5c6faa850457efecf76c13a3ed2bb8f2f8edc5d2
[deliverable/binutils-gdb.git] / gdb / block.c
1 /* Block-related functions for the GNU debugger, GDB.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "block.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdb_obstack.h"
25 #include "cp-support.h"
26 #include "addrmap.h"
27 #include "gdbtypes.h"
28 #include "objfiles.h"
29
30 /* This is used by struct block to store namespace-related info for
31 C++ files, namely using declarations and the current namespace in
32 scope. */
33
34 struct block_namespace_info : public allocate_on_obstack
35 {
36 const char *scope = nullptr;
37 struct using_direct *using_decl = nullptr;
38 };
39
40 static void block_initialize_namespace (struct block *block,
41 struct obstack *obstack);
42
43 /* See block.h. */
44
45 struct objfile *
46 block_objfile (const struct block *block)
47 {
48 const struct global_block *global_block;
49
50 if (BLOCK_FUNCTION (block) != NULL)
51 return symbol_objfile (BLOCK_FUNCTION (block));
52
53 global_block = (struct global_block *) block_global_block (block);
54 return COMPUNIT_OBJFILE (global_block->compunit_symtab);
55 }
56
57 /* See block. */
58
59 struct gdbarch *
60 block_gdbarch (const struct block *block)
61 {
62 if (BLOCK_FUNCTION (block) != NULL)
63 return symbol_arch (BLOCK_FUNCTION (block));
64
65 return get_objfile_arch (block_objfile (block));
66 }
67
68 /* Return Nonzero if block a is lexically nested within block b,
69 or if a and b have the same pc range.
70 Return zero otherwise. */
71
72 int
73 contained_in (const struct block *a, const struct block *b)
74 {
75 if (!a || !b)
76 return 0;
77
78 do
79 {
80 if (a == b)
81 return 1;
82 a = BLOCK_SUPERBLOCK (a);
83 }
84 while (a != NULL);
85
86 return 0;
87 }
88
89
90 /* Return the symbol for the function which contains a specified
91 lexical block, described by a struct block BL. The return value
92 will not be an inlined function; the containing function will be
93 returned instead. */
94
95 struct symbol *
96 block_linkage_function (const struct block *bl)
97 {
98 while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
99 && BLOCK_SUPERBLOCK (bl) != NULL)
100 bl = BLOCK_SUPERBLOCK (bl);
101
102 return BLOCK_FUNCTION (bl);
103 }
104
105 /* Return the symbol for the function which contains a specified
106 block, described by a struct block BL. The return value will be
107 the closest enclosing function, which might be an inline
108 function. */
109
110 struct symbol *
111 block_containing_function (const struct block *bl)
112 {
113 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
114 bl = BLOCK_SUPERBLOCK (bl);
115
116 return BLOCK_FUNCTION (bl);
117 }
118
119 /* Return one if BL represents an inlined function. */
120
121 int
122 block_inlined_p (const struct block *bl)
123 {
124 return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
125 }
126
127 /* A helper function that checks whether PC is in the blockvector BL.
128 It returns the containing block if there is one, or else NULL. */
129
130 static const struct block *
131 find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
132 {
133 const struct block *b;
134 int bot, top, half;
135
136 /* If we have an addrmap mapping code addresses to blocks, then use
137 that. */
138 if (BLOCKVECTOR_MAP (bl))
139 return (const struct block *) addrmap_find (BLOCKVECTOR_MAP (bl), pc);
140
141 /* Otherwise, use binary search to find the last block that starts
142 before PC.
143 Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
144 They both have the same START,END values.
145 Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
146 fact that this choice was made was subtle, now we make it explicit. */
147 gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
148 bot = STATIC_BLOCK;
149 top = BLOCKVECTOR_NBLOCKS (bl);
150
151 while (top - bot > 1)
152 {
153 half = (top - bot + 1) >> 1;
154 b = BLOCKVECTOR_BLOCK (bl, bot + half);
155 if (BLOCK_START (b) <= pc)
156 bot += half;
157 else
158 top = bot + half;
159 }
160
161 /* Now search backward for a block that ends after PC. */
162
163 while (bot >= STATIC_BLOCK)
164 {
165 b = BLOCKVECTOR_BLOCK (bl, bot);
166 if (BLOCK_END (b) > pc)
167 return b;
168 bot--;
169 }
170
171 return NULL;
172 }
173
174 /* Return the blockvector immediately containing the innermost lexical
175 block containing the specified pc value and section, or 0 if there
176 is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
177 don't pass this information back to the caller. */
178
179 const struct blockvector *
180 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
181 const struct block **pblock,
182 struct compunit_symtab *cust)
183 {
184 const struct blockvector *bl;
185 const struct block *b;
186
187 if (cust == NULL)
188 {
189 /* First search all symtabs for one whose file contains our pc */
190 cust = find_pc_sect_compunit_symtab (pc, section);
191 if (cust == NULL)
192 return 0;
193 }
194
195 bl = COMPUNIT_BLOCKVECTOR (cust);
196
197 /* Then search that symtab for the smallest block that wins. */
198 b = find_block_in_blockvector (bl, pc);
199 if (b == NULL)
200 return NULL;
201
202 if (pblock)
203 *pblock = b;
204 return bl;
205 }
206
207 /* Return true if the blockvector BV contains PC, false otherwise. */
208
209 int
210 blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
211 {
212 return find_block_in_blockvector (bv, pc) != NULL;
213 }
214
215 /* Return call_site for specified PC in GDBARCH. PC must match exactly, it
216 must be the next instruction after call (or after tail call jump). Throw
217 NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
218
219 struct call_site *
220 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
221 {
222 struct compunit_symtab *cust;
223 void **slot = NULL;
224
225 /* -1 as tail call PC can be already after the compilation unit range. */
226 cust = find_pc_compunit_symtab (pc - 1);
227
228 if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
229 slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
230
231 if (slot == NULL)
232 {
233 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
234
235 /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
236 the call target. */
237 throw_error (NO_ENTRY_VALUE_ERROR,
238 _("DW_OP_entry_value resolving cannot find "
239 "DW_TAG_call_site %s in %s"),
240 paddress (gdbarch, pc),
241 (msym.minsym == NULL ? "???"
242 : MSYMBOL_PRINT_NAME (msym.minsym)));
243 }
244
245 return (struct call_site *) *slot;
246 }
247
248 /* Return the blockvector immediately containing the innermost lexical block
249 containing the specified pc value, or 0 if there is none.
250 Backward compatibility, no section. */
251
252 const struct blockvector *
253 blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
254 {
255 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
256 pblock, NULL);
257 }
258
259 /* Return the innermost lexical block containing the specified pc value
260 in the specified section, or 0 if there is none. */
261
262 const struct block *
263 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
264 {
265 const struct blockvector *bl;
266 const struct block *b;
267
268 bl = blockvector_for_pc_sect (pc, section, &b, NULL);
269 if (bl)
270 return b;
271 return 0;
272 }
273
274 /* Return the innermost lexical block containing the specified pc value,
275 or 0 if there is none. Backward compatibility, no section. */
276
277 const struct block *
278 block_for_pc (CORE_ADDR pc)
279 {
280 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
281 }
282
283 /* Now come some functions designed to deal with C++ namespace issues.
284 The accessors are safe to use even in the non-C++ case. */
285
286 /* This returns the namespace that BLOCK is enclosed in, or "" if it
287 isn't enclosed in a namespace at all. This travels the chain of
288 superblocks looking for a scope, if necessary. */
289
290 const char *
291 block_scope (const struct block *block)
292 {
293 for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
294 {
295 if (BLOCK_NAMESPACE (block) != NULL
296 && BLOCK_NAMESPACE (block)->scope != NULL)
297 return BLOCK_NAMESPACE (block)->scope;
298 }
299
300 return "";
301 }
302
303 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
304 OBSTACK. (It won't make a copy of SCOPE, however, so that already
305 has to be allocated correctly.) */
306
307 void
308 block_set_scope (struct block *block, const char *scope,
309 struct obstack *obstack)
310 {
311 block_initialize_namespace (block, obstack);
312
313 BLOCK_NAMESPACE (block)->scope = scope;
314 }
315
316 /* This returns the using directives list associated with BLOCK, if
317 any. */
318
319 struct using_direct *
320 block_using (const struct block *block)
321 {
322 if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
323 return NULL;
324 else
325 return BLOCK_NAMESPACE (block)->using_decl;
326 }
327
328 /* Set BLOCK's using member to USING; if needed, allocate memory via
329 OBSTACK. (It won't make a copy of USING, however, so that already
330 has to be allocated correctly.) */
331
332 void
333 block_set_using (struct block *block,
334 struct using_direct *using_decl,
335 struct obstack *obstack)
336 {
337 block_initialize_namespace (block, obstack);
338
339 BLOCK_NAMESPACE (block)->using_decl = using_decl;
340 }
341
342 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
343 ititialize its members to zero. */
344
345 static void
346 block_initialize_namespace (struct block *block, struct obstack *obstack)
347 {
348 if (BLOCK_NAMESPACE (block) == NULL)
349 BLOCK_NAMESPACE (block) = new (obstack) struct block_namespace_info ();
350 }
351
352 /* Return the static block associated to BLOCK. Return NULL if block
353 is NULL or if block is a global block. */
354
355 const struct block *
356 block_static_block (const struct block *block)
357 {
358 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
359 return NULL;
360
361 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
362 block = BLOCK_SUPERBLOCK (block);
363
364 return block;
365 }
366
367 /* Return the static block associated to BLOCK. Return NULL if block
368 is NULL. */
369
370 const struct block *
371 block_global_block (const struct block *block)
372 {
373 if (block == NULL)
374 return NULL;
375
376 while (BLOCK_SUPERBLOCK (block) != NULL)
377 block = BLOCK_SUPERBLOCK (block);
378
379 return block;
380 }
381
382 /* Allocate a block on OBSTACK, and initialize its elements to
383 zero/NULL. This is useful for creating "dummy" blocks that don't
384 correspond to actual source files.
385
386 Warning: it sets the block's BLOCK_MULTIDICT to NULL, which isn't a
387 valid value. If you really don't want the block to have a
388 dictionary, then you should subsequently set its BLOCK_MULTIDICT to
389 dict_create_linear (obstack, NULL). */
390
391 struct block *
392 allocate_block (struct obstack *obstack)
393 {
394 struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
395
396 return bl;
397 }
398
399 /* Allocate a global block. */
400
401 struct block *
402 allocate_global_block (struct obstack *obstack)
403 {
404 struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
405
406 return &bl->block;
407 }
408
409 /* Set the compunit of the global block. */
410
411 void
412 set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
413 {
414 struct global_block *gb;
415
416 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
417 gb = (struct global_block *) block;
418 gdb_assert (gb->compunit_symtab == NULL);
419 gb->compunit_symtab = cu;
420 }
421
422 /* See block.h. */
423
424 struct dynamic_prop *
425 block_static_link (const struct block *block)
426 {
427 struct objfile *objfile = block_objfile (block);
428
429 /* Only objfile-owned blocks that materialize top function scopes can have
430 static links. */
431 if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
432 return NULL;
433
434 return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
435 }
436
437 /* Return the compunit of the global block. */
438
439 static struct compunit_symtab *
440 get_block_compunit_symtab (const struct block *block)
441 {
442 struct global_block *gb;
443
444 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
445 gb = (struct global_block *) block;
446 gdb_assert (gb->compunit_symtab != NULL);
447 return gb->compunit_symtab;
448 }
449
450 \f
451
452 /* Initialize a block iterator, either to iterate over a single block,
453 or, for static and global blocks, all the included symtabs as
454 well. */
455
456 static void
457 initialize_block_iterator (const struct block *block,
458 struct block_iterator *iter)
459 {
460 enum block_enum which;
461 struct compunit_symtab *cu;
462
463 iter->idx = -1;
464
465 if (BLOCK_SUPERBLOCK (block) == NULL)
466 {
467 which = GLOBAL_BLOCK;
468 cu = get_block_compunit_symtab (block);
469 }
470 else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
471 {
472 which = STATIC_BLOCK;
473 cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
474 }
475 else
476 {
477 iter->d.block = block;
478 /* A signal value meaning that we're iterating over a single
479 block. */
480 iter->which = FIRST_LOCAL_BLOCK;
481 return;
482 }
483
484 /* If this is an included symtab, find the canonical includer and
485 use it instead. */
486 while (cu->user != NULL)
487 cu = cu->user;
488
489 /* Putting this check here simplifies the logic of the iterator
490 functions. If there are no included symtabs, we only need to
491 search a single block, so we might as well just do that
492 directly. */
493 if (cu->includes == NULL)
494 {
495 iter->d.block = block;
496 /* A signal value meaning that we're iterating over a single
497 block. */
498 iter->which = FIRST_LOCAL_BLOCK;
499 }
500 else
501 {
502 iter->d.compunit_symtab = cu;
503 iter->which = which;
504 }
505 }
506
507 /* A helper function that finds the current compunit over whose static
508 or global block we should iterate. */
509
510 static struct compunit_symtab *
511 find_iterator_compunit_symtab (struct block_iterator *iterator)
512 {
513 if (iterator->idx == -1)
514 return iterator->d.compunit_symtab;
515 return iterator->d.compunit_symtab->includes[iterator->idx];
516 }
517
518 /* Perform a single step for a plain block iterator, iterating across
519 symbol tables as needed. Returns the next symbol, or NULL when
520 iteration is complete. */
521
522 static struct symbol *
523 block_iterator_step (struct block_iterator *iterator, int first)
524 {
525 struct symbol *sym;
526
527 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
528
529 while (1)
530 {
531 if (first)
532 {
533 struct compunit_symtab *cust
534 = find_iterator_compunit_symtab (iterator);
535 const struct block *block;
536
537 /* Iteration is complete. */
538 if (cust == NULL)
539 return NULL;
540
541 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
542 iterator->which);
543 sym = mdict_iterator_first (BLOCK_MULTIDICT (block),
544 &iterator->mdict_iter);
545 }
546 else
547 sym = mdict_iterator_next (&iterator->mdict_iter);
548
549 if (sym != NULL)
550 return sym;
551
552 /* We have finished iterating the appropriate block of one
553 symtab. Now advance to the next symtab and begin iteration
554 there. */
555 ++iterator->idx;
556 first = 1;
557 }
558 }
559
560 /* See block.h. */
561
562 struct symbol *
563 block_iterator_first (const struct block *block,
564 struct block_iterator *iterator)
565 {
566 initialize_block_iterator (block, iterator);
567
568 if (iterator->which == FIRST_LOCAL_BLOCK)
569 return mdict_iterator_first (block->multidict, &iterator->mdict_iter);
570
571 return block_iterator_step (iterator, 1);
572 }
573
574 /* See block.h. */
575
576 struct symbol *
577 block_iterator_next (struct block_iterator *iterator)
578 {
579 if (iterator->which == FIRST_LOCAL_BLOCK)
580 return mdict_iterator_next (&iterator->mdict_iter);
581
582 return block_iterator_step (iterator, 0);
583 }
584
585 /* Perform a single step for a "match" block iterator, iterating
586 across symbol tables as needed. Returns the next symbol, or NULL
587 when iteration is complete. */
588
589 static struct symbol *
590 block_iter_match_step (struct block_iterator *iterator,
591 const lookup_name_info &name,
592 int first)
593 {
594 struct symbol *sym;
595
596 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
597
598 while (1)
599 {
600 if (first)
601 {
602 struct compunit_symtab *cust
603 = find_iterator_compunit_symtab (iterator);
604 const struct block *block;
605
606 /* Iteration is complete. */
607 if (cust == NULL)
608 return NULL;
609
610 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
611 iterator->which);
612 sym = mdict_iter_match_first (BLOCK_MULTIDICT (block), name,
613 &iterator->mdict_iter);
614 }
615 else
616 sym = mdict_iter_match_next (name, &iterator->mdict_iter);
617
618 if (sym != NULL)
619 return sym;
620
621 /* We have finished iterating the appropriate block of one
622 symtab. Now advance to the next symtab and begin iteration
623 there. */
624 ++iterator->idx;
625 first = 1;
626 }
627 }
628
629 /* See block.h. */
630
631 struct symbol *
632 block_iter_match_first (const struct block *block,
633 const lookup_name_info &name,
634 struct block_iterator *iterator)
635 {
636 initialize_block_iterator (block, iterator);
637
638 if (iterator->which == FIRST_LOCAL_BLOCK)
639 return mdict_iter_match_first (block->multidict, name,
640 &iterator->mdict_iter);
641
642 return block_iter_match_step (iterator, name, 1);
643 }
644
645 /* See block.h. */
646
647 struct symbol *
648 block_iter_match_next (const lookup_name_info &name,
649 struct block_iterator *iterator)
650 {
651 if (iterator->which == FIRST_LOCAL_BLOCK)
652 return mdict_iter_match_next (name, &iterator->mdict_iter);
653
654 return block_iter_match_step (iterator, name, 0);
655 }
656
657 /* See block.h.
658
659 Note that if NAME is the demangled form of a C++ symbol, we will fail
660 to find a match during the binary search of the non-encoded names, but
661 for now we don't worry about the slight inefficiency of looking for
662 a match we'll never find, since it will go pretty quick. Once the
663 binary search terminates, we drop through and do a straight linear
664 search on the symbols. Each symbol which is marked as being a ObjC/C++
665 symbol (language_cplus or language_objc set) has both the encoded and
666 non-encoded names tested for a match. */
667
668 struct symbol *
669 block_lookup_symbol (const struct block *block, const char *name,
670 symbol_name_match_type match_type,
671 const domain_enum domain)
672 {
673 struct block_iterator iter;
674 struct symbol *sym;
675
676 lookup_name_info lookup_name (name, match_type);
677
678 if (!BLOCK_FUNCTION (block))
679 {
680 struct symbol *other = NULL;
681
682 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
683 {
684 if (SYMBOL_DOMAIN (sym) == domain)
685 return sym;
686 /* This is a bit of a hack, but symbol_matches_domain might ignore
687 STRUCT vs VAR domain symbols. So if a matching symbol is found,
688 make sure there is no "better" matching symbol, i.e., one with
689 exactly the same domain. PR 16253. */
690 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
691 SYMBOL_DOMAIN (sym), domain))
692 other = sym;
693 }
694 return other;
695 }
696 else
697 {
698 /* Note that parameter symbols do not always show up last in the
699 list; this loop makes sure to take anything else other than
700 parameter symbols first; it only uses parameter symbols as a
701 last resort. Note that this only takes up extra computation
702 time on a match.
703 It's hard to define types in the parameter list (at least in
704 C/C++) so we don't do the same PR 16253 hack here that is done
705 for the !BLOCK_FUNCTION case. */
706
707 struct symbol *sym_found = NULL;
708
709 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
710 {
711 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
712 SYMBOL_DOMAIN (sym), domain))
713 {
714 sym_found = sym;
715 if (!SYMBOL_IS_ARGUMENT (sym))
716 {
717 break;
718 }
719 }
720 }
721 return (sym_found); /* Will be NULL if not found. */
722 }
723 }
724
725 /* See block.h. */
726
727 struct symbol *
728 block_lookup_symbol_primary (const struct block *block, const char *name,
729 const domain_enum domain)
730 {
731 struct symbol *sym, *other;
732 struct mdict_iterator mdict_iter;
733
734 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
735
736 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
737 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
738 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
739
740 other = NULL;
741 for (sym
742 = mdict_iter_match_first (block->multidict, lookup_name, &mdict_iter);
743 sym != NULL;
744 sym = mdict_iter_match_next (lookup_name, &mdict_iter))
745 {
746 if (SYMBOL_DOMAIN (sym) == domain)
747 return sym;
748
749 /* This is a bit of a hack, but symbol_matches_domain might ignore
750 STRUCT vs VAR domain symbols. So if a matching symbol is found,
751 make sure there is no "better" matching symbol, i.e., one with
752 exactly the same domain. PR 16253. */
753 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
754 SYMBOL_DOMAIN (sym), domain))
755 other = sym;
756 }
757
758 return other;
759 }
760
761 /* See block.h. */
762
763 struct symbol *
764 block_find_symbol (const struct block *block, const char *name,
765 const domain_enum domain,
766 block_symbol_matcher_ftype *matcher, void *data)
767 {
768 struct block_iterator iter;
769 struct symbol *sym;
770
771 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
772
773 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
774 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
775 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
776
777 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
778 {
779 /* MATCHER is deliberately called second here so that it never sees
780 a non-domain-matching symbol. */
781 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
782 SYMBOL_DOMAIN (sym), domain)
783 && matcher (sym, data))
784 return sym;
785 }
786 return NULL;
787 }
788
789 /* See block.h. */
790
791 int
792 block_find_non_opaque_type (struct symbol *sym, void *data)
793 {
794 return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
795 }
796
797 /* See block.h. */
798
799 int
800 block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
801 {
802 struct symbol **best = (struct symbol **) data;
803
804 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
805 return 1;
806 *best = sym;
807 return 0;
808 }
809
810 /* See block.h. */
811
812 struct blockranges *
813 make_blockranges (struct objfile *objfile,
814 const std::vector<blockrange> &rangevec)
815 {
816 struct blockranges *blr;
817 size_t n = rangevec.size();
818
819 blr = (struct blockranges *)
820 obstack_alloc (&objfile->objfile_obstack,
821 sizeof (struct blockranges)
822 + (n - 1) * sizeof (struct blockrange));
823
824 blr->nranges = n;
825 for (int i = 0; i < n; i++)
826 blr->range[i] = rangevec[i];
827 return blr;
828 }
829
This page took 0.048135 seconds and 4 git commands to generate.