Use cmd_list_element::doc_allocated for Python commands
[deliverable/binutils-gdb.git] / gdb / ax-general.c
1 /* Functions for manipulating expressions designed to be executed on the agent
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Despite what the above comment says about this file being part of
20 GDB, we would like to keep these functions free of GDB
21 dependencies, since we want to be able to use them in contexts
22 outside of GDB (test suites, the stub, etc.) */
23
24 #include "defs.h"
25 #include "ax.h"
26 #include "gdbarch.h"
27
28 #include "value.h"
29 #include "user-regs.h"
30
31 static void grow_expr (struct agent_expr *x, int n);
32
33 static void append_const (struct agent_expr *x, LONGEST val, int n);
34
35 static LONGEST read_const (struct agent_expr *x, int o, int n);
36
37 static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
38 \f
39 /* Functions for building expressions. */
40
41 agent_expr::agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
42 {
43 this->len = 0;
44 this->size = 1; /* Change this to a larger value once
45 reallocation code is tested. */
46 this->buf = (unsigned char *) xmalloc (this->size);
47
48 this->gdbarch = gdbarch;
49 this->scope = scope;
50
51 /* Bit vector for registers used. */
52 this->reg_mask_len = 1;
53 this->reg_mask = XCNEWVEC (unsigned char, this->reg_mask_len);
54
55 this->tracing = 0;
56 this->trace_string = 0;
57 }
58
59 agent_expr::~agent_expr ()
60 {
61 xfree (this->buf);
62 xfree (this->reg_mask);
63 }
64
65 /* Make sure that X has room for at least N more bytes. This doesn't
66 affect the length, just the allocated size. */
67 static void
68 grow_expr (struct agent_expr *x, int n)
69 {
70 if (x->len + n > x->size)
71 {
72 x->size *= 2;
73 if (x->size < x->len + n)
74 x->size = x->len + n + 10;
75 x->buf = (unsigned char *) xrealloc (x->buf, x->size);
76 }
77 }
78
79
80 /* Append the low N bytes of VAL as an N-byte integer to the
81 expression X, in big-endian order. */
82 static void
83 append_const (struct agent_expr *x, LONGEST val, int n)
84 {
85 int i;
86
87 grow_expr (x, n);
88 for (i = n - 1; i >= 0; i--)
89 {
90 x->buf[x->len + i] = val & 0xff;
91 val >>= 8;
92 }
93 x->len += n;
94 }
95
96
97 /* Extract an N-byte big-endian unsigned integer from expression X at
98 offset O. */
99 static LONGEST
100 read_const (struct agent_expr *x, int o, int n)
101 {
102 int i;
103 LONGEST accum = 0;
104
105 /* Make sure we're not reading off the end of the expression. */
106 if (o + n > x->len)
107 error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
108
109 for (i = 0; i < n; i++)
110 accum = (accum << 8) | x->buf[o + i];
111
112 return accum;
113 }
114
115 /* See ax.h. */
116
117 void
118 ax_raw_byte (struct agent_expr *x, gdb_byte byte)
119 {
120 grow_expr (x, 1);
121 x->buf[x->len++] = byte;
122 }
123
124 /* Append a simple operator OP to EXPR. */
125 void
126 ax_simple (struct agent_expr *x, enum agent_op op)
127 {
128 ax_raw_byte (x, op);
129 }
130
131 /* Append a pick operator to EXPR. DEPTH is the stack item to pick,
132 with 0 being top of stack. */
133
134 void
135 ax_pick (struct agent_expr *x, int depth)
136 {
137 if (depth < 0 || depth > 255)
138 error (_("GDB bug: ax-general.c (ax_pick): stack depth out of range"));
139 ax_simple (x, aop_pick);
140 append_const (x, 1, depth);
141 }
142
143
144 /* Append a sign-extension or zero-extension instruction to EXPR, to
145 extend an N-bit value. */
146 static void
147 generic_ext (struct agent_expr *x, enum agent_op op, int n)
148 {
149 /* N must fit in a byte. */
150 if (n < 0 || n > 255)
151 error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
152 /* That had better be enough range. */
153 if (sizeof (LONGEST) * 8 > 255)
154 error (_("GDB bug: ax-general.c (generic_ext): "
155 "opcode has inadequate range"));
156
157 grow_expr (x, 2);
158 x->buf[x->len++] = op;
159 x->buf[x->len++] = n;
160 }
161
162
163 /* Append a sign-extension instruction to EXPR, to extend an N-bit value. */
164 void
165 ax_ext (struct agent_expr *x, int n)
166 {
167 generic_ext (x, aop_ext, n);
168 }
169
170
171 /* Append a zero-extension instruction to EXPR, to extend an N-bit value. */
172 void
173 ax_zero_ext (struct agent_expr *x, int n)
174 {
175 generic_ext (x, aop_zero_ext, n);
176 }
177
178
179 /* Append a trace_quick instruction to EXPR, to record N bytes. */
180 void
181 ax_trace_quick (struct agent_expr *x, int n)
182 {
183 /* N must fit in a byte. */
184 if (n < 0 || n > 255)
185 error (_("GDB bug: ax-general.c (ax_trace_quick): "
186 "size out of range for trace_quick"));
187
188 grow_expr (x, 2);
189 x->buf[x->len++] = aop_trace_quick;
190 x->buf[x->len++] = n;
191 }
192
193
194 /* Append a goto op to EXPR. OP is the actual op (must be aop_goto or
195 aop_if_goto). We assume we don't know the target offset yet,
196 because it's probably a forward branch, so we leave space in EXPR
197 for the target, and return the offset in EXPR of that space, so we
198 can backpatch it once we do know the target offset. Use ax_label
199 to do the backpatching. */
200 int
201 ax_goto (struct agent_expr *x, enum agent_op op)
202 {
203 grow_expr (x, 3);
204 x->buf[x->len + 0] = op;
205 x->buf[x->len + 1] = 0xff;
206 x->buf[x->len + 2] = 0xff;
207 x->len += 3;
208 return x->len - 2;
209 }
210
211 /* Suppose a given call to ax_goto returns some value PATCH. When you
212 know the offset TARGET that goto should jump to, call
213 ax_label (EXPR, PATCH, TARGET)
214 to patch TARGET into the ax_goto instruction. */
215 void
216 ax_label (struct agent_expr *x, int patch, int target)
217 {
218 /* Make sure the value is in range. Don't accept 0xffff as an
219 offset; that's our magic sentinel value for unpatched branches. */
220 if (target < 0 || target >= 0xffff)
221 error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
222
223 x->buf[patch] = (target >> 8) & 0xff;
224 x->buf[patch + 1] = target & 0xff;
225 }
226
227
228 /* Assemble code to push a constant on the stack. */
229 void
230 ax_const_l (struct agent_expr *x, LONGEST l)
231 {
232 static enum agent_op ops[]
233 =
234 {aop_const8, aop_const16, aop_const32, aop_const64};
235 int size;
236 int op;
237
238 /* How big is the number? 'op' keeps track of which opcode to use.
239 Notice that we don't really care whether the original number was
240 signed or unsigned; we always reproduce the value exactly, and
241 use the shortest representation. */
242 for (op = 0, size = 8; size < 64; size *= 2, op++)
243 {
244 LONGEST lim = ((LONGEST) 1) << (size - 1);
245
246 if (-lim <= l && l <= lim - 1)
247 break;
248 }
249
250 /* Emit the right opcode... */
251 ax_simple (x, ops[op]);
252
253 /* Emit the low SIZE bytes as an unsigned number. We know that
254 sign-extending this will yield l. */
255 append_const (x, l, size / 8);
256
257 /* Now, if it was negative, and not full-sized, sign-extend it. */
258 if (l < 0 && size < 64)
259 ax_ext (x, size);
260 }
261
262
263 void
264 ax_const_d (struct agent_expr *x, LONGEST d)
265 {
266 /* FIXME: floating-point support not present yet. */
267 error (_("GDB bug: ax-general.c (ax_const_d): "
268 "floating point not supported yet"));
269 }
270
271
272 /* Assemble code to push the value of register number REG on the
273 stack. */
274 void
275 ax_reg (struct agent_expr *x, int reg)
276 {
277 if (reg >= gdbarch_num_regs (x->gdbarch))
278 {
279 /* This is a pseudo-register. */
280 if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
281 error (_("'%s' is a pseudo-register; "
282 "GDB cannot yet trace its contents."),
283 user_reg_map_regnum_to_name (x->gdbarch, reg));
284 if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
285 error (_("Trace '%s' failed."),
286 user_reg_map_regnum_to_name (x->gdbarch, reg));
287 }
288 else
289 {
290 /* Get the remote register number. */
291 reg = gdbarch_remote_register_number (x->gdbarch, reg);
292
293 /* Make sure the register number is in range. */
294 if (reg < 0 || reg > 0xffff)
295 error (_("GDB bug: ax-general.c (ax_reg): "
296 "register number out of range"));
297 grow_expr (x, 3);
298 x->buf[x->len] = aop_reg;
299 x->buf[x->len + 1] = (reg >> 8) & 0xff;
300 x->buf[x->len + 2] = (reg) & 0xff;
301 x->len += 3;
302 }
303 }
304
305 /* Assemble code to operate on a trace state variable. */
306
307 void
308 ax_tsv (struct agent_expr *x, enum agent_op op, int num)
309 {
310 /* Make sure the tsv number is in range. */
311 if (num < 0 || num > 0xffff)
312 internal_error (__FILE__, __LINE__,
313 _("ax-general.c (ax_tsv): variable "
314 "number is %d, out of range"), num);
315
316 grow_expr (x, 3);
317 x->buf[x->len] = op;
318 x->buf[x->len + 1] = (num >> 8) & 0xff;
319 x->buf[x->len + 2] = (num) & 0xff;
320 x->len += 3;
321 }
322
323 /* Append a string to the expression. Note that the string is going
324 into the bytecodes directly, not on the stack. As a precaution,
325 include both length as prefix, and terminate with a NUL. (The NUL
326 is counted in the length.) */
327
328 void
329 ax_string (struct agent_expr *x, const char *str, int slen)
330 {
331 int i;
332
333 /* Make sure the string length is reasonable. */
334 if (slen < 0 || slen > 0xffff)
335 internal_error (__FILE__, __LINE__,
336 _("ax-general.c (ax_string): string "
337 "length is %d, out of allowed range"), slen);
338
339 grow_expr (x, 2 + slen + 1);
340 x->buf[x->len++] = ((slen + 1) >> 8) & 0xff;
341 x->buf[x->len++] = (slen + 1) & 0xff;
342 for (i = 0; i < slen; ++i)
343 x->buf[x->len++] = str[i];
344 x->buf[x->len++] = '\0';
345 }
346 \f
347
348
349 /* Functions for disassembling agent expressions, and otherwise
350 debugging the expression compiler. */
351
352 struct aop_map aop_map[] =
353 {
354 {0, 0, 0, 0, 0}
355 #define DEFOP(NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED, VALUE) \
356 , { # NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED }
357 #include "gdbsupport/ax.def"
358 #undef DEFOP
359 };
360
361
362 /* Disassemble the expression EXPR, writing to F. */
363 void
364 ax_print (struct ui_file *f, struct agent_expr *x)
365 {
366 int i;
367
368 fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
369 fprintf_filtered (f, _("Reg mask:"));
370 for (i = 0; i < x->reg_mask_len; ++i)
371 fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
372 fprintf_filtered (f, _("\n"));
373
374 /* Check the size of the name array against the number of entries in
375 the enum, to catch additions that people didn't sync. */
376 if ((sizeof (aop_map) / sizeof (aop_map[0]))
377 != aop_last)
378 error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
379
380 for (i = 0; i < x->len;)
381 {
382 enum agent_op op = (enum agent_op) x->buf[i];
383
384 if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
385 || !aop_map[op].name)
386 {
387 fprintf_filtered (f, _("%3d <bad opcode %02x>\n"), i, op);
388 i++;
389 continue;
390 }
391 if (i + 1 + aop_map[op].op_size > x->len)
392 {
393 fprintf_filtered (f, _("%3d <incomplete opcode %s>\n"),
394 i, aop_map[op].name);
395 break;
396 }
397
398 fprintf_filtered (f, "%3d %s", i, aop_map[op].name);
399 if (aop_map[op].op_size > 0)
400 {
401 fputs_filtered (" ", f);
402
403 print_longest (f, 'd', 0,
404 read_const (x, i + 1, aop_map[op].op_size));
405 }
406 /* Handle the complicated printf arguments specially. */
407 else if (op == aop_printf)
408 {
409 int slen, nargs;
410
411 i++;
412 nargs = x->buf[i++];
413 slen = x->buf[i++];
414 slen = slen * 256 + x->buf[i++];
415 fprintf_filtered (f, _(" \"%s\", %d args"),
416 &(x->buf[i]), nargs);
417 i += slen - 1;
418 }
419 fprintf_filtered (f, "\n");
420 i += 1 + aop_map[op].op_size;
421 }
422 }
423
424 /* Add register REG to the register mask for expression AX. */
425 void
426 ax_reg_mask (struct agent_expr *ax, int reg)
427 {
428 if (reg >= gdbarch_num_regs (ax->gdbarch))
429 {
430 /* This is a pseudo-register. */
431 if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
432 error (_("'%s' is a pseudo-register; "
433 "GDB cannot yet trace its contents."),
434 user_reg_map_regnum_to_name (ax->gdbarch, reg));
435 if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
436 error (_("Trace '%s' failed."),
437 user_reg_map_regnum_to_name (ax->gdbarch, reg));
438 }
439 else
440 {
441 int byte;
442
443 /* Get the remote register number. */
444 reg = gdbarch_remote_register_number (ax->gdbarch, reg);
445 byte = reg / 8;
446
447 /* Grow the bit mask if necessary. */
448 if (byte >= ax->reg_mask_len)
449 {
450 /* It's not appropriate to double here. This isn't a
451 string buffer. */
452 int new_len = byte + 1;
453 unsigned char *new_reg_mask
454 = XRESIZEVEC (unsigned char, ax->reg_mask, new_len);
455
456 memset (new_reg_mask + ax->reg_mask_len, 0,
457 (new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
458 ax->reg_mask_len = new_len;
459 ax->reg_mask = new_reg_mask;
460 }
461
462 ax->reg_mask[byte] |= 1 << (reg % 8);
463 }
464 }
465
466 /* Given an agent expression AX, fill in requirements and other descriptive
467 bits. */
468 void
469 ax_reqs (struct agent_expr *ax)
470 {
471 int i;
472 int height;
473
474 /* Jump target table. targets[i] is non-zero iff we have found a
475 jump to offset i. */
476 char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
477
478 /* Instruction boundary table. boundary[i] is non-zero iff our scan
479 has reached an instruction starting at offset i. */
480 char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
481
482 /* Stack height record. If either targets[i] or boundary[i] is
483 non-zero, heights[i] is the height the stack should have before
484 executing the bytecode at that point. */
485 int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
486
487 /* Pointer to a description of the present op. */
488 struct aop_map *op;
489
490 memset (targets, 0, ax->len * sizeof (targets[0]));
491 memset (boundary, 0, ax->len * sizeof (boundary[0]));
492
493 ax->max_height = ax->min_height = height = 0;
494 ax->flaw = agent_flaw_none;
495 ax->max_data_size = 0;
496
497 for (i = 0; i < ax->len; i += 1 + op->op_size)
498 {
499 if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
500 {
501 ax->flaw = agent_flaw_bad_instruction;
502 return;
503 }
504
505 op = &aop_map[ax->buf[i]];
506
507 if (!op->name)
508 {
509 ax->flaw = agent_flaw_bad_instruction;
510 return;
511 }
512
513 if (i + 1 + op->op_size > ax->len)
514 {
515 ax->flaw = agent_flaw_incomplete_instruction;
516 return;
517 }
518
519 /* If this instruction is a forward jump target, does the
520 current stack height match the stack height at the jump
521 source? */
522 if (targets[i] && (heights[i] != height))
523 {
524 ax->flaw = agent_flaw_height_mismatch;
525 return;
526 }
527
528 boundary[i] = 1;
529 heights[i] = height;
530
531 height -= op->consumed;
532 if (height < ax->min_height)
533 ax->min_height = height;
534 height += op->produced;
535 if (height > ax->max_height)
536 ax->max_height = height;
537
538 if (op->data_size > ax->max_data_size)
539 ax->max_data_size = op->data_size;
540
541 /* For jump instructions, check that the target is a valid
542 offset. If it is, record the fact that that location is a
543 jump target, and record the height we expect there. */
544 if (aop_goto == op - aop_map
545 || aop_if_goto == op - aop_map)
546 {
547 int target = read_const (ax, i + 1, 2);
548 if (target < 0 || target >= ax->len)
549 {
550 ax->flaw = agent_flaw_bad_jump;
551 return;
552 }
553
554 /* Do we have any information about what the stack height
555 should be at the target? */
556 if (targets[target] || boundary[target])
557 {
558 if (heights[target] != height)
559 {
560 ax->flaw = agent_flaw_height_mismatch;
561 return;
562 }
563 }
564
565 /* Record the target, along with the stack height we expect. */
566 targets[target] = 1;
567 heights[target] = height;
568 }
569
570 /* For unconditional jumps with a successor, check that the
571 successor is a target, and pick up its stack height. */
572 if (aop_goto == op - aop_map
573 && i + 3 < ax->len)
574 {
575 if (!targets[i + 3])
576 {
577 ax->flaw = agent_flaw_hole;
578 return;
579 }
580
581 height = heights[i + 3];
582 }
583
584 /* For reg instructions, record the register in the bit mask. */
585 if (aop_reg == op - aop_map)
586 {
587 int reg = read_const (ax, i + 1, 2);
588
589 ax_reg_mask (ax, reg);
590 }
591 }
592
593 /* Check that all the targets are on boundaries. */
594 for (i = 0; i < ax->len; i++)
595 if (targets[i] && !boundary[i])
596 {
597 ax->flaw = agent_flaw_bad_jump;
598 return;
599 }
600
601 ax->final_height = height;
602 }
This page took 0.066924 seconds and 4 git commands to generate.