* ax-gdb.c: Include "language.h".
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "expression.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "gdb_string.h"
34 #include "block.h"
35 #include "regcache.h"
36 #include "user-regs.h"
37 #include "language.h"
38
39 /* To make sense of this file, you should read doc/agentexpr.texi.
40 Then look at the types and enums in ax-gdb.h. For the code itself,
41 look at gen_expr, towards the bottom; that's the main function that
42 looks at the GDB expressions and calls everything else to generate
43 code.
44
45 I'm beginning to wonder whether it wouldn't be nicer to internally
46 generate trees, with types, and then spit out the bytecode in
47 linear form afterwards; we could generate fewer `swap', `ext', and
48 `zero_ext' bytecodes that way; it would make good constant folding
49 easier, too. But at the moment, I think we should be willing to
50 pay for the simplicity of this code with less-than-optimal bytecode
51 strings.
52
53 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
54 \f
55
56
57 /* Prototypes for local functions. */
58
59 /* There's a standard order to the arguments of these functions:
60 union exp_element ** --- pointer into expression
61 struct agent_expr * --- agent expression buffer to generate code into
62 struct axs_value * --- describes value left on top of stack */
63
64 static struct value *const_var_ref (struct symbol *var);
65 static struct value *const_expr (union exp_element **pc);
66 static struct value *maybe_const_expr (union exp_element **pc);
67
68 static void gen_traced_pop (struct agent_expr *, struct axs_value *);
69
70 static void gen_sign_extend (struct agent_expr *, struct type *);
71 static void gen_extend (struct agent_expr *, struct type *);
72 static void gen_fetch (struct agent_expr *, struct type *);
73 static void gen_left_shift (struct agent_expr *, int);
74
75
76 static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
77 static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
78 static void gen_offset (struct agent_expr *ax, int offset);
79 static void gen_sym_offset (struct agent_expr *, struct symbol *);
80 static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
81 struct axs_value *value, struct symbol *var);
82
83
84 static void gen_int_literal (struct agent_expr *ax,
85 struct axs_value *value,
86 LONGEST k, struct type *type);
87
88
89 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
90 static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
91 struct axs_value *value);
92 static int type_wider_than (struct type *type1, struct type *type2);
93 static struct type *max_type (struct type *type1, struct type *type2);
94 static void gen_conversion (struct agent_expr *ax,
95 struct type *from, struct type *to);
96 static int is_nontrivial_conversion (struct type *from, struct type *to);
97 static void gen_usual_arithmetic (struct expression *exp,
98 struct agent_expr *ax,
99 struct axs_value *value1,
100 struct axs_value *value2);
101 static void gen_integral_promotions (struct expression *exp,
102 struct agent_expr *ax,
103 struct axs_value *value);
104 static void gen_cast (struct agent_expr *ax,
105 struct axs_value *value, struct type *type);
106 static void gen_scale (struct agent_expr *ax,
107 enum agent_op op, struct type *type);
108 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
109 struct axs_value *value1, struct axs_value *value2);
110 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
111 struct axs_value *value1, struct axs_value *value2);
112 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
113 struct axs_value *value1, struct axs_value *value2,
114 struct type *result_type);
115 static void gen_binop (struct agent_expr *ax,
116 struct axs_value *value,
117 struct axs_value *value1,
118 struct axs_value *value2,
119 enum agent_op op,
120 enum agent_op op_unsigned, int may_carry, char *name);
121 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
122 struct type *result_type);
123 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
124 static void gen_deref (struct agent_expr *, struct axs_value *);
125 static void gen_address_of (struct agent_expr *, struct axs_value *);
126 static int find_field (struct type *type, char *name);
127 static void gen_bitfield_ref (struct agent_expr *ax,
128 struct axs_value *value,
129 struct type *type, int start, int end);
130 static void gen_struct_ref (struct agent_expr *ax,
131 struct axs_value *value,
132 char *field,
133 char *operator_name, char *operand_name);
134 static void gen_repeat (struct expression *exp, union exp_element **pc,
135 struct agent_expr *ax, struct axs_value *value);
136 static void gen_sizeof (struct expression *exp, union exp_element **pc,
137 struct agent_expr *ax, struct axs_value *value,
138 struct type *size_type);
139 static void gen_expr (struct expression *exp, union exp_element **pc,
140 struct agent_expr *ax, struct axs_value *value);
141
142 static void agent_command (char *exp, int from_tty);
143 \f
144
145 /* Detecting constant expressions. */
146
147 /* If the variable reference at *PC is a constant, return its value.
148 Otherwise, return zero.
149
150 Hey, Wally! How can a variable reference be a constant?
151
152 Well, Beav, this function really handles the OP_VAR_VALUE operator,
153 not specifically variable references. GDB uses OP_VAR_VALUE to
154 refer to any kind of symbolic reference: function names, enum
155 elements, and goto labels are all handled through the OP_VAR_VALUE
156 operator, even though they're constants. It makes sense given the
157 situation.
158
159 Gee, Wally, don'cha wonder sometimes if data representations that
160 subvert commonly accepted definitions of terms in favor of heavily
161 context-specific interpretations are really just a tool of the
162 programming hegemony to preserve their power and exclude the
163 proletariat? */
164
165 static struct value *
166 const_var_ref (struct symbol *var)
167 {
168 struct type *type = SYMBOL_TYPE (var);
169
170 switch (SYMBOL_CLASS (var))
171 {
172 case LOC_CONST:
173 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
174
175 case LOC_LABEL:
176 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
177
178 default:
179 return 0;
180 }
181 }
182
183
184 /* If the expression starting at *PC has a constant value, return it.
185 Otherwise, return zero. If we return a value, then *PC will be
186 advanced to the end of it. If we return zero, *PC could be
187 anywhere. */
188 static struct value *
189 const_expr (union exp_element **pc)
190 {
191 enum exp_opcode op = (*pc)->opcode;
192 struct value *v1;
193
194 switch (op)
195 {
196 case OP_LONG:
197 {
198 struct type *type = (*pc)[1].type;
199 LONGEST k = (*pc)[2].longconst;
200 (*pc) += 4;
201 return value_from_longest (type, k);
202 }
203
204 case OP_VAR_VALUE:
205 {
206 struct value *v = const_var_ref ((*pc)[2].symbol);
207 (*pc) += 4;
208 return v;
209 }
210
211 /* We could add more operators in here. */
212
213 case UNOP_NEG:
214 (*pc)++;
215 v1 = const_expr (pc);
216 if (v1)
217 return value_neg (v1);
218 else
219 return 0;
220
221 default:
222 return 0;
223 }
224 }
225
226
227 /* Like const_expr, but guarantee also that *PC is undisturbed if the
228 expression is not constant. */
229 static struct value *
230 maybe_const_expr (union exp_element **pc)
231 {
232 union exp_element *tentative_pc = *pc;
233 struct value *v = const_expr (&tentative_pc);
234
235 /* If we got a value, then update the real PC. */
236 if (v)
237 *pc = tentative_pc;
238
239 return v;
240 }
241 \f
242
243 /* Generating bytecode from GDB expressions: general assumptions */
244
245 /* Here are a few general assumptions made throughout the code; if you
246 want to make a change that contradicts one of these, then you'd
247 better scan things pretty thoroughly.
248
249 - We assume that all values occupy one stack element. For example,
250 sometimes we'll swap to get at the left argument to a binary
251 operator. If we decide that void values should occupy no stack
252 elements, or that synthetic arrays (whose size is determined at
253 run time, created by the `@' operator) should occupy two stack
254 elements (address and length), then this will cause trouble.
255
256 - We assume the stack elements are infinitely wide, and that we
257 don't have to worry what happens if the user requests an
258 operation that is wider than the actual interpreter's stack.
259 That is, it's up to the interpreter to handle directly all the
260 integer widths the user has access to. (Woe betide the language
261 with bignums!)
262
263 - We don't support side effects. Thus, we don't have to worry about
264 GCC's generalized lvalues, function calls, etc.
265
266 - We don't support floating point. Many places where we switch on
267 some type don't bother to include cases for floating point; there
268 may be even more subtle ways this assumption exists. For
269 example, the arguments to % must be integers.
270
271 - We assume all subexpressions have a static, unchanging type. If
272 we tried to support convenience variables, this would be a
273 problem.
274
275 - All values on the stack should always be fully zero- or
276 sign-extended.
277
278 (I wasn't sure whether to choose this or its opposite --- that
279 only addresses are assumed extended --- but it turns out that
280 neither convention completely eliminates spurious extend
281 operations (if everything is always extended, then you have to
282 extend after add, because it could overflow; if nothing is
283 extended, then you end up producing extends whenever you change
284 sizes), and this is simpler.) */
285 \f
286
287 /* Generating bytecode from GDB expressions: the `trace' kludge */
288
289 /* The compiler in this file is a general-purpose mechanism for
290 translating GDB expressions into bytecode. One ought to be able to
291 find a million and one uses for it.
292
293 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
294 of expediency. Let he who is without sin cast the first stone.
295
296 For the data tracing facility, we need to insert `trace' bytecodes
297 before each data fetch; this records all the memory that the
298 expression touches in the course of evaluation, so that memory will
299 be available when the user later tries to evaluate the expression
300 in GDB.
301
302 This should be done (I think) in a post-processing pass, that walks
303 an arbitrary agent expression and inserts `trace' operations at the
304 appropriate points. But it's much faster to just hack them
305 directly into the code. And since we're in a crunch, that's what
306 I've done.
307
308 Setting the flag trace_kludge to non-zero enables the code that
309 emits the trace bytecodes at the appropriate points. */
310 static int trace_kludge;
311
312 /* Trace the lvalue on the stack, if it needs it. In either case, pop
313 the value. Useful on the left side of a comma, and at the end of
314 an expression being used for tracing. */
315 static void
316 gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
317 {
318 if (trace_kludge)
319 switch (value->kind)
320 {
321 case axs_rvalue:
322 /* We don't trace rvalues, just the lvalues necessary to
323 produce them. So just dispose of this value. */
324 ax_simple (ax, aop_pop);
325 break;
326
327 case axs_lvalue_memory:
328 {
329 int length = TYPE_LENGTH (check_typedef (value->type));
330
331 /* There's no point in trying to use a trace_quick bytecode
332 here, since "trace_quick SIZE pop" is three bytes, whereas
333 "const8 SIZE trace" is also three bytes, does the same
334 thing, and the simplest code which generates that will also
335 work correctly for objects with large sizes. */
336 ax_const_l (ax, length);
337 ax_simple (ax, aop_trace);
338 }
339 break;
340
341 case axs_lvalue_register:
342 /* We need to mention the register somewhere in the bytecode,
343 so ax_reqs will pick it up and add it to the mask of
344 registers used. */
345 ax_reg (ax, value->u.reg);
346 ax_simple (ax, aop_pop);
347 break;
348 }
349 else
350 /* If we're not tracing, just pop the value. */
351 ax_simple (ax, aop_pop);
352 }
353 \f
354
355
356 /* Generating bytecode from GDB expressions: helper functions */
357
358 /* Assume that the lower bits of the top of the stack is a value of
359 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
360 static void
361 gen_sign_extend (struct agent_expr *ax, struct type *type)
362 {
363 /* Do we need to sign-extend this? */
364 if (!TYPE_UNSIGNED (type))
365 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
366 }
367
368
369 /* Assume the lower bits of the top of the stack hold a value of type
370 TYPE, and the upper bits are garbage. Sign-extend or truncate as
371 needed. */
372 static void
373 gen_extend (struct agent_expr *ax, struct type *type)
374 {
375 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
376 /* I just had to. */
377 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
378 }
379
380
381 /* Assume that the top of the stack contains a value of type "pointer
382 to TYPE"; generate code to fetch its value. Note that TYPE is the
383 target type, not the pointer type. */
384 static void
385 gen_fetch (struct agent_expr *ax, struct type *type)
386 {
387 if (trace_kludge)
388 {
389 /* Record the area of memory we're about to fetch. */
390 ax_trace_quick (ax, TYPE_LENGTH (type));
391 }
392
393 switch (TYPE_CODE (type))
394 {
395 case TYPE_CODE_PTR:
396 case TYPE_CODE_ENUM:
397 case TYPE_CODE_INT:
398 case TYPE_CODE_CHAR:
399 /* It's a scalar value, so we know how to dereference it. How
400 many bytes long is it? */
401 switch (TYPE_LENGTH (type))
402 {
403 case 8 / TARGET_CHAR_BIT:
404 ax_simple (ax, aop_ref8);
405 break;
406 case 16 / TARGET_CHAR_BIT:
407 ax_simple (ax, aop_ref16);
408 break;
409 case 32 / TARGET_CHAR_BIT:
410 ax_simple (ax, aop_ref32);
411 break;
412 case 64 / TARGET_CHAR_BIT:
413 ax_simple (ax, aop_ref64);
414 break;
415
416 /* Either our caller shouldn't have asked us to dereference
417 that pointer (other code's fault), or we're not
418 implementing something we should be (this code's fault).
419 In any case, it's a bug the user shouldn't see. */
420 default:
421 internal_error (__FILE__, __LINE__,
422 _("gen_fetch: strange size"));
423 }
424
425 gen_sign_extend (ax, type);
426 break;
427
428 default:
429 /* Either our caller shouldn't have asked us to dereference that
430 pointer (other code's fault), or we're not implementing
431 something we should be (this code's fault). In any case,
432 it's a bug the user shouldn't see. */
433 internal_error (__FILE__, __LINE__,
434 _("gen_fetch: bad type code"));
435 }
436 }
437
438
439 /* Generate code to left shift the top of the stack by DISTANCE bits, or
440 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
441 unsigned (logical) right shifts. */
442 static void
443 gen_left_shift (struct agent_expr *ax, int distance)
444 {
445 if (distance > 0)
446 {
447 ax_const_l (ax, distance);
448 ax_simple (ax, aop_lsh);
449 }
450 else if (distance < 0)
451 {
452 ax_const_l (ax, -distance);
453 ax_simple (ax, aop_rsh_unsigned);
454 }
455 }
456 \f
457
458
459 /* Generating bytecode from GDB expressions: symbol references */
460
461 /* Generate code to push the base address of the argument portion of
462 the top stack frame. */
463 static void
464 gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
465 {
466 int frame_reg;
467 LONGEST frame_offset;
468
469 gdbarch_virtual_frame_pointer (gdbarch,
470 ax->scope, &frame_reg, &frame_offset);
471 ax_reg (ax, frame_reg);
472 gen_offset (ax, frame_offset);
473 }
474
475
476 /* Generate code to push the base address of the locals portion of the
477 top stack frame. */
478 static void
479 gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
480 {
481 int frame_reg;
482 LONGEST frame_offset;
483
484 gdbarch_virtual_frame_pointer (gdbarch,
485 ax->scope, &frame_reg, &frame_offset);
486 ax_reg (ax, frame_reg);
487 gen_offset (ax, frame_offset);
488 }
489
490
491 /* Generate code to add OFFSET to the top of the stack. Try to
492 generate short and readable code. We use this for getting to
493 variables on the stack, and structure members. If we were
494 programming in ML, it would be clearer why these are the same
495 thing. */
496 static void
497 gen_offset (struct agent_expr *ax, int offset)
498 {
499 /* It would suffice to simply push the offset and add it, but this
500 makes it easier to read positive and negative offsets in the
501 bytecode. */
502 if (offset > 0)
503 {
504 ax_const_l (ax, offset);
505 ax_simple (ax, aop_add);
506 }
507 else if (offset < 0)
508 {
509 ax_const_l (ax, -offset);
510 ax_simple (ax, aop_sub);
511 }
512 }
513
514
515 /* In many cases, a symbol's value is the offset from some other
516 address (stack frame, base register, etc.) Generate code to add
517 VAR's value to the top of the stack. */
518 static void
519 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
520 {
521 gen_offset (ax, SYMBOL_VALUE (var));
522 }
523
524
525 /* Generate code for a variable reference to AX. The variable is the
526 symbol VAR. Set VALUE to describe the result. */
527
528 static void
529 gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
530 struct axs_value *value, struct symbol *var)
531 {
532 /* Dereference any typedefs. */
533 value->type = check_typedef (SYMBOL_TYPE (var));
534
535 /* I'm imitating the code in read_var_value. */
536 switch (SYMBOL_CLASS (var))
537 {
538 case LOC_CONST: /* A constant, like an enum value. */
539 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
540 value->kind = axs_rvalue;
541 break;
542
543 case LOC_LABEL: /* A goto label, being used as a value. */
544 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
545 value->kind = axs_rvalue;
546 break;
547
548 case LOC_CONST_BYTES:
549 internal_error (__FILE__, __LINE__,
550 _("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
551
552 /* Variable at a fixed location in memory. Easy. */
553 case LOC_STATIC:
554 /* Push the address of the variable. */
555 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
556 value->kind = axs_lvalue_memory;
557 break;
558
559 case LOC_ARG: /* var lives in argument area of frame */
560 gen_frame_args_address (gdbarch, ax);
561 gen_sym_offset (ax, var);
562 value->kind = axs_lvalue_memory;
563 break;
564
565 case LOC_REF_ARG: /* As above, but the frame slot really
566 holds the address of the variable. */
567 gen_frame_args_address (gdbarch, ax);
568 gen_sym_offset (ax, var);
569 /* Don't assume any particular pointer size. */
570 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
571 value->kind = axs_lvalue_memory;
572 break;
573
574 case LOC_LOCAL: /* var lives in locals area of frame */
575 gen_frame_locals_address (gdbarch, ax);
576 gen_sym_offset (ax, var);
577 value->kind = axs_lvalue_memory;
578 break;
579
580 case LOC_TYPEDEF:
581 error (_("Cannot compute value of typedef `%s'."),
582 SYMBOL_PRINT_NAME (var));
583 break;
584
585 case LOC_BLOCK:
586 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
587 value->kind = axs_rvalue;
588 break;
589
590 case LOC_REGISTER:
591 /* Don't generate any code at all; in the process of treating
592 this as an lvalue or rvalue, the caller will generate the
593 right code. */
594 value->kind = axs_lvalue_register;
595 value->u.reg = SYMBOL_VALUE (var);
596 break;
597
598 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
599 register, not on the stack. Simpler than LOC_REGISTER
600 because it's just like any other case where the thing
601 has a real address. */
602 case LOC_REGPARM_ADDR:
603 ax_reg (ax, SYMBOL_VALUE (var));
604 value->kind = axs_lvalue_memory;
605 break;
606
607 case LOC_UNRESOLVED:
608 {
609 struct minimal_symbol *msym
610 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
611 if (!msym)
612 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
613
614 /* Push the address of the variable. */
615 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
616 value->kind = axs_lvalue_memory;
617 }
618 break;
619
620 case LOC_COMPUTED:
621 /* FIXME: cagney/2004-01-26: It should be possible to
622 unconditionally call the SYMBOL_OPS method when available.
623 Unfortunately DWARF 2 stores the frame-base (instead of the
624 function) location in a function's symbol. Oops! For the
625 moment enable this when/where applicable. */
626 SYMBOL_OPS (var)->tracepoint_var_ref (var, ax, value);
627 break;
628
629 case LOC_OPTIMIZED_OUT:
630 error (_("The variable `%s' has been optimized out."),
631 SYMBOL_PRINT_NAME (var));
632 break;
633
634 default:
635 error (_("Cannot find value of botched symbol `%s'."),
636 SYMBOL_PRINT_NAME (var));
637 break;
638 }
639 }
640 \f
641
642
643 /* Generating bytecode from GDB expressions: literals */
644
645 static void
646 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
647 struct type *type)
648 {
649 ax_const_l (ax, k);
650 value->kind = axs_rvalue;
651 value->type = check_typedef (type);
652 }
653 \f
654
655
656 /* Generating bytecode from GDB expressions: unary conversions, casts */
657
658 /* Take what's on the top of the stack (as described by VALUE), and
659 try to make an rvalue out of it. Signal an error if we can't do
660 that. */
661 static void
662 require_rvalue (struct agent_expr *ax, struct axs_value *value)
663 {
664 switch (value->kind)
665 {
666 case axs_rvalue:
667 /* It's already an rvalue. */
668 break;
669
670 case axs_lvalue_memory:
671 /* The top of stack is the address of the object. Dereference. */
672 gen_fetch (ax, value->type);
673 break;
674
675 case axs_lvalue_register:
676 /* There's nothing on the stack, but value->u.reg is the
677 register number containing the value.
678
679 When we add floating-point support, this is going to have to
680 change. What about SPARC register pairs, for example? */
681 ax_reg (ax, value->u.reg);
682 gen_extend (ax, value->type);
683 break;
684 }
685
686 value->kind = axs_rvalue;
687 }
688
689
690 /* Assume the top of the stack is described by VALUE, and perform the
691 usual unary conversions. This is motivated by ANSI 6.2.2, but of
692 course GDB expressions are not ANSI; they're the mishmash union of
693 a bunch of languages. Rah.
694
695 NOTE! This function promises to produce an rvalue only when the
696 incoming value is of an appropriate type. In other words, the
697 consumer of the value this function produces may assume the value
698 is an rvalue only after checking its type.
699
700 The immediate issue is that if the user tries to use a structure or
701 union as an operand of, say, the `+' operator, we don't want to try
702 to convert that structure to an rvalue; require_rvalue will bomb on
703 structs and unions. Rather, we want to simply pass the struct
704 lvalue through unchanged, and let `+' raise an error. */
705
706 static void
707 gen_usual_unary (struct expression *exp, struct agent_expr *ax,
708 struct axs_value *value)
709 {
710 /* We don't have to generate any code for the usual integral
711 conversions, since values are always represented as full-width on
712 the stack. Should we tweak the type? */
713
714 /* Some types require special handling. */
715 switch (TYPE_CODE (value->type))
716 {
717 /* Functions get converted to a pointer to the function. */
718 case TYPE_CODE_FUNC:
719 value->type = lookup_pointer_type (value->type);
720 value->kind = axs_rvalue; /* Should always be true, but just in case. */
721 break;
722
723 /* Arrays get converted to a pointer to their first element, and
724 are no longer an lvalue. */
725 case TYPE_CODE_ARRAY:
726 {
727 struct type *elements = TYPE_TARGET_TYPE (value->type);
728 value->type = lookup_pointer_type (elements);
729 value->kind = axs_rvalue;
730 /* We don't need to generate any code; the address of the array
731 is also the address of its first element. */
732 }
733 break;
734
735 /* Don't try to convert structures and unions to rvalues. Let the
736 consumer signal an error. */
737 case TYPE_CODE_STRUCT:
738 case TYPE_CODE_UNION:
739 return;
740
741 /* If the value is an enum, call it an integer. */
742 case TYPE_CODE_ENUM:
743 value->type = builtin_type (exp->gdbarch)->builtin_int;
744 break;
745 }
746
747 /* If the value is an lvalue, dereference it. */
748 require_rvalue (ax, value);
749 }
750
751
752 /* Return non-zero iff the type TYPE1 is considered "wider" than the
753 type TYPE2, according to the rules described in gen_usual_arithmetic. */
754 static int
755 type_wider_than (struct type *type1, struct type *type2)
756 {
757 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
758 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
759 && TYPE_UNSIGNED (type1)
760 && !TYPE_UNSIGNED (type2)));
761 }
762
763
764 /* Return the "wider" of the two types TYPE1 and TYPE2. */
765 static struct type *
766 max_type (struct type *type1, struct type *type2)
767 {
768 return type_wider_than (type1, type2) ? type1 : type2;
769 }
770
771
772 /* Generate code to convert a scalar value of type FROM to type TO. */
773 static void
774 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
775 {
776 /* Perhaps there is a more graceful way to state these rules. */
777
778 /* If we're converting to a narrower type, then we need to clear out
779 the upper bits. */
780 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
781 gen_extend (ax, from);
782
783 /* If the two values have equal width, but different signednesses,
784 then we need to extend. */
785 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
786 {
787 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
788 gen_extend (ax, to);
789 }
790
791 /* If we're converting to a wider type, and becoming unsigned, then
792 we need to zero out any possible sign bits. */
793 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
794 {
795 if (TYPE_UNSIGNED (to))
796 gen_extend (ax, to);
797 }
798 }
799
800
801 /* Return non-zero iff the type FROM will require any bytecodes to be
802 emitted to be converted to the type TO. */
803 static int
804 is_nontrivial_conversion (struct type *from, struct type *to)
805 {
806 struct agent_expr *ax = new_agent_expr (0);
807 int nontrivial;
808
809 /* Actually generate the code, and see if anything came out. At the
810 moment, it would be trivial to replicate the code in
811 gen_conversion here, but in the future, when we're supporting
812 floating point and the like, it may not be. Doing things this
813 way allows this function to be independent of the logic in
814 gen_conversion. */
815 gen_conversion (ax, from, to);
816 nontrivial = ax->len > 0;
817 free_agent_expr (ax);
818 return nontrivial;
819 }
820
821
822 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
823 6.2.1.5) for the two operands of an arithmetic operator. This
824 effectively finds a "least upper bound" type for the two arguments,
825 and promotes each argument to that type. *VALUE1 and *VALUE2
826 describe the values as they are passed in, and as they are left. */
827 static void
828 gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
829 struct axs_value *value1, struct axs_value *value2)
830 {
831 /* Do the usual binary conversions. */
832 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
833 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
834 {
835 /* The ANSI integral promotions seem to work this way: Order the
836 integer types by size, and then by signedness: an n-bit
837 unsigned type is considered "wider" than an n-bit signed
838 type. Promote to the "wider" of the two types, and always
839 promote at least to int. */
840 struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
841 max_type (value1->type, value2->type));
842
843 /* Deal with value2, on the top of the stack. */
844 gen_conversion (ax, value2->type, target);
845
846 /* Deal with value1, not on the top of the stack. Don't
847 generate the `swap' instructions if we're not actually going
848 to do anything. */
849 if (is_nontrivial_conversion (value1->type, target))
850 {
851 ax_simple (ax, aop_swap);
852 gen_conversion (ax, value1->type, target);
853 ax_simple (ax, aop_swap);
854 }
855
856 value1->type = value2->type = check_typedef (target);
857 }
858 }
859
860
861 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
862 the value on the top of the stack, as described by VALUE. Assume
863 the value has integral type. */
864 static void
865 gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
866 struct axs_value *value)
867 {
868 const struct builtin_type *builtin = builtin_type (exp->gdbarch);
869
870 if (!type_wider_than (value->type, builtin->builtin_int))
871 {
872 gen_conversion (ax, value->type, builtin->builtin_int);
873 value->type = builtin->builtin_int;
874 }
875 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
876 {
877 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
878 value->type = builtin->builtin_unsigned_int;
879 }
880 }
881
882
883 /* Generate code for a cast to TYPE. */
884 static void
885 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
886 {
887 /* GCC does allow casts to yield lvalues, so this should be fixed
888 before merging these changes into the trunk. */
889 require_rvalue (ax, value);
890 /* Dereference typedefs. */
891 type = check_typedef (type);
892
893 switch (TYPE_CODE (type))
894 {
895 case TYPE_CODE_PTR:
896 /* It's implementation-defined, and I'll bet this is what GCC
897 does. */
898 break;
899
900 case TYPE_CODE_ARRAY:
901 case TYPE_CODE_STRUCT:
902 case TYPE_CODE_UNION:
903 case TYPE_CODE_FUNC:
904 error (_("Invalid type cast: intended type must be scalar."));
905
906 case TYPE_CODE_ENUM:
907 /* We don't have to worry about the size of the value, because
908 all our integral values are fully sign-extended, and when
909 casting pointers we can do anything we like. Is there any
910 way for us to know what GCC actually does with a cast like
911 this? */
912 break;
913
914 case TYPE_CODE_INT:
915 gen_conversion (ax, value->type, type);
916 break;
917
918 case TYPE_CODE_VOID:
919 /* We could pop the value, and rely on everyone else to check
920 the type and notice that this value doesn't occupy a stack
921 slot. But for now, leave the value on the stack, and
922 preserve the "value == stack element" assumption. */
923 break;
924
925 default:
926 error (_("Casts to requested type are not yet implemented."));
927 }
928
929 value->type = type;
930 }
931 \f
932
933
934 /* Generating bytecode from GDB expressions: arithmetic */
935
936 /* Scale the integer on the top of the stack by the size of the target
937 of the pointer type TYPE. */
938 static void
939 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
940 {
941 struct type *element = TYPE_TARGET_TYPE (type);
942
943 if (TYPE_LENGTH (element) != 1)
944 {
945 ax_const_l (ax, TYPE_LENGTH (element));
946 ax_simple (ax, op);
947 }
948 }
949
950
951 /* Generate code for pointer arithmetic PTR + INT. */
952 static void
953 gen_ptradd (struct agent_expr *ax, struct axs_value *value,
954 struct axs_value *value1, struct axs_value *value2)
955 {
956 gdb_assert (TYPE_CODE (value1->type) == TYPE_CODE_PTR);
957 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
958
959 gen_scale (ax, aop_mul, value1->type);
960 ax_simple (ax, aop_add);
961 gen_extend (ax, value1->type); /* Catch overflow. */
962 value->type = value1->type;
963 value->kind = axs_rvalue;
964 }
965
966
967 /* Generate code for pointer arithmetic PTR - INT. */
968 static void
969 gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
970 struct axs_value *value1, struct axs_value *value2)
971 {
972 gdb_assert (TYPE_CODE (value1->type) == TYPE_CODE_PTR);
973 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
974
975 gen_scale (ax, aop_mul, value1->type);
976 ax_simple (ax, aop_sub);
977 gen_extend (ax, value1->type); /* Catch overflow. */
978 value->type = value1->type;
979 value->kind = axs_rvalue;
980 }
981
982
983 /* Generate code for pointer arithmetic PTR - PTR. */
984 static void
985 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
986 struct axs_value *value1, struct axs_value *value2,
987 struct type *result_type)
988 {
989 gdb_assert (TYPE_CODE (value1->type) == TYPE_CODE_PTR);
990 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_PTR);
991
992 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
993 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
994 error (_("\
995 First argument of `-' is a pointer, but second argument is neither\n\
996 an integer nor a pointer of the same type."));
997
998 ax_simple (ax, aop_sub);
999 gen_scale (ax, aop_div_unsigned, value1->type);
1000 value->type = result_type;
1001 value->kind = axs_rvalue;
1002 }
1003
1004
1005 /* Generate code for a binary operator that doesn't do pointer magic.
1006 We set VALUE to describe the result value; we assume VALUE1 and
1007 VALUE2 describe the two operands, and that they've undergone the
1008 usual binary conversions. MAY_CARRY should be non-zero iff the
1009 result needs to be extended. NAME is the English name of the
1010 operator, used in error messages */
1011 static void
1012 gen_binop (struct agent_expr *ax, struct axs_value *value,
1013 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1014 enum agent_op op_unsigned, int may_carry, char *name)
1015 {
1016 /* We only handle INT op INT. */
1017 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1018 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1019 error (_("Invalid combination of types in %s."), name);
1020
1021 ax_simple (ax,
1022 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1023 if (may_carry)
1024 gen_extend (ax, value1->type); /* catch overflow */
1025 value->type = value1->type;
1026 value->kind = axs_rvalue;
1027 }
1028
1029
1030 static void
1031 gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1032 struct type *result_type)
1033 {
1034 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1035 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1036 error (_("Invalid type of operand to `!'."));
1037
1038 ax_simple (ax, aop_log_not);
1039 value->type = result_type;
1040 }
1041
1042
1043 static void
1044 gen_complement (struct agent_expr *ax, struct axs_value *value)
1045 {
1046 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1047 error (_("Invalid type of operand to `~'."));
1048
1049 ax_simple (ax, aop_bit_not);
1050 gen_extend (ax, value->type);
1051 }
1052 \f
1053
1054
1055 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1056
1057 /* Dereference the value on the top of the stack. */
1058 static void
1059 gen_deref (struct agent_expr *ax, struct axs_value *value)
1060 {
1061 /* The caller should check the type, because several operators use
1062 this, and we don't know what error message to generate. */
1063 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1064 internal_error (__FILE__, __LINE__,
1065 _("gen_deref: expected a pointer"));
1066
1067 /* We've got an rvalue now, which is a pointer. We want to yield an
1068 lvalue, whose address is exactly that pointer. So we don't
1069 actually emit any code; we just change the type from "Pointer to
1070 T" to "T", and mark the value as an lvalue in memory. Leave it
1071 to the consumer to actually dereference it. */
1072 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1073 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1074 ? axs_rvalue : axs_lvalue_memory);
1075 }
1076
1077
1078 /* Produce the address of the lvalue on the top of the stack. */
1079 static void
1080 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1081 {
1082 /* Special case for taking the address of a function. The ANSI
1083 standard describes this as a special case, too, so this
1084 arrangement is not without motivation. */
1085 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1086 /* The value's already an rvalue on the stack, so we just need to
1087 change the type. */
1088 value->type = lookup_pointer_type (value->type);
1089 else
1090 switch (value->kind)
1091 {
1092 case axs_rvalue:
1093 error (_("Operand of `&' is an rvalue, which has no address."));
1094
1095 case axs_lvalue_register:
1096 error (_("Operand of `&' is in a register, and has no address."));
1097
1098 case axs_lvalue_memory:
1099 value->kind = axs_rvalue;
1100 value->type = lookup_pointer_type (value->type);
1101 break;
1102 }
1103 }
1104
1105
1106 /* A lot of this stuff will have to change to support C++. But we're
1107 not going to deal with that at the moment. */
1108
1109 /* Find the field in the structure type TYPE named NAME, and return
1110 its index in TYPE's field array. */
1111 static int
1112 find_field (struct type *type, char *name)
1113 {
1114 int i;
1115
1116 CHECK_TYPEDEF (type);
1117
1118 /* Make sure this isn't C++. */
1119 if (TYPE_N_BASECLASSES (type) != 0)
1120 internal_error (__FILE__, __LINE__,
1121 _("find_field: derived classes supported"));
1122
1123 for (i = 0; i < TYPE_NFIELDS (type); i++)
1124 {
1125 char *this_name = TYPE_FIELD_NAME (type, i);
1126
1127 if (this_name)
1128 {
1129 if (strcmp (name, this_name) == 0)
1130 return i;
1131
1132 if (this_name[0] == '\0')
1133 internal_error (__FILE__, __LINE__,
1134 _("find_field: anonymous unions not supported"));
1135 }
1136 }
1137
1138 error (_("Couldn't find member named `%s' in struct/union `%s'"),
1139 name, TYPE_TAG_NAME (type));
1140
1141 return 0;
1142 }
1143
1144
1145 /* Generate code to push the value of a bitfield of a structure whose
1146 address is on the top of the stack. START and END give the
1147 starting and one-past-ending *bit* numbers of the field within the
1148 structure. */
1149 static void
1150 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1151 struct type *type, int start, int end)
1152 {
1153 /* Note that ops[i] fetches 8 << i bits. */
1154 static enum agent_op ops[]
1155 =
1156 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1157 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1158
1159 /* We don't want to touch any byte that the bitfield doesn't
1160 actually occupy; we shouldn't make any accesses we're not
1161 explicitly permitted to. We rely here on the fact that the
1162 bytecode `ref' operators work on unaligned addresses.
1163
1164 It takes some fancy footwork to get the stack to work the way
1165 we'd like. Say we're retrieving a bitfield that requires three
1166 fetches. Initially, the stack just contains the address:
1167 addr
1168 For the first fetch, we duplicate the address
1169 addr addr
1170 then add the byte offset, do the fetch, and shift and mask as
1171 needed, yielding a fragment of the value, properly aligned for
1172 the final bitwise or:
1173 addr frag1
1174 then we swap, and repeat the process:
1175 frag1 addr --- address on top
1176 frag1 addr addr --- duplicate it
1177 frag1 addr frag2 --- get second fragment
1178 frag1 frag2 addr --- swap again
1179 frag1 frag2 frag3 --- get third fragment
1180 Notice that, since the third fragment is the last one, we don't
1181 bother duplicating the address this time. Now we have all the
1182 fragments on the stack, and we can simply `or' them together,
1183 yielding the final value of the bitfield. */
1184
1185 /* The first and one-after-last bits in the field, but rounded down
1186 and up to byte boundaries. */
1187 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1188 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1189 / TARGET_CHAR_BIT)
1190 * TARGET_CHAR_BIT);
1191
1192 /* current bit offset within the structure */
1193 int offset;
1194
1195 /* The index in ops of the opcode we're considering. */
1196 int op;
1197
1198 /* The number of fragments we generated in the process. Probably
1199 equal to the number of `one' bits in bytesize, but who cares? */
1200 int fragment_count;
1201
1202 /* Dereference any typedefs. */
1203 type = check_typedef (type);
1204
1205 /* Can we fetch the number of bits requested at all? */
1206 if ((end - start) > ((1 << num_ops) * 8))
1207 internal_error (__FILE__, __LINE__,
1208 _("gen_bitfield_ref: bitfield too wide"));
1209
1210 /* Note that we know here that we only need to try each opcode once.
1211 That may not be true on machines with weird byte sizes. */
1212 offset = bound_start;
1213 fragment_count = 0;
1214 for (op = num_ops - 1; op >= 0; op--)
1215 {
1216 /* number of bits that ops[op] would fetch */
1217 int op_size = 8 << op;
1218
1219 /* The stack at this point, from bottom to top, contains zero or
1220 more fragments, then the address. */
1221
1222 /* Does this fetch fit within the bitfield? */
1223 if (offset + op_size <= bound_end)
1224 {
1225 /* Is this the last fragment? */
1226 int last_frag = (offset + op_size == bound_end);
1227
1228 if (!last_frag)
1229 ax_simple (ax, aop_dup); /* keep a copy of the address */
1230
1231 /* Add the offset. */
1232 gen_offset (ax, offset / TARGET_CHAR_BIT);
1233
1234 if (trace_kludge)
1235 {
1236 /* Record the area of memory we're about to fetch. */
1237 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1238 }
1239
1240 /* Perform the fetch. */
1241 ax_simple (ax, ops[op]);
1242
1243 /* Shift the bits we have to their proper position.
1244 gen_left_shift will generate right shifts when the operand
1245 is negative.
1246
1247 A big-endian field diagram to ponder:
1248 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1249 +------++------++------++------++------++------++------++------+
1250 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1251 ^ ^ ^ ^
1252 bit number 16 32 48 53
1253 These are bit numbers as supplied by GDB. Note that the
1254 bit numbers run from right to left once you've fetched the
1255 value!
1256
1257 A little-endian field diagram to ponder:
1258 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1259 +------++------++------++------++------++------++------++------+
1260 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1261 ^ ^ ^ ^ ^
1262 bit number 48 32 16 4 0
1263
1264 In both cases, the most significant end is on the left
1265 (i.e. normal numeric writing order), which means that you
1266 don't go crazy thinking about `left' and `right' shifts.
1267
1268 We don't have to worry about masking yet:
1269 - If they contain garbage off the least significant end, then we
1270 must be looking at the low end of the field, and the right
1271 shift will wipe them out.
1272 - If they contain garbage off the most significant end, then we
1273 must be looking at the most significant end of the word, and
1274 the sign/zero extension will wipe them out.
1275 - If we're in the interior of the word, then there is no garbage
1276 on either end, because the ref operators zero-extend. */
1277 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1278 gen_left_shift (ax, end - (offset + op_size));
1279 else
1280 gen_left_shift (ax, offset - start);
1281
1282 if (!last_frag)
1283 /* Bring the copy of the address up to the top. */
1284 ax_simple (ax, aop_swap);
1285
1286 offset += op_size;
1287 fragment_count++;
1288 }
1289 }
1290
1291 /* Generate enough bitwise `or' operations to combine all the
1292 fragments we left on the stack. */
1293 while (fragment_count-- > 1)
1294 ax_simple (ax, aop_bit_or);
1295
1296 /* Sign- or zero-extend the value as appropriate. */
1297 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1298
1299 /* This is *not* an lvalue. Ugh. */
1300 value->kind = axs_rvalue;
1301 value->type = type;
1302 }
1303
1304
1305 /* Generate code to reference the member named FIELD of a structure or
1306 union. The top of the stack, as described by VALUE, should have
1307 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1308 the operator being compiled, and OPERAND_NAME is the kind of thing
1309 it operates on; we use them in error messages. */
1310 static void
1311 gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1312 char *operator_name, char *operand_name)
1313 {
1314 struct type *type;
1315 int i;
1316
1317 /* Follow pointers until we reach a non-pointer. These aren't the C
1318 semantics, but they're what the normal GDB evaluator does, so we
1319 should at least be consistent. */
1320 while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
1321 {
1322 require_rvalue (ax, value);
1323 gen_deref (ax, value);
1324 }
1325 type = check_typedef (value->type);
1326
1327 /* This must yield a structure or a union. */
1328 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1329 && TYPE_CODE (type) != TYPE_CODE_UNION)
1330 error (_("The left operand of `%s' is not a %s."),
1331 operator_name, operand_name);
1332
1333 /* And it must be in memory; we don't deal with structure rvalues,
1334 or structures living in registers. */
1335 if (value->kind != axs_lvalue_memory)
1336 error (_("Structure does not live in memory."));
1337
1338 i = find_field (type, field);
1339
1340 /* Is this a bitfield? */
1341 if (TYPE_FIELD_PACKED (type, i))
1342 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1343 TYPE_FIELD_BITPOS (type, i),
1344 (TYPE_FIELD_BITPOS (type, i)
1345 + TYPE_FIELD_BITSIZE (type, i)));
1346 else
1347 {
1348 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1349 value->kind = axs_lvalue_memory;
1350 value->type = TYPE_FIELD_TYPE (type, i);
1351 }
1352 }
1353
1354
1355 /* Generate code for GDB's magical `repeat' operator.
1356 LVALUE @ INT creates an array INT elements long, and whose elements
1357 have the same type as LVALUE, located in memory so that LVALUE is
1358 its first element. For example, argv[0]@argc gives you the array
1359 of command-line arguments.
1360
1361 Unfortunately, because we have to know the types before we actually
1362 have a value for the expression, we can't implement this perfectly
1363 without changing the type system, having values that occupy two
1364 stack slots, doing weird things with sizeof, etc. So we require
1365 the right operand to be a constant expression. */
1366 static void
1367 gen_repeat (struct expression *exp, union exp_element **pc,
1368 struct agent_expr *ax, struct axs_value *value)
1369 {
1370 struct axs_value value1;
1371 /* We don't want to turn this into an rvalue, so no conversions
1372 here. */
1373 gen_expr (exp, pc, ax, &value1);
1374 if (value1.kind != axs_lvalue_memory)
1375 error (_("Left operand of `@' must be an object in memory."));
1376
1377 /* Evaluate the length; it had better be a constant. */
1378 {
1379 struct value *v = const_expr (pc);
1380 int length;
1381
1382 if (!v)
1383 error (_("Right operand of `@' must be a constant, in agent expressions."));
1384 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1385 error (_("Right operand of `@' must be an integer."));
1386 length = value_as_long (v);
1387 if (length <= 0)
1388 error (_("Right operand of `@' must be positive."));
1389
1390 /* The top of the stack is already the address of the object, so
1391 all we need to do is frob the type of the lvalue. */
1392 {
1393 /* FIXME-type-allocation: need a way to free this type when we are
1394 done with it. */
1395 struct type *range
1396 = create_range_type (0, builtin_type_int32, 0, length - 1);
1397 struct type *array = create_array_type (0, value1.type, range);
1398
1399 value->kind = axs_lvalue_memory;
1400 value->type = array;
1401 }
1402 }
1403 }
1404
1405
1406 /* Emit code for the `sizeof' operator.
1407 *PC should point at the start of the operand expression; we advance it
1408 to the first instruction after the operand. */
1409 static void
1410 gen_sizeof (struct expression *exp, union exp_element **pc,
1411 struct agent_expr *ax, struct axs_value *value,
1412 struct type *size_type)
1413 {
1414 /* We don't care about the value of the operand expression; we only
1415 care about its type. However, in the current arrangement, the
1416 only way to find an expression's type is to generate code for it.
1417 So we generate code for the operand, and then throw it away,
1418 replacing it with code that simply pushes its size. */
1419 int start = ax->len;
1420 gen_expr (exp, pc, ax, value);
1421
1422 /* Throw away the code we just generated. */
1423 ax->len = start;
1424
1425 ax_const_l (ax, TYPE_LENGTH (value->type));
1426 value->kind = axs_rvalue;
1427 value->type = size_type;
1428 }
1429 \f
1430
1431 /* Generating bytecode from GDB expressions: general recursive thingy */
1432
1433 /* XXX: i18n */
1434 /* A gen_expr function written by a Gen-X'er guy.
1435 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1436 static void
1437 gen_expr (struct expression *exp, union exp_element **pc,
1438 struct agent_expr *ax, struct axs_value *value)
1439 {
1440 /* Used to hold the descriptions of operand expressions. */
1441 struct axs_value value1, value2;
1442 enum exp_opcode op = (*pc)[0].opcode;
1443
1444 /* If we're looking at a constant expression, just push its value. */
1445 {
1446 struct value *v = maybe_const_expr (pc);
1447
1448 if (v)
1449 {
1450 ax_const_l (ax, value_as_long (v));
1451 value->kind = axs_rvalue;
1452 value->type = check_typedef (value_type (v));
1453 return;
1454 }
1455 }
1456
1457 /* Otherwise, go ahead and generate code for it. */
1458 switch (op)
1459 {
1460 /* Binary arithmetic operators. */
1461 case BINOP_ADD:
1462 case BINOP_SUB:
1463 case BINOP_MUL:
1464 case BINOP_DIV:
1465 case BINOP_REM:
1466 case BINOP_SUBSCRIPT:
1467 case BINOP_BITWISE_AND:
1468 case BINOP_BITWISE_IOR:
1469 case BINOP_BITWISE_XOR:
1470 (*pc)++;
1471 gen_expr (exp, pc, ax, &value1);
1472 gen_usual_unary (exp, ax, &value1);
1473 gen_expr (exp, pc, ax, &value2);
1474 gen_usual_unary (exp, ax, &value2);
1475 gen_usual_arithmetic (exp, ax, &value1, &value2);
1476 switch (op)
1477 {
1478 case BINOP_ADD:
1479 if (TYPE_CODE (value1.type) == TYPE_CODE_INT
1480 && TYPE_CODE (value2.type) == TYPE_CODE_PTR)
1481 {
1482 /* Swap the values and proceed normally. */
1483 ax_simple (ax, aop_swap);
1484 gen_ptradd (ax, value, &value2, &value1);
1485 }
1486 else if (TYPE_CODE (value1.type) == TYPE_CODE_PTR
1487 && TYPE_CODE (value2.type) == TYPE_CODE_INT)
1488 gen_ptradd (ax, value, &value1, &value2);
1489 else
1490 gen_binop (ax, value, &value1, &value2,
1491 aop_add, aop_add, 1, "addition");
1492 break;
1493 case BINOP_SUB:
1494 if (TYPE_CODE (value1.type) == TYPE_CODE_PTR
1495 && TYPE_CODE (value2.type) == TYPE_CODE_INT)
1496 gen_ptrsub (ax,value, &value1, &value2);
1497 else if (TYPE_CODE (value1.type) == TYPE_CODE_PTR
1498 && TYPE_CODE (value2.type) == TYPE_CODE_PTR)
1499 /* FIXME --- result type should be ptrdiff_t */
1500 gen_ptrdiff (ax, value, &value1, &value2,
1501 builtin_type (exp->gdbarch)->builtin_long);
1502 else
1503 gen_binop (ax, value, &value1, &value2,
1504 aop_sub, aop_sub, 1, "subtraction");
1505 break;
1506 case BINOP_MUL:
1507 gen_binop (ax, value, &value1, &value2,
1508 aop_mul, aop_mul, 1, "multiplication");
1509 break;
1510 case BINOP_DIV:
1511 gen_binop (ax, value, &value1, &value2,
1512 aop_div_signed, aop_div_unsigned, 1, "division");
1513 break;
1514 case BINOP_REM:
1515 gen_binop (ax, value, &value1, &value2,
1516 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1517 break;
1518 case BINOP_SUBSCRIPT:
1519 gen_ptradd (ax, value, &value1, &value2);
1520 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1521 error (_("Invalid combination of types in array subscripting."));
1522 gen_deref (ax, value);
1523 break;
1524 case BINOP_BITWISE_AND:
1525 gen_binop (ax, value, &value1, &value2,
1526 aop_bit_and, aop_bit_and, 0, "bitwise and");
1527 break;
1528
1529 case BINOP_BITWISE_IOR:
1530 gen_binop (ax, value, &value1, &value2,
1531 aop_bit_or, aop_bit_or, 0, "bitwise or");
1532 break;
1533
1534 case BINOP_BITWISE_XOR:
1535 gen_binop (ax, value, &value1, &value2,
1536 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1537 break;
1538
1539 default:
1540 /* We should only list operators in the outer case statement
1541 that we actually handle in the inner case statement. */
1542 internal_error (__FILE__, __LINE__,
1543 _("gen_expr: op case sets don't match"));
1544 }
1545 break;
1546
1547 /* Note that we need to be a little subtle about generating code
1548 for comma. In C, we can do some optimizations here because
1549 we know the left operand is only being evaluated for effect.
1550 However, if the tracing kludge is in effect, then we always
1551 need to evaluate the left hand side fully, so that all the
1552 variables it mentions get traced. */
1553 case BINOP_COMMA:
1554 (*pc)++;
1555 gen_expr (exp, pc, ax, &value1);
1556 /* Don't just dispose of the left operand. We might be tracing,
1557 in which case we want to emit code to trace it if it's an
1558 lvalue. */
1559 gen_traced_pop (ax, &value1);
1560 gen_expr (exp, pc, ax, value);
1561 /* It's the consumer's responsibility to trace the right operand. */
1562 break;
1563
1564 case OP_LONG: /* some integer constant */
1565 {
1566 struct type *type = (*pc)[1].type;
1567 LONGEST k = (*pc)[2].longconst;
1568 (*pc) += 4;
1569 gen_int_literal (ax, value, k, type);
1570 }
1571 break;
1572
1573 case OP_VAR_VALUE:
1574 gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
1575 (*pc) += 4;
1576 break;
1577
1578 case OP_REGISTER:
1579 {
1580 const char *name = &(*pc)[2].string;
1581 int reg;
1582 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1583 reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
1584 if (reg == -1)
1585 internal_error (__FILE__, __LINE__,
1586 _("Register $%s not available"), name);
1587 if (reg >= gdbarch_num_regs (exp->gdbarch))
1588 error (_("'%s' is a pseudo-register; "
1589 "GDB cannot yet trace pseudoregister contents."),
1590 name);
1591 value->kind = axs_lvalue_register;
1592 value->u.reg = reg;
1593 value->type = register_type (exp->gdbarch, reg);
1594 }
1595 break;
1596
1597 case OP_INTERNALVAR:
1598 error (_("GDB agent expressions cannot use convenience variables."));
1599
1600 /* Weirdo operator: see comments for gen_repeat for details. */
1601 case BINOP_REPEAT:
1602 /* Note that gen_repeat handles its own argument evaluation. */
1603 (*pc)++;
1604 gen_repeat (exp, pc, ax, value);
1605 break;
1606
1607 case UNOP_CAST:
1608 {
1609 struct type *type = (*pc)[1].type;
1610 (*pc) += 3;
1611 gen_expr (exp, pc, ax, value);
1612 gen_cast (ax, value, type);
1613 }
1614 break;
1615
1616 case UNOP_MEMVAL:
1617 {
1618 struct type *type = check_typedef ((*pc)[1].type);
1619 (*pc) += 3;
1620 gen_expr (exp, pc, ax, value);
1621 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1622 it's just a hack for dealing with minsyms; you take some
1623 integer constant, pretend it's the address of an lvalue of
1624 the given type, and dereference it. */
1625 if (value->kind != axs_rvalue)
1626 /* This would be weird. */
1627 internal_error (__FILE__, __LINE__,
1628 _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
1629 value->type = type;
1630 value->kind = axs_lvalue_memory;
1631 }
1632 break;
1633
1634 case UNOP_PLUS:
1635 (*pc)++;
1636 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
1637 gen_expr (exp, pc, ax, value);
1638 gen_usual_unary (exp, ax, value);
1639 break;
1640
1641 case UNOP_NEG:
1642 (*pc)++;
1643 /* -FOO is equivalent to 0 - FOO. */
1644 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int8);
1645 gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
1646 gen_expr (exp, pc, ax, &value2);
1647 gen_usual_unary (exp, ax, &value2);
1648 gen_usual_arithmetic (exp, ax, &value1, &value2);
1649 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
1650 break;
1651
1652 case UNOP_LOGICAL_NOT:
1653 (*pc)++;
1654 gen_expr (exp, pc, ax, value);
1655 gen_usual_unary (exp, ax, value);
1656 gen_logical_not (ax, value,
1657 language_bool_type (exp->language_defn, exp->gdbarch));
1658 break;
1659
1660 case UNOP_COMPLEMENT:
1661 (*pc)++;
1662 gen_expr (exp, pc, ax, value);
1663 gen_usual_unary (exp, ax, value);
1664 gen_integral_promotions (exp, ax, value);
1665 gen_complement (ax, value);
1666 break;
1667
1668 case UNOP_IND:
1669 (*pc)++;
1670 gen_expr (exp, pc, ax, value);
1671 gen_usual_unary (exp, ax, value);
1672 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1673 error (_("Argument of unary `*' is not a pointer."));
1674 gen_deref (ax, value);
1675 break;
1676
1677 case UNOP_ADDR:
1678 (*pc)++;
1679 gen_expr (exp, pc, ax, value);
1680 gen_address_of (ax, value);
1681 break;
1682
1683 case UNOP_SIZEOF:
1684 (*pc)++;
1685 /* Notice that gen_sizeof handles its own operand, unlike most
1686 of the other unary operator functions. This is because we
1687 have to throw away the code we generate. */
1688 gen_sizeof (exp, pc, ax, value,
1689 builtin_type (exp->gdbarch)->builtin_int);
1690 break;
1691
1692 case STRUCTOP_STRUCT:
1693 case STRUCTOP_PTR:
1694 {
1695 int length = (*pc)[1].longconst;
1696 char *name = &(*pc)[2].string;
1697
1698 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1699 gen_expr (exp, pc, ax, value);
1700 if (op == STRUCTOP_STRUCT)
1701 gen_struct_ref (ax, value, name, ".", "structure or union");
1702 else if (op == STRUCTOP_PTR)
1703 gen_struct_ref (ax, value, name, "->",
1704 "pointer to a structure or union");
1705 else
1706 /* If this `if' chain doesn't handle it, then the case list
1707 shouldn't mention it, and we shouldn't be here. */
1708 internal_error (__FILE__, __LINE__,
1709 _("gen_expr: unhandled struct case"));
1710 }
1711 break;
1712
1713 case OP_TYPE:
1714 error (_("Attempt to use a type name as an expression."));
1715
1716 default:
1717 error (_("Unsupported operator in expression."));
1718 }
1719 }
1720 \f
1721
1722
1723 /* Generating bytecode from GDB expressions: driver */
1724
1725 /* Given a GDB expression EXPR, return bytecode to trace its value.
1726 The result will use the `trace' and `trace_quick' bytecodes to
1727 record the value of all memory touched by the expression. The
1728 caller can then use the ax_reqs function to discover which
1729 registers it relies upon. */
1730 struct agent_expr *
1731 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
1732 {
1733 struct cleanup *old_chain = 0;
1734 struct agent_expr *ax = new_agent_expr (scope);
1735 union exp_element *pc;
1736 struct axs_value value;
1737
1738 old_chain = make_cleanup_free_agent_expr (ax);
1739
1740 pc = expr->elts;
1741 trace_kludge = 1;
1742 gen_expr (expr, &pc, ax, &value);
1743
1744 /* Make sure we record the final object, and get rid of it. */
1745 gen_traced_pop (ax, &value);
1746
1747 /* Oh, and terminate. */
1748 ax_simple (ax, aop_end);
1749
1750 /* We have successfully built the agent expr, so cancel the cleanup
1751 request. If we add more cleanups that we always want done, this
1752 will have to get more complicated. */
1753 discard_cleanups (old_chain);
1754 return ax;
1755 }
1756
1757 static void
1758 agent_command (char *exp, int from_tty)
1759 {
1760 struct cleanup *old_chain = 0;
1761 struct expression *expr;
1762 struct agent_expr *agent;
1763 struct frame_info *fi = get_current_frame (); /* need current scope */
1764
1765 /* We don't deal with overlay debugging at the moment. We need to
1766 think more carefully about this. If you copy this code into
1767 another command, change the error message; the user shouldn't
1768 have to know anything about agent expressions. */
1769 if (overlay_debugging)
1770 error (_("GDB can't do agent expression translation with overlays."));
1771
1772 if (exp == 0)
1773 error_no_arg (_("expression to translate"));
1774
1775 expr = parse_expression (exp);
1776 old_chain = make_cleanup (free_current_contents, &expr);
1777 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
1778 make_cleanup_free_agent_expr (agent);
1779 ax_print (gdb_stdout, agent);
1780
1781 /* It would be nice to call ax_reqs here to gather some general info
1782 about the expression, and then print out the result. */
1783
1784 do_cleanups (old_chain);
1785 dont_repeat ();
1786 }
1787 \f
1788
1789 /* Initialization code. */
1790
1791 void _initialize_ax_gdb (void);
1792 void
1793 _initialize_ax_gdb (void)
1794 {
1795 add_cmd ("agent", class_maintenance, agent_command,
1796 _("Translate an expression into remote agent bytecode."),
1797 &maintenancelist);
1798 }
This page took 0.068301 seconds and 4 git commands to generate.