2003-02-06 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright 1998, 1999, 2000, 2001, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "expression.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "ax.h"
34 #include "ax-gdb.h"
35 #include "gdb_string.h"
36
37 /* To make sense of this file, you should read doc/agentexpr.texi.
38 Then look at the types and enums in ax-gdb.h. For the code itself,
39 look at gen_expr, towards the bottom; that's the main function that
40 looks at the GDB expressions and calls everything else to generate
41 code.
42
43 I'm beginning to wonder whether it wouldn't be nicer to internally
44 generate trees, with types, and then spit out the bytecode in
45 linear form afterwards; we could generate fewer `swap', `ext', and
46 `zero_ext' bytecodes that way; it would make good constant folding
47 easier, too. But at the moment, I think we should be willing to
48 pay for the simplicity of this code with less-than-optimal bytecode
49 strings.
50
51 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
52 \f
53
54
55 /* Prototypes for local functions. */
56
57 /* There's a standard order to the arguments of these functions:
58 union exp_element ** --- pointer into expression
59 struct agent_expr * --- agent expression buffer to generate code into
60 struct axs_value * --- describes value left on top of stack */
61
62 static struct value *const_var_ref (struct symbol *var);
63 static struct value *const_expr (union exp_element **pc);
64 static struct value *maybe_const_expr (union exp_element **pc);
65
66 static void gen_traced_pop (struct agent_expr *, struct axs_value *);
67
68 static void gen_sign_extend (struct agent_expr *, struct type *);
69 static void gen_extend (struct agent_expr *, struct type *);
70 static void gen_fetch (struct agent_expr *, struct type *);
71 static void gen_left_shift (struct agent_expr *, int);
72
73
74 static void gen_frame_args_address (struct agent_expr *);
75 static void gen_frame_locals_address (struct agent_expr *);
76 static void gen_offset (struct agent_expr *ax, int offset);
77 static void gen_sym_offset (struct agent_expr *, struct symbol *);
78 static void gen_var_ref (struct agent_expr *ax,
79 struct axs_value *value, struct symbol *var);
80
81
82 static void gen_int_literal (struct agent_expr *ax,
83 struct axs_value *value,
84 LONGEST k, struct type *type);
85
86
87 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
88 static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
89 static int type_wider_than (struct type *type1, struct type *type2);
90 static struct type *max_type (struct type *type1, struct type *type2);
91 static void gen_conversion (struct agent_expr *ax,
92 struct type *from, struct type *to);
93 static int is_nontrivial_conversion (struct type *from, struct type *to);
94 static void gen_usual_arithmetic (struct agent_expr *ax,
95 struct axs_value *value1,
96 struct axs_value *value2);
97 static void gen_integral_promotions (struct agent_expr *ax,
98 struct axs_value *value);
99 static void gen_cast (struct agent_expr *ax,
100 struct axs_value *value, struct type *type);
101 static void gen_scale (struct agent_expr *ax,
102 enum agent_op op, struct type *type);
103 static void gen_add (struct agent_expr *ax,
104 struct axs_value *value,
105 struct axs_value *value1,
106 struct axs_value *value2, char *name);
107 static void gen_sub (struct agent_expr *ax,
108 struct axs_value *value,
109 struct axs_value *value1, struct axs_value *value2);
110 static void gen_binop (struct agent_expr *ax,
111 struct axs_value *value,
112 struct axs_value *value1,
113 struct axs_value *value2,
114 enum agent_op op,
115 enum agent_op op_unsigned, int may_carry, char *name);
116 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
117 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
118 static void gen_deref (struct agent_expr *, struct axs_value *);
119 static void gen_address_of (struct agent_expr *, struct axs_value *);
120 static int find_field (struct type *type, char *name);
121 static void gen_bitfield_ref (struct agent_expr *ax,
122 struct axs_value *value,
123 struct type *type, int start, int end);
124 static void gen_struct_ref (struct agent_expr *ax,
125 struct axs_value *value,
126 char *field,
127 char *operator_name, char *operand_name);
128 static void gen_repeat (union exp_element **pc,
129 struct agent_expr *ax, struct axs_value *value);
130 static void gen_sizeof (union exp_element **pc,
131 struct agent_expr *ax, struct axs_value *value);
132 static void gen_expr (union exp_element **pc,
133 struct agent_expr *ax, struct axs_value *value);
134
135 static void print_axs_value (struct ui_file *f, struct axs_value * value);
136 static void agent_command (char *exp, int from_tty);
137 \f
138
139 /* Detecting constant expressions. */
140
141 /* If the variable reference at *PC is a constant, return its value.
142 Otherwise, return zero.
143
144 Hey, Wally! How can a variable reference be a constant?
145
146 Well, Beav, this function really handles the OP_VAR_VALUE operator,
147 not specifically variable references. GDB uses OP_VAR_VALUE to
148 refer to any kind of symbolic reference: function names, enum
149 elements, and goto labels are all handled through the OP_VAR_VALUE
150 operator, even though they're constants. It makes sense given the
151 situation.
152
153 Gee, Wally, don'cha wonder sometimes if data representations that
154 subvert commonly accepted definitions of terms in favor of heavily
155 context-specific interpretations are really just a tool of the
156 programming hegemony to preserve their power and exclude the
157 proletariat? */
158
159 static struct value *
160 const_var_ref (struct symbol *var)
161 {
162 struct type *type = SYMBOL_TYPE (var);
163
164 switch (SYMBOL_CLASS (var))
165 {
166 case LOC_CONST:
167 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
168
169 case LOC_LABEL:
170 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
171
172 default:
173 return 0;
174 }
175 }
176
177
178 /* If the expression starting at *PC has a constant value, return it.
179 Otherwise, return zero. If we return a value, then *PC will be
180 advanced to the end of it. If we return zero, *PC could be
181 anywhere. */
182 static struct value *
183 const_expr (union exp_element **pc)
184 {
185 enum exp_opcode op = (*pc)->opcode;
186 struct value *v1;
187
188 switch (op)
189 {
190 case OP_LONG:
191 {
192 struct type *type = (*pc)[1].type;
193 LONGEST k = (*pc)[2].longconst;
194 (*pc) += 4;
195 return value_from_longest (type, k);
196 }
197
198 case OP_VAR_VALUE:
199 {
200 struct value *v = const_var_ref ((*pc)[2].symbol);
201 (*pc) += 4;
202 return v;
203 }
204
205 /* We could add more operators in here. */
206
207 case UNOP_NEG:
208 (*pc)++;
209 v1 = const_expr (pc);
210 if (v1)
211 return value_neg (v1);
212 else
213 return 0;
214
215 default:
216 return 0;
217 }
218 }
219
220
221 /* Like const_expr, but guarantee also that *PC is undisturbed if the
222 expression is not constant. */
223 static struct value *
224 maybe_const_expr (union exp_element **pc)
225 {
226 union exp_element *tentative_pc = *pc;
227 struct value *v = const_expr (&tentative_pc);
228
229 /* If we got a value, then update the real PC. */
230 if (v)
231 *pc = tentative_pc;
232
233 return v;
234 }
235 \f
236
237 /* Generating bytecode from GDB expressions: general assumptions */
238
239 /* Here are a few general assumptions made throughout the code; if you
240 want to make a change that contradicts one of these, then you'd
241 better scan things pretty thoroughly.
242
243 - We assume that all values occupy one stack element. For example,
244 sometimes we'll swap to get at the left argument to a binary
245 operator. If we decide that void values should occupy no stack
246 elements, or that synthetic arrays (whose size is determined at
247 run time, created by the `@' operator) should occupy two stack
248 elements (address and length), then this will cause trouble.
249
250 - We assume the stack elements are infinitely wide, and that we
251 don't have to worry what happens if the user requests an
252 operation that is wider than the actual interpreter's stack.
253 That is, it's up to the interpreter to handle directly all the
254 integer widths the user has access to. (Woe betide the language
255 with bignums!)
256
257 - We don't support side effects. Thus, we don't have to worry about
258 GCC's generalized lvalues, function calls, etc.
259
260 - We don't support floating point. Many places where we switch on
261 some type don't bother to include cases for floating point; there
262 may be even more subtle ways this assumption exists. For
263 example, the arguments to % must be integers.
264
265 - We assume all subexpressions have a static, unchanging type. If
266 we tried to support convenience variables, this would be a
267 problem.
268
269 - All values on the stack should always be fully zero- or
270 sign-extended.
271
272 (I wasn't sure whether to choose this or its opposite --- that
273 only addresses are assumed extended --- but it turns out that
274 neither convention completely eliminates spurious extend
275 operations (if everything is always extended, then you have to
276 extend after add, because it could overflow; if nothing is
277 extended, then you end up producing extends whenever you change
278 sizes), and this is simpler.) */
279 \f
280
281 /* Generating bytecode from GDB expressions: the `trace' kludge */
282
283 /* The compiler in this file is a general-purpose mechanism for
284 translating GDB expressions into bytecode. One ought to be able to
285 find a million and one uses for it.
286
287 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
288 of expediency. Let he who is without sin cast the first stone.
289
290 For the data tracing facility, we need to insert `trace' bytecodes
291 before each data fetch; this records all the memory that the
292 expression touches in the course of evaluation, so that memory will
293 be available when the user later tries to evaluate the expression
294 in GDB.
295
296 This should be done (I think) in a post-processing pass, that walks
297 an arbitrary agent expression and inserts `trace' operations at the
298 appropriate points. But it's much faster to just hack them
299 directly into the code. And since we're in a crunch, that's what
300 I've done.
301
302 Setting the flag trace_kludge to non-zero enables the code that
303 emits the trace bytecodes at the appropriate points. */
304 static int trace_kludge;
305
306 /* Trace the lvalue on the stack, if it needs it. In either case, pop
307 the value. Useful on the left side of a comma, and at the end of
308 an expression being used for tracing. */
309 static void
310 gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
311 {
312 if (trace_kludge)
313 switch (value->kind)
314 {
315 case axs_rvalue:
316 /* We don't trace rvalues, just the lvalues necessary to
317 produce them. So just dispose of this value. */
318 ax_simple (ax, aop_pop);
319 break;
320
321 case axs_lvalue_memory:
322 {
323 int length = TYPE_LENGTH (value->type);
324
325 /* There's no point in trying to use a trace_quick bytecode
326 here, since "trace_quick SIZE pop" is three bytes, whereas
327 "const8 SIZE trace" is also three bytes, does the same
328 thing, and the simplest code which generates that will also
329 work correctly for objects with large sizes. */
330 ax_const_l (ax, length);
331 ax_simple (ax, aop_trace);
332 }
333 break;
334
335 case axs_lvalue_register:
336 /* We need to mention the register somewhere in the bytecode,
337 so ax_reqs will pick it up and add it to the mask of
338 registers used. */
339 ax_reg (ax, value->u.reg);
340 ax_simple (ax, aop_pop);
341 break;
342 }
343 else
344 /* If we're not tracing, just pop the value. */
345 ax_simple (ax, aop_pop);
346 }
347 \f
348
349
350 /* Generating bytecode from GDB expressions: helper functions */
351
352 /* Assume that the lower bits of the top of the stack is a value of
353 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
354 static void
355 gen_sign_extend (struct agent_expr *ax, struct type *type)
356 {
357 /* Do we need to sign-extend this? */
358 if (!TYPE_UNSIGNED (type))
359 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
360 }
361
362
363 /* Assume the lower bits of the top of the stack hold a value of type
364 TYPE, and the upper bits are garbage. Sign-extend or truncate as
365 needed. */
366 static void
367 gen_extend (struct agent_expr *ax, struct type *type)
368 {
369 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
370 /* I just had to. */
371 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
372 }
373
374
375 /* Assume that the top of the stack contains a value of type "pointer
376 to TYPE"; generate code to fetch its value. Note that TYPE is the
377 target type, not the pointer type. */
378 static void
379 gen_fetch (struct agent_expr *ax, struct type *type)
380 {
381 if (trace_kludge)
382 {
383 /* Record the area of memory we're about to fetch. */
384 ax_trace_quick (ax, TYPE_LENGTH (type));
385 }
386
387 switch (TYPE_CODE (type))
388 {
389 case TYPE_CODE_PTR:
390 case TYPE_CODE_ENUM:
391 case TYPE_CODE_INT:
392 case TYPE_CODE_CHAR:
393 /* It's a scalar value, so we know how to dereference it. How
394 many bytes long is it? */
395 switch (TYPE_LENGTH (type))
396 {
397 case 8 / TARGET_CHAR_BIT:
398 ax_simple (ax, aop_ref8);
399 break;
400 case 16 / TARGET_CHAR_BIT:
401 ax_simple (ax, aop_ref16);
402 break;
403 case 32 / TARGET_CHAR_BIT:
404 ax_simple (ax, aop_ref32);
405 break;
406 case 64 / TARGET_CHAR_BIT:
407 ax_simple (ax, aop_ref64);
408 break;
409
410 /* Either our caller shouldn't have asked us to dereference
411 that pointer (other code's fault), or we're not
412 implementing something we should be (this code's fault).
413 In any case, it's a bug the user shouldn't see. */
414 default:
415 internal_error (__FILE__, __LINE__,
416 "gen_fetch: strange size");
417 }
418
419 gen_sign_extend (ax, type);
420 break;
421
422 default:
423 /* Either our caller shouldn't have asked us to dereference that
424 pointer (other code's fault), or we're not implementing
425 something we should be (this code's fault). In any case,
426 it's a bug the user shouldn't see. */
427 internal_error (__FILE__, __LINE__,
428 "gen_fetch: bad type code");
429 }
430 }
431
432
433 /* Generate code to left shift the top of the stack by DISTANCE bits, or
434 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
435 unsigned (logical) right shifts. */
436 static void
437 gen_left_shift (struct agent_expr *ax, int distance)
438 {
439 if (distance > 0)
440 {
441 ax_const_l (ax, distance);
442 ax_simple (ax, aop_lsh);
443 }
444 else if (distance < 0)
445 {
446 ax_const_l (ax, -distance);
447 ax_simple (ax, aop_rsh_unsigned);
448 }
449 }
450 \f
451
452
453 /* Generating bytecode from GDB expressions: symbol references */
454
455 /* Generate code to push the base address of the argument portion of
456 the top stack frame. */
457 static void
458 gen_frame_args_address (struct agent_expr *ax)
459 {
460 int frame_reg;
461 LONGEST frame_offset;
462
463 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
464 ax_reg (ax, frame_reg);
465 gen_offset (ax, frame_offset);
466 }
467
468
469 /* Generate code to push the base address of the locals portion of the
470 top stack frame. */
471 static void
472 gen_frame_locals_address (struct agent_expr *ax)
473 {
474 int frame_reg;
475 LONGEST frame_offset;
476
477 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
478 ax_reg (ax, frame_reg);
479 gen_offset (ax, frame_offset);
480 }
481
482
483 /* Generate code to add OFFSET to the top of the stack. Try to
484 generate short and readable code. We use this for getting to
485 variables on the stack, and structure members. If we were
486 programming in ML, it would be clearer why these are the same
487 thing. */
488 static void
489 gen_offset (struct agent_expr *ax, int offset)
490 {
491 /* It would suffice to simply push the offset and add it, but this
492 makes it easier to read positive and negative offsets in the
493 bytecode. */
494 if (offset > 0)
495 {
496 ax_const_l (ax, offset);
497 ax_simple (ax, aop_add);
498 }
499 else if (offset < 0)
500 {
501 ax_const_l (ax, -offset);
502 ax_simple (ax, aop_sub);
503 }
504 }
505
506
507 /* In many cases, a symbol's value is the offset from some other
508 address (stack frame, base register, etc.) Generate code to add
509 VAR's value to the top of the stack. */
510 static void
511 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
512 {
513 gen_offset (ax, SYMBOL_VALUE (var));
514 }
515
516
517 /* Generate code for a variable reference to AX. The variable is the
518 symbol VAR. Set VALUE to describe the result. */
519
520 static void
521 gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
522 {
523 /* Dereference any typedefs. */
524 value->type = check_typedef (SYMBOL_TYPE (var));
525
526 /* I'm imitating the code in read_var_value. */
527 switch (SYMBOL_CLASS (var))
528 {
529 case LOC_CONST: /* A constant, like an enum value. */
530 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
531 value->kind = axs_rvalue;
532 break;
533
534 case LOC_LABEL: /* A goto label, being used as a value. */
535 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
536 value->kind = axs_rvalue;
537 break;
538
539 case LOC_CONST_BYTES:
540 internal_error (__FILE__, __LINE__,
541 "gen_var_ref: LOC_CONST_BYTES symbols are not supported");
542
543 /* Variable at a fixed location in memory. Easy. */
544 case LOC_STATIC:
545 /* Push the address of the variable. */
546 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
547 value->kind = axs_lvalue_memory;
548 break;
549
550 case LOC_ARG: /* var lives in argument area of frame */
551 gen_frame_args_address (ax);
552 gen_sym_offset (ax, var);
553 value->kind = axs_lvalue_memory;
554 break;
555
556 case LOC_REF_ARG: /* As above, but the frame slot really
557 holds the address of the variable. */
558 gen_frame_args_address (ax);
559 gen_sym_offset (ax, var);
560 /* Don't assume any particular pointer size. */
561 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
562 value->kind = axs_lvalue_memory;
563 break;
564
565 case LOC_LOCAL: /* var lives in locals area of frame */
566 case LOC_LOCAL_ARG:
567 gen_frame_locals_address (ax);
568 gen_sym_offset (ax, var);
569 value->kind = axs_lvalue_memory;
570 break;
571
572 case LOC_BASEREG: /* relative to some base register */
573 case LOC_BASEREG_ARG:
574 ax_reg (ax, SYMBOL_BASEREG (var));
575 gen_sym_offset (ax, var);
576 value->kind = axs_lvalue_memory;
577 break;
578
579 case LOC_TYPEDEF:
580 error ("Cannot compute value of typedef `%s'.",
581 SYMBOL_SOURCE_NAME (var));
582 break;
583
584 case LOC_BLOCK:
585 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
586 value->kind = axs_rvalue;
587 break;
588
589 case LOC_REGISTER:
590 case LOC_REGPARM:
591 /* Don't generate any code at all; in the process of treating
592 this as an lvalue or rvalue, the caller will generate the
593 right code. */
594 value->kind = axs_lvalue_register;
595 value->u.reg = SYMBOL_VALUE (var);
596 break;
597
598 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
599 register, not on the stack. Simpler than LOC_REGISTER and
600 LOC_REGPARM, because it's just like any other case where the
601 thing has a real address. */
602 case LOC_REGPARM_ADDR:
603 ax_reg (ax, SYMBOL_VALUE (var));
604 value->kind = axs_lvalue_memory;
605 break;
606
607 case LOC_UNRESOLVED:
608 {
609 struct minimal_symbol *msym
610 = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
611 if (!msym)
612 error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
613
614 /* Push the address of the variable. */
615 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
616 value->kind = axs_lvalue_memory;
617 }
618 break;
619
620 case LOC_OPTIMIZED_OUT:
621 error ("The variable `%s' has been optimized out.",
622 SYMBOL_SOURCE_NAME (var));
623 break;
624
625 default:
626 error ("Cannot find value of botched symbol `%s'.",
627 SYMBOL_SOURCE_NAME (var));
628 break;
629 }
630 }
631 \f
632
633
634 /* Generating bytecode from GDB expressions: literals */
635
636 static void
637 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
638 struct type *type)
639 {
640 ax_const_l (ax, k);
641 value->kind = axs_rvalue;
642 value->type = type;
643 }
644 \f
645
646
647 /* Generating bytecode from GDB expressions: unary conversions, casts */
648
649 /* Take what's on the top of the stack (as described by VALUE), and
650 try to make an rvalue out of it. Signal an error if we can't do
651 that. */
652 static void
653 require_rvalue (struct agent_expr *ax, struct axs_value *value)
654 {
655 switch (value->kind)
656 {
657 case axs_rvalue:
658 /* It's already an rvalue. */
659 break;
660
661 case axs_lvalue_memory:
662 /* The top of stack is the address of the object. Dereference. */
663 gen_fetch (ax, value->type);
664 break;
665
666 case axs_lvalue_register:
667 /* There's nothing on the stack, but value->u.reg is the
668 register number containing the value.
669
670 When we add floating-point support, this is going to have to
671 change. What about SPARC register pairs, for example? */
672 ax_reg (ax, value->u.reg);
673 gen_extend (ax, value->type);
674 break;
675 }
676
677 value->kind = axs_rvalue;
678 }
679
680
681 /* Assume the top of the stack is described by VALUE, and perform the
682 usual unary conversions. This is motivated by ANSI 6.2.2, but of
683 course GDB expressions are not ANSI; they're the mishmash union of
684 a bunch of languages. Rah.
685
686 NOTE! This function promises to produce an rvalue only when the
687 incoming value is of an appropriate type. In other words, the
688 consumer of the value this function produces may assume the value
689 is an rvalue only after checking its type.
690
691 The immediate issue is that if the user tries to use a structure or
692 union as an operand of, say, the `+' operator, we don't want to try
693 to convert that structure to an rvalue; require_rvalue will bomb on
694 structs and unions. Rather, we want to simply pass the struct
695 lvalue through unchanged, and let `+' raise an error. */
696
697 static void
698 gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
699 {
700 /* We don't have to generate any code for the usual integral
701 conversions, since values are always represented as full-width on
702 the stack. Should we tweak the type? */
703
704 /* Some types require special handling. */
705 switch (TYPE_CODE (value->type))
706 {
707 /* Functions get converted to a pointer to the function. */
708 case TYPE_CODE_FUNC:
709 value->type = lookup_pointer_type (value->type);
710 value->kind = axs_rvalue; /* Should always be true, but just in case. */
711 break;
712
713 /* Arrays get converted to a pointer to their first element, and
714 are no longer an lvalue. */
715 case TYPE_CODE_ARRAY:
716 {
717 struct type *elements = TYPE_TARGET_TYPE (value->type);
718 value->type = lookup_pointer_type (elements);
719 value->kind = axs_rvalue;
720 /* We don't need to generate any code; the address of the array
721 is also the address of its first element. */
722 }
723 break;
724
725 /* Don't try to convert structures and unions to rvalues. Let the
726 consumer signal an error. */
727 case TYPE_CODE_STRUCT:
728 case TYPE_CODE_UNION:
729 return;
730
731 /* If the value is an enum, call it an integer. */
732 case TYPE_CODE_ENUM:
733 value->type = builtin_type_int;
734 break;
735 }
736
737 /* If the value is an lvalue, dereference it. */
738 require_rvalue (ax, value);
739 }
740
741
742 /* Return non-zero iff the type TYPE1 is considered "wider" than the
743 type TYPE2, according to the rules described in gen_usual_arithmetic. */
744 static int
745 type_wider_than (struct type *type1, struct type *type2)
746 {
747 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
748 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
749 && TYPE_UNSIGNED (type1)
750 && !TYPE_UNSIGNED (type2)));
751 }
752
753
754 /* Return the "wider" of the two types TYPE1 and TYPE2. */
755 static struct type *
756 max_type (struct type *type1, struct type *type2)
757 {
758 return type_wider_than (type1, type2) ? type1 : type2;
759 }
760
761
762 /* Generate code to convert a scalar value of type FROM to type TO. */
763 static void
764 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
765 {
766 /* Perhaps there is a more graceful way to state these rules. */
767
768 /* If we're converting to a narrower type, then we need to clear out
769 the upper bits. */
770 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
771 gen_extend (ax, from);
772
773 /* If the two values have equal width, but different signednesses,
774 then we need to extend. */
775 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
776 {
777 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
778 gen_extend (ax, to);
779 }
780
781 /* If we're converting to a wider type, and becoming unsigned, then
782 we need to zero out any possible sign bits. */
783 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
784 {
785 if (TYPE_UNSIGNED (to))
786 gen_extend (ax, to);
787 }
788 }
789
790
791 /* Return non-zero iff the type FROM will require any bytecodes to be
792 emitted to be converted to the type TO. */
793 static int
794 is_nontrivial_conversion (struct type *from, struct type *to)
795 {
796 struct agent_expr *ax = new_agent_expr (0);
797 int nontrivial;
798
799 /* Actually generate the code, and see if anything came out. At the
800 moment, it would be trivial to replicate the code in
801 gen_conversion here, but in the future, when we're supporting
802 floating point and the like, it may not be. Doing things this
803 way allows this function to be independent of the logic in
804 gen_conversion. */
805 gen_conversion (ax, from, to);
806 nontrivial = ax->len > 0;
807 free_agent_expr (ax);
808 return nontrivial;
809 }
810
811
812 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
813 6.2.1.5) for the two operands of an arithmetic operator. This
814 effectively finds a "least upper bound" type for the two arguments,
815 and promotes each argument to that type. *VALUE1 and *VALUE2
816 describe the values as they are passed in, and as they are left. */
817 static void
818 gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
819 struct axs_value *value2)
820 {
821 /* Do the usual binary conversions. */
822 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
823 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
824 {
825 /* The ANSI integral promotions seem to work this way: Order the
826 integer types by size, and then by signedness: an n-bit
827 unsigned type is considered "wider" than an n-bit signed
828 type. Promote to the "wider" of the two types, and always
829 promote at least to int. */
830 struct type *target = max_type (builtin_type_int,
831 max_type (value1->type, value2->type));
832
833 /* Deal with value2, on the top of the stack. */
834 gen_conversion (ax, value2->type, target);
835
836 /* Deal with value1, not on the top of the stack. Don't
837 generate the `swap' instructions if we're not actually going
838 to do anything. */
839 if (is_nontrivial_conversion (value1->type, target))
840 {
841 ax_simple (ax, aop_swap);
842 gen_conversion (ax, value1->type, target);
843 ax_simple (ax, aop_swap);
844 }
845
846 value1->type = value2->type = target;
847 }
848 }
849
850
851 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
852 the value on the top of the stack, as described by VALUE. Assume
853 the value has integral type. */
854 static void
855 gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
856 {
857 if (!type_wider_than (value->type, builtin_type_int))
858 {
859 gen_conversion (ax, value->type, builtin_type_int);
860 value->type = builtin_type_int;
861 }
862 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
863 {
864 gen_conversion (ax, value->type, builtin_type_unsigned_int);
865 value->type = builtin_type_unsigned_int;
866 }
867 }
868
869
870 /* Generate code for a cast to TYPE. */
871 static void
872 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
873 {
874 /* GCC does allow casts to yield lvalues, so this should be fixed
875 before merging these changes into the trunk. */
876 require_rvalue (ax, value);
877 /* Dereference typedefs. */
878 type = check_typedef (type);
879
880 switch (TYPE_CODE (type))
881 {
882 case TYPE_CODE_PTR:
883 /* It's implementation-defined, and I'll bet this is what GCC
884 does. */
885 break;
886
887 case TYPE_CODE_ARRAY:
888 case TYPE_CODE_STRUCT:
889 case TYPE_CODE_UNION:
890 case TYPE_CODE_FUNC:
891 error ("Illegal type cast: intended type must be scalar.");
892
893 case TYPE_CODE_ENUM:
894 /* We don't have to worry about the size of the value, because
895 all our integral values are fully sign-extended, and when
896 casting pointers we can do anything we like. Is there any
897 way for us to actually know what GCC actually does with a
898 cast like this? */
899 value->type = type;
900 break;
901
902 case TYPE_CODE_INT:
903 gen_conversion (ax, value->type, type);
904 break;
905
906 case TYPE_CODE_VOID:
907 /* We could pop the value, and rely on everyone else to check
908 the type and notice that this value doesn't occupy a stack
909 slot. But for now, leave the value on the stack, and
910 preserve the "value == stack element" assumption. */
911 break;
912
913 default:
914 error ("Casts to requested type are not yet implemented.");
915 }
916
917 value->type = type;
918 }
919 \f
920
921
922 /* Generating bytecode from GDB expressions: arithmetic */
923
924 /* Scale the integer on the top of the stack by the size of the target
925 of the pointer type TYPE. */
926 static void
927 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
928 {
929 struct type *element = TYPE_TARGET_TYPE (type);
930
931 if (TYPE_LENGTH (element) != 1)
932 {
933 ax_const_l (ax, TYPE_LENGTH (element));
934 ax_simple (ax, op);
935 }
936 }
937
938
939 /* Generate code for an addition; non-trivial because we deal with
940 pointer arithmetic. We set VALUE to describe the result value; we
941 assume VALUE1 and VALUE2 describe the two operands, and that
942 they've undergone the usual binary conversions. Used by both
943 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
944 static void
945 gen_add (struct agent_expr *ax, struct axs_value *value,
946 struct axs_value *value1, struct axs_value *value2, char *name)
947 {
948 /* Is it INT+PTR? */
949 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
950 && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
951 {
952 /* Swap the values and proceed normally. */
953 ax_simple (ax, aop_swap);
954 gen_scale (ax, aop_mul, value2->type);
955 ax_simple (ax, aop_add);
956 gen_extend (ax, value2->type); /* Catch overflow. */
957 value->type = value2->type;
958 }
959
960 /* Is it PTR+INT? */
961 else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
962 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
963 {
964 gen_scale (ax, aop_mul, value1->type);
965 ax_simple (ax, aop_add);
966 gen_extend (ax, value1->type); /* Catch overflow. */
967 value->type = value1->type;
968 }
969
970 /* Must be number + number; the usual binary conversions will have
971 brought them both to the same width. */
972 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
973 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
974 {
975 ax_simple (ax, aop_add);
976 gen_extend (ax, value1->type); /* Catch overflow. */
977 value->type = value1->type;
978 }
979
980 else
981 error ("Illegal combination of types in %s.", name);
982
983 value->kind = axs_rvalue;
984 }
985
986
987 /* Generate code for an addition; non-trivial because we have to deal
988 with pointer arithmetic. We set VALUE to describe the result
989 value; we assume VALUE1 and VALUE2 describe the two operands, and
990 that they've undergone the usual binary conversions. */
991 static void
992 gen_sub (struct agent_expr *ax, struct axs_value *value,
993 struct axs_value *value1, struct axs_value *value2)
994 {
995 if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
996 {
997 /* Is it PTR - INT? */
998 if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
999 {
1000 gen_scale (ax, aop_mul, value1->type);
1001 ax_simple (ax, aop_sub);
1002 gen_extend (ax, value1->type); /* Catch overflow. */
1003 value->type = value1->type;
1004 }
1005
1006 /* Is it PTR - PTR? Strictly speaking, the types ought to
1007 match, but this is what the normal GDB expression evaluator
1008 tests for. */
1009 else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
1010 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1011 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1012 {
1013 ax_simple (ax, aop_sub);
1014 gen_scale (ax, aop_div_unsigned, value1->type);
1015 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
1016 }
1017 else
1018 error ("\
1019 First argument of `-' is a pointer, but second argument is neither\n\
1020 an integer nor a pointer of the same type.");
1021 }
1022
1023 /* Must be number + number. */
1024 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1025 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
1026 {
1027 ax_simple (ax, aop_sub);
1028 gen_extend (ax, value1->type); /* Catch overflow. */
1029 value->type = value1->type;
1030 }
1031
1032 else
1033 error ("Illegal combination of types in subtraction.");
1034
1035 value->kind = axs_rvalue;
1036 }
1037
1038 /* Generate code for a binary operator that doesn't do pointer magic.
1039 We set VALUE to describe the result value; we assume VALUE1 and
1040 VALUE2 describe the two operands, and that they've undergone the
1041 usual binary conversions. MAY_CARRY should be non-zero iff the
1042 result needs to be extended. NAME is the English name of the
1043 operator, used in error messages */
1044 static void
1045 gen_binop (struct agent_expr *ax, struct axs_value *value,
1046 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1047 enum agent_op op_unsigned, int may_carry, char *name)
1048 {
1049 /* We only handle INT op INT. */
1050 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1051 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1052 error ("Illegal combination of types in %s.", name);
1053
1054 ax_simple (ax,
1055 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1056 if (may_carry)
1057 gen_extend (ax, value1->type); /* catch overflow */
1058 value->type = value1->type;
1059 value->kind = axs_rvalue;
1060 }
1061
1062
1063 static void
1064 gen_logical_not (struct agent_expr *ax, struct axs_value *value)
1065 {
1066 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1067 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1068 error ("Illegal type of operand to `!'.");
1069
1070 gen_usual_unary (ax, value);
1071 ax_simple (ax, aop_log_not);
1072 value->type = builtin_type_int;
1073 }
1074
1075
1076 static void
1077 gen_complement (struct agent_expr *ax, struct axs_value *value)
1078 {
1079 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1080 error ("Illegal type of operand to `~'.");
1081
1082 gen_usual_unary (ax, value);
1083 gen_integral_promotions (ax, value);
1084 ax_simple (ax, aop_bit_not);
1085 gen_extend (ax, value->type);
1086 }
1087 \f
1088
1089
1090 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1091
1092 /* Dereference the value on the top of the stack. */
1093 static void
1094 gen_deref (struct agent_expr *ax, struct axs_value *value)
1095 {
1096 /* The caller should check the type, because several operators use
1097 this, and we don't know what error message to generate. */
1098 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1099 internal_error (__FILE__, __LINE__,
1100 "gen_deref: expected a pointer");
1101
1102 /* We've got an rvalue now, which is a pointer. We want to yield an
1103 lvalue, whose address is exactly that pointer. So we don't
1104 actually emit any code; we just change the type from "Pointer to
1105 T" to "T", and mark the value as an lvalue in memory. Leave it
1106 to the consumer to actually dereference it. */
1107 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1108 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1109 ? axs_rvalue : axs_lvalue_memory);
1110 }
1111
1112
1113 /* Produce the address of the lvalue on the top of the stack. */
1114 static void
1115 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1116 {
1117 /* Special case for taking the address of a function. The ANSI
1118 standard describes this as a special case, too, so this
1119 arrangement is not without motivation. */
1120 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1121 /* The value's already an rvalue on the stack, so we just need to
1122 change the type. */
1123 value->type = lookup_pointer_type (value->type);
1124 else
1125 switch (value->kind)
1126 {
1127 case axs_rvalue:
1128 error ("Operand of `&' is an rvalue, which has no address.");
1129
1130 case axs_lvalue_register:
1131 error ("Operand of `&' is in a register, and has no address.");
1132
1133 case axs_lvalue_memory:
1134 value->kind = axs_rvalue;
1135 value->type = lookup_pointer_type (value->type);
1136 break;
1137 }
1138 }
1139
1140
1141 /* A lot of this stuff will have to change to support C++. But we're
1142 not going to deal with that at the moment. */
1143
1144 /* Find the field in the structure type TYPE named NAME, and return
1145 its index in TYPE's field array. */
1146 static int
1147 find_field (struct type *type, char *name)
1148 {
1149 int i;
1150
1151 CHECK_TYPEDEF (type);
1152
1153 /* Make sure this isn't C++. */
1154 if (TYPE_N_BASECLASSES (type) != 0)
1155 internal_error (__FILE__, __LINE__,
1156 "find_field: derived classes supported");
1157
1158 for (i = 0; i < TYPE_NFIELDS (type); i++)
1159 {
1160 char *this_name = TYPE_FIELD_NAME (type, i);
1161
1162 if (this_name && strcmp (name, this_name) == 0)
1163 return i;
1164
1165 if (this_name[0] == '\0')
1166 internal_error (__FILE__, __LINE__,
1167 "find_field: anonymous unions not supported");
1168 }
1169
1170 error ("Couldn't find member named `%s' in struct/union `%s'",
1171 name, TYPE_TAG_NAME (type));
1172
1173 return 0;
1174 }
1175
1176
1177 /* Generate code to push the value of a bitfield of a structure whose
1178 address is on the top of the stack. START and END give the
1179 starting and one-past-ending *bit* numbers of the field within the
1180 structure. */
1181 static void
1182 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1183 struct type *type, int start, int end)
1184 {
1185 /* Note that ops[i] fetches 8 << i bits. */
1186 static enum agent_op ops[]
1187 =
1188 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1189 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1190
1191 /* We don't want to touch any byte that the bitfield doesn't
1192 actually occupy; we shouldn't make any accesses we're not
1193 explicitly permitted to. We rely here on the fact that the
1194 bytecode `ref' operators work on unaligned addresses.
1195
1196 It takes some fancy footwork to get the stack to work the way
1197 we'd like. Say we're retrieving a bitfield that requires three
1198 fetches. Initially, the stack just contains the address:
1199 addr
1200 For the first fetch, we duplicate the address
1201 addr addr
1202 then add the byte offset, do the fetch, and shift and mask as
1203 needed, yielding a fragment of the value, properly aligned for
1204 the final bitwise or:
1205 addr frag1
1206 then we swap, and repeat the process:
1207 frag1 addr --- address on top
1208 frag1 addr addr --- duplicate it
1209 frag1 addr frag2 --- get second fragment
1210 frag1 frag2 addr --- swap again
1211 frag1 frag2 frag3 --- get third fragment
1212 Notice that, since the third fragment is the last one, we don't
1213 bother duplicating the address this time. Now we have all the
1214 fragments on the stack, and we can simply `or' them together,
1215 yielding the final value of the bitfield. */
1216
1217 /* The first and one-after-last bits in the field, but rounded down
1218 and up to byte boundaries. */
1219 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1220 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1221 / TARGET_CHAR_BIT)
1222 * TARGET_CHAR_BIT);
1223
1224 /* current bit offset within the structure */
1225 int offset;
1226
1227 /* The index in ops of the opcode we're considering. */
1228 int op;
1229
1230 /* The number of fragments we generated in the process. Probably
1231 equal to the number of `one' bits in bytesize, but who cares? */
1232 int fragment_count;
1233
1234 /* Dereference any typedefs. */
1235 type = check_typedef (type);
1236
1237 /* Can we fetch the number of bits requested at all? */
1238 if ((end - start) > ((1 << num_ops) * 8))
1239 internal_error (__FILE__, __LINE__,
1240 "gen_bitfield_ref: bitfield too wide");
1241
1242 /* Note that we know here that we only need to try each opcode once.
1243 That may not be true on machines with weird byte sizes. */
1244 offset = bound_start;
1245 fragment_count = 0;
1246 for (op = num_ops - 1; op >= 0; op--)
1247 {
1248 /* number of bits that ops[op] would fetch */
1249 int op_size = 8 << op;
1250
1251 /* The stack at this point, from bottom to top, contains zero or
1252 more fragments, then the address. */
1253
1254 /* Does this fetch fit within the bitfield? */
1255 if (offset + op_size <= bound_end)
1256 {
1257 /* Is this the last fragment? */
1258 int last_frag = (offset + op_size == bound_end);
1259
1260 if (!last_frag)
1261 ax_simple (ax, aop_dup); /* keep a copy of the address */
1262
1263 /* Add the offset. */
1264 gen_offset (ax, offset / TARGET_CHAR_BIT);
1265
1266 if (trace_kludge)
1267 {
1268 /* Record the area of memory we're about to fetch. */
1269 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1270 }
1271
1272 /* Perform the fetch. */
1273 ax_simple (ax, ops[op]);
1274
1275 /* Shift the bits we have to their proper position.
1276 gen_left_shift will generate right shifts when the operand
1277 is negative.
1278
1279 A big-endian field diagram to ponder:
1280 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1281 +------++------++------++------++------++------++------++------+
1282 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1283 ^ ^ ^ ^
1284 bit number 16 32 48 53
1285 These are bit numbers as supplied by GDB. Note that the
1286 bit numbers run from right to left once you've fetched the
1287 value!
1288
1289 A little-endian field diagram to ponder:
1290 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1291 +------++------++------++------++------++------++------++------+
1292 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1293 ^ ^ ^ ^ ^
1294 bit number 48 32 16 4 0
1295
1296 In both cases, the most significant end is on the left
1297 (i.e. normal numeric writing order), which means that you
1298 don't go crazy thinking about `left' and `right' shifts.
1299
1300 We don't have to worry about masking yet:
1301 - If they contain garbage off the least significant end, then we
1302 must be looking at the low end of the field, and the right
1303 shift will wipe them out.
1304 - If they contain garbage off the most significant end, then we
1305 must be looking at the most significant end of the word, and
1306 the sign/zero extension will wipe them out.
1307 - If we're in the interior of the word, then there is no garbage
1308 on either end, because the ref operators zero-extend. */
1309 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1310 gen_left_shift (ax, end - (offset + op_size));
1311 else
1312 gen_left_shift (ax, offset - start);
1313
1314 if (!last_frag)
1315 /* Bring the copy of the address up to the top. */
1316 ax_simple (ax, aop_swap);
1317
1318 offset += op_size;
1319 fragment_count++;
1320 }
1321 }
1322
1323 /* Generate enough bitwise `or' operations to combine all the
1324 fragments we left on the stack. */
1325 while (fragment_count-- > 1)
1326 ax_simple (ax, aop_bit_or);
1327
1328 /* Sign- or zero-extend the value as appropriate. */
1329 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1330
1331 /* This is *not* an lvalue. Ugh. */
1332 value->kind = axs_rvalue;
1333 value->type = type;
1334 }
1335
1336
1337 /* Generate code to reference the member named FIELD of a structure or
1338 union. The top of the stack, as described by VALUE, should have
1339 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1340 the operator being compiled, and OPERAND_NAME is the kind of thing
1341 it operates on; we use them in error messages. */
1342 static void
1343 gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1344 char *operator_name, char *operand_name)
1345 {
1346 struct type *type;
1347 int i;
1348
1349 /* Follow pointers until we reach a non-pointer. These aren't the C
1350 semantics, but they're what the normal GDB evaluator does, so we
1351 should at least be consistent. */
1352 while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
1353 {
1354 gen_usual_unary (ax, value);
1355 gen_deref (ax, value);
1356 }
1357 type = check_typedef (value->type);
1358
1359 /* This must yield a structure or a union. */
1360 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1361 && TYPE_CODE (type) != TYPE_CODE_UNION)
1362 error ("The left operand of `%s' is not a %s.",
1363 operator_name, operand_name);
1364
1365 /* And it must be in memory; we don't deal with structure rvalues,
1366 or structures living in registers. */
1367 if (value->kind != axs_lvalue_memory)
1368 error ("Structure does not live in memory.");
1369
1370 i = find_field (type, field);
1371
1372 /* Is this a bitfield? */
1373 if (TYPE_FIELD_PACKED (type, i))
1374 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1375 TYPE_FIELD_BITPOS (type, i),
1376 (TYPE_FIELD_BITPOS (type, i)
1377 + TYPE_FIELD_BITSIZE (type, i)));
1378 else
1379 {
1380 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1381 value->kind = axs_lvalue_memory;
1382 value->type = TYPE_FIELD_TYPE (type, i);
1383 }
1384 }
1385
1386
1387 /* Generate code for GDB's magical `repeat' operator.
1388 LVALUE @ INT creates an array INT elements long, and whose elements
1389 have the same type as LVALUE, located in memory so that LVALUE is
1390 its first element. For example, argv[0]@argc gives you the array
1391 of command-line arguments.
1392
1393 Unfortunately, because we have to know the types before we actually
1394 have a value for the expression, we can't implement this perfectly
1395 without changing the type system, having values that occupy two
1396 stack slots, doing weird things with sizeof, etc. So we require
1397 the right operand to be a constant expression. */
1398 static void
1399 gen_repeat (union exp_element **pc, struct agent_expr *ax,
1400 struct axs_value *value)
1401 {
1402 struct axs_value value1;
1403 /* We don't want to turn this into an rvalue, so no conversions
1404 here. */
1405 gen_expr (pc, ax, &value1);
1406 if (value1.kind != axs_lvalue_memory)
1407 error ("Left operand of `@' must be an object in memory.");
1408
1409 /* Evaluate the length; it had better be a constant. */
1410 {
1411 struct value *v = const_expr (pc);
1412 int length;
1413
1414 if (!v)
1415 error ("Right operand of `@' must be a constant, in agent expressions.");
1416 if (TYPE_CODE (v->type) != TYPE_CODE_INT)
1417 error ("Right operand of `@' must be an integer.");
1418 length = value_as_long (v);
1419 if (length <= 0)
1420 error ("Right operand of `@' must be positive.");
1421
1422 /* The top of the stack is already the address of the object, so
1423 all we need to do is frob the type of the lvalue. */
1424 {
1425 /* FIXME-type-allocation: need a way to free this type when we are
1426 done with it. */
1427 struct type *range
1428 = create_range_type (0, builtin_type_int, 0, length - 1);
1429 struct type *array = create_array_type (0, value1.type, range);
1430
1431 value->kind = axs_lvalue_memory;
1432 value->type = array;
1433 }
1434 }
1435 }
1436
1437
1438 /* Emit code for the `sizeof' operator.
1439 *PC should point at the start of the operand expression; we advance it
1440 to the first instruction after the operand. */
1441 static void
1442 gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1443 struct axs_value *value)
1444 {
1445 /* We don't care about the value of the operand expression; we only
1446 care about its type. However, in the current arrangement, the
1447 only way to find an expression's type is to generate code for it.
1448 So we generate code for the operand, and then throw it away,
1449 replacing it with code that simply pushes its size. */
1450 int start = ax->len;
1451 gen_expr (pc, ax, value);
1452
1453 /* Throw away the code we just generated. */
1454 ax->len = start;
1455
1456 ax_const_l (ax, TYPE_LENGTH (value->type));
1457 value->kind = axs_rvalue;
1458 value->type = builtin_type_int;
1459 }
1460 \f
1461
1462 /* Generating bytecode from GDB expressions: general recursive thingy */
1463
1464 /* A gen_expr function written by a Gen-X'er guy.
1465 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1466 static void
1467 gen_expr (union exp_element **pc, struct agent_expr *ax,
1468 struct axs_value *value)
1469 {
1470 /* Used to hold the descriptions of operand expressions. */
1471 struct axs_value value1, value2;
1472 enum exp_opcode op = (*pc)[0].opcode;
1473
1474 /* If we're looking at a constant expression, just push its value. */
1475 {
1476 struct value *v = maybe_const_expr (pc);
1477
1478 if (v)
1479 {
1480 ax_const_l (ax, value_as_long (v));
1481 value->kind = axs_rvalue;
1482 value->type = check_typedef (VALUE_TYPE (v));
1483 return;
1484 }
1485 }
1486
1487 /* Otherwise, go ahead and generate code for it. */
1488 switch (op)
1489 {
1490 /* Binary arithmetic operators. */
1491 case BINOP_ADD:
1492 case BINOP_SUB:
1493 case BINOP_MUL:
1494 case BINOP_DIV:
1495 case BINOP_REM:
1496 case BINOP_SUBSCRIPT:
1497 case BINOP_BITWISE_AND:
1498 case BINOP_BITWISE_IOR:
1499 case BINOP_BITWISE_XOR:
1500 (*pc)++;
1501 gen_expr (pc, ax, &value1);
1502 gen_usual_unary (ax, &value1);
1503 gen_expr (pc, ax, &value2);
1504 gen_usual_unary (ax, &value2);
1505 gen_usual_arithmetic (ax, &value1, &value2);
1506 switch (op)
1507 {
1508 case BINOP_ADD:
1509 gen_add (ax, value, &value1, &value2, "addition");
1510 break;
1511 case BINOP_SUB:
1512 gen_sub (ax, value, &value1, &value2);
1513 break;
1514 case BINOP_MUL:
1515 gen_binop (ax, value, &value1, &value2,
1516 aop_mul, aop_mul, 1, "multiplication");
1517 break;
1518 case BINOP_DIV:
1519 gen_binop (ax, value, &value1, &value2,
1520 aop_div_signed, aop_div_unsigned, 1, "division");
1521 break;
1522 case BINOP_REM:
1523 gen_binop (ax, value, &value1, &value2,
1524 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1525 break;
1526 case BINOP_SUBSCRIPT:
1527 gen_add (ax, value, &value1, &value2, "array subscripting");
1528 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1529 error ("Illegal combination of types in array subscripting.");
1530 gen_deref (ax, value);
1531 break;
1532 case BINOP_BITWISE_AND:
1533 gen_binop (ax, value, &value1, &value2,
1534 aop_bit_and, aop_bit_and, 0, "bitwise and");
1535 break;
1536
1537 case BINOP_BITWISE_IOR:
1538 gen_binop (ax, value, &value1, &value2,
1539 aop_bit_or, aop_bit_or, 0, "bitwise or");
1540 break;
1541
1542 case BINOP_BITWISE_XOR:
1543 gen_binop (ax, value, &value1, &value2,
1544 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1545 break;
1546
1547 default:
1548 /* We should only list operators in the outer case statement
1549 that we actually handle in the inner case statement. */
1550 internal_error (__FILE__, __LINE__,
1551 "gen_expr: op case sets don't match");
1552 }
1553 break;
1554
1555 /* Note that we need to be a little subtle about generating code
1556 for comma. In C, we can do some optimizations here because
1557 we know the left operand is only being evaluated for effect.
1558 However, if the tracing kludge is in effect, then we always
1559 need to evaluate the left hand side fully, so that all the
1560 variables it mentions get traced. */
1561 case BINOP_COMMA:
1562 (*pc)++;
1563 gen_expr (pc, ax, &value1);
1564 /* Don't just dispose of the left operand. We might be tracing,
1565 in which case we want to emit code to trace it if it's an
1566 lvalue. */
1567 gen_traced_pop (ax, &value1);
1568 gen_expr (pc, ax, value);
1569 /* It's the consumer's responsibility to trace the right operand. */
1570 break;
1571
1572 case OP_LONG: /* some integer constant */
1573 {
1574 struct type *type = (*pc)[1].type;
1575 LONGEST k = (*pc)[2].longconst;
1576 (*pc) += 4;
1577 gen_int_literal (ax, value, k, type);
1578 }
1579 break;
1580
1581 case OP_VAR_VALUE:
1582 gen_var_ref (ax, value, (*pc)[2].symbol);
1583 (*pc) += 4;
1584 break;
1585
1586 case OP_REGISTER:
1587 {
1588 int reg = (int) (*pc)[1].longconst;
1589 (*pc) += 3;
1590 value->kind = axs_lvalue_register;
1591 value->u.reg = reg;
1592 value->type = REGISTER_VIRTUAL_TYPE (reg);
1593 }
1594 break;
1595
1596 case OP_INTERNALVAR:
1597 error ("GDB agent expressions cannot use convenience variables.");
1598
1599 /* Weirdo operator: see comments for gen_repeat for details. */
1600 case BINOP_REPEAT:
1601 /* Note that gen_repeat handles its own argument evaluation. */
1602 (*pc)++;
1603 gen_repeat (pc, ax, value);
1604 break;
1605
1606 case UNOP_CAST:
1607 {
1608 struct type *type = (*pc)[1].type;
1609 (*pc) += 3;
1610 gen_expr (pc, ax, value);
1611 gen_cast (ax, value, type);
1612 }
1613 break;
1614
1615 case UNOP_MEMVAL:
1616 {
1617 struct type *type = check_typedef ((*pc)[1].type);
1618 (*pc) += 3;
1619 gen_expr (pc, ax, value);
1620 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1621 it's just a hack for dealing with minsyms; you take some
1622 integer constant, pretend it's the address of an lvalue of
1623 the given type, and dereference it. */
1624 if (value->kind != axs_rvalue)
1625 /* This would be weird. */
1626 internal_error (__FILE__, __LINE__,
1627 "gen_expr: OP_MEMVAL operand isn't an rvalue???");
1628 value->type = type;
1629 value->kind = axs_lvalue_memory;
1630 }
1631 break;
1632
1633 case UNOP_NEG:
1634 (*pc)++;
1635 /* -FOO is equivalent to 0 - FOO. */
1636 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
1637 gen_usual_unary (ax, &value1); /* shouldn't do much */
1638 gen_expr (pc, ax, &value2);
1639 gen_usual_unary (ax, &value2);
1640 gen_usual_arithmetic (ax, &value1, &value2);
1641 gen_sub (ax, value, &value1, &value2);
1642 break;
1643
1644 case UNOP_LOGICAL_NOT:
1645 (*pc)++;
1646 gen_expr (pc, ax, value);
1647 gen_logical_not (ax, value);
1648 break;
1649
1650 case UNOP_COMPLEMENT:
1651 (*pc)++;
1652 gen_expr (pc, ax, value);
1653 gen_complement (ax, value);
1654 break;
1655
1656 case UNOP_IND:
1657 (*pc)++;
1658 gen_expr (pc, ax, value);
1659 gen_usual_unary (ax, value);
1660 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1661 error ("Argument of unary `*' is not a pointer.");
1662 gen_deref (ax, value);
1663 break;
1664
1665 case UNOP_ADDR:
1666 (*pc)++;
1667 gen_expr (pc, ax, value);
1668 gen_address_of (ax, value);
1669 break;
1670
1671 case UNOP_SIZEOF:
1672 (*pc)++;
1673 /* Notice that gen_sizeof handles its own operand, unlike most
1674 of the other unary operator functions. This is because we
1675 have to throw away the code we generate. */
1676 gen_sizeof (pc, ax, value);
1677 break;
1678
1679 case STRUCTOP_STRUCT:
1680 case STRUCTOP_PTR:
1681 {
1682 int length = (*pc)[1].longconst;
1683 char *name = &(*pc)[2].string;
1684
1685 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1686 gen_expr (pc, ax, value);
1687 if (op == STRUCTOP_STRUCT)
1688 gen_struct_ref (ax, value, name, ".", "structure or union");
1689 else if (op == STRUCTOP_PTR)
1690 gen_struct_ref (ax, value, name, "->",
1691 "pointer to a structure or union");
1692 else
1693 /* If this `if' chain doesn't handle it, then the case list
1694 shouldn't mention it, and we shouldn't be here. */
1695 internal_error (__FILE__, __LINE__,
1696 "gen_expr: unhandled struct case");
1697 }
1698 break;
1699
1700 case OP_TYPE:
1701 error ("Attempt to use a type name as an expression.");
1702
1703 default:
1704 error ("Unsupported operator in expression.");
1705 }
1706 }
1707 \f
1708
1709
1710 /* Generating bytecode from GDB expressions: driver */
1711
1712 /* Given a GDB expression EXPR, produce a string of agent bytecode
1713 which computes its value. Return the agent expression, and set
1714 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1715 struct agent_expr *
1716 expr_to_agent (struct expression *expr, struct axs_value *value)
1717 {
1718 struct cleanup *old_chain = 0;
1719 struct agent_expr *ax = new_agent_expr (0);
1720 union exp_element *pc;
1721
1722 old_chain = make_cleanup_free_agent_expr (ax);
1723
1724 pc = expr->elts;
1725 trace_kludge = 0;
1726 gen_expr (&pc, ax, value);
1727
1728 /* We have successfully built the agent expr, so cancel the cleanup
1729 request. If we add more cleanups that we always want done, this
1730 will have to get more complicated. */
1731 discard_cleanups (old_chain);
1732 return ax;
1733 }
1734
1735
1736 #if 0 /* not used */
1737 /* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1738 string of agent bytecode which will leave its address and size on
1739 the top of stack. Return the agent expression.
1740
1741 Not sure this function is useful at all. */
1742 struct agent_expr *
1743 expr_to_address_and_size (struct expression *expr)
1744 {
1745 struct axs_value value;
1746 struct agent_expr *ax = expr_to_agent (expr, &value);
1747
1748 /* Complain if the result is not a memory lvalue. */
1749 if (value.kind != axs_lvalue_memory)
1750 {
1751 free_agent_expr (ax);
1752 error ("Expression does not denote an object in memory.");
1753 }
1754
1755 /* Push the object's size on the stack. */
1756 ax_const_l (ax, TYPE_LENGTH (value.type));
1757
1758 return ax;
1759 }
1760 #endif
1761
1762 /* Given a GDB expression EXPR, return bytecode to trace its value.
1763 The result will use the `trace' and `trace_quick' bytecodes to
1764 record the value of all memory touched by the expression. The
1765 caller can then use the ax_reqs function to discover which
1766 registers it relies upon. */
1767 struct agent_expr *
1768 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
1769 {
1770 struct cleanup *old_chain = 0;
1771 struct agent_expr *ax = new_agent_expr (scope);
1772 union exp_element *pc;
1773 struct axs_value value;
1774
1775 old_chain = make_cleanup_free_agent_expr (ax);
1776
1777 pc = expr->elts;
1778 trace_kludge = 1;
1779 gen_expr (&pc, ax, &value);
1780
1781 /* Make sure we record the final object, and get rid of it. */
1782 gen_traced_pop (ax, &value);
1783
1784 /* Oh, and terminate. */
1785 ax_simple (ax, aop_end);
1786
1787 /* We have successfully built the agent expr, so cancel the cleanup
1788 request. If we add more cleanups that we always want done, this
1789 will have to get more complicated. */
1790 discard_cleanups (old_chain);
1791 return ax;
1792 }
1793 \f
1794
1795
1796 /* The "agent" command, for testing: compile and disassemble an expression. */
1797
1798 static void
1799 print_axs_value (struct ui_file *f, struct axs_value *value)
1800 {
1801 switch (value->kind)
1802 {
1803 case axs_rvalue:
1804 fputs_filtered ("rvalue", f);
1805 break;
1806
1807 case axs_lvalue_memory:
1808 fputs_filtered ("memory lvalue", f);
1809 break;
1810
1811 case axs_lvalue_register:
1812 fprintf_filtered (f, "register %d lvalue", value->u.reg);
1813 break;
1814 }
1815
1816 fputs_filtered (" : ", f);
1817 type_print (value->type, "", f, -1);
1818 }
1819
1820
1821 static void
1822 agent_command (char *exp, int from_tty)
1823 {
1824 struct cleanup *old_chain = 0;
1825 struct expression *expr;
1826 struct agent_expr *agent;
1827 struct frame_info *fi = get_current_frame (); /* need current scope */
1828
1829 /* We don't deal with overlay debugging at the moment. We need to
1830 think more carefully about this. If you copy this code into
1831 another command, change the error message; the user shouldn't
1832 have to know anything about agent expressions. */
1833 if (overlay_debugging)
1834 error ("GDB can't do agent expression translation with overlays.");
1835
1836 if (exp == 0)
1837 error_no_arg ("expression to translate");
1838
1839 expr = parse_expression (exp);
1840 old_chain = make_cleanup (free_current_contents, &expr);
1841 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
1842 make_cleanup_free_agent_expr (agent);
1843 ax_print (gdb_stdout, agent);
1844
1845 /* It would be nice to call ax_reqs here to gather some general info
1846 about the expression, and then print out the result. */
1847
1848 do_cleanups (old_chain);
1849 dont_repeat ();
1850 }
1851 \f
1852
1853 /* Initialization code. */
1854
1855 void _initialize_ax_gdb (void);
1856 void
1857 _initialize_ax_gdb (void)
1858 {
1859 add_cmd ("agent", class_maintenance, agent_command,
1860 "Translate an expression into remote agent bytecode.",
1861 &maintenancelist);
1862 }
This page took 0.070331 seconds and 4 git commands to generate.