Copyright year update in most files of the GDB Project.
[deliverable/binutils-gdb.git] / gdb / bfin-tdep.c
1 /* Target-dependent code for Analog Devices Blackfin processor, for GDB.
2
3 Copyright (C) 2005-2012 Free Software Foundation, Inc.
4
5 Contributed by Analog Devices, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "arch-utils.h"
27 #include "regcache.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "dis-asm.h"
33 #include "gdb_assert.h"
34 #include "sim-regno.h"
35 #include "gdb/sim-bfin.h"
36 #include "dwarf2-frame.h"
37 #include "symtab.h"
38 #include "elf-bfd.h"
39 #include "elf/bfin.h"
40 #include "osabi.h"
41 #include "infcall.h"
42 #include "xml-syscall.h"
43 #include "bfin-tdep.h"
44
45 /* Macros used by prologue functions. */
46 #define P_LINKAGE 0xE800
47 #define P_MINUS_SP1 0x0140
48 #define P_MINUS_SP2 0x05C0
49 #define P_MINUS_SP3 0x0540
50 #define P_MINUS_SP4 0x04C0
51 #define P_SP_PLUS 0x6C06
52 #define P_P2_LOW 0xE10A
53 #define P_P2_HIGH 0XE14A
54 #define P_SP_EQ_SP_PLUS_P2 0X5BB2
55 #define P_SP_EQ_P2_PLUS_SP 0x5B96
56 #define P_MINUS_MINUS_SP_EQ_RETS 0x0167
57
58 /* Macros used for program flow control. */
59 /* 16 bit instruction, max */
60 #define P_16_BIT_INSR_MAX 0xBFFF
61 /* 32 bit instruction, min */
62 #define P_32_BIT_INSR_MIN 0xC000
63 /* 32 bit instruction, max */
64 #define P_32_BIT_INSR_MAX 0xE801
65 /* jump (preg), 16-bit, min */
66 #define P_JUMP_PREG_MIN 0x0050
67 /* jump (preg), 16-bit, max */
68 #define P_JUMP_PREG_MAX 0x0057
69 /* jump (pc+preg), 16-bit, min */
70 #define P_JUMP_PC_PLUS_PREG_MIN 0x0080
71 /* jump (pc+preg), 16-bit, max */
72 #define P_JUMP_PC_PLUS_PREG_MAX 0x0087
73 /* jump.s pcrel13m2, 16-bit, min */
74 #define P_JUMP_S_MIN 0x2000
75 /* jump.s pcrel13m2, 16-bit, max */
76 #define P_JUMP_S_MAX 0x2FFF
77 /* jump.l pcrel25m2, 32-bit, min */
78 #define P_JUMP_L_MIN 0xE200
79 /* jump.l pcrel25m2, 32-bit, max */
80 #define P_JUMP_L_MAX 0xE2FF
81 /* conditional jump pcrel11m2, 16-bit, min */
82 #define P_IF_CC_JUMP_MIN 0x1800
83 /* conditional jump pcrel11m2, 16-bit, max */
84 #define P_IF_CC_JUMP_MAX 0x1BFF
85 /* conditional jump(bp) pcrel11m2, 16-bit, min */
86 #define P_IF_CC_JUMP_BP_MIN 0x1C00
87 /* conditional jump(bp) pcrel11m2, 16-bit, max */
88 #define P_IF_CC_JUMP_BP_MAX 0x1FFF
89 /* conditional !jump pcrel11m2, 16-bit, min */
90 #define P_IF_NOT_CC_JUMP_MIN 0x1000
91 /* conditional !jump pcrel11m2, 16-bit, max */
92 #define P_IF_NOT_CC_JUMP_MAX 0x13FF
93 /* conditional jump(bp) pcrel11m2, 16-bit, min */
94 #define P_IF_NOT_CC_JUMP_BP_MIN 0x1400
95 /* conditional jump(bp) pcrel11m2, 16-bit, max */
96 #define P_IF_NOT_CC_JUMP_BP_MAX 0x17FF
97 /* call (preg), 16-bit, min */
98 #define P_CALL_PREG_MIN 0x0060
99 /* call (preg), 16-bit, max */
100 #define P_CALL_PREG_MAX 0x0067
101 /* call (pc+preg), 16-bit, min */
102 #define P_CALL_PC_PLUS_PREG_MIN 0x0070
103 /* call (pc+preg), 16-bit, max */
104 #define P_CALL_PC_PLUS_PREG_MAX 0x0077
105 /* call pcrel25m2, 32-bit, min */
106 #define P_CALL_MIN 0xE300
107 /* call pcrel25m2, 32-bit, max */
108 #define P_CALL_MAX 0xE3FF
109 /* RTS */
110 #define P_RTS 0x0010
111 /* MNOP */
112 #define P_MNOP 0xC803
113 /* EXCPT, 16-bit, min */
114 #define P_EXCPT_MIN 0x00A0
115 /* EXCPT, 16-bit, max */
116 #define P_EXCPT_MAX 0x00AF
117 /* multi instruction mask 1, 16-bit */
118 #define P_BIT_MULTI_INS_1 0xC000
119 /* multi instruction mask 2, 16-bit */
120 #define P_BIT_MULTI_INS_2 0x0800
121
122 /* The maximum bytes we search to skip the prologue. */
123 #define UPPER_LIMIT 40
124
125 /* ASTAT bits */
126 #define ASTAT_CC_POS 5
127 #define ASTAT_CC (1 << ASTAT_CC_POS)
128
129 /* Initial value: Register names used in BFIN's ISA documentation. */
130
131 static const char * const bfin_register_name_strings[] =
132 {
133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
134 "p0", "p1", "p2", "p3", "p4", "p5", "sp", "fp",
135 "i0", "i1", "i2", "i3", "m0", "m1", "m2", "m3",
136 "b0", "b1", "b2", "b3", "l0", "l1", "l2", "l3",
137 "a0x", "a0w", "a1x", "a1w", "astat", "rets",
138 "lc0", "lt0", "lb0", "lc1", "lt1", "lb1", "cycles", "cycles2",
139 "usp", "seqstat", "syscfg", "reti", "retx", "retn", "rete",
140 "pc", "cc",
141 };
142
143 #define NUM_BFIN_REGNAMES ARRAY_SIZE (bfin_register_name_strings)
144
145
146 /* In this diagram successive memory locations increase downwards or the
147 stack grows upwards with negative indices. (PUSH analogy for stack.)
148
149 The top frame is the "frame" of the current function being executed.
150
151 +--------------+ SP -
152 | local vars | ^
153 +--------------+ |
154 | save regs | |
155 +--------------+ FP |
156 | old FP -|-- top
157 +--------------+ | frame
158 | RETS | | |
159 +--------------+ | |
160 | param 1 | | |
161 | param 2 | | |
162 | ... | | V
163 +--------------+ | -
164 | local vars | | ^
165 +--------------+ | |
166 | save regs | | |
167 +--------------+<- |
168 | old FP -|-- next
169 +--------------+ | frame
170 | RETS | | |
171 +--------------+ | |
172 | param 1 | | |
173 | param 2 | | |
174 | ... | | V
175 +--------------+ | -
176 | local vars | | ^
177 +--------------+ | |
178 | save regs | | |
179 +--------------+<- next frame
180 | old FP | |
181 +--------------+ |
182 | RETS | V
183 +--------------+ -
184
185 The frame chain is formed as following:
186
187 FP has the topmost frame.
188 FP + 4 has the previous FP and so on. */
189
190
191 /* Map from DWARF2 register number to GDB register number. */
192
193 static const int map_gcc_gdb[] =
194 {
195 BFIN_R0_REGNUM,
196 BFIN_R1_REGNUM,
197 BFIN_R2_REGNUM,
198 BFIN_R3_REGNUM,
199 BFIN_R4_REGNUM,
200 BFIN_R5_REGNUM,
201 BFIN_R6_REGNUM,
202 BFIN_R7_REGNUM,
203 BFIN_P0_REGNUM,
204 BFIN_P1_REGNUM,
205 BFIN_P2_REGNUM,
206 BFIN_P3_REGNUM,
207 BFIN_P4_REGNUM,
208 BFIN_P5_REGNUM,
209 BFIN_SP_REGNUM,
210 BFIN_FP_REGNUM,
211 BFIN_I0_REGNUM,
212 BFIN_I1_REGNUM,
213 BFIN_I2_REGNUM,
214 BFIN_I3_REGNUM,
215 BFIN_B0_REGNUM,
216 BFIN_B1_REGNUM,
217 BFIN_B2_REGNUM,
218 BFIN_B3_REGNUM,
219 BFIN_L0_REGNUM,
220 BFIN_L1_REGNUM,
221 BFIN_L2_REGNUM,
222 BFIN_L3_REGNUM,
223 BFIN_M0_REGNUM,
224 BFIN_M1_REGNUM,
225 BFIN_M2_REGNUM,
226 BFIN_M3_REGNUM,
227 BFIN_A0_DOT_X_REGNUM,
228 BFIN_A1_DOT_X_REGNUM,
229 BFIN_CC_REGNUM,
230 BFIN_RETS_REGNUM,
231 BFIN_RETI_REGNUM,
232 BFIN_RETX_REGNUM,
233 BFIN_RETN_REGNUM,
234 BFIN_RETE_REGNUM,
235 BFIN_ASTAT_REGNUM,
236 BFIN_SEQSTAT_REGNUM,
237 BFIN_USP_REGNUM,
238 BFIN_LT0_REGNUM,
239 BFIN_LT1_REGNUM,
240 BFIN_LC0_REGNUM,
241 BFIN_LC1_REGNUM,
242 BFIN_LB0_REGNUM,
243 BFIN_LB1_REGNUM
244 };
245
246
247 struct bfin_frame_cache
248 {
249 /* Base address. */
250 CORE_ADDR base;
251 CORE_ADDR sp_offset;
252 CORE_ADDR pc;
253 int frameless_pc_value;
254
255 /* Saved registers. */
256 CORE_ADDR saved_regs[BFIN_NUM_REGS];
257 CORE_ADDR saved_sp;
258
259 /* Stack space reserved for local variables. */
260 long locals;
261 };
262
263 /* Allocate and initialize a frame cache. */
264
265 static struct bfin_frame_cache *
266 bfin_alloc_frame_cache (void)
267 {
268 struct bfin_frame_cache *cache;
269 int i;
270
271 cache = FRAME_OBSTACK_ZALLOC (struct bfin_frame_cache);
272
273 /* Base address. */
274 cache->base = 0;
275 cache->sp_offset = -4;
276 cache->pc = 0;
277 cache->frameless_pc_value = 0;
278
279 /* Saved registers. We initialize these to -1 since zero is a valid
280 offset (that's where fp is supposed to be stored). */
281 for (i = 0; i < BFIN_NUM_REGS; i++)
282 cache->saved_regs[i] = -1;
283
284 /* Frameless until proven otherwise. */
285 cache->locals = -1;
286
287 return cache;
288 }
289
290 static struct bfin_frame_cache *
291 bfin_frame_cache (struct frame_info *this_frame, void **this_cache)
292 {
293 struct bfin_frame_cache *cache;
294 int i;
295
296 if (*this_cache)
297 return *this_cache;
298
299 cache = bfin_alloc_frame_cache ();
300 *this_cache = cache;
301
302 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
303 if (cache->base == 0)
304 return cache;
305
306 /* For normal frames, PC is stored at [FP + 4]. */
307 cache->saved_regs[BFIN_PC_REGNUM] = 4;
308 cache->saved_regs[BFIN_FP_REGNUM] = 0;
309
310 /* Adjust all the saved registers such that they contain addresses
311 instead of offsets. */
312 for (i = 0; i < BFIN_NUM_REGS; i++)
313 if (cache->saved_regs[i] != -1)
314 cache->saved_regs[i] += cache->base;
315
316 cache->pc = get_frame_func (this_frame) ;
317 if (cache->pc == 0 || cache->pc == get_frame_pc (this_frame))
318 {
319 /* Either there is no prologue (frameless function) or we are at
320 the start of a function. In short we do not have a frame.
321 PC is stored in rets register. FP points to previous frame. */
322
323 cache->saved_regs[BFIN_PC_REGNUM] =
324 get_frame_register_unsigned (this_frame, BFIN_RETS_REGNUM);
325 cache->frameless_pc_value = 1;
326 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
327 cache->saved_regs[BFIN_FP_REGNUM] = cache->base;
328 cache->saved_sp = cache->base;
329 }
330 else
331 {
332 cache->frameless_pc_value = 0;
333
334 /* Now that we have the base address for the stack frame we can
335 calculate the value of SP in the calling frame. */
336 cache->saved_sp = cache->base + 8;
337 }
338
339 return cache;
340 }
341
342 static void
343 bfin_frame_this_id (struct frame_info *this_frame,
344 void **this_cache,
345 struct frame_id *this_id)
346 {
347 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
348
349 /* This marks the outermost frame. */
350 if (cache->base == 0)
351 return;
352
353 /* See the end of bfin_push_dummy_call. */
354 *this_id = frame_id_build (cache->base + 8, cache->pc);
355 }
356
357 static struct value *
358 bfin_frame_prev_register (struct frame_info *this_frame,
359 void **this_cache,
360 int regnum)
361 {
362 struct gdbarch *gdbarch = get_frame_arch (this_frame);
363 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
364
365 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
366 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
367
368 if (regnum < BFIN_NUM_REGS && cache->saved_regs[regnum] != -1)
369 return frame_unwind_got_memory (this_frame, regnum,
370 cache->saved_regs[regnum]);
371
372 return frame_unwind_got_register (this_frame, regnum, regnum);
373 }
374
375 static const struct frame_unwind bfin_frame_unwind =
376 {
377 NORMAL_FRAME,
378 default_frame_unwind_stop_reason,
379 bfin_frame_this_id,
380 bfin_frame_prev_register,
381 NULL,
382 default_frame_sniffer
383 };
384
385 /* Check for "[--SP] = <reg>;" insns. These are appear in function
386 prologues to save misc registers onto the stack. */
387
388 static int
389 is_minus_minus_sp (int op)
390 {
391 op &= 0xFFC0;
392
393 if ((op == P_MINUS_SP1) || (op == P_MINUS_SP2)
394 || (op == P_MINUS_SP3) || (op == P_MINUS_SP4))
395 return 1;
396
397 return 0;
398 }
399
400 /* Skip all the insns that appear in generated function prologues. */
401
402 static CORE_ADDR
403 bfin_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
404 {
405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
406 int op = read_memory_unsigned_integer (pc, 2, byte_order);
407 CORE_ADDR orig_pc = pc;
408 int done = 0;
409
410 /* The new gcc prologue generates the register saves BEFORE the link
411 or RETS saving instruction.
412 So, our job is to stop either at those instructions or some upper
413 limit saying there is no frame! */
414
415 while (!done)
416 {
417 if (is_minus_minus_sp (op))
418 {
419 while (is_minus_minus_sp (op))
420 {
421 pc += 2;
422 op = read_memory_unsigned_integer (pc, 2, byte_order);
423 }
424
425 if (op == P_LINKAGE)
426 pc += 4;
427
428 done = 1;
429 }
430 else if (op == P_LINKAGE)
431 {
432 pc += 4;
433 done = 1;
434 }
435 else if (op == P_MINUS_MINUS_SP_EQ_RETS)
436 {
437 pc += 2;
438 done = 1;
439 }
440 else if (op == P_RTS)
441 {
442 done = 1;
443 }
444 else if ((op >= P_JUMP_PREG_MIN && op <= P_JUMP_PREG_MAX)
445 || (op >= P_JUMP_PC_PLUS_PREG_MIN
446 && op <= P_JUMP_PC_PLUS_PREG_MAX)
447 || (op == P_JUMP_S_MIN && op <= P_JUMP_S_MAX))
448 {
449 done = 1;
450 }
451 else if (pc - orig_pc >= UPPER_LIMIT)
452 {
453 warning (_("Function Prologue not recognised; "
454 "pc will point to ENTRY_POINT of the function"));
455 pc = orig_pc + 2;
456 done = 1;
457 }
458 else
459 {
460 pc += 2; /* Not a terminating instruction go on. */
461 op = read_memory_unsigned_integer (pc, 2, byte_order);
462 }
463 }
464
465 /* TODO:
466 Dwarf2 uses entry point value AFTER some register initializations.
467 We should perhaps skip such asssignments as well (R6 = R1, ...). */
468
469 return pc;
470 }
471
472 /* Return the GDB type object for the "standard" data type of data in
473 register N. This should be void pointer for P0-P5, SP, FP;
474 void pointer to function for PC; int otherwise. */
475
476 static struct type *
477 bfin_register_type (struct gdbarch *gdbarch, int regnum)
478 {
479 if ((regnum >= BFIN_P0_REGNUM && regnum <= BFIN_FP_REGNUM)
480 || regnum == BFIN_USP_REGNUM)
481 return builtin_type (gdbarch)->builtin_data_ptr;
482
483 if (regnum == BFIN_PC_REGNUM || regnum == BFIN_RETS_REGNUM
484 || regnum == BFIN_RETI_REGNUM || regnum == BFIN_RETX_REGNUM
485 || regnum == BFIN_RETN_REGNUM || regnum == BFIN_RETE_REGNUM
486 || regnum == BFIN_LT0_REGNUM || regnum == BFIN_LB0_REGNUM
487 || regnum == BFIN_LT1_REGNUM || regnum == BFIN_LB1_REGNUM)
488 return builtin_type (gdbarch)->builtin_func_ptr;
489
490 return builtin_type (gdbarch)->builtin_int32;
491 }
492
493 static CORE_ADDR
494 bfin_push_dummy_call (struct gdbarch *gdbarch,
495 struct value *function,
496 struct regcache *regcache,
497 CORE_ADDR bp_addr,
498 int nargs,
499 struct value **args,
500 CORE_ADDR sp,
501 int struct_return,
502 CORE_ADDR struct_addr)
503 {
504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
505 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
506 char buf[4];
507 int i;
508 long reg_r0, reg_r1, reg_r2;
509 int total_len = 0;
510 enum bfin_abi abi = bfin_abi (gdbarch);
511 CORE_ADDR func_addr = find_function_addr (function, NULL);
512
513 for (i = nargs - 1; i >= 0; i--)
514 {
515 struct type *value_type = value_enclosing_type (args[i]);
516 int len = TYPE_LENGTH (value_type);
517
518 total_len += (len + 3) & ~3;
519 }
520
521 /* At least twelve bytes of stack space must be allocated for the function's
522 arguments, even for functions that have less than 12 bytes of argument
523 data. */
524
525 if (total_len < 12)
526 sp -= 12 - total_len;
527
528 /* Push arguments in reverse order. */
529
530 for (i = nargs - 1; i >= 0; i--)
531 {
532 struct type *value_type = value_enclosing_type (args[i]);
533 struct type *arg_type = check_typedef (value_type);
534 int len = TYPE_LENGTH (value_type);
535 int container_len = (len + 3) & ~3;
536
537 sp -= container_len;
538 write_memory (sp, value_contents_writeable (args[i]), container_len);
539 }
540
541 /* Initialize R0, R1, and R2 to the first 3 words of parameters. */
542
543 reg_r0 = read_memory_integer (sp, 4, byte_order);
544 regcache_cooked_write_unsigned (regcache, BFIN_R0_REGNUM, reg_r0);
545 reg_r1 = read_memory_integer (sp + 4, 4, byte_order);
546 regcache_cooked_write_unsigned (regcache, BFIN_R1_REGNUM, reg_r1);
547 reg_r2 = read_memory_integer (sp + 8, 4, byte_order);
548 regcache_cooked_write_unsigned (regcache, BFIN_R2_REGNUM, reg_r2);
549
550 /* Store struct value address. */
551
552 if (struct_return)
553 regcache_cooked_write_unsigned (regcache, BFIN_P0_REGNUM, struct_addr);
554
555 /* Set the dummy return value to bp_addr.
556 A dummy breakpoint will be setup to execute the call. */
557
558 regcache_cooked_write_unsigned (regcache, BFIN_RETS_REGNUM, bp_addr);
559
560 /* Finally, update the stack pointer. */
561
562 regcache_cooked_write_unsigned (regcache, BFIN_SP_REGNUM, sp);
563
564 return sp;
565 }
566
567 /* Convert DWARF2 register number REG to the appropriate register number
568 used by GDB. */
569
570 static int
571 bfin_reg_to_regnum (struct gdbarch *gdbarch, int reg)
572 {
573 if (reg > ARRAY_SIZE (map_gcc_gdb))
574 return 0;
575
576 return map_gcc_gdb[reg];
577 }
578
579 /* This function implements the BREAKPOINT_FROM_PC macro. It returns
580 a pointer to a string of bytes that encode a breakpoint instruction,
581 stores the length of the string to *lenptr, and adjusts the program
582 counter (if necessary) to point to the actual memory location where
583 the breakpoint should be inserted. */
584
585 static const unsigned char *
586 bfin_breakpoint_from_pc (struct gdbarch *gdbarch,
587 CORE_ADDR *pcptr, int *lenptr)
588 {
589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
590 unsigned short iw;
591 static unsigned char bfin_breakpoint[] = {0xa1, 0x00, 0x00, 0x00};
592 static unsigned char bfin_sim_breakpoint[] = {0x25, 0x00, 0x00, 0x00};
593
594 iw = read_memory_unsigned_integer (*pcptr, 2, byte_order);
595
596 if ((iw & 0xf000) >= 0xc000)
597 /* 32-bit instruction. */
598 *lenptr = 4;
599 else
600 *lenptr = 2;
601
602 if (strcmp (target_shortname, "sim") == 0)
603 return bfin_sim_breakpoint;
604 else
605 return bfin_breakpoint;
606 }
607
608 static void
609 bfin_extract_return_value (struct type *type,
610 struct regcache *regs,
611 gdb_byte *dst)
612 {
613 struct gdbarch *gdbarch = get_regcache_arch (regs);
614 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
615 bfd_byte *valbuf = dst;
616 int len = TYPE_LENGTH (type);
617 ULONGEST tmp;
618 int regno = BFIN_R0_REGNUM;
619
620 gdb_assert (len <= 8);
621
622 while (len > 0)
623 {
624 regcache_cooked_read_unsigned (regs, regno++, &tmp);
625 store_unsigned_integer (valbuf, (len > 4 ? 4 : len), byte_order, tmp);
626 len -= 4;
627 valbuf += 4;
628 }
629 }
630
631 /* Write into appropriate registers a function return value of type
632 TYPE, given in virtual format. */
633
634 static void
635 bfin_store_return_value (struct type *type,
636 struct regcache *regs,
637 const gdb_byte *src)
638 {
639 const bfd_byte *valbuf = src;
640
641 /* Integral values greater than one word are stored in consecutive
642 registers starting with R0. This will always be a multiple of
643 the register size. */
644
645 int len = TYPE_LENGTH (type);
646 int regno = BFIN_R0_REGNUM;
647
648 gdb_assert (len <= 8);
649
650 while (len > 0)
651 {
652 regcache_cooked_write (regs, regno++, valbuf);
653 len -= 4;
654 valbuf += 4;
655 }
656 }
657
658 /* Determine, for architecture GDBARCH, how a return value of TYPE
659 should be returned. If it is supposed to be returned in registers,
660 and READBUF is nonzero, read the appropriate value from REGCACHE,
661 and copy it into READBUF. If WRITEBUF is nonzero, write the value
662 from WRITEBUF into REGCACHE. */
663
664 static enum return_value_convention
665 bfin_return_value (struct gdbarch *gdbarch,
666 struct type *func_type,
667 struct type *type,
668 struct regcache *regcache,
669 gdb_byte *readbuf,
670 const gdb_byte *writebuf)
671 {
672 if (TYPE_LENGTH (type) > 8)
673 return RETURN_VALUE_STRUCT_CONVENTION;
674
675 if (readbuf)
676 bfin_extract_return_value (type, regcache, readbuf);
677
678 if (writebuf)
679 bfin_store_return_value (type, regcache, writebuf);
680
681 return RETURN_VALUE_REGISTER_CONVENTION;
682 }
683
684 /* Return the BFIN register name corresponding to register I. */
685
686 static const char *
687 bfin_register_name (struct gdbarch *gdbarch, int i)
688 {
689 return bfin_register_name_strings[i];
690 }
691
692 static enum register_status
693 bfin_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
694 int regnum, gdb_byte *buffer)
695 {
696 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
697 enum register_status status;
698
699 if (regnum != BFIN_CC_REGNUM)
700 internal_error (__FILE__, __LINE__,
701 _("invalid register number %d"), regnum);
702
703 /* Extract the CC bit from the ASTAT register. */
704 status = regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
705 if (status == REG_VALID)
706 {
707 buffer[1] = buffer[2] = buffer[3] = 0;
708 buffer[0] = !!(buf[0] & ASTAT_CC);
709 }
710 return status;
711 }
712
713 static void
714 bfin_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
715 int regnum, const gdb_byte *buffer)
716 {
717 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
718
719 if (regnum != BFIN_CC_REGNUM)
720 internal_error (__FILE__, __LINE__,
721 _("invalid register number %d"), regnum);
722
723 /* Overlay the CC bit in the ASTAT register. */
724 regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
725 buf[0] = (buf[0] & ~ASTAT_CC) | ((buffer[0] & 1) << ASTAT_CC_POS);
726 regcache_raw_write (regcache, BFIN_ASTAT_REGNUM, buf);
727 }
728
729 static CORE_ADDR
730 bfin_frame_base_address (struct frame_info *this_frame, void **this_cache)
731 {
732 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
733
734 return cache->base;
735 }
736
737 static CORE_ADDR
738 bfin_frame_local_address (struct frame_info *this_frame, void **this_cache)
739 {
740 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
741
742 return cache->base - 4;
743 }
744
745 static CORE_ADDR
746 bfin_frame_args_address (struct frame_info *this_frame, void **this_cache)
747 {
748 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
749
750 return cache->base + 8;
751 }
752
753 static const struct frame_base bfin_frame_base =
754 {
755 &bfin_frame_unwind,
756 bfin_frame_base_address,
757 bfin_frame_local_address,
758 bfin_frame_args_address
759 };
760
761 static struct frame_id
762 bfin_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
763 {
764 CORE_ADDR sp;
765
766 sp = get_frame_register_unsigned (this_frame, BFIN_SP_REGNUM);
767
768 return frame_id_build (sp, get_frame_pc (this_frame));
769 }
770
771 static CORE_ADDR
772 bfin_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
773 {
774 return frame_unwind_register_unsigned (next_frame, BFIN_PC_REGNUM);
775 }
776
777 static CORE_ADDR
778 bfin_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
779 {
780 return (address & ~0x3);
781 }
782
783 enum bfin_abi
784 bfin_abi (struct gdbarch *gdbarch)
785 {
786 return gdbarch_tdep (gdbarch)->bfin_abi;
787 }
788
789 /* Initialize the current architecture based on INFO. If possible,
790 re-use an architecture from ARCHES, which is a list of
791 architectures already created during this debugging session.
792
793 Called e.g. at program startup, when reading a core file, and when
794 reading a binary file. */
795
796 static struct gdbarch *
797 bfin_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
798 {
799 struct gdbarch_tdep *tdep;
800 struct gdbarch *gdbarch;
801 int elf_flags;
802 enum bfin_abi abi;
803
804 /* Extract the ELF flags, if available. */
805 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
806 elf_flags = elf_elfheader (info.abfd)->e_flags;
807 else
808 elf_flags = 0;
809
810 abi = BFIN_ABI_FLAT;
811
812 /* If there is already a candidate, use it. */
813
814 for (arches = gdbarch_list_lookup_by_info (arches, &info);
815 arches != NULL;
816 arches = gdbarch_list_lookup_by_info (arches->next, &info))
817 {
818 if (gdbarch_tdep (arches->gdbarch)->bfin_abi != abi)
819 continue;
820 return arches->gdbarch;
821 }
822
823 tdep = XMALLOC (struct gdbarch_tdep);
824 gdbarch = gdbarch_alloc (&info, tdep);
825
826 tdep->bfin_abi = abi;
827
828 set_gdbarch_num_regs (gdbarch, BFIN_NUM_REGS);
829 set_gdbarch_pseudo_register_read (gdbarch, bfin_pseudo_register_read);
830 set_gdbarch_pseudo_register_write (gdbarch, bfin_pseudo_register_write);
831 set_gdbarch_num_pseudo_regs (gdbarch, BFIN_NUM_PSEUDO_REGS);
832 set_gdbarch_sp_regnum (gdbarch, BFIN_SP_REGNUM);
833 set_gdbarch_pc_regnum (gdbarch, BFIN_PC_REGNUM);
834 set_gdbarch_ps_regnum (gdbarch, BFIN_ASTAT_REGNUM);
835 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, bfin_reg_to_regnum);
836 set_gdbarch_register_name (gdbarch, bfin_register_name);
837 set_gdbarch_register_type (gdbarch, bfin_register_type);
838 set_gdbarch_dummy_id (gdbarch, bfin_dummy_id);
839 set_gdbarch_push_dummy_call (gdbarch, bfin_push_dummy_call);
840 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
841 set_gdbarch_return_value (gdbarch, bfin_return_value);
842 set_gdbarch_skip_prologue (gdbarch, bfin_skip_prologue);
843 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
844 set_gdbarch_breakpoint_from_pc (gdbarch, bfin_breakpoint_from_pc);
845 set_gdbarch_decr_pc_after_break (gdbarch, 2);
846 set_gdbarch_frame_args_skip (gdbarch, 8);
847 set_gdbarch_unwind_pc (gdbarch, bfin_unwind_pc);
848 set_gdbarch_frame_align (gdbarch, bfin_frame_align);
849 set_gdbarch_print_insn (gdbarch, print_insn_bfin);
850
851 /* Hook in ABI-specific overrides, if they have been registered. */
852 gdbarch_init_osabi (info, gdbarch);
853
854 dwarf2_append_unwinders (gdbarch);
855
856 frame_base_set_default (gdbarch, &bfin_frame_base);
857
858 frame_unwind_append_unwinder (gdbarch, &bfin_frame_unwind);
859
860 return gdbarch;
861 }
862
863 /* Provide a prototype to silence -Wmissing-prototypes. */
864 extern initialize_file_ftype _initialize_bfin_tdep;
865
866 void
867 _initialize_bfin_tdep (void)
868 {
869 register_gdbarch_init (bfd_arch_bfin, bfin_gdbarch_init);
870 }
This page took 0.060479 seconds and 5 git commands to generate.