* jv-lang.c (get_java_class_symtab): Use allocate_global_block,
[deliverable/binutils-gdb.git] / gdb / block.c
1 /* Block-related functions for the GNU debugger, GDB.
2
3 Copyright (C) 2003, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "block.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdb_obstack.h"
25 #include "cp-support.h"
26 #include "addrmap.h"
27 #include "gdbtypes.h"
28 #include "exceptions.h"
29
30 /* This is used by struct block to store namespace-related info for
31 C++ files, namely using declarations and the current namespace in
32 scope. */
33
34 struct block_namespace_info
35 {
36 const char *scope;
37 struct using_direct *using;
38 };
39
40 static void block_initialize_namespace (struct block *block,
41 struct obstack *obstack);
42
43 /* Return Nonzero if block a is lexically nested within block b,
44 or if a and b have the same pc range.
45 Return zero otherwise. */
46
47 int
48 contained_in (const struct block *a, const struct block *b)
49 {
50 if (!a || !b)
51 return 0;
52
53 do
54 {
55 if (a == b)
56 return 1;
57 /* If A is a function block, then A cannot be contained in B,
58 except if A was inlined. */
59 if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
60 return 0;
61 a = BLOCK_SUPERBLOCK (a);
62 }
63 while (a != NULL);
64
65 return 0;
66 }
67
68
69 /* Return the symbol for the function which contains a specified
70 lexical block, described by a struct block BL. The return value
71 will not be an inlined function; the containing function will be
72 returned instead. */
73
74 struct symbol *
75 block_linkage_function (const struct block *bl)
76 {
77 while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
78 && BLOCK_SUPERBLOCK (bl) != NULL)
79 bl = BLOCK_SUPERBLOCK (bl);
80
81 return BLOCK_FUNCTION (bl);
82 }
83
84 /* Return the symbol for the function which contains a specified
85 block, described by a struct block BL. The return value will be
86 the closest enclosing function, which might be an inline
87 function. */
88
89 struct symbol *
90 block_containing_function (const struct block *bl)
91 {
92 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
93 bl = BLOCK_SUPERBLOCK (bl);
94
95 return BLOCK_FUNCTION (bl);
96 }
97
98 /* Return one if BL represents an inlined function. */
99
100 int
101 block_inlined_p (const struct block *bl)
102 {
103 return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
104 }
105
106 /* Return the blockvector immediately containing the innermost lexical
107 block containing the specified pc value and section, or 0 if there
108 is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
109 don't pass this information back to the caller. */
110
111 struct blockvector *
112 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
113 struct block **pblock, struct symtab *symtab)
114 {
115 struct block *b;
116 int bot, top, half;
117 struct blockvector *bl;
118
119 if (symtab == 0) /* if no symtab specified by caller */
120 {
121 /* First search all symtabs for one whose file contains our pc */
122 symtab = find_pc_sect_symtab (pc, section);
123 if (symtab == 0)
124 return 0;
125 }
126
127 bl = BLOCKVECTOR (symtab);
128
129 /* Then search that symtab for the smallest block that wins. */
130
131 /* If we have an addrmap mapping code addresses to blocks, then use
132 that. */
133 if (BLOCKVECTOR_MAP (bl))
134 {
135 b = addrmap_find (BLOCKVECTOR_MAP (bl), pc);
136 if (b)
137 {
138 if (pblock)
139 *pblock = b;
140 return bl;
141 }
142 else
143 return 0;
144 }
145
146
147 /* Otherwise, use binary search to find the last block that starts
148 before PC. */
149 bot = 0;
150 top = BLOCKVECTOR_NBLOCKS (bl);
151
152 while (top - bot > 1)
153 {
154 half = (top - bot + 1) >> 1;
155 b = BLOCKVECTOR_BLOCK (bl, bot + half);
156 if (BLOCK_START (b) <= pc)
157 bot += half;
158 else
159 top = bot + half;
160 }
161
162 /* Now search backward for a block that ends after PC. */
163
164 while (bot >= 0)
165 {
166 b = BLOCKVECTOR_BLOCK (bl, bot);
167 if (BLOCK_END (b) > pc)
168 {
169 if (pblock)
170 *pblock = b;
171 return bl;
172 }
173 bot--;
174 }
175 return 0;
176 }
177
178 /* Return call_site for specified PC in GDBARCH. PC must match exactly, it
179 must be the next instruction after call (or after tail call jump). Throw
180 NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
181
182 struct call_site *
183 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
184 {
185 struct symtab *symtab;
186 void **slot = NULL;
187
188 /* -1 as tail call PC can be already after the compilation unit range. */
189 symtab = find_pc_symtab (pc - 1);
190
191 if (symtab != NULL && symtab->call_site_htab != NULL)
192 slot = htab_find_slot (symtab->call_site_htab, &pc, NO_INSERT);
193
194 if (slot == NULL)
195 {
196 struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (pc);
197
198 /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
199 the call target. */
200 throw_error (NO_ENTRY_VALUE_ERROR,
201 _("DW_OP_GNU_entry_value resolving cannot find "
202 "DW_TAG_GNU_call_site %s in %s"),
203 paddress (gdbarch, pc),
204 msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
205 }
206
207 return *slot;
208 }
209
210 /* Return the blockvector immediately containing the innermost lexical block
211 containing the specified pc value, or 0 if there is none.
212 Backward compatibility, no section. */
213
214 struct blockvector *
215 blockvector_for_pc (CORE_ADDR pc, struct block **pblock)
216 {
217 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
218 pblock, NULL);
219 }
220
221 /* Return the innermost lexical block containing the specified pc value
222 in the specified section, or 0 if there is none. */
223
224 struct block *
225 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
226 {
227 struct blockvector *bl;
228 struct block *b;
229
230 bl = blockvector_for_pc_sect (pc, section, &b, NULL);
231 if (bl)
232 return b;
233 return 0;
234 }
235
236 /* Return the innermost lexical block containing the specified pc value,
237 or 0 if there is none. Backward compatibility, no section. */
238
239 struct block *
240 block_for_pc (CORE_ADDR pc)
241 {
242 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
243 }
244
245 /* Now come some functions designed to deal with C++ namespace issues.
246 The accessors are safe to use even in the non-C++ case. */
247
248 /* This returns the namespace that BLOCK is enclosed in, or "" if it
249 isn't enclosed in a namespace at all. This travels the chain of
250 superblocks looking for a scope, if necessary. */
251
252 const char *
253 block_scope (const struct block *block)
254 {
255 for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
256 {
257 if (BLOCK_NAMESPACE (block) != NULL
258 && BLOCK_NAMESPACE (block)->scope != NULL)
259 return BLOCK_NAMESPACE (block)->scope;
260 }
261
262 return "";
263 }
264
265 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
266 OBSTACK. (It won't make a copy of SCOPE, however, so that already
267 has to be allocated correctly.) */
268
269 void
270 block_set_scope (struct block *block, const char *scope,
271 struct obstack *obstack)
272 {
273 block_initialize_namespace (block, obstack);
274
275 BLOCK_NAMESPACE (block)->scope = scope;
276 }
277
278 /* This returns the using directives list associated with BLOCK, if
279 any. */
280
281 struct using_direct *
282 block_using (const struct block *block)
283 {
284 if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
285 return NULL;
286 else
287 return BLOCK_NAMESPACE (block)->using;
288 }
289
290 /* Set BLOCK's using member to USING; if needed, allocate memory via
291 OBSTACK. (It won't make a copy of USING, however, so that already
292 has to be allocated correctly.) */
293
294 void
295 block_set_using (struct block *block,
296 struct using_direct *using,
297 struct obstack *obstack)
298 {
299 block_initialize_namespace (block, obstack);
300
301 BLOCK_NAMESPACE (block)->using = using;
302 }
303
304 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
305 ititialize its members to zero. */
306
307 static void
308 block_initialize_namespace (struct block *block, struct obstack *obstack)
309 {
310 if (BLOCK_NAMESPACE (block) == NULL)
311 {
312 BLOCK_NAMESPACE (block)
313 = obstack_alloc (obstack, sizeof (struct block_namespace_info));
314 BLOCK_NAMESPACE (block)->scope = NULL;
315 BLOCK_NAMESPACE (block)->using = NULL;
316 }
317 }
318
319 /* Return the static block associated to BLOCK. Return NULL if block
320 is NULL or if block is a global block. */
321
322 const struct block *
323 block_static_block (const struct block *block)
324 {
325 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
326 return NULL;
327
328 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
329 block = BLOCK_SUPERBLOCK (block);
330
331 return block;
332 }
333
334 /* Return the static block associated to BLOCK. Return NULL if block
335 is NULL. */
336
337 const struct block *
338 block_global_block (const struct block *block)
339 {
340 if (block == NULL)
341 return NULL;
342
343 while (BLOCK_SUPERBLOCK (block) != NULL)
344 block = BLOCK_SUPERBLOCK (block);
345
346 return block;
347 }
348
349 /* Allocate a block on OBSTACK, and initialize its elements to
350 zero/NULL. This is useful for creating "dummy" blocks that don't
351 correspond to actual source files.
352
353 Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
354 valid value. If you really don't want the block to have a
355 dictionary, then you should subsequently set its BLOCK_DICT to
356 dict_create_linear (obstack, NULL). */
357
358 struct block *
359 allocate_block (struct obstack *obstack)
360 {
361 struct block *bl = obstack_alloc (obstack, sizeof (struct block));
362
363 BLOCK_START (bl) = 0;
364 BLOCK_END (bl) = 0;
365 BLOCK_FUNCTION (bl) = NULL;
366 BLOCK_SUPERBLOCK (bl) = NULL;
367 BLOCK_DICT (bl) = NULL;
368 BLOCK_NAMESPACE (bl) = NULL;
369
370 return bl;
371 }
372
373 /* Allocate a global block. */
374
375 struct block *
376 allocate_global_block (struct obstack *obstack)
377 {
378 struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
379
380 return &bl->block;
381 }
382
383 /* Set the symtab of the global block. */
384
385 void
386 set_block_symtab (struct block *block, struct symtab *symtab)
387 {
388 struct global_block *gb;
389
390 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
391 gb = (struct global_block *) block;
392 gdb_assert (gb->symtab == NULL);
393 gb->symtab = symtab;
394 }
395
396 \f
397
398 /* See block.h. */
399
400 struct symbol *
401 block_iterator_first (const struct block *block,
402 struct block_iterator *iterator)
403 {
404 return dict_iterator_first (block->dict, &iterator->dict_iter);
405 }
406
407 /* See block.h. */
408
409 struct symbol *
410 block_iterator_next (struct block_iterator *iterator)
411 {
412 return dict_iterator_next (&iterator->dict_iter);
413 }
414
415 /* See block.h. */
416
417 struct symbol *
418 block_iter_name_first (const struct block *block,
419 const char *name,
420 struct block_iterator *iterator)
421 {
422 return dict_iter_name_first (block->dict, name, &iterator->dict_iter);
423 }
424
425 /* See block.h. */
426
427 struct symbol *
428 block_iter_name_next (const char *name, struct block_iterator *iterator)
429 {
430 return dict_iter_name_next (name, &iterator->dict_iter);
431 }
432
433 /* See block.h. */
434
435 struct symbol *
436 block_iter_match_first (const struct block *block,
437 const char *name,
438 symbol_compare_ftype *compare,
439 struct block_iterator *iterator)
440 {
441 return dict_iter_match_first (block->dict, name, compare,
442 &iterator->dict_iter);
443 }
444
445 /* See block.h. */
446
447 struct symbol *
448 block_iter_match_next (const char *name,
449 symbol_compare_ftype *compare,
450 struct block_iterator *iterator)
451 {
452 return dict_iter_match_next (name, compare, &iterator->dict_iter);
453 }
This page took 0.064936 seconds and 4 git commands to generate.