signal an error. */
734 case TYPE_CODE_STRUCT:
735 case TYPE_CODE_UNION:
736 return;
737
738 /* If the value is an enum, call it an integer. */
739 case TYPE_CODE_ENUM:
740 value->type = builtin_type_int;
741 break;
742 }
743
744 /* If the value is an lvalue, dereference it. */
745 require_rvalue (ax, value);
746 }
747
748
749 /* Return non-zero iff the type TYPE1 is considered "wider" than the
750 type TYPE2, according to the rules described in gen_usual_arithmetic. */
751 static int
752 type_wider_than (struct type *type1, struct type *type2)
753 {
754 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
755 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
756 && TYPE_UNSIGNED (type1)
757 && !TYPE_UNSIGNED (type2)));
758 }
759
760
761 /* Return the "wider" of the two types TYPE1 and TYPE2. */
762 static struct type *
763 max_type (struct type *type1, struct type *type2)
764 {
765 return type_wider_than (type1, type2) ? type1 : type2;
766 }
767
768
769 /* Generate code to convert a scalar value of type FROM to type TO. */
770 static void
771 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
772 {
773 /* Perhaps there is a more graceful way to state these rules. */
774
775 /* If we're converting to a narrower type, then we need to clear out
776 the upper bits. */
777 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
778 gen_extend (ax, from);
779
780 /* If the two values have equal width, but different signednesses,
781 then we need to extend. */
782 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
783 {
784 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
785 gen_extend (ax, to);
786 }
787
788 /* If we're converting to a wider type, and becoming unsigned, then
789 we need to zero out any possible sign bits. */
790 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
791 {
792 if (TYPE_UNSIGNED (to))
793 gen_extend (ax, to);
794 }
795 }
796
797
798 /* Return non-zero iff the type FROM will require any bytecodes to be
799 emitted to be converted to the type TO. */
800 static int
801 is_nontrivial_conversion (struct type *from, struct type *to)
802 {
803 struct agent_expr *ax = new_agent_expr (0);
804 int nontrivial;
805
806 /* Actually generate the code, and see if anything came out. At the
807 moment, it would be trivial to replicate the code in
808 gen_conversion here, but in the future, when we're supporting
809 floating point and the like, it may not be. Doing things this
810 way allows this function to be independent of the logic in
811 gen_conversion. */
812 gen_conversion (ax, from, to);
813 nontrivial = ax->len > 0;
814 free_agent_expr (ax);
815 return nontrivial;
816 }
817
818
819 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
820 6.2.1.5) for the two operands of an arithmetic operator. This
821 effectively finds a "least upper bound" type for the two arguments,
822 and promotes each argument to that type. *VALUE1 and *VALUE2
823 describe the values as they are passed in, and as they are left. */
824 static void
825 gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
826 struct axs_value *value2)
827 {
828 /* Do the usual binary conversions. */
829 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
830 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
831 {
832 /* The ANSI integral promotions seem to work this way: Order the
833 integer types by size, and then by signedness: an n-bit
834 unsigned type is considered "wider" than an n-bit signed
835 type. Promote to the "wider" of the two types, and always
836 promote at least to int. */
837 struct type *target = max_type (builtin_type_int,
838 max_type (value1->type, value2->type));
839
840 /* Deal with value2, on the top of the stack. */
841 gen_conversion (ax, value2->type, target);
842
843 /* Deal with value1, not on the top of the stack. Don't
844 generate the `swap' instructions if we're not actually going
845 to do anything. */
846 if (is_nontrivial_conversion (value1->type, target))
847 {
848 ax_simple (ax, aop_swap);
849 gen_conversion (ax, value1->type, target);
850 ax_simple (ax, aop_swap);
851 }
852
853 value1->type = value2->type = target;
854 }
855 }
856
857
858 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
859 the value on the top of the stack, as described by VALUE. Assume
860 the value has integral type. */
861 static void
862 gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
863 {
864 if (!type_wider_than (value->type, builtin_type_int))
865 {
866 gen_conversion (ax, value->type, builtin_type_int);
867 value->type = builtin_type_int;
868 }
869 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
870 {
871 gen_conversion (ax, value->type, builtin_type_unsigned_int);
872 value->type = builtin_type_unsigned_int;
873 }
874 }
875
876
877 /* Generate code for a cast to TYPE. */
878 static void
879 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
880 {
881 /* GCC does allow casts to yield lvalues, so this should be fixed
882 before merging these changes into the trunk. */
883 require_rvalue (ax, value);
884 /* Dereference typedefs. */
885 type = check_typedef (type);
886
887 switch (TYPE_CODE (type))
888 {
889 case TYPE_CODE_PTR:
890 /* It's implementation-defined, and I'll bet this is what GCC
891 does. */
892 break;
893
894 case TYPE_CODE_ARRAY:
895 case TYPE_CODE_STRUCT:
896 case TYPE_CODE_UNION:
897 case TYPE_CODE_FUNC:
898 error ("Illegal type cast: intended type must be scalar.");
899
900 case TYPE_CODE_ENUM:
901 /* We don't have to worry about the size of the value, because
902 all our integral values are fully sign-extended, and when
903 casting pointers we can do anything we like. Is there any
904 way for us to actually know what GCC actually does with a
905 cast like this? */
906 value->type = type;
907 break;
908
909 case TYPE_CODE_INT:
910 gen_conversion (ax, value->type, type);
911 break;
912
913 case TYPE_CODE_VOID:
914 /* We could pop the value, and rely on everyone else to check
915 the type and notice that this value doesn't occupy a stack
916 slot. But for now, leave the value on the stack, and
917 preserve the "value == stack element" assumption. */
918 break;
919
920 default:
921 error ("Casts to requested type are not yet implemented.");
922 }
923
924 value->type = type;
925 }
926 \f
927
928
929 /* Generating bytecode from GDB expressions: arithmetic */
930
931 /* Scale the integer on the top of the stack by the size of the target
932 of the pointer type TYPE. */
933 static void
934 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
935 {
936 struct type *element = TYPE_TARGET_TYPE (type);
937
938 if (TYPE_LENGTH (element) != 1)
939 {
940 ax_const_l (ax, TYPE_LENGTH (element));
941 ax_simple (ax, op);
942 }
943 }
944
945
946 /* Generate code for an addition; non-trivial because we deal with
947 pointer arithmetic. We set VALUE to describe the result value; we
948 assume VALUE1 and VALUE2 describe the two operands, and that
949 they've undergone the usual binary conversions. Used by both
950 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
951 static void
952 gen_add (struct agent_expr *ax, struct axs_value *value,
953 struct axs_value *value1, struct axs_value *value2, char *name)
954 {
955 /* Is it INT+PTR? */
956 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
957 && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
958 {
959 /* Swap the values and proceed normally. */
960 ax_simple (ax, aop_swap);
961 gen_scale (ax, aop_mul, value2->type);
962 ax_simple (ax, aop_add);
963 gen_extend (ax, value2->type); /* Catch overflow. */
964 value->type = value2->type;
965 }
966
967 /* Is it PTR+INT? */
968 else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
969 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
970 {
971 gen_scale (ax, aop_mul, value1->type);
972 ax_simple (ax, aop_add);
973 gen_extend (ax, value1->type); /* Catch overflow. */
974 value->type = value1->type;
975 }
976
977 /* Must be number + number; the usual binary conversions will have
978 brought them both to the same width. */
979 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
980 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
981 {
982 ax_simple (ax, aop_add);
983 gen_extend (ax, value1->type); /* Catch overflow. */
984 value->type = value1->type;
985 }
986
987 else
988 error ("Illegal combination of types in %s.", name);
989
990 value->kind = axs_rvalue;
991 }
992
993
994 /* Generate code for an addition; non-trivial because we have to deal
995 with pointer arithmetic. We set VALUE to describe the result
996 value; we assume VALUE1 and VALUE2 describe the two operands, and
997 that they've undergone the usual binary conversions. */
998 static void
999 gen_sub (struct agent_expr *ax, struct axs_value *value,
1000 struct axs_value *value1, struct axs_value *value2)
1001 {
1002 if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
1003 {
1004 /* Is it PTR - INT? */
1005 if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
1006 {
1007 gen_scale (ax, aop_mul, value1->type);
1008 ax_simple (ax, aop_sub);
1009 gen_extend (ax, value1->type); /* Catch overflow. */
1010 value->type = value1->type;
1011 }
1012
1013 /* Is it PTR - PTR? Strictly speaking, the types ought to
1014 match, but this is what the normal GDB expression evaluator
1015 tests for. */
1016 else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
1017 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1018 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1019 {
1020 ax_simple (ax, aop_sub);
1021 gen_scale (ax, aop_div_unsigned, value1->type);
1022 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
1023 }
1024 else
1025 error ("\
1026 First argument of `-' is a pointer, but second argument is neither\n\
1027 an integer nor a pointer of the same type.");
1028 }
1029
1030 /* Must be number + number. */
1031 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1032 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
1033 {
1034 ax_simple (ax, aop_sub);
1035 gen_extend (ax, value1->type); /* Catch overflow. */
1036 value->type = value1->type;
1037 }
1038
1039 else
1040 error ("Illegal combination of types in subtraction.");
1041
1042 value->kind = axs_rvalue;
1043 }
1044
1045 /* Generate code for a binary operator that doesn't do pointer magic.
1046 We set VALUE to describe the result value; we assume VALUE1 and
1047 VALUE2 describe the two operands, and that they've undergone the
1048 usual binary conversions. MAY_CARRY should be non-zero iff the
1049 result needs to be extended. NAME is the English name of the
1050 operator, used in error messages */
1051 static void
1052 gen_binop (struct agent_expr *ax, struct axs_value *value,
1053 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1054 enum agent_op op_unsigned, int may_carry, char *name)
1055 {
1056 /* We only handle INT op INT. */
1057 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1058 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1059 error ("Illegal combination of types in %s.", name);
1060
1061 ax_simple (ax,
1062 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1063 if (may_carry)
1064 gen_extend (ax, value1->type); /* catch overflow */
1065 value->type = value1->type;
1066 value->kind = axs_rvalue;
1067 }
1068
1069
1070 static void
1071 gen_logical_not (struct agent_expr *ax, struct axs_value *value)
1072 {
1073 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1074 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1075 error ("Illegal type of operand to `!'.");
1076
1077 gen_usual_unary (ax, value);
1078 ax_simple (ax, aop_log_not);
1079 value->type = builtin_type_int;
1080 }
1081
1082
1083 static void
1084 gen_complement (struct agent_expr *ax, struct axs_value *value)
1085 {
1086 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1087 error ("Illegal type of operand to `~'.");
1088
1089 gen_usual_unary (ax, value);
1090 gen_integral_promotions (ax, value);
1091 ax_simple (ax, aop_bit_not);
1092 gen_extend (ax, value->type);
1093 }
1094 \f
1095
1096
1097 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1098
1099 /* Dereference the value on the top of the stack. */
1100 static void
1101 gen_deref (struct agent_expr *ax, struct axs_value *value)
1102 {
1103 /* The caller should check the type, because several operators use
1104 this, and we don't know what error message to generate. */
1105 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1106 internal_error (__FILE__, __LINE__,
1107 "gen_deref: expected a pointer");
1108
1109 /* We've got an rvalue now, which is a pointer. We want to yield an
1110 lvalue, whose address is exactly that pointer. So we don't
1111 actually emit any code; we just change the type from "Pointer to
1112 T" to "T", and mark the value as an lvalue in memory. Leave it
1113 to the consumer to actually dereference it. */
1114 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1115 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1116 ? axs_rvalue : axs_lvalue_memory);
1117 }
1118
1119
1120 /* Produce the address of the lvalue on the top of the stack. */
1121 static void
1122 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1123 {
1124 /* Special case for taking the address of a function. The ANSI
1125 standard describes this as a special case, too, so this
1126 arrangement is not without motivation. */
1127 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1128 /* The value's already an rvalue on the stack, so we just need to
1129 change the type. */
1130 value->type = lookup_pointer_type (value->type);
1131 else
1132 switch (value->kind)
1133 {
1134 case axs_rvalue:
1135 error ("Operand of `&' is an rvalue, which has no address.");
1136
1137 case axs_lvalue_register:
1138 error ("Operand of `&' is in a register, and has no address.");
1139
1140 case axs_lvalue_memory:
1141 value->kind = axs_rvalue;
1142 value->type = lookup_pointer_type (value->type);
1143 break;
1144 }
1145 }
1146
1147
1148 /* A lot of this stuff will have to change to support C++. But we're
1149 not going to deal with that at the moment. */
1150
1151 /* Find the field in the structure type TYPE named NAME, and return
1152 its index in TYPE's field array. */
1153 static int
1154 find_field (struct type *type, char *name)
1155 {
1156 int i;
1157
1158 CHECK_TYPEDEF (type);
1159
1160 /* Make sure this isn't C++. */
1161 if (TYPE_N_BASECLASSES (type) != 0)
1162 internal_error (__FILE__, __LINE__,
1163 "find_field: derived classes supported");
1164
1165 for (i = 0; i < TYPE_NFIELDS (type); i++)
1166 {
1167 char *this_name = TYPE_FIELD_NAME (type, i);
1168
1169 if (this_name && strcmp (name, this_name) == 0)
1170 return i;
1171
1172 if (this_name[0] == '\0')
1173 internal_error (__FILE__, __LINE__,
1174 "find_field: anonymous unions not supported");
1175 }
1176
1177 error ("Couldn't find member named `%s' in struct/union `%s'",
1178 name, TYPE_TAG_NAME (type));
1179
1180 return 0;
1181 }
1182
1183
1184 /* Generate code to push the value of a bitfield of a structure whose
1185 address is on the top of the stack. START and END give the
1186 starting and one-past-ending *bit* numbers of the field within the
1187 structure. */
1188 static void
1189 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1190 struct type *type, int start, int end)
1191 {
1192 /* Note that ops[i] fetches 8 << i bits. */
1193 static enum agent_op ops[]
1194 =
1195 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1196 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1197
1198 /* We don't want to touch any byte that the bitfield doesn't
1199 actually occupy; we shouldn't make any accesses we're not
1200 explicitly permitted to. We rely here on the fact that the
1201 bytecode `ref' operators work on unaligned addresses.
1202
1203 It takes some fancy footwork to get the stack to work the way
1204 we'd like. Say we're retrieving a bitfield that requires three
1205 fetches. Initially, the stack just contains the address:
1206 addr
1207 For the first fetch, we duplicate the address
1208 addr addr
1209 then add the byte offset, do the fetch, and shift and mask as
1210 needed, yielding a fragment of the value, properly aligned for
1211 the final bitwise or:
1212 addr frag1
1213 then we swap, and repeat the process:
1214 frag1 addr --- address on top
1215 frag1 addr addr --- duplicate it
1216 frag1 addr frag2 --- get second fragment
1217 frag1 frag2 addr --- swap again
1218 frag1 frag2 frag3 --- get third fragment
1219 Notice that, since the third fragment is the last one, we don't
1220 bother duplicating the address this time. Now we have all the
1221 fragments on the stack, and we can simply `or' them together,
1222 yielding the final value of the bitfield. */
1223
1224 /* The first and one-after-last bits in the field, but rounded down
1225 and up to byte boundaries. */
1226 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1227 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1228 / TARGET_CHAR_BIT)
1229 * TARGET_CHAR_BIT);
1230
1231 /* current bit offset within the structure */
1232 int offset;
1233
1234 /* The index in ops of the opcode we're considering. */
1235 int op;
1236
1237 /* The number of fragments we generated in the process. Probably
1238 equal to the number of `one' bits in bytesize, but who cares? */
1239 int fragment_count;
1240
1241 /* Dereference any typedefs. */
1242 type = check_typedef (type);
1243
1244 /* Can we fetch the number of bits requested at all? */
1245 if ((end - start) > ((1 << num_ops) * 8))
1246 internal_error (__FILE__, __LINE__,
1247 "gen_bitfield_ref: bitfield too wide");
1248
1249 /* Note that we know here that we only need to try each opcode once.
1250 That may not be true on machines with weird byte sizes. */
1251 offset = bound_start;
1252 fragment_count = 0;
1253 for (op = num_ops - 1; op >= 0; op--)
1254 {
1255 /* number of bits that ops[op] would fetch */
1256 int op_size = 8 << op;
1257
1258 /* The stack at this point, from bottom to top, contains zero or
1259 more fragments, then the address. */
1260
1261 /* Does this fetch fit within the bitfield? */
1262 if (offset + op_size <= bound_end)
1263 {
1264 /* Is this the last fragment? */
1265 int last_frag = (offset + op_size == bound_end);
1266
1267 if (!last_frag)
1268 ax_simple (ax, aop_dup); /* keep a copy of the address */
1269
1270 /* Add the offset. */
1271 gen_offset (ax, offset / TARGET_CHAR_BIT);
1272
1273 if (trace_kludge)
1274 {
1275 /* Record the area of memory we're about to fetch. */
1276 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1277 }
1278
1279 /* Perform the fetch. */
1280 ax_simple (ax, ops[op]);
1281
1282 /* Shift the bits we have to their proper position.
1283 gen_left_shift will generate right shifts when the operand
1284 is negative.
1285
1286 A big-endian field diagram to ponder:
1287 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1288 +------++------++------++------++------++------++------++------+
1289 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1290 ^ ^ ^ ^
1291 bit number 16 32 48 53
1292 These are bit numbers as supplied by GDB. Note that the
1293 bit numbers run from right to left once you've fetched the
1294 value!
1295
1296 A little-endian field diagram to ponder:
1297 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1298 +------++------++------++------++------++------++------++------+
1299 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1300 ^ ^ ^ ^ ^
1301 bit number 48 32 16 4 0
1302
1303 In both cases, the most significant end is on the left
1304 (i.e. normal numeric writing order), which means that you
1305 don't go crazy thinking about `left' and `right' shifts.
1306
1307 We don't have to worry about masking yet:
1308 - If they contain garbage off the least significant end, then we
1309 must be looking at the low end of the field, and the right
1310 shift will wipe them out.
1311 - If they contain garbage off the most significant end, then we
1312 must be looking at the most significant end of the word, and
1313 the sign/zero extension will wipe them out.
1314 - If we're in the interior of the word, then there is no garbage
1315 on either end, because the ref operators zero-extend. */
1316 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1317 gen_left_shift (ax, end - (offset + op_size));
1318 else
1319 gen_left_shift (ax, offset - start);
1320
1321 if (!last_frag)
1322 /* Bring the copy of the address up to the top. */
1323 ax_simple (ax, aop_swap);
1324
1325 offset += op_size;
1326 fragment_count++;
1327 }
1328 }
1329
1330 /* Generate enough bitwise `or' operations to combine all the
1331 fragments we left on the stack. */
1332 while (fragment_count-- > 1)
1333 ax_simple (ax, aop_bit_or);
1334
1335 /* Sign- or zero-extend the value as appropriate. */
1336 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1337
1338 /* This is *not* an lvalue. Ugh. */
1339 value->kind = axs_rvalue;
1340 value->type = type;
1341 }
1342
1343
1344 /* Generate code to reference the member named FIELD of a structure or
1345 union. The top of the stack, as described by VALUE, should have
1346 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1347 the operator being compiled, and OPERAND_NAME is the kind of thing
1348 it operates on; we use them in error messages. */
1349 static void
1350 gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1351 char *operator_name, char *operand_name)
1352 {
1353 struct type *type;
1354 int i;
1355
1356 /* Follow pointers until we reach a non-pointer. These aren't the C
1357 semantics, but they're what the normal GDB evaluator does, so we
1358 should at least be consistent. */
1359 while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
1360 {
1361 gen_usual_unary (ax, value);
1362 gen_deref (ax, value);
1363 }
1364 type = check_typedef (value->type);
1365
1366 /* This must yield a structure or a union. */
1367 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1368 && TYPE_CODE (type) != TYPE_CODE_UNION)
1369 error ("The left operand of `%s' is not a %s.",
1370 operator_name, operand_name);
1371
1372 /* And it must be in memory; we don't deal with structure rvalues,
1373 or structures living in registers. */
1374 if (value->kind != axs_lvalue_memory)
1375 error ("Structure does not live in memory.");
1376
1377 i = find_field (type, field);
1378
1379 /* Is this a bitfield? */
1380 if (TYPE_FIELD_PACKED (type, i))
1381 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1382 TYPE_FIELD_BITPOS (type, i),
1383 (TYPE_FIELD_BITPOS (type, i)
1384 + TYPE_FIELD_BITSIZE (type, i)));
1385 else
1386 {
1387 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1388 value->kind = axs_lvalue_memory;
1389 value->type = TYPE_FIELD_TYPE (type, i);
1390 }
1391 }
1392
1393
1394 /* Generate code for GDB's magical `repeat' operator.
1395 LVALUE @ INT creates an array INT elements long, and whose elements
1396 have the same type as LVALUE, located in memory so that LVALUE is
1397 its first element. For example, argv[0]@argc gives you the array
1398 of command-line arguments.
1399
1400 Unfortunately, because we have to know the types before we actually
1401 have a value for the expression, we can't implement this perfectly
1402 without changing the type system, having values that occupy two
1403 stack slots, doing weird things with sizeof, etc. So we require
1404 the right operand to be a constant expression. */
1405 static void
1406 gen_repeat (union exp_element **pc, struct agent_expr *ax,
1407 struct axs_value *value)
1408 {
1409 struct axs_value value1;
1410 /* We don't want to turn this into an rvalue, so no conversions
1411 here. */
1412 gen_expr (pc, ax, &value1);
1413 if (value1.kind != axs_lvalue_memory)
1414 error ("Left operand of `@' must be an object in memory.");
1415
1416 /* Evaluate the length; it had better be a constant. */
1417 {
1418 struct value *v = const_expr (pc);
1419 int length;
1420
1421 if (!v)
1422 error ("Right operand of `@' must be a constant, in agent expressions.");
1423 if (TYPE_CODE (v->type) != TYPE_CODE_INT)
1424 error ("Right operand of `@' must be an integer.");
1425 length = value_as_long (v);
1426 if (length <= 0)
1427 error ("Right operand of `@' must be positive.");
1428
1429 /* The top of the stack is already the address of the object, so
1430 all we need to do is frob the type of the lvalue. */
1431 {
1432 /* FIXME-type-allocation: need a way to free this type when we are
1433 done with it. */
1434 struct type *range
1435 = create_range_type (0, builtin_type_int, 0, length - 1);
1436 struct type *array = create_array_type (0, value1.type, range);
1437
1438 value->kind = axs_lvalue_memory;
1439 value->type = array;
1440 }
1441 }
1442 }
1443
1444
1445 /* Emit code for the `sizeof' operator.
1446 *PC should point at the start of the operand expression; we advance it
1447 to the first instruction after the operand. */
1448 static void
1449 gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1450 struct axs_value *value)
1451 {
1452 /* We don't care about the value of the operand expression; we only
1453 care about its type. However, in the current arrangement, the
1454 only way to find an expression's type is to generate code for it.
1455 So we generate code for the operand, and then throw it away,
1456 replacing it with code that simply pushes its size. */
1457 int start = ax->len;
1458 gen_expr (pc, ax, value);
1459
1460 /* Throw away the code we just generated. */
1461 ax->len = start;
1462
1463 ax_const_l (ax, TYPE_LENGTH (value->type));
1464 value->kind = axs_rvalue;
1465 value->type = builtin_type_int;
1466 }
1467 \f
1468
1469 /* Generating bytecode from GDB expressions: general recursive thingy */
1470
1471 /* A gen_expr function written by a Gen-X'er guy.
1472 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1473 static void
1474 gen_expr (union exp_element **pc, struct agent_expr *ax,
1475 struct axs_value *value)
1476 {
1477 /* Used to hold the descriptions of operand expressions. */
1478 struct axs_value value1, value2;
1479 enum exp_opcode op = (*pc)[0].opcode;
1480
1481 /* If we're looking at a constant expression, just push its value. */
1482 {
1483 struct value *v = maybe_const_expr (pc);
1484
1485 if (v)
1486 {
1487 ax_const_l (ax, value_as_long (v));
1488 value->kind = axs_rvalue;
1489 value->type = check_typedef (VALUE_TYPE (v));
1490 return;
1491 }
1492 }
1493
1494 /* Otherwise, go ahead and generate code for it. */
1495 switch (op)
1496 {
1497 /* Binary arithmetic operators. */
1498 case BINOP_ADD:
1499 case BINOP_SUB:
1500 case BINOP_MUL:
1501 case BINOP_DIV:
1502 case BINOP_REM:
1503 case BINOP_SUBSCRIPT:
1504 case BINOP_BITWISE_AND:
1505 case BINOP_BITWISE_IOR:
1506 case BINOP_BITWISE_XOR:
1507 (*pc)++;
1508 gen_expr (pc, ax, &value1);
1509 gen_usual_unary (ax, &value1);
1510 gen_expr (pc, ax, &value2);
1511 gen_usual_unary (ax, &value2);
1512 gen_usual_arithmetic (ax, &value1, &value2);
1513 switch (op)
1514 {
1515 case BINOP_ADD:
1516 gen_add (ax, value, &value1, &value2, "addition");
1517 break;
1518 case BINOP_SUB:
1519 gen_sub (ax, value, &value1, &value2);
1520 break;
1521 case BINOP_MUL:
1522 gen_binop (ax, value, &value1, &value2,
1523 aop_mul, aop_mul, 1, "multiplication");
1524 break;
1525 case BINOP_DIV:
1526 gen_binop (ax, value, &value1, &value2,
1527 aop_div_signed, aop_div_unsigned, 1, "division");
1528 break;
1529 case BINOP_REM:
1530 gen_binop (ax, value, &value1, &value2,
1531 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1532 break;
1533 case BINOP_SUBSCRIPT:
1534 gen_add (ax, value, &value1, &value2, "array subscripting");
1535 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1536 error ("Illegal combination of types in array subscripting.");
1537 gen_deref (ax, value);
1538 break;
1539 case BINOP_BITWISE_AND:
1540 gen_binop (ax, value, &value1, &value2,
1541 aop_bit_and, aop_bit_and, 0, "bitwise and");
1542 break;
1543
1544 case BINOP_BITWISE_IOR:
1545 gen_binop (ax, value, &value1, &value2,
1546 aop_bit_or, aop_bit_or, 0, "bitwise or");
1547 break;
1548
1549 case BINOP_BITWISE_XOR:
1550 gen_binop (ax, value, &value1, &value2,
1551 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1552 break;
1553
1554 default:
1555 /* We should only list operators in the outer case statement
1556 that we actually handle in the inner case statement. */
1557 internal_error (__FILE__, __LINE__,
1558 "gen_expr: op case sets don't match");
1559 }
1560 break;
1561
1562 /* Note that we need to be a little subtle about generating code
1563 for comma. In C, we can do some optimizations here because
1564 we know the left operand is only being evaluated for effect.
1565 However, if the tracing kludge is in effect, then we always
1566 need to evaluate the left hand side fully, so that all the
1567 variables it mentions get traced. */
1568 case BINOP_COMMA:
1569 (*pc)++;
1570 gen_expr (pc, ax, &value1);
1571 /* Don't just dispose of the left operand. We might be tracing,
1572 in which case we want to emit code to trace it if it's an
1573 lvalue. */
1574 gen_traced_pop (ax, &value1);
1575 gen_expr (pc, ax, value);
1576 /* It's the consumer's responsibility to trace the right operand. */
1577 break;
1578
1579 case OP_LONG: /* some integer constant */
1580 {
1581 struct type *type = (*pc)[1].type;
1582 LONGEST k = (*pc)[2].longconst;
1583 (*pc) += 4;
1584 gen_int_literal (ax, value, k, type);
1585 }
1586 break;
1587
1588 case OP_VAR_VALUE:
1589 gen_var_ref (ax, value, (*pc)[2].symbol);
1590 (*pc) += 4;
1591 break;
1592
1593 case OP_REGISTER:
1594 {
1595 int reg = (int) (*pc)[1].longconst;
1596 (*pc) += 3;
1597 value->kind = axs_lvalue_register;
1598 value->u.reg = reg;
1599 value->type = register_type (current_gdbarch, reg);
1600 }
1601 break;
1602
1603 case OP_INTERNALVAR:
1604 error ("GDB agent expressions cannot use convenience variables.");
1605
1606 /* Weirdo operator: see comments for gen_repeat for details. */
1607 case BINOP_REPEAT:
1608 /* Note that gen_repeat handles its own argument evaluation. */
1609 (*pc)++;
1610 gen_repeat (pc, ax, value);
1611 break;
1612
1613 case UNOP_CAST:
1614 {
1615 struct type *type = (*pc)[1].type;
1616 (*pc) += 3;
1617 gen_expr (pc, ax, value);
1618 gen_cast (ax, value, type);
1619 }
1620 break;
1621
1622 case UNOP_MEMVAL:
1623 {
1624 struct type *type = check_typedef ((*pc)[1].type);
1625 (*pc) += 3;
1626 gen_expr (pc, ax, value);
1627 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1628 it's just a hack for dealing with minsyms; you take some
1629 integer constant, pretend it's the address of an lvalue of
1630 the given type, and dereference it. */
1631 if (value->kind != axs_rvalue)
1632 /* This would be weird. */
1633 internal_error (__FILE__, __LINE__,
1634 "gen_expr: OP_MEMVAL operand isn't an rvalue???");
1635 value->type = type;
1636 value->kind = axs_lvalue_memory;
1637 }
1638 break;
1639
1640 case UNOP_NEG:
1641 (*pc)++;
1642 /* -FOO is equivalent to 0 - FOO. */
1643 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
1644 gen_usual_unary (ax, &value1); /* shouldn't do much */
1645 gen_expr (pc, ax, &value2);
1646 gen_usual_unary (ax, &value2);
1647 gen_usual_arithmetic (ax, &value1, &value2);
1648 gen_sub (ax, value, &value1, &value2);
1649 break;
1650
1651 case UNOP_LOGICAL_NOT:
1652 (*pc)++;
1653 gen_expr (pc, ax, value);
1654 gen_logical_not (ax, value);
1655 break;
1656
1657 case UNOP_COMPLEMENT:
1658 (*pc)++;
1659 gen_expr (pc, ax, value);
1660 gen_complement (ax, value);
1661 break;
1662
1663 case UNOP_IND:
1664 (*pc)++;
1665 gen_expr (pc, ax, value);
1666 gen_usual_unary (ax, value);
1667 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1668 error ("Argument of unary `*' is not a pointer.");
1669 gen_deref (ax, value);
1670 break;
1671
1672 case UNOP_ADDR:
1673 (*pc)++;
1674 gen_expr (pc, ax, value);
1675 gen_address_of (ax, value);
1676 break;
1677
1678 case UNOP_SIZEOF:
1679 (*pc)++;
1680 /* Notice that gen_sizeof handles its own operand, unlike most
1681 of the other unary operator functions. This is because we
1682 have to throw away the code we generate. */
1683 gen_sizeof (pc, ax, value);
1684 break;
1685
1686 case STRUCTOP_STRUCT:
1687 case STRUCTOP_PTR:
1688 {
1689 int length = (*pc)[1].longconst;
1690 char *name = &(*pc)[2].string;
1691
1692 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1693 gen_expr (pc, ax, value);
1694 if (op == STRUCTOP_STRUCT)
1695 gen_struct_ref (ax, value, name, ".", "structure or union");
1696 else if (op == STRUCTOP_PTR)
1697 gen_struct_ref (ax, value, name, "->",
1698 "pointer to a structure or union");
1699 else
1700 /* If this `if' chain doesn't handle it, then the case list
1701 shouldn't mention it, and we shouldn't be here. */
1702 internal_error (__FILE__, __LINE__,
1703 "gen_expr: unhandled struct case");
1704 }
1705 break;
1706
1707 case OP_TYPE:
1708 error ("Attempt to use a type name as an expression.");
1709
1710 default:
1711 error ("Unsupported operator in expression.");
1712 }
1713 }
1714 \f
1715
1716
1717 /* Generating bytecode from GDB expressions: driver */
1718
1719 /* Given a GDB expression EXPR, produce a string of agent bytecode
1720 which computes its value. Return the agent expression, and set
1721 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1722 struct agent_expr *
1723 expr_to_agent (struct expression *expr, struct axs_value *value)
1724 {
1725 struct cleanup *old_chain = 0;
1726 struct agent_expr *ax = new_agent_expr (0);
1727 union exp_element *pc;
1728
1729 old_chain = make_cleanup_free_agent_expr (ax);
1730
1731 pc = expr->elts;
1732 trace_kludge = 0;
1733 gen_expr (&pc, ax, value);
1734
1735 /* We have successfully built the agent expr, so cancel the cleanup
1736 request. If we add more cleanups that we always want done, this
1737 will have to get more complicated. */
1738 discard_cleanups (old_chain);
1739 return ax;
1740 }
1741
1742
1743 #if 0 /* not used */
1744 /* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1745 string of agent bytecode which will leave its address and size on
1746 the top of stack. Return the agent expression.
1747
1748 Not sure this function is useful at all. */
1749 struct agent_expr *
1750 expr_to_address_and_size (struct expression *expr)
1751 {
1752 struct axs_value value;
1753 struct agent_expr *ax = expr_to_agent (expr, &value);
1754
1755 /* Complain if the result is not a memory lvalue. */
1756 if (value.kind != axs_lvalue_memory)
1757 {
1758 free_agent_expr (ax);
1759 error ("Expression does not denote an object in memory.");
1760 }
1761
1762 /* Push the object's size on the stack. */
1763 ax_const_l (ax, TYPE_LENGTH (value.type));
1764
1765 return ax;
1766 }
1767 #endif
1768
1769 /* Given a GDB expression EXPR, return bytecode to trace its value.
1770 The result will use the `trace' and `trace_quick' bytecodes to
1771 record the value of all memory touched by the expression. The
1772 caller can then use the ax_reqs function to discover which
1773 registers it relies upon. */
1774 struct agent_expr *
1775 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
1776 {
1777 struct cleanup *old_chain = 0;
1778 struct agent_expr *ax = new_agent_expr (scope);
1779 union exp_element *pc;
1780 struct axs_value value;
1781
1782 old_chain = make_cleanup_free_agent_expr (ax);
1783
1784 pc = expr->elts;
1785 trace_kludge = 1;
1786 gen_expr (&pc, ax, &value);
1787
1788 /* Make sure we record the final object, and get rid of it. */
1789 gen_traced_pop (ax, &value);
1790
1791 /* Oh, and terminate. */
1792 ax_simple (ax, aop_end);
1793
1794 /* We have successfully built the agent expr, so cancel the cleanup
1795 request. If we add more cleanups that we always want done, this
1796 will have to get more complicated. */
1797 discard_cleanups (old_chain);
1798 return ax;
1799 }
1800 \f
1801
1802
1803 /* The "agent" command, for testing: compile and disassemble an expression. */
1804
1805 static void
1806 print_axs_value (struct ui_file *f, struct axs_value *value)
1807 {
1808 switch (value->kind)
1809 {
1810 case axs_rvalue:
1811 fputs_filtered ("rvalue", f);
1812 break;
1813
1814 case axs_lvalue_memory:
1815 fputs_filtered ("memory lvalue", f);
1816 break;
1817
1818 case axs_lvalue_register:
1819 fprintf_filtered (f, "register %d lvalue", value->u.reg);
1820 break;
1821 }
1822
1823 fputs_filtered (" : ", f);
1824 type_print (value->type, "", f, -1);
1825 }
1826
1827
1828 static void
1829 agent_command (char *exp, int from_tty)
1830 {
1831 struct cleanup *old_chain = 0;
1832 struct expression *expr;
1833 struct agent_expr *agent;
1834 struct frame_info *fi = get_current_frame (); /* need current scope */
1835
1836 /* We don't deal with overlay debugging at the moment. We need to
1837 think more carefully about this. If you copy this code into
1838 another command, change the error message; the user shouldn't
1839 have to know anything about agent expressions. */
1840 if (overlay_debugging)
1841 error ("GDB can't do agent expression translation with overlays.");
1842
1843 if (exp == 0)
1844 error_no_arg ("expression to translate");
1845
1846 expr = parse_expression (exp);
1847 old_chain = make_cleanup (free_current_contents, &expr);
1848 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
1849 make_cleanup_free_agent_expr (agent);
1850 ax_print (gdb_stdout, agent);
1851
1852 /* It would be nice to call ax_reqs here to gather some general info
1853 about the expression, and then print out the result. */
1854
1855 do_cleanups (old_chain);
1856 dont_repeat ();
1857 }
1858 \f
1859
1860 /* Initialization code. */
1861
1862 void _initialize_ax_gdb (void);
1863 void
1864 _initialize_ax_gdb (void)
1865 {
1866 add_cmd ("agent", class_maintenance, agent_command,
1867 "Translate an expression into remote agent bytecode.",
1868 &maintenancelist);
1869 }
This page took 0.069247 seconds and 4 git commands to generate.