import gdb-1999-09-08 snapshot
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions
2 Copyright 1998 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "expression.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33
34 /* Probably the best way to read this file is to start with the types
35 and enums in ax-gdb.h, and then look at gen_expr, towards the
36 bottom; that's the main function that looks at the GDB expressions
37 and calls everything else to generate code.
38
39 I'm beginning to wonder whether it wouldn't be nicer to internally
40 generate trees, with types, and then spit out the bytecode in
41 linear form afterwards; we could generate fewer `swap', `ext', and
42 `zero_ext' bytecodes that way; it would make good constant folding
43 easier, too. But at the moment, I think we should be willing to
44 pay for the simplicity of this code with less-than-optimal bytecode
45 strings.
46
47 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
48 \f
49
50
51 /* Prototypes for local functions. */
52
53 /* There's a standard order to the arguments of these functions:
54 union exp_element ** --- pointer into expression
55 struct agent_expr * --- agent expression buffer to generate code into
56 struct axs_value * --- describes value left on top of stack */
57
58 static struct value *const_var_ref PARAMS ((struct symbol * var));
59 static struct value *const_expr PARAMS ((union exp_element ** pc));
60 static struct value *maybe_const_expr PARAMS ((union exp_element ** pc));
61
62 static void gen_traced_pop PARAMS ((struct agent_expr *, struct axs_value *));
63
64 static void gen_sign_extend PARAMS ((struct agent_expr *, struct type *));
65 static void gen_extend PARAMS ((struct agent_expr *, struct type *));
66 static void gen_fetch PARAMS ((struct agent_expr *, struct type *));
67 static void gen_left_shift PARAMS ((struct agent_expr *, int));
68
69
70 static void gen_frame_args_address PARAMS ((struct agent_expr *));
71 static void gen_frame_locals_address PARAMS ((struct agent_expr *));
72 static void gen_offset PARAMS ((struct agent_expr * ax, int offset));
73 static void gen_sym_offset PARAMS ((struct agent_expr *, struct symbol *));
74 static void gen_var_ref PARAMS ((struct agent_expr * ax,
75 struct axs_value * value,
76 struct symbol * var));
77
78
79 static void gen_int_literal PARAMS ((struct agent_expr * ax,
80 struct axs_value * value,
81 LONGEST k, struct type * type));
82
83
84 static void require_rvalue PARAMS ((struct agent_expr * ax,
85 struct axs_value * value));
86 static void gen_usual_unary PARAMS ((struct agent_expr * ax,
87 struct axs_value * value));
88 static int type_wider_than PARAMS ((struct type * type1,
89 struct type * type2));
90 static struct type *max_type PARAMS ((struct type * type1,
91 struct type * type2));
92 static void gen_conversion PARAMS ((struct agent_expr * ax,
93 struct type * from,
94 struct type * to));
95 static int is_nontrivial_conversion PARAMS ((struct type * from,
96 struct type * to));
97 static void gen_usual_arithmetic PARAMS ((struct agent_expr * ax,
98 struct axs_value * value1,
99 struct axs_value * value2));
100 static void gen_integral_promotions PARAMS ((struct agent_expr * ax,
101 struct axs_value * value));
102 static void gen_cast PARAMS ((struct agent_expr * ax,
103 struct axs_value * value,
104 struct type * type));
105 static void gen_scale PARAMS ((struct agent_expr * ax,
106 enum agent_op op,
107 struct type * type));
108 static void gen_add PARAMS ((struct agent_expr * ax,
109 struct axs_value * value,
110 struct axs_value * value1,
111 struct axs_value * value2,
112 char *name));
113 static void gen_sub PARAMS ((struct agent_expr * ax,
114 struct axs_value * value,
115 struct axs_value * value1,
116 struct axs_value * value2));
117 static void gen_binop PARAMS ((struct agent_expr * ax,
118 struct axs_value * value,
119 struct axs_value * value1,
120 struct axs_value * value2,
121 enum agent_op op,
122 enum agent_op op_unsigned,
123 int may_carry,
124 char *name));
125 static void gen_logical_not PARAMS ((struct agent_expr * ax,
126 struct axs_value * value));
127 static void gen_complement PARAMS ((struct agent_expr * ax,
128 struct axs_value * value));
129 static void gen_deref PARAMS ((struct agent_expr *, struct axs_value *));
130 static void gen_address_of PARAMS ((struct agent_expr *, struct axs_value *));
131 static int find_field PARAMS ((struct type * type, char *name));
132 static void gen_bitfield_ref PARAMS ((struct agent_expr * ax,
133 struct axs_value * value,
134 struct type * type,
135 int start, int end));
136 static void gen_struct_ref PARAMS ((struct agent_expr * ax,
137 struct axs_value * value,
138 char *field,
139 char *operator_name,
140 char *operand_name));
141 static void gen_repeat PARAMS ((union exp_element ** pc,
142 struct agent_expr * ax,
143 struct axs_value * value));
144 static void gen_sizeof PARAMS ((union exp_element ** pc,
145 struct agent_expr * ax,
146 struct axs_value * value));
147 static void gen_expr PARAMS ((union exp_element ** pc,
148 struct agent_expr * ax,
149 struct axs_value * value));
150
151 static void print_axs_value PARAMS ((GDB_FILE * f, struct axs_value * value));
152 static void agent_command PARAMS ((char *exp, int from_tty));
153 \f
154
155 /* Detecting constant expressions. */
156
157 /* If the variable reference at *PC is a constant, return its value.
158 Otherwise, return zero.
159
160 Hey, Wally! How can a variable reference be a constant?
161
162 Well, Beav, this function really handles the OP_VAR_VALUE operator,
163 not specifically variable references. GDB uses OP_VAR_VALUE to
164 refer to any kind of symbolic reference: function names, enum
165 elements, and goto labels are all handled through the OP_VAR_VALUE
166 operator, even though they're constants. It makes sense given the
167 situation.
168
169 Gee, Wally, don'cha wonder sometimes if data representations that
170 subvert commonly accepted definitions of terms in favor of heavily
171 context-specific interpretations are really just a tool of the
172 programming hegemony to preserve their power and exclude the
173 proletariat? */
174
175 static struct value *
176 const_var_ref (var)
177 struct symbol *var;
178 {
179 struct type *type = SYMBOL_TYPE (var);
180
181 switch (SYMBOL_CLASS (var))
182 {
183 case LOC_CONST:
184 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
185
186 case LOC_LABEL:
187 return value_from_longest (type, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
188
189 default:
190 return 0;
191 }
192 }
193
194
195 /* If the expression starting at *PC has a constant value, return it.
196 Otherwise, return zero. If we return a value, then *PC will be
197 advanced to the end of it. If we return zero, *PC could be
198 anywhere. */
199 static struct value *
200 const_expr (pc)
201 union exp_element **pc;
202 {
203 enum exp_opcode op = (*pc)->opcode;
204 struct value *v1;
205
206 switch (op)
207 {
208 case OP_LONG:
209 {
210 struct type *type = (*pc)[1].type;
211 LONGEST k = (*pc)[2].longconst;
212 (*pc) += 4;
213 return value_from_longest (type, k);
214 }
215
216 case OP_VAR_VALUE:
217 {
218 struct value *v = const_var_ref ((*pc)[2].symbol);
219 (*pc) += 4;
220 return v;
221 }
222
223 /* We could add more operators in here. */
224
225 case UNOP_NEG:
226 (*pc)++;
227 v1 = const_expr (pc);
228 if (v1)
229 return value_neg (v1);
230 else
231 return 0;
232
233 default:
234 return 0;
235 }
236 }
237
238
239 /* Like const_expr, but guarantee also that *PC is undisturbed if the
240 expression is not constant. */
241 static struct value *
242 maybe_const_expr (pc)
243 union exp_element **pc;
244 {
245 union exp_element *tentative_pc = *pc;
246 struct value *v = const_expr (&tentative_pc);
247
248 /* If we got a value, then update the real PC. */
249 if (v)
250 *pc = tentative_pc;
251
252 return v;
253 }
254 \f
255
256 /* Generating bytecode from GDB expressions: general assumptions */
257
258 /* Here are a few general assumptions made throughout the code; if you
259 want to make a change that contradicts one of these, then you'd
260 better scan things pretty thoroughly.
261
262 - We assume that all values occupy one stack element. For example,
263 sometimes we'll swap to get at the left argument to a binary
264 operator. If we decide that void values should occupy no stack
265 elements, or that synthetic arrays (whose size is determined at
266 run time, created by the `@' operator) should occupy two stack
267 elements (address and length), then this will cause trouble.
268
269 - We assume the stack elements are infinitely wide, and that we
270 don't have to worry what happens if the user requests an
271 operation that is wider than the actual interpreter's stack.
272 That is, it's up to the interpreter to handle directly all the
273 integer widths the user has access to. (Woe betide the language
274 with bignums!)
275
276 - We don't support side effects. Thus, we don't have to worry about
277 GCC's generalized lvalues, function calls, etc.
278
279 - We don't support floating point. Many places where we switch on
280 some type don't bother to include cases for floating point; there
281 may be even more subtle ways this assumption exists. For
282 example, the arguments to % must be integers.
283
284 - We assume all subexpressions have a static, unchanging type. If
285 we tried to support convenience variables, this would be a
286 problem.
287
288 - All values on the stack should always be fully zero- or
289 sign-extended.
290
291 (I wasn't sure whether to choose this or its opposite --- that
292 only addresses are assumed extended --- but it turns out that
293 neither convention completely eliminates spurious extend
294 operations (if everything is always extended, then you have to
295 extend after add, because it could overflow; if nothing is
296 extended, then you end up producing extends whenever you change
297 sizes), and this is simpler.) */
298 \f
299
300 /* Generating bytecode from GDB expressions: the `trace' kludge */
301
302 /* The compiler in this file is a general-purpose mechanism for
303 translating GDB expressions into bytecode. One ought to be able to
304 find a million and one uses for it.
305
306 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
307 of expediency. Let he who is without sin cast the first stone.
308
309 For the data tracing facility, we need to insert `trace' bytecodes
310 before each data fetch; this records all the memory that the
311 expression touches in the course of evaluation, so that memory will
312 be available when the user later tries to evaluate the expression
313 in GDB.
314
315 This should be done (I think) in a post-processing pass, that walks
316 an arbitrary agent expression and inserts `trace' operations at the
317 appropriate points. But it's much faster to just hack them
318 directly into the code. And since we're in a crunch, that's what
319 I've done.
320
321 Setting the flag trace_kludge to non-zero enables the code that
322 emits the trace bytecodes at the appropriate points. */
323 static int trace_kludge;
324
325 /* Trace the lvalue on the stack, if it needs it. In either case, pop
326 the value. Useful on the left side of a comma, and at the end of
327 an expression being used for tracing. */
328 static void
329 gen_traced_pop (ax, value)
330 struct agent_expr *ax;
331 struct axs_value *value;
332 {
333 if (trace_kludge)
334 switch (value->kind)
335 {
336 case axs_rvalue:
337 /* We don't trace rvalues, just the lvalues necessary to
338 produce them. So just dispose of this value. */
339 ax_simple (ax, aop_pop);
340 break;
341
342 case axs_lvalue_memory:
343 {
344 int length = TYPE_LENGTH (value->type);
345
346 /* There's no point in trying to use a trace_quick bytecode
347 here, since "trace_quick SIZE pop" is three bytes, whereas
348 "const8 SIZE trace" is also three bytes, does the same
349 thing, and the simplest code which generates that will also
350 work correctly for objects with large sizes. */
351 ax_const_l (ax, length);
352 ax_simple (ax, aop_trace);
353 }
354 break;
355
356 case axs_lvalue_register:
357 /* We need to mention the register somewhere in the bytecode,
358 so ax_reqs will pick it up and add it to the mask of
359 registers used. */
360 ax_reg (ax, value->u.reg);
361 ax_simple (ax, aop_pop);
362 break;
363 }
364 else
365 /* If we're not tracing, just pop the value. */
366 ax_simple (ax, aop_pop);
367 }
368 \f
369
370
371 /* Generating bytecode from GDB expressions: helper functions */
372
373 /* Assume that the lower bits of the top of the stack is a value of
374 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
375 static void
376 gen_sign_extend (ax, type)
377 struct agent_expr *ax;
378 struct type *type;
379 {
380 /* Do we need to sign-extend this? */
381 if (!TYPE_UNSIGNED (type))
382 ax_ext (ax, type->length * TARGET_CHAR_BIT);
383 }
384
385
386 /* Assume the lower bits of the top of the stack hold a value of type
387 TYPE, and the upper bits are garbage. Sign-extend or truncate as
388 needed. */
389 static void
390 gen_extend (ax, type)
391 struct agent_expr *ax;
392 struct type *type;
393 {
394 int bits = type->length * TARGET_CHAR_BIT;
395 /* I just had to. */
396 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
397 }
398
399
400 /* Assume that the top of the stack contains a value of type "pointer
401 to TYPE"; generate code to fetch its value. Note that TYPE is the
402 target type, not the pointer type. */
403 static void
404 gen_fetch (ax, type)
405 struct agent_expr *ax;
406 struct type *type;
407 {
408 if (trace_kludge)
409 {
410 /* Record the area of memory we're about to fetch. */
411 ax_trace_quick (ax, TYPE_LENGTH (type));
412 }
413
414 switch (type->code)
415 {
416 case TYPE_CODE_PTR:
417 case TYPE_CODE_ENUM:
418 case TYPE_CODE_INT:
419 case TYPE_CODE_CHAR:
420 /* It's a scalar value, so we know how to dereference it. How
421 many bytes long is it? */
422 switch (type->length)
423 {
424 case 8 / TARGET_CHAR_BIT:
425 ax_simple (ax, aop_ref8);
426 break;
427 case 16 / TARGET_CHAR_BIT:
428 ax_simple (ax, aop_ref16);
429 break;
430 case 32 / TARGET_CHAR_BIT:
431 ax_simple (ax, aop_ref32);
432 break;
433 case 64 / TARGET_CHAR_BIT:
434 ax_simple (ax, aop_ref64);
435 break;
436
437 /* Either our caller shouldn't have asked us to dereference
438 that pointer (other code's fault), or we're not
439 implementing something we should be (this code's fault).
440 In any case, it's a bug the user shouldn't see. */
441 default:
442 error ("GDB bug: ax-gdb.c (gen_fetch): strange size");
443 }
444
445 gen_sign_extend (ax, type);
446 break;
447
448 default:
449 /* Either our caller shouldn't have asked us to dereference that
450 pointer (other code's fault), or we're not implementing
451 something we should be (this code's fault). In any case,
452 it's a bug the user shouldn't see. */
453 error ("GDB bug: ax-gdb.c (gen_fetch): bad type code");
454 }
455 }
456
457
458 /* Generate code to left shift the top of the stack by DISTANCE bits, or
459 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
460 unsigned (logical) right shifts. */
461 static void
462 gen_left_shift (ax, distance)
463 struct agent_expr *ax;
464 int distance;
465 {
466 if (distance > 0)
467 {
468 ax_const_l (ax, distance);
469 ax_simple (ax, aop_lsh);
470 }
471 else if (distance < 0)
472 {
473 ax_const_l (ax, -distance);
474 ax_simple (ax, aop_rsh_unsigned);
475 }
476 }
477 \f
478
479
480 /* Generating bytecode from GDB expressions: symbol references */
481
482 /* Generate code to push the base address of the argument portion of
483 the top stack frame. */
484 static void
485 gen_frame_args_address (ax)
486 struct agent_expr *ax;
487 {
488 long frame_reg, frame_offset;
489
490 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
491 ax_reg (ax, frame_reg);
492 gen_offset (ax, frame_offset);
493 }
494
495
496 /* Generate code to push the base address of the locals portion of the
497 top stack frame. */
498 static void
499 gen_frame_locals_address (ax)
500 struct agent_expr *ax;
501 {
502 long frame_reg, frame_offset;
503
504 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
505 ax_reg (ax, frame_reg);
506 gen_offset (ax, frame_offset);
507 }
508
509
510 /* Generate code to add OFFSET to the top of the stack. Try to
511 generate short and readable code. We use this for getting to
512 variables on the stack, and structure members. If we were
513 programming in ML, it would be clearer why these are the same
514 thing. */
515 static void
516 gen_offset (ax, offset)
517 struct agent_expr *ax;
518 int offset;
519 {
520 /* It would suffice to simply push the offset and add it, but this
521 makes it easier to read positive and negative offsets in the
522 bytecode. */
523 if (offset > 0)
524 {
525 ax_const_l (ax, offset);
526 ax_simple (ax, aop_add);
527 }
528 else if (offset < 0)
529 {
530 ax_const_l (ax, -offset);
531 ax_simple (ax, aop_sub);
532 }
533 }
534
535
536 /* In many cases, a symbol's value is the offset from some other
537 address (stack frame, base register, etc.) Generate code to add
538 VAR's value to the top of the stack. */
539 static void
540 gen_sym_offset (ax, var)
541 struct agent_expr *ax;
542 struct symbol *var;
543 {
544 gen_offset (ax, SYMBOL_VALUE (var));
545 }
546
547
548 /* Generate code for a variable reference to AX. The variable is the
549 symbol VAR. Set VALUE to describe the result. */
550
551 static void
552 gen_var_ref (ax, value, var)
553 struct agent_expr *ax;
554 struct axs_value *value;
555 struct symbol *var;
556 {
557 /* Dereference any typedefs. */
558 value->type = check_typedef (SYMBOL_TYPE (var));
559
560 /* I'm imitating the code in read_var_value. */
561 switch (SYMBOL_CLASS (var))
562 {
563 case LOC_CONST: /* A constant, like an enum value. */
564 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
565 value->kind = axs_rvalue;
566 break;
567
568 case LOC_LABEL: /* A goto label, being used as a value. */
569 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
570 value->kind = axs_rvalue;
571 break;
572
573 case LOC_CONST_BYTES:
574 error ("GDB bug: ax-gdb.c (gen_var_ref): LOC_CONST_BYTES symbols are not supported");
575
576 /* Variable at a fixed location in memory. Easy. */
577 case LOC_STATIC:
578 /* Push the address of the variable. */
579 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
580 value->kind = axs_lvalue_memory;
581 break;
582
583 case LOC_ARG: /* var lives in argument area of frame */
584 gen_frame_args_address (ax);
585 gen_sym_offset (ax, var);
586 value->kind = axs_lvalue_memory;
587 break;
588
589 case LOC_REF_ARG: /* As above, but the frame slot really
590 holds the address of the variable. */
591 gen_frame_args_address (ax);
592 gen_sym_offset (ax, var);
593 /* Don't assume any particular pointer size. */
594 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
595 value->kind = axs_lvalue_memory;
596 break;
597
598 case LOC_LOCAL: /* var lives in locals area of frame */
599 case LOC_LOCAL_ARG:
600 gen_frame_locals_address (ax);
601 gen_sym_offset (ax, var);
602 value->kind = axs_lvalue_memory;
603 break;
604
605 case LOC_BASEREG: /* relative to some base register */
606 case LOC_BASEREG_ARG:
607 ax_reg (ax, SYMBOL_BASEREG (var));
608 gen_sym_offset (ax, var);
609 value->kind = axs_lvalue_memory;
610 break;
611
612 case LOC_TYPEDEF:
613 error ("Cannot compute value of typedef `%s'.",
614 SYMBOL_SOURCE_NAME (var));
615 break;
616
617 case LOC_BLOCK:
618 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
619 value->kind = axs_rvalue;
620 break;
621
622 case LOC_REGISTER:
623 case LOC_REGPARM:
624 /* Don't generate any code at all; in the process of treating
625 this as an lvalue or rvalue, the caller will generate the
626 right code. */
627 value->kind = axs_lvalue_register;
628 value->u.reg = SYMBOL_VALUE (var);
629 break;
630
631 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
632 register, not on the stack. Simpler than LOC_REGISTER and
633 LOC_REGPARM, because it's just like any other case where the
634 thing has a real address. */
635 case LOC_REGPARM_ADDR:
636 ax_reg (ax, SYMBOL_VALUE (var));
637 value->kind = axs_lvalue_memory;
638 break;
639
640 case LOC_UNRESOLVED:
641 {
642 struct minimal_symbol *msym
643 = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
644 if (!msym)
645 error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
646
647 /* Push the address of the variable. */
648 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
649 value->kind = axs_lvalue_memory;
650 }
651 break;
652
653 case LOC_OPTIMIZED_OUT:
654 error ("The variable `%s' has been optimized out.",
655 SYMBOL_SOURCE_NAME (var));
656 break;
657
658 default:
659 error ("Cannot find value of botched symbol `%s'.",
660 SYMBOL_SOURCE_NAME (var));
661 break;
662 }
663 }
664 \f
665
666
667 /* Generating bytecode from GDB expressions: literals */
668
669 static void
670 gen_int_literal (ax, value, k, type)
671 struct agent_expr *ax;
672 struct axs_value *value;
673 LONGEST k;
674 struct type *type;
675 {
676 ax_const_l (ax, k);
677 value->kind = axs_rvalue;
678 value->type = type;
679 }
680 \f
681
682
683 /* Generating bytecode from GDB expressions: unary conversions, casts */
684
685 /* Take what's on the top of the stack (as described by VALUE), and
686 try to make an rvalue out of it. Signal an error if we can't do
687 that. */
688 static void
689 require_rvalue (ax, value)
690 struct agent_expr *ax;
691 struct axs_value *value;
692 {
693 switch (value->kind)
694 {
695 case axs_rvalue:
696 /* It's already an rvalue. */
697 break;
698
699 case axs_lvalue_memory:
700 /* The top of stack is the address of the object. Dereference. */
701 gen_fetch (ax, value->type);
702 break;
703
704 case axs_lvalue_register:
705 /* There's nothing on the stack, but value->u.reg is the
706 register number containing the value.
707
708 When we add floating-point support, this is going to have to
709 change. What about SPARC register pairs, for example? */
710 ax_reg (ax, value->u.reg);
711 gen_extend (ax, value->type);
712 break;
713 }
714
715 value->kind = axs_rvalue;
716 }
717
718
719 /* Assume the top of the stack is described by VALUE, and perform the
720 usual unary conversions. This is motivated by ANSI 6.2.2, but of
721 course GDB expressions are not ANSI; they're the mishmash union of
722 a bunch of languages. Rah.
723
724 NOTE! This function promises to produce an rvalue only when the
725 incoming value is of an appropriate type. In other words, the
726 consumer of the value this function produces may assume the value
727 is an rvalue only after checking its type.
728
729 The immediate issue is that if the user tries to use a structure or
730 union as an operand of, say, the `+' operator, we don't want to try
731 to convert that structure to an rvalue; require_rvalue will bomb on
732 structs and unions. Rather, we want to simply pass the struct
733 lvalue through unchanged, and let `+' raise an error. */
734
735 static void
736 gen_usual_unary (ax, value)
737 struct agent_expr *ax;
738 struct axs_value *value;
739 {
740 /* We don't have to generate any code for the usual integral
741 conversions, since values are always represented as full-width on
742 the stack. Should we tweak the type? */
743
744 /* Some types require special handling. */
745 switch (value->type->code)
746 {
747 /* Functions get converted to a pointer to the function. */
748 case TYPE_CODE_FUNC:
749 value->type = lookup_pointer_type (value->type);
750 value->kind = axs_rvalue; /* Should always be true, but just in case. */
751 break;
752
753 /* Arrays get converted to a pointer to their first element, and
754 are no longer an lvalue. */
755 case TYPE_CODE_ARRAY:
756 {
757 struct type *elements = TYPE_TARGET_TYPE (value->type);
758 value->type = lookup_pointer_type (elements);
759 value->kind = axs_rvalue;
760 /* We don't need to generate any code; the address of the array
761 is also the address of its first element. */
762 }
763 break;
764
765 /* Don't try to convert structures and unions to rvalues. Let the
766 consumer signal an error. */
767 case TYPE_CODE_STRUCT:
768 case TYPE_CODE_UNION:
769 return;
770
771 /* If the value is an enum, call it an integer. */
772 case TYPE_CODE_ENUM:
773 value->type = builtin_type_int;
774 break;
775 }
776
777 /* If the value is an lvalue, dereference it. */
778 require_rvalue (ax, value);
779 }
780
781
782 /* Return non-zero iff the type TYPE1 is considered "wider" than the
783 type TYPE2, according to the rules described in gen_usual_arithmetic. */
784 static int
785 type_wider_than (type1, type2)
786 struct type *type1, *type2;
787 {
788 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
789 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
790 && TYPE_UNSIGNED (type1)
791 && !TYPE_UNSIGNED (type2)));
792 }
793
794
795 /* Return the "wider" of the two types TYPE1 and TYPE2. */
796 static struct type *
797 max_type (type1, type2)
798 struct type *type1, *type2;
799 {
800 return type_wider_than (type1, type2) ? type1 : type2;
801 }
802
803
804 /* Generate code to convert a scalar value of type FROM to type TO. */
805 static void
806 gen_conversion (ax, from, to)
807 struct agent_expr *ax;
808 struct type *from, *to;
809 {
810 /* Perhaps there is a more graceful way to state these rules. */
811
812 /* If we're converting to a narrower type, then we need to clear out
813 the upper bits. */
814 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
815 gen_extend (ax, from);
816
817 /* If the two values have equal width, but different signednesses,
818 then we need to extend. */
819 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
820 {
821 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
822 gen_extend (ax, to);
823 }
824
825 /* If we're converting to a wider type, and becoming unsigned, then
826 we need to zero out any possible sign bits. */
827 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
828 {
829 if (TYPE_UNSIGNED (to))
830 gen_extend (ax, to);
831 }
832 }
833
834
835 /* Return non-zero iff the type FROM will require any bytecodes to be
836 emitted to be converted to the type TO. */
837 static int
838 is_nontrivial_conversion (from, to)
839 struct type *from, *to;
840 {
841 struct agent_expr *ax = new_agent_expr (0);
842 int nontrivial;
843
844 /* Actually generate the code, and see if anything came out. At the
845 moment, it would be trivial to replicate the code in
846 gen_conversion here, but in the future, when we're supporting
847 floating point and the like, it may not be. Doing things this
848 way allows this function to be independent of the logic in
849 gen_conversion. */
850 gen_conversion (ax, from, to);
851 nontrivial = ax->len > 0;
852 free_agent_expr (ax);
853 return nontrivial;
854 }
855
856
857 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
858 6.2.1.5) for the two operands of an arithmetic operator. This
859 effectively finds a "least upper bound" type for the two arguments,
860 and promotes each argument to that type. *VALUE1 and *VALUE2
861 describe the values as they are passed in, and as they are left. */
862 static void
863 gen_usual_arithmetic (ax, value1, value2)
864 struct agent_expr *ax;
865 struct axs_value *value1, *value2;
866 {
867 /* Do the usual binary conversions. */
868 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
869 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
870 {
871 /* The ANSI integral promotions seem to work this way: Order the
872 integer types by size, and then by signedness: an n-bit
873 unsigned type is considered "wider" than an n-bit signed
874 type. Promote to the "wider" of the two types, and always
875 promote at least to int. */
876 struct type *target = max_type (builtin_type_int,
877 max_type (value1->type, value2->type));
878
879 /* Deal with value2, on the top of the stack. */
880 gen_conversion (ax, value2->type, target);
881
882 /* Deal with value1, not on the top of the stack. Don't
883 generate the `swap' instructions if we're not actually going
884 to do anything. */
885 if (is_nontrivial_conversion (value1->type, target))
886 {
887 ax_simple (ax, aop_swap);
888 gen_conversion (ax, value1->type, target);
889 ax_simple (ax, aop_swap);
890 }
891
892 value1->type = value2->type = target;
893 }
894 }
895
896
897 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
898 the value on the top of the stack, as described by VALUE. Assume
899 the value has integral type. */
900 static void
901 gen_integral_promotions (ax, value)
902 struct agent_expr *ax;
903 struct axs_value *value;
904 {
905 if (!type_wider_than (value->type, builtin_type_int))
906 {
907 gen_conversion (ax, value->type, builtin_type_int);
908 value->type = builtin_type_int;
909 }
910 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
911 {
912 gen_conversion (ax, value->type, builtin_type_unsigned_int);
913 value->type = builtin_type_unsigned_int;
914 }
915 }
916
917
918 /* Generate code for a cast to TYPE. */
919 static void
920 gen_cast (ax, value, type)
921 struct agent_expr *ax;
922 struct axs_value *value;
923 struct type *type;
924 {
925 /* GCC does allow casts to yield lvalues, so this should be fixed
926 before merging these changes into the trunk. */
927 require_rvalue (ax, value);
928 /* Dereference typedefs. */
929 type = check_typedef (type);
930
931 switch (type->code)
932 {
933 case TYPE_CODE_PTR:
934 /* It's implementation-defined, and I'll bet this is what GCC
935 does. */
936 break;
937
938 case TYPE_CODE_ARRAY:
939 case TYPE_CODE_STRUCT:
940 case TYPE_CODE_UNION:
941 case TYPE_CODE_FUNC:
942 error ("Illegal type cast: intended type must be scalar.");
943
944 case TYPE_CODE_ENUM:
945 /* We don't have to worry about the size of the value, because
946 all our integral values are fully sign-extended, and when
947 casting pointers we can do anything we like. Is there any
948 way for us to actually know what GCC actually does with a
949 cast like this? */
950 value->type = type;
951 break;
952
953 case TYPE_CODE_INT:
954 gen_conversion (ax, value->type, type);
955 break;
956
957 case TYPE_CODE_VOID:
958 /* We could pop the value, and rely on everyone else to check
959 the type and notice that this value doesn't occupy a stack
960 slot. But for now, leave the value on the stack, and
961 preserve the "value == stack element" assumption. */
962 break;
963
964 default:
965 error ("Casts to requested type are not yet implemented.");
966 }
967
968 value->type = type;
969 }
970 \f
971
972
973 /* Generating bytecode from GDB expressions: arithmetic */
974
975 /* Scale the integer on the top of the stack by the size of the target
976 of the pointer type TYPE. */
977 static void
978 gen_scale (ax, op, type)
979 struct agent_expr *ax;
980 enum agent_op op;
981 struct type *type;
982 {
983 struct type *element = TYPE_TARGET_TYPE (type);
984
985 if (element->length != 1)
986 {
987 ax_const_l (ax, element->length);
988 ax_simple (ax, op);
989 }
990 }
991
992
993 /* Generate code for an addition; non-trivial because we deal with
994 pointer arithmetic. We set VALUE to describe the result value; we
995 assume VALUE1 and VALUE2 describe the two operands, and that
996 they've undergone the usual binary conversions. Used by both
997 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
998 static void
999 gen_add (ax, value, value1, value2, name)
1000 struct agent_expr *ax;
1001 struct axs_value *value, *value1, *value2;
1002 char *name;
1003 {
1004 /* Is it INT+PTR? */
1005 if (value1->type->code == TYPE_CODE_INT
1006 && value2->type->code == TYPE_CODE_PTR)
1007 {
1008 /* Swap the values and proceed normally. */
1009 ax_simple (ax, aop_swap);
1010 gen_scale (ax, aop_mul, value2->type);
1011 ax_simple (ax, aop_add);
1012 gen_extend (ax, value2->type); /* Catch overflow. */
1013 value->type = value2->type;
1014 }
1015
1016 /* Is it PTR+INT? */
1017 else if (value1->type->code == TYPE_CODE_PTR
1018 && value2->type->code == TYPE_CODE_INT)
1019 {
1020 gen_scale (ax, aop_mul, value1->type);
1021 ax_simple (ax, aop_add);
1022 gen_extend (ax, value1->type); /* Catch overflow. */
1023 value->type = value1->type;
1024 }
1025
1026 /* Must be number + number; the usual binary conversions will have
1027 brought them both to the same width. */
1028 else if (value1->type->code == TYPE_CODE_INT
1029 && value2->type->code == TYPE_CODE_INT)
1030 {
1031 ax_simple (ax, aop_add);
1032 gen_extend (ax, value1->type); /* Catch overflow. */
1033 value->type = value1->type;
1034 }
1035
1036 else
1037 error ("Illegal combination of types in %s.", name);
1038
1039 value->kind = axs_rvalue;
1040 }
1041
1042
1043 /* Generate code for an addition; non-trivial because we have to deal
1044 with pointer arithmetic. We set VALUE to describe the result
1045 value; we assume VALUE1 and VALUE2 describe the two operands, and
1046 that they've undergone the usual binary conversions. */
1047 static void
1048 gen_sub (ax, value, value1, value2)
1049 struct agent_expr *ax;
1050 struct axs_value *value, *value1, *value2;
1051 {
1052 if (value1->type->code == TYPE_CODE_PTR)
1053 {
1054 /* Is it PTR - INT? */
1055 if (value2->type->code == TYPE_CODE_INT)
1056 {
1057 gen_scale (ax, aop_mul, value1->type);
1058 ax_simple (ax, aop_sub);
1059 gen_extend (ax, value1->type); /* Catch overflow. */
1060 value->type = value1->type;
1061 }
1062
1063 /* Is it PTR - PTR? Strictly speaking, the types ought to
1064 match, but this is what the normal GDB expression evaluator
1065 tests for. */
1066 else if (value2->type->code == TYPE_CODE_PTR
1067 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1068 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1069 {
1070 ax_simple (ax, aop_sub);
1071 gen_scale (ax, aop_div_unsigned, value1->type);
1072 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
1073 }
1074 else
1075 error ("\
1076 First argument of `-' is a pointer, but second argument is neither\n\
1077 an integer nor a pointer of the same type.");
1078 }
1079
1080 /* Must be number + number. */
1081 else if (value1->type->code == TYPE_CODE_INT
1082 && value2->type->code == TYPE_CODE_INT)
1083 {
1084 ax_simple (ax, aop_sub);
1085 gen_extend (ax, value1->type); /* Catch overflow. */
1086 value->type = value1->type;
1087 }
1088
1089 else
1090 error ("Illegal combination of types in subtraction.");
1091
1092 value->kind = axs_rvalue;
1093 }
1094
1095 /* Generate code for a binary operator that doesn't do pointer magic.
1096 We set VALUE to describe the result value; we assume VALUE1 and
1097 VALUE2 describe the two operands, and that they've undergone the
1098 usual binary conversions. MAY_CARRY should be non-zero iff the
1099 result needs to be extended. NAME is the English name of the
1100 operator, used in error messages */
1101 static void
1102 gen_binop (ax, value, value1, value2, op, op_unsigned, may_carry, name)
1103 struct agent_expr *ax;
1104 struct axs_value *value, *value1, *value2;
1105 enum agent_op op, op_unsigned;
1106 int may_carry;
1107 char *name;
1108 {
1109 /* We only handle INT op INT. */
1110 if ((value1->type->code != TYPE_CODE_INT)
1111 || (value2->type->code != TYPE_CODE_INT))
1112 error ("Illegal combination of types in %s.", name);
1113
1114 ax_simple (ax,
1115 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1116 if (may_carry)
1117 gen_extend (ax, value1->type); /* catch overflow */
1118 value->type = value1->type;
1119 value->kind = axs_rvalue;
1120 }
1121
1122
1123 static void
1124 gen_logical_not (ax, value)
1125 struct agent_expr *ax;
1126 struct axs_value *value;
1127 {
1128 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1129 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1130 error ("Illegal type of operand to `!'.");
1131
1132 gen_usual_unary (ax, value);
1133 ax_simple (ax, aop_log_not);
1134 value->type = builtin_type_int;
1135 }
1136
1137
1138 static void
1139 gen_complement (ax, value)
1140 struct agent_expr *ax;
1141 struct axs_value *value;
1142 {
1143 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1144 error ("Illegal type of operand to `~'.");
1145
1146 gen_usual_unary (ax, value);
1147 gen_integral_promotions (ax, value);
1148 ax_simple (ax, aop_bit_not);
1149 gen_extend (ax, value->type);
1150 }
1151 \f
1152
1153
1154 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1155
1156 /* Dereference the value on the top of the stack. */
1157 static void
1158 gen_deref (ax, value)
1159 struct agent_expr *ax;
1160 struct axs_value *value;
1161 {
1162 /* The caller should check the type, because several operators use
1163 this, and we don't know what error message to generate. */
1164 if (value->type->code != TYPE_CODE_PTR)
1165 error ("GDB bug: ax-gdb.c (gen_deref): expected a pointer");
1166
1167 /* We've got an rvalue now, which is a pointer. We want to yield an
1168 lvalue, whose address is exactly that pointer. So we don't
1169 actually emit any code; we just change the type from "Pointer to
1170 T" to "T", and mark the value as an lvalue in memory. Leave it
1171 to the consumer to actually dereference it. */
1172 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1173 value->kind = ((value->type->code == TYPE_CODE_FUNC)
1174 ? axs_rvalue : axs_lvalue_memory);
1175 }
1176
1177
1178 /* Produce the address of the lvalue on the top of the stack. */
1179 static void
1180 gen_address_of (ax, value)
1181 struct agent_expr *ax;
1182 struct axs_value *value;
1183 {
1184 /* Special case for taking the address of a function. The ANSI
1185 standard describes this as a special case, too, so this
1186 arrangement is not without motivation. */
1187 if (value->type->code == TYPE_CODE_FUNC)
1188 /* The value's already an rvalue on the stack, so we just need to
1189 change the type. */
1190 value->type = lookup_pointer_type (value->type);
1191 else
1192 switch (value->kind)
1193 {
1194 case axs_rvalue:
1195 error ("Operand of `&' is an rvalue, which has no address.");
1196
1197 case axs_lvalue_register:
1198 error ("Operand of `&' is in a register, and has no address.");
1199
1200 case axs_lvalue_memory:
1201 value->kind = axs_rvalue;
1202 value->type = lookup_pointer_type (value->type);
1203 break;
1204 }
1205 }
1206
1207
1208 /* A lot of this stuff will have to change to support C++. But we're
1209 not going to deal with that at the moment. */
1210
1211 /* Find the field in the structure type TYPE named NAME, and return
1212 its index in TYPE's field array. */
1213 static int
1214 find_field (type, name)
1215 struct type *type;
1216 char *name;
1217 {
1218 int i;
1219
1220 CHECK_TYPEDEF (type);
1221
1222 /* Make sure this isn't C++. */
1223 if (TYPE_N_BASECLASSES (type) != 0)
1224 error ("GDB bug: ax-gdb.c (find_field): derived classes supported");
1225
1226 for (i = 0; i < TYPE_NFIELDS (type); i++)
1227 {
1228 char *this_name = TYPE_FIELD_NAME (type, i);
1229
1230 if (this_name && STREQ (name, this_name))
1231 return i;
1232
1233 if (this_name[0] == '\0')
1234 error ("GDB bug: ax-gdb.c (find_field): anonymous unions not supported");
1235 }
1236
1237 error ("Couldn't find member named `%s' in struct/union `%s'",
1238 name, type->tag_name);
1239
1240 return 0;
1241 }
1242
1243
1244 /* Generate code to push the value of a bitfield of a structure whose
1245 address is on the top of the stack. START and END give the
1246 starting and one-past-ending *bit* numbers of the field within the
1247 structure. */
1248 static void
1249 gen_bitfield_ref (ax, value, type, start, end)
1250 struct agent_expr *ax;
1251 struct axs_value *value;
1252 struct type *type;
1253 int start, end;
1254 {
1255 /* Note that ops[i] fetches 8 << i bits. */
1256 static enum agent_op ops[]
1257 =
1258 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1259 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1260
1261 /* We don't want to touch any byte that the bitfield doesn't
1262 actually occupy; we shouldn't make any accesses we're not
1263 explicitly permitted to. We rely here on the fact that the
1264 bytecode `ref' operators work on unaligned addresses.
1265
1266 It takes some fancy footwork to get the stack to work the way
1267 we'd like. Say we're retrieving a bitfield that requires three
1268 fetches. Initially, the stack just contains the address:
1269 addr
1270 For the first fetch, we duplicate the address
1271 addr addr
1272 then add the byte offset, do the fetch, and shift and mask as
1273 needed, yielding a fragment of the value, properly aligned for
1274 the final bitwise or:
1275 addr frag1
1276 then we swap, and repeat the process:
1277 frag1 addr --- address on top
1278 frag1 addr addr --- duplicate it
1279 frag1 addr frag2 --- get second fragment
1280 frag1 frag2 addr --- swap again
1281 frag1 frag2 frag3 --- get third fragment
1282 Notice that, since the third fragment is the last one, we don't
1283 bother duplicating the address this time. Now we have all the
1284 fragments on the stack, and we can simply `or' them together,
1285 yielding the final value of the bitfield. */
1286
1287 /* The first and one-after-last bits in the field, but rounded down
1288 and up to byte boundaries. */
1289 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1290 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1291 / TARGET_CHAR_BIT)
1292 * TARGET_CHAR_BIT);
1293
1294 /* current bit offset within the structure */
1295 int offset;
1296
1297 /* The index in ops of the opcode we're considering. */
1298 int op;
1299
1300 /* The number of fragments we generated in the process. Probably
1301 equal to the number of `one' bits in bytesize, but who cares? */
1302 int fragment_count;
1303
1304 /* Dereference any typedefs. */
1305 type = check_typedef (type);
1306
1307 /* Can we fetch the number of bits requested at all? */
1308 if ((end - start) > ((1 << num_ops) * 8))
1309 error ("GDB bug: ax-gdb.c (gen_bitfield_ref): bitfield too wide");
1310
1311 /* Note that we know here that we only need to try each opcode once.
1312 That may not be true on machines with weird byte sizes. */
1313 offset = bound_start;
1314 fragment_count = 0;
1315 for (op = num_ops - 1; op >= 0; op--)
1316 {
1317 /* number of bits that ops[op] would fetch */
1318 int op_size = 8 << op;
1319
1320 /* The stack at this point, from bottom to top, contains zero or
1321 more fragments, then the address. */
1322
1323 /* Does this fetch fit within the bitfield? */
1324 if (offset + op_size <= bound_end)
1325 {
1326 /* Is this the last fragment? */
1327 int last_frag = (offset + op_size == bound_end);
1328
1329 if (!last_frag)
1330 ax_simple (ax, aop_dup); /* keep a copy of the address */
1331
1332 /* Add the offset. */
1333 gen_offset (ax, offset / TARGET_CHAR_BIT);
1334
1335 if (trace_kludge)
1336 {
1337 /* Record the area of memory we're about to fetch. */
1338 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1339 }
1340
1341 /* Perform the fetch. */
1342 ax_simple (ax, ops[op]);
1343
1344 /* Shift the bits we have to their proper position.
1345 gen_left_shift will generate right shifts when the operand
1346 is negative.
1347
1348 A big-endian field diagram to ponder:
1349 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1350 +------++------++------++------++------++------++------++------+
1351 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1352 ^ ^ ^ ^
1353 bit number 16 32 48 53
1354 These are bit numbers as supplied by GDB. Note that the
1355 bit numbers run from right to left once you've fetched the
1356 value!
1357
1358 A little-endian field diagram to ponder:
1359 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1360 +------++------++------++------++------++------++------++------+
1361 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1362 ^ ^ ^ ^ ^
1363 bit number 48 32 16 4 0
1364
1365 In both cases, the most significant end is on the left
1366 (i.e. normal numeric writing order), which means that you
1367 don't go crazy thinking about `left' and `right' shifts.
1368
1369 We don't have to worry about masking yet:
1370 - If they contain garbage off the least significant end, then we
1371 must be looking at the low end of the field, and the right
1372 shift will wipe them out.
1373 - If they contain garbage off the most significant end, then we
1374 must be looking at the most significant end of the word, and
1375 the sign/zero extension will wipe them out.
1376 - If we're in the interior of the word, then there is no garbage
1377 on either end, because the ref operators zero-extend. */
1378 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1379 gen_left_shift (ax, end - (offset + op_size));
1380 else
1381 gen_left_shift (ax, offset - start);
1382
1383 if (!last_frag)
1384 /* Bring the copy of the address up to the top. */
1385 ax_simple (ax, aop_swap);
1386
1387 offset += op_size;
1388 fragment_count++;
1389 }
1390 }
1391
1392 /* Generate enough bitwise `or' operations to combine all the
1393 fragments we left on the stack. */
1394 while (fragment_count-- > 1)
1395 ax_simple (ax, aop_bit_or);
1396
1397 /* Sign- or zero-extend the value as appropriate. */
1398 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1399
1400 /* This is *not* an lvalue. Ugh. */
1401 value->kind = axs_rvalue;
1402 value->type = type;
1403 }
1404
1405
1406 /* Generate code to reference the member named FIELD of a structure or
1407 union. The top of the stack, as described by VALUE, should have
1408 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1409 the operator being compiled, and OPERAND_NAME is the kind of thing
1410 it operates on; we use them in error messages. */
1411 static void
1412 gen_struct_ref (ax, value, field, operator_name, operand_name)
1413 struct agent_expr *ax;
1414 struct axs_value *value;
1415 char *field;
1416 char *operator_name;
1417 char *operand_name;
1418 {
1419 struct type *type;
1420 int i;
1421
1422 /* Follow pointers until we reach a non-pointer. These aren't the C
1423 semantics, but they're what the normal GDB evaluator does, so we
1424 should at least be consistent. */
1425 while (value->type->code == TYPE_CODE_PTR)
1426 {
1427 gen_usual_unary (ax, value);
1428 gen_deref (ax, value);
1429 }
1430 type = value->type;
1431
1432 /* This must yield a structure or a union. */
1433 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1434 && TYPE_CODE (type) != TYPE_CODE_UNION)
1435 error ("The left operand of `%s' is not a %s.",
1436 operator_name, operand_name);
1437
1438 /* And it must be in memory; we don't deal with structure rvalues,
1439 or structures living in registers. */
1440 if (value->kind != axs_lvalue_memory)
1441 error ("Structure does not live in memory.");
1442
1443 i = find_field (type, field);
1444
1445 /* Is this a bitfield? */
1446 if (TYPE_FIELD_PACKED (type, i))
1447 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1448 TYPE_FIELD_BITPOS (type, i),
1449 (TYPE_FIELD_BITPOS (type, i)
1450 + TYPE_FIELD_BITSIZE (type, i)));
1451 else
1452 {
1453 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1454 value->kind = axs_lvalue_memory;
1455 value->type = TYPE_FIELD_TYPE (type, i);
1456 }
1457 }
1458
1459
1460 /* Generate code for GDB's magical `repeat' operator.
1461 LVALUE @ INT creates an array INT elements long, and whose elements
1462 have the same type as LVALUE, located in memory so that LVALUE is
1463 its first element. For example, argv[0]@argc gives you the array
1464 of command-line arguments.
1465
1466 Unfortunately, because we have to know the types before we actually
1467 have a value for the expression, we can't implement this perfectly
1468 without changing the type system, having values that occupy two
1469 stack slots, doing weird things with sizeof, etc. So we require
1470 the right operand to be a constant expression. */
1471 static void
1472 gen_repeat (pc, ax, value)
1473 union exp_element **pc;
1474 struct agent_expr *ax;
1475 struct axs_value *value;
1476 {
1477 struct axs_value value1;
1478 /* We don't want to turn this into an rvalue, so no conversions
1479 here. */
1480 gen_expr (pc, ax, &value1);
1481 if (value1.kind != axs_lvalue_memory)
1482 error ("Left operand of `@' must be an object in memory.");
1483
1484 /* Evaluate the length; it had better be a constant. */
1485 {
1486 struct value *v = const_expr (pc);
1487 int length;
1488
1489 if (!v)
1490 error ("Right operand of `@' must be a constant, in agent expressions.");
1491 if (v->type->code != TYPE_CODE_INT)
1492 error ("Right operand of `@' must be an integer.");
1493 length = value_as_long (v);
1494 if (length <= 0)
1495 error ("Right operand of `@' must be positive.");
1496
1497 /* The top of the stack is already the address of the object, so
1498 all we need to do is frob the type of the lvalue. */
1499 {
1500 /* FIXME-type-allocation: need a way to free this type when we are
1501 done with it. */
1502 struct type *range
1503 = create_range_type (0, builtin_type_int, 0, length - 1);
1504 struct type *array = create_array_type (0, value1.type, range);
1505
1506 value->kind = axs_lvalue_memory;
1507 value->type = array;
1508 }
1509 }
1510 }
1511
1512
1513 /* Emit code for the `sizeof' operator.
1514 *PC should point at the start of the operand expression; we advance it
1515 to the first instruction after the operand. */
1516 static void
1517 gen_sizeof (pc, ax, value)
1518 union exp_element **pc;
1519 struct agent_expr *ax;
1520 struct axs_value *value;
1521 {
1522 /* We don't care about the value of the operand expression; we only
1523 care about its type. However, in the current arrangement, the
1524 only way to find an expression's type is to generate code for it.
1525 So we generate code for the operand, and then throw it away,
1526 replacing it with code that simply pushes its size. */
1527 int start = ax->len;
1528 gen_expr (pc, ax, value);
1529
1530 /* Throw away the code we just generated. */
1531 ax->len = start;
1532
1533 ax_const_l (ax, TYPE_LENGTH (value->type));
1534 value->kind = axs_rvalue;
1535 value->type = builtin_type_int;
1536 }
1537 \f
1538
1539 /* Generating bytecode from GDB expressions: general recursive thingy */
1540
1541 /* A gen_expr function written by a Gen-X'er guy.
1542 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1543 static void
1544 gen_expr (pc, ax, value)
1545 union exp_element **pc;
1546 struct agent_expr *ax;
1547 struct axs_value *value;
1548 {
1549 /* Used to hold the descriptions of operand expressions. */
1550 struct axs_value value1, value2;
1551 enum exp_opcode op = (*pc)[0].opcode;
1552
1553 /* If we're looking at a constant expression, just push its value. */
1554 {
1555 struct value *v = maybe_const_expr (pc);
1556
1557 if (v)
1558 {
1559 ax_const_l (ax, value_as_long (v));
1560 value->kind = axs_rvalue;
1561 value->type = check_typedef (VALUE_TYPE (v));
1562 return;
1563 }
1564 }
1565
1566 /* Otherwise, go ahead and generate code for it. */
1567 switch (op)
1568 {
1569 /* Binary arithmetic operators. */
1570 case BINOP_ADD:
1571 case BINOP_SUB:
1572 case BINOP_MUL:
1573 case BINOP_DIV:
1574 case BINOP_REM:
1575 case BINOP_SUBSCRIPT:
1576 case BINOP_BITWISE_AND:
1577 case BINOP_BITWISE_IOR:
1578 case BINOP_BITWISE_XOR:
1579 (*pc)++;
1580 gen_expr (pc, ax, &value1);
1581 gen_usual_unary (ax, &value1);
1582 gen_expr (pc, ax, &value2);
1583 gen_usual_unary (ax, &value2);
1584 gen_usual_arithmetic (ax, &value1, &value2);
1585 switch (op)
1586 {
1587 case BINOP_ADD:
1588 gen_add (ax, value, &value1, &value2, "addition");
1589 break;
1590 case BINOP_SUB:
1591 gen_sub (ax, value, &value1, &value2);
1592 break;
1593 case BINOP_MUL:
1594 gen_binop (ax, value, &value1, &value2,
1595 aop_mul, aop_mul, 1, "multiplication");
1596 break;
1597 case BINOP_DIV:
1598 gen_binop (ax, value, &value1, &value2,
1599 aop_div_signed, aop_div_unsigned, 1, "division");
1600 break;
1601 case BINOP_REM:
1602 gen_binop (ax, value, &value1, &value2,
1603 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1604 break;
1605 case BINOP_SUBSCRIPT:
1606 gen_add (ax, value, &value1, &value2, "array subscripting");
1607 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1608 error ("Illegal combination of types in array subscripting.");
1609 gen_deref (ax, value);
1610 break;
1611 case BINOP_BITWISE_AND:
1612 gen_binop (ax, value, &value1, &value2,
1613 aop_bit_and, aop_bit_and, 0, "bitwise and");
1614 break;
1615
1616 case BINOP_BITWISE_IOR:
1617 gen_binop (ax, value, &value1, &value2,
1618 aop_bit_or, aop_bit_or, 0, "bitwise or");
1619 break;
1620
1621 case BINOP_BITWISE_XOR:
1622 gen_binop (ax, value, &value1, &value2,
1623 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1624 break;
1625
1626 default:
1627 /* We should only list operators in the outer case statement
1628 that we actually handle in the inner case statement. */
1629 error ("GDB bug: ax-gdb.c (gen_expr): op case sets don't match");
1630 }
1631 break;
1632
1633 /* Note that we need to be a little subtle about generating code
1634 for comma. In C, we can do some optimizations here because
1635 we know the left operand is only being evaluated for effect.
1636 However, if the tracing kludge is in effect, then we always
1637 need to evaluate the left hand side fully, so that all the
1638 variables it mentions get traced. */
1639 case BINOP_COMMA:
1640 (*pc)++;
1641 gen_expr (pc, ax, &value1);
1642 /* Don't just dispose of the left operand. We might be tracing,
1643 in which case we want to emit code to trace it if it's an
1644 lvalue. */
1645 gen_traced_pop (ax, &value1);
1646 gen_expr (pc, ax, value);
1647 /* It's the consumer's responsibility to trace the right operand. */
1648 break;
1649
1650 case OP_LONG: /* some integer constant */
1651 {
1652 struct type *type = (*pc)[1].type;
1653 LONGEST k = (*pc)[2].longconst;
1654 (*pc) += 4;
1655 gen_int_literal (ax, value, k, type);
1656 }
1657 break;
1658
1659 case OP_VAR_VALUE:
1660 gen_var_ref (ax, value, (*pc)[2].symbol);
1661 (*pc) += 4;
1662 break;
1663
1664 case OP_REGISTER:
1665 {
1666 int reg = (int) (*pc)[1].longconst;
1667 (*pc) += 3;
1668 value->kind = axs_lvalue_register;
1669 value->u.reg = reg;
1670 value->type = REGISTER_VIRTUAL_TYPE (reg);
1671 }
1672 break;
1673
1674 case OP_INTERNALVAR:
1675 error ("GDB agent expressions cannot use convenience variables.");
1676
1677 /* Weirdo operator: see comments for gen_repeat for details. */
1678 case BINOP_REPEAT:
1679 /* Note that gen_repeat handles its own argument evaluation. */
1680 (*pc)++;
1681 gen_repeat (pc, ax, value);
1682 break;
1683
1684 case UNOP_CAST:
1685 {
1686 struct type *type = (*pc)[1].type;
1687 (*pc) += 3;
1688 gen_expr (pc, ax, value);
1689 gen_cast (ax, value, type);
1690 }
1691 break;
1692
1693 case UNOP_MEMVAL:
1694 {
1695 struct type *type = check_typedef ((*pc)[1].type);
1696 (*pc) += 3;
1697 gen_expr (pc, ax, value);
1698 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1699 it's just a hack for dealing with minsyms; you take some
1700 integer constant, pretend it's the address of an lvalue of
1701 the given type, and dereference it. */
1702 if (value->kind != axs_rvalue)
1703 /* This would be weird. */
1704 error ("GDB bug: ax-gdb.c (gen_expr): OP_MEMVAL operand isn't an rvalue???");
1705 value->type = type;
1706 value->kind = axs_lvalue_memory;
1707 }
1708 break;
1709
1710 case UNOP_NEG:
1711 (*pc)++;
1712 /* -FOO is equivalent to 0 - FOO. */
1713 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
1714 gen_usual_unary (ax, &value1); /* shouldn't do much */
1715 gen_expr (pc, ax, &value2);
1716 gen_usual_unary (ax, &value2);
1717 gen_usual_arithmetic (ax, &value1, &value2);
1718 gen_sub (ax, value, &value1, &value2);
1719 break;
1720
1721 case UNOP_LOGICAL_NOT:
1722 (*pc)++;
1723 gen_expr (pc, ax, value);
1724 gen_logical_not (ax, value);
1725 break;
1726
1727 case UNOP_COMPLEMENT:
1728 (*pc)++;
1729 gen_expr (pc, ax, value);
1730 gen_complement (ax, value);
1731 break;
1732
1733 case UNOP_IND:
1734 (*pc)++;
1735 gen_expr (pc, ax, value);
1736 gen_usual_unary (ax, value);
1737 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1738 error ("Argument of unary `*' is not a pointer.");
1739 gen_deref (ax, value);
1740 break;
1741
1742 case UNOP_ADDR:
1743 (*pc)++;
1744 gen_expr (pc, ax, value);
1745 gen_address_of (ax, value);
1746 break;
1747
1748 case UNOP_SIZEOF:
1749 (*pc)++;
1750 /* Notice that gen_sizeof handles its own operand, unlike most
1751 of the other unary operator functions. This is because we
1752 have to throw away the code we generate. */
1753 gen_sizeof (pc, ax, value);
1754 break;
1755
1756 case STRUCTOP_STRUCT:
1757 case STRUCTOP_PTR:
1758 {
1759 int length = (*pc)[1].longconst;
1760 char *name = &(*pc)[2].string;
1761
1762 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1763 gen_expr (pc, ax, value);
1764 if (op == STRUCTOP_STRUCT)
1765 gen_struct_ref (ax, value, name, ".", "structure or union");
1766 else if (op == STRUCTOP_PTR)
1767 gen_struct_ref (ax, value, name, "->",
1768 "pointer to a structure or union");
1769 else
1770 /* If this `if' chain doesn't handle it, then the case list
1771 shouldn't mention it, and we shouldn't be here. */
1772 error ("GDB bug: ax-gdb.c (gen_expr): unhandled struct case");
1773 }
1774 break;
1775
1776 case OP_TYPE:
1777 error ("Attempt to use a type name as an expression.");
1778
1779 default:
1780 error ("Unsupported operator in expression.");
1781 }
1782 }
1783 \f
1784
1785
1786 #if 0 /* not used */
1787 /* Generating bytecode from GDB expressions: driver */
1788
1789 /* Given a GDB expression EXPR, produce a string of agent bytecode
1790 which computes its value. Return the agent expression, and set
1791 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1792 struct agent_expr *
1793 expr_to_agent (expr, value)
1794 struct expression *expr;
1795 struct axs_value *value;
1796 {
1797 struct cleanup *old_chain = 0;
1798 struct agent_expr *ax = new_agent_expr ();
1799 union exp_element *pc;
1800
1801 old_chain = make_cleanup ((make_cleanup_func) free_agent_expr, ax);
1802
1803 pc = expr->elts;
1804 trace_kludge = 0;
1805 gen_expr (&pc, ax, value);
1806
1807 /* We have successfully built the agent expr, so cancel the cleanup
1808 request. If we add more cleanups that we always want done, this
1809 will have to get more complicated. */
1810 discard_cleanups (old_chain);
1811 return ax;
1812 }
1813
1814
1815 /* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1816 string of agent bytecode which will leave its address and size on
1817 the top of stack. Return the agent expression.
1818
1819 Not sure this function is useful at all. */
1820 struct agent_expr *
1821 expr_to_address_and_size (expr)
1822 struct expression *expr;
1823 {
1824 struct axs_value value;
1825 struct agent_expr *ax = expr_to_agent (expr, &value);
1826
1827 /* Complain if the result is not a memory lvalue. */
1828 if (value.kind != axs_lvalue_memory)
1829 {
1830 free_agent_expr (ax);
1831 error ("Expression does not denote an object in memory.");
1832 }
1833
1834 /* Push the object's size on the stack. */
1835 ax_const_l (ax, TYPE_LENGTH (value.type));
1836
1837 return ax;
1838 }
1839 #endif /* 0 */
1840
1841 /* Given a GDB expression EXPR, return bytecode to trace its value.
1842 The result will use the `trace' and `trace_quick' bytecodes to
1843 record the value of all memory touched by the expression. The
1844 caller can then use the ax_reqs function to discover which
1845 registers it relies upon. */
1846 struct agent_expr *
1847 gen_trace_for_expr (scope, expr)
1848 CORE_ADDR scope;
1849 struct expression *expr;
1850 {
1851 struct cleanup *old_chain = 0;
1852 struct agent_expr *ax = new_agent_expr (scope);
1853 union exp_element *pc;
1854 struct axs_value value;
1855
1856 old_chain = make_cleanup ((make_cleanup_func) free_agent_expr, ax);
1857
1858 pc = expr->elts;
1859 trace_kludge = 1;
1860 gen_expr (&pc, ax, &value);
1861
1862 /* Make sure we record the final object, and get rid of it. */
1863 gen_traced_pop (ax, &value);
1864
1865 /* Oh, and terminate. */
1866 ax_simple (ax, aop_end);
1867
1868 /* We have successfully built the agent expr, so cancel the cleanup
1869 request. If we add more cleanups that we always want done, this
1870 will have to get more complicated. */
1871 discard_cleanups (old_chain);
1872 return ax;
1873 }
1874 \f
1875
1876
1877 /* The "agent" command, for testing: compile and disassemble an expression. */
1878
1879 static void
1880 print_axs_value (f, value)
1881 GDB_FILE *f;
1882 struct axs_value *value;
1883 {
1884 switch (value->kind)
1885 {
1886 case axs_rvalue:
1887 fputs_filtered ("rvalue", f);
1888 break;
1889
1890 case axs_lvalue_memory:
1891 fputs_filtered ("memory lvalue", f);
1892 break;
1893
1894 case axs_lvalue_register:
1895 fprintf_filtered (f, "register %d lvalue", value->u.reg);
1896 break;
1897 }
1898
1899 fputs_filtered (" : ", f);
1900 type_print (value->type, "", f, -1);
1901 }
1902
1903
1904 static void
1905 agent_command (exp, from_tty)
1906 char *exp;
1907 int from_tty;
1908 {
1909 struct cleanup *old_chain = 0;
1910 struct expression *expr;
1911 struct agent_expr *agent;
1912 struct frame_info *fi = get_current_frame (); /* need current scope */
1913
1914 /* We don't deal with overlay debugging at the moment. We need to
1915 think more carefully about this. If you copy this code into
1916 another command, change the error message; the user shouldn't
1917 have to know anything about agent expressions. */
1918 if (overlay_debugging)
1919 error ("GDB can't do agent expression translation with overlays.");
1920
1921 if (exp == 0)
1922 error_no_arg ("expression to translate");
1923
1924 expr = parse_expression (exp);
1925 old_chain = make_cleanup ((make_cleanup_func) free_current_contents, &expr);
1926 agent = gen_trace_for_expr (fi->pc, expr);
1927 make_cleanup ((make_cleanup_func) free_agent_expr, agent);
1928 ax_print (gdb_stdout, agent);
1929
1930 /* It would be nice to call ax_reqs here to gather some general info
1931 about the expression, and then print out the result. */
1932
1933 do_cleanups (old_chain);
1934 dont_repeat ();
1935 }
1936 \f
1937
1938 /* Initialization code. */
1939
1940 void _initialize_ax_gdb PARAMS ((void));
1941 void
1942 _initialize_ax_gdb ()
1943 {
1944 add_cmd ("agent", class_maintenance, agent_command,
1945 "Translate an expression into remote agent bytecode.",
1946 &maintenancelist);
1947 }
This page took 0.082845 seconds and 4 git commands to generate.