PR binutils/11983
[deliverable/binutils-gdb.git] / gdb / block.c
1 /* Block-related functions for the GNU debugger, GDB.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "block.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdb_obstack.h"
25 #include "cp-support.h"
26 #include "addrmap.h"
27 #include "gdbtypes.h"
28 #include "exceptions.h"
29
30 /* This is used by struct block to store namespace-related info for
31 C++ files, namely using declarations and the current namespace in
32 scope. */
33
34 struct block_namespace_info
35 {
36 const char *scope;
37 struct using_direct *using;
38 };
39
40 static void block_initialize_namespace (struct block *block,
41 struct obstack *obstack);
42
43 /* Return Nonzero if block a is lexically nested within block b,
44 or if a and b have the same pc range.
45 Return zero otherwise. */
46
47 int
48 contained_in (const struct block *a, const struct block *b)
49 {
50 if (!a || !b)
51 return 0;
52
53 do
54 {
55 if (a == b)
56 return 1;
57 /* If A is a function block, then A cannot be contained in B,
58 except if A was inlined. */
59 if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
60 return 0;
61 a = BLOCK_SUPERBLOCK (a);
62 }
63 while (a != NULL);
64
65 return 0;
66 }
67
68
69 /* Return the symbol for the function which contains a specified
70 lexical block, described by a struct block BL. The return value
71 will not be an inlined function; the containing function will be
72 returned instead. */
73
74 struct symbol *
75 block_linkage_function (const struct block *bl)
76 {
77 while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
78 && BLOCK_SUPERBLOCK (bl) != NULL)
79 bl = BLOCK_SUPERBLOCK (bl);
80
81 return BLOCK_FUNCTION (bl);
82 }
83
84 /* Return the symbol for the function which contains a specified
85 block, described by a struct block BL. The return value will be
86 the closest enclosing function, which might be an inline
87 function. */
88
89 struct symbol *
90 block_containing_function (const struct block *bl)
91 {
92 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
93 bl = BLOCK_SUPERBLOCK (bl);
94
95 return BLOCK_FUNCTION (bl);
96 }
97
98 /* Return one if BL represents an inlined function. */
99
100 int
101 block_inlined_p (const struct block *bl)
102 {
103 return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
104 }
105
106 /* A helper function that checks whether PC is in the blockvector BL.
107 It returns the containing block if there is one, or else NULL. */
108
109 static struct block *
110 find_block_in_blockvector (struct blockvector *bl, CORE_ADDR pc)
111 {
112 struct block *b;
113 int bot, top, half;
114
115 /* If we have an addrmap mapping code addresses to blocks, then use
116 that. */
117 if (BLOCKVECTOR_MAP (bl))
118 return addrmap_find (BLOCKVECTOR_MAP (bl), pc);
119
120 /* Otherwise, use binary search to find the last block that starts
121 before PC.
122 Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
123 They both have the same START,END values.
124 Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
125 fact that this choice was made was subtle, now we make it explicit. */
126 gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
127 bot = STATIC_BLOCK;
128 top = BLOCKVECTOR_NBLOCKS (bl);
129
130 while (top - bot > 1)
131 {
132 half = (top - bot + 1) >> 1;
133 b = BLOCKVECTOR_BLOCK (bl, bot + half);
134 if (BLOCK_START (b) <= pc)
135 bot += half;
136 else
137 top = bot + half;
138 }
139
140 /* Now search backward for a block that ends after PC. */
141
142 while (bot >= STATIC_BLOCK)
143 {
144 b = BLOCKVECTOR_BLOCK (bl, bot);
145 if (BLOCK_END (b) > pc)
146 return b;
147 bot--;
148 }
149
150 return NULL;
151 }
152
153 /* Return the blockvector immediately containing the innermost lexical
154 block containing the specified pc value and section, or 0 if there
155 is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
156 don't pass this information back to the caller. */
157
158 struct blockvector *
159 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
160 struct block **pblock, struct symtab *symtab)
161 {
162 struct blockvector *bl;
163 struct block *b;
164
165 if (symtab == 0) /* if no symtab specified by caller */
166 {
167 /* First search all symtabs for one whose file contains our pc */
168 symtab = find_pc_sect_symtab (pc, section);
169 if (symtab == 0)
170 return 0;
171 }
172
173 bl = BLOCKVECTOR (symtab);
174
175 /* Then search that symtab for the smallest block that wins. */
176 b = find_block_in_blockvector (bl, pc);
177 if (b == NULL)
178 return NULL;
179
180 if (pblock)
181 *pblock = b;
182 return bl;
183 }
184
185 /* Return true if the blockvector BV contains PC, false otherwise. */
186
187 int
188 blockvector_contains_pc (struct blockvector *bv, CORE_ADDR pc)
189 {
190 return find_block_in_blockvector (bv, pc) != NULL;
191 }
192
193 /* Return call_site for specified PC in GDBARCH. PC must match exactly, it
194 must be the next instruction after call (or after tail call jump). Throw
195 NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
196
197 struct call_site *
198 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
199 {
200 struct symtab *symtab;
201 void **slot = NULL;
202
203 /* -1 as tail call PC can be already after the compilation unit range. */
204 symtab = find_pc_symtab (pc - 1);
205
206 if (symtab != NULL && symtab->call_site_htab != NULL)
207 slot = htab_find_slot (symtab->call_site_htab, &pc, NO_INSERT);
208
209 if (slot == NULL)
210 {
211 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
212
213 /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
214 the call target. */
215 throw_error (NO_ENTRY_VALUE_ERROR,
216 _("DW_OP_GNU_entry_value resolving cannot find "
217 "DW_TAG_GNU_call_site %s in %s"),
218 paddress (gdbarch, pc),
219 (msym.minsym == NULL ? "???"
220 : SYMBOL_PRINT_NAME (msym.minsym)));
221 }
222
223 return *slot;
224 }
225
226 /* Return the blockvector immediately containing the innermost lexical block
227 containing the specified pc value, or 0 if there is none.
228 Backward compatibility, no section. */
229
230 struct blockvector *
231 blockvector_for_pc (CORE_ADDR pc, struct block **pblock)
232 {
233 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
234 pblock, NULL);
235 }
236
237 /* Return the innermost lexical block containing the specified pc value
238 in the specified section, or 0 if there is none. */
239
240 struct block *
241 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
242 {
243 struct blockvector *bl;
244 struct block *b;
245
246 bl = blockvector_for_pc_sect (pc, section, &b, NULL);
247 if (bl)
248 return b;
249 return 0;
250 }
251
252 /* Return the innermost lexical block containing the specified pc value,
253 or 0 if there is none. Backward compatibility, no section. */
254
255 struct block *
256 block_for_pc (CORE_ADDR pc)
257 {
258 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
259 }
260
261 /* Now come some functions designed to deal with C++ namespace issues.
262 The accessors are safe to use even in the non-C++ case. */
263
264 /* This returns the namespace that BLOCK is enclosed in, or "" if it
265 isn't enclosed in a namespace at all. This travels the chain of
266 superblocks looking for a scope, if necessary. */
267
268 const char *
269 block_scope (const struct block *block)
270 {
271 for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
272 {
273 if (BLOCK_NAMESPACE (block) != NULL
274 && BLOCK_NAMESPACE (block)->scope != NULL)
275 return BLOCK_NAMESPACE (block)->scope;
276 }
277
278 return "";
279 }
280
281 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
282 OBSTACK. (It won't make a copy of SCOPE, however, so that already
283 has to be allocated correctly.) */
284
285 void
286 block_set_scope (struct block *block, const char *scope,
287 struct obstack *obstack)
288 {
289 block_initialize_namespace (block, obstack);
290
291 BLOCK_NAMESPACE (block)->scope = scope;
292 }
293
294 /* This returns the using directives list associated with BLOCK, if
295 any. */
296
297 struct using_direct *
298 block_using (const struct block *block)
299 {
300 if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
301 return NULL;
302 else
303 return BLOCK_NAMESPACE (block)->using;
304 }
305
306 /* Set BLOCK's using member to USING; if needed, allocate memory via
307 OBSTACK. (It won't make a copy of USING, however, so that already
308 has to be allocated correctly.) */
309
310 void
311 block_set_using (struct block *block,
312 struct using_direct *using,
313 struct obstack *obstack)
314 {
315 block_initialize_namespace (block, obstack);
316
317 BLOCK_NAMESPACE (block)->using = using;
318 }
319
320 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
321 ititialize its members to zero. */
322
323 static void
324 block_initialize_namespace (struct block *block, struct obstack *obstack)
325 {
326 if (BLOCK_NAMESPACE (block) == NULL)
327 {
328 BLOCK_NAMESPACE (block)
329 = obstack_alloc (obstack, sizeof (struct block_namespace_info));
330 BLOCK_NAMESPACE (block)->scope = NULL;
331 BLOCK_NAMESPACE (block)->using = NULL;
332 }
333 }
334
335 /* Return the static block associated to BLOCK. Return NULL if block
336 is NULL or if block is a global block. */
337
338 const struct block *
339 block_static_block (const struct block *block)
340 {
341 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
342 return NULL;
343
344 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
345 block = BLOCK_SUPERBLOCK (block);
346
347 return block;
348 }
349
350 /* Return the static block associated to BLOCK. Return NULL if block
351 is NULL. */
352
353 const struct block *
354 block_global_block (const struct block *block)
355 {
356 if (block == NULL)
357 return NULL;
358
359 while (BLOCK_SUPERBLOCK (block) != NULL)
360 block = BLOCK_SUPERBLOCK (block);
361
362 return block;
363 }
364
365 /* Allocate a block on OBSTACK, and initialize its elements to
366 zero/NULL. This is useful for creating "dummy" blocks that don't
367 correspond to actual source files.
368
369 Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
370 valid value. If you really don't want the block to have a
371 dictionary, then you should subsequently set its BLOCK_DICT to
372 dict_create_linear (obstack, NULL). */
373
374 struct block *
375 allocate_block (struct obstack *obstack)
376 {
377 struct block *bl = obstack_alloc (obstack, sizeof (struct block));
378
379 BLOCK_START (bl) = 0;
380 BLOCK_END (bl) = 0;
381 BLOCK_FUNCTION (bl) = NULL;
382 BLOCK_SUPERBLOCK (bl) = NULL;
383 BLOCK_DICT (bl) = NULL;
384 BLOCK_NAMESPACE (bl) = NULL;
385
386 return bl;
387 }
388
389 /* Allocate a global block. */
390
391 struct block *
392 allocate_global_block (struct obstack *obstack)
393 {
394 struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
395
396 return &bl->block;
397 }
398
399 /* Set the symtab of the global block. */
400
401 void
402 set_block_symtab (struct block *block, struct symtab *symtab)
403 {
404 struct global_block *gb;
405
406 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
407 gb = (struct global_block *) block;
408 gdb_assert (gb->symtab == NULL);
409 gb->symtab = symtab;
410 }
411
412 /* Return the symtab of the global block. */
413
414 static struct symtab *
415 get_block_symtab (const struct block *block)
416 {
417 struct global_block *gb;
418
419 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
420 gb = (struct global_block *) block;
421 gdb_assert (gb->symtab != NULL);
422 return gb->symtab;
423 }
424
425 \f
426
427 /* Initialize a block iterator, either to iterate over a single block,
428 or, for static and global blocks, all the included symtabs as
429 well. */
430
431 static void
432 initialize_block_iterator (const struct block *block,
433 struct block_iterator *iter)
434 {
435 enum block_enum which;
436 struct symtab *symtab;
437
438 iter->idx = -1;
439
440 if (BLOCK_SUPERBLOCK (block) == NULL)
441 {
442 which = GLOBAL_BLOCK;
443 symtab = get_block_symtab (block);
444 }
445 else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
446 {
447 which = STATIC_BLOCK;
448 symtab = get_block_symtab (BLOCK_SUPERBLOCK (block));
449 }
450 else
451 {
452 iter->d.block = block;
453 /* A signal value meaning that we're iterating over a single
454 block. */
455 iter->which = FIRST_LOCAL_BLOCK;
456 return;
457 }
458
459 /* If this is an included symtab, find the canonical includer and
460 use it instead. */
461 while (symtab->user != NULL)
462 symtab = symtab->user;
463
464 /* Putting this check here simplifies the logic of the iterator
465 functions. If there are no included symtabs, we only need to
466 search a single block, so we might as well just do that
467 directly. */
468 if (symtab->includes == NULL)
469 {
470 iter->d.block = block;
471 /* A signal value meaning that we're iterating over a single
472 block. */
473 iter->which = FIRST_LOCAL_BLOCK;
474 }
475 else
476 {
477 iter->d.symtab = symtab;
478 iter->which = which;
479 }
480 }
481
482 /* A helper function that finds the current symtab over whose static
483 or global block we should iterate. */
484
485 static struct symtab *
486 find_iterator_symtab (struct block_iterator *iterator)
487 {
488 if (iterator->idx == -1)
489 return iterator->d.symtab;
490 return iterator->d.symtab->includes[iterator->idx];
491 }
492
493 /* Perform a single step for a plain block iterator, iterating across
494 symbol tables as needed. Returns the next symbol, or NULL when
495 iteration is complete. */
496
497 static struct symbol *
498 block_iterator_step (struct block_iterator *iterator, int first)
499 {
500 struct symbol *sym;
501
502 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
503
504 while (1)
505 {
506 if (first)
507 {
508 struct symtab *symtab = find_iterator_symtab (iterator);
509 const struct block *block;
510
511 /* Iteration is complete. */
512 if (symtab == NULL)
513 return NULL;
514
515 block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), iterator->which);
516 sym = dict_iterator_first (BLOCK_DICT (block), &iterator->dict_iter);
517 }
518 else
519 sym = dict_iterator_next (&iterator->dict_iter);
520
521 if (sym != NULL)
522 return sym;
523
524 /* We have finished iterating the appropriate block of one
525 symtab. Now advance to the next symtab and begin iteration
526 there. */
527 ++iterator->idx;
528 first = 1;
529 }
530 }
531
532 /* See block.h. */
533
534 struct symbol *
535 block_iterator_first (const struct block *block,
536 struct block_iterator *iterator)
537 {
538 initialize_block_iterator (block, iterator);
539
540 if (iterator->which == FIRST_LOCAL_BLOCK)
541 return dict_iterator_first (block->dict, &iterator->dict_iter);
542
543 return block_iterator_step (iterator, 1);
544 }
545
546 /* See block.h. */
547
548 struct symbol *
549 block_iterator_next (struct block_iterator *iterator)
550 {
551 if (iterator->which == FIRST_LOCAL_BLOCK)
552 return dict_iterator_next (&iterator->dict_iter);
553
554 return block_iterator_step (iterator, 0);
555 }
556
557 /* Perform a single step for a "name" block iterator, iterating across
558 symbol tables as needed. Returns the next symbol, or NULL when
559 iteration is complete. */
560
561 static struct symbol *
562 block_iter_name_step (struct block_iterator *iterator, const char *name,
563 int first)
564 {
565 struct symbol *sym;
566
567 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
568
569 while (1)
570 {
571 if (first)
572 {
573 struct symtab *symtab = find_iterator_symtab (iterator);
574 const struct block *block;
575
576 /* Iteration is complete. */
577 if (symtab == NULL)
578 return NULL;
579
580 block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), iterator->which);
581 sym = dict_iter_name_first (BLOCK_DICT (block), name,
582 &iterator->dict_iter);
583 }
584 else
585 sym = dict_iter_name_next (name, &iterator->dict_iter);
586
587 if (sym != NULL)
588 return sym;
589
590 /* We have finished iterating the appropriate block of one
591 symtab. Now advance to the next symtab and begin iteration
592 there. */
593 ++iterator->idx;
594 first = 1;
595 }
596 }
597
598 /* See block.h. */
599
600 struct symbol *
601 block_iter_name_first (const struct block *block,
602 const char *name,
603 struct block_iterator *iterator)
604 {
605 initialize_block_iterator (block, iterator);
606
607 if (iterator->which == FIRST_LOCAL_BLOCK)
608 return dict_iter_name_first (block->dict, name, &iterator->dict_iter);
609
610 return block_iter_name_step (iterator, name, 1);
611 }
612
613 /* See block.h. */
614
615 struct symbol *
616 block_iter_name_next (const char *name, struct block_iterator *iterator)
617 {
618 if (iterator->which == FIRST_LOCAL_BLOCK)
619 return dict_iter_name_next (name, &iterator->dict_iter);
620
621 return block_iter_name_step (iterator, name, 0);
622 }
623
624 /* Perform a single step for a "match" block iterator, iterating
625 across symbol tables as needed. Returns the next symbol, or NULL
626 when iteration is complete. */
627
628 static struct symbol *
629 block_iter_match_step (struct block_iterator *iterator,
630 const char *name,
631 symbol_compare_ftype *compare,
632 int first)
633 {
634 struct symbol *sym;
635
636 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
637
638 while (1)
639 {
640 if (first)
641 {
642 struct symtab *symtab = find_iterator_symtab (iterator);
643 const struct block *block;
644
645 /* Iteration is complete. */
646 if (symtab == NULL)
647 return NULL;
648
649 block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), iterator->which);
650 sym = dict_iter_match_first (BLOCK_DICT (block), name,
651 compare, &iterator->dict_iter);
652 }
653 else
654 sym = dict_iter_match_next (name, compare, &iterator->dict_iter);
655
656 if (sym != NULL)
657 return sym;
658
659 /* We have finished iterating the appropriate block of one
660 symtab. Now advance to the next symtab and begin iteration
661 there. */
662 ++iterator->idx;
663 first = 1;
664 }
665 }
666
667 /* See block.h. */
668
669 struct symbol *
670 block_iter_match_first (const struct block *block,
671 const char *name,
672 symbol_compare_ftype *compare,
673 struct block_iterator *iterator)
674 {
675 initialize_block_iterator (block, iterator);
676
677 if (iterator->which == FIRST_LOCAL_BLOCK)
678 return dict_iter_match_first (block->dict, name, compare,
679 &iterator->dict_iter);
680
681 return block_iter_match_step (iterator, name, compare, 1);
682 }
683
684 /* See block.h. */
685
686 struct symbol *
687 block_iter_match_next (const char *name,
688 symbol_compare_ftype *compare,
689 struct block_iterator *iterator)
690 {
691 if (iterator->which == FIRST_LOCAL_BLOCK)
692 return dict_iter_match_next (name, compare, &iterator->dict_iter);
693
694 return block_iter_match_step (iterator, name, compare, 0);
695 }
This page took 0.053631 seconds and 4 git commands to generate.