* objfiles.h: Delete comments refering to inside_entry_func and
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "frame.h"
31 #include "gdbcore.h"
32 #include "value.h" /* for read_register */
33 #include "target.h" /* for target_has_stack */
34 #include "inferior.h" /* for read_pc */
35 #include "annotate.h"
36 #include "regcache.h"
37 #include "gdb_assert.h"
38 #include "dummy-frame.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "block.h"
42
43 /* Prototypes for exported functions. */
44
45 void _initialize_blockframe (void);
46
47 /* Is ADDR inside the startup file? Note that if your machine has a
48 way to detect the bottom of the stack, there is no need to call
49 this function from DEPRECATED_FRAME_CHAIN_VALID; the reason for
50 doing so is that some machines have no way of detecting bottom of
51 stack.
52
53 A PC of zero is always considered to be the bottom of the stack. */
54
55 int
56 deprecated_inside_entry_file (CORE_ADDR addr)
57 {
58 if (addr == 0)
59 return 1;
60 if (symfile_objfile == 0)
61 return 0;
62 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT
63 || CALL_DUMMY_LOCATION == AT_SYMBOL)
64 {
65 /* Do not stop backtracing if the pc is in the call dummy
66 at the entry point. */
67 /* FIXME: Won't always work with zeros for the last two arguments */
68 if (DEPRECATED_PC_IN_CALL_DUMMY (addr, 0, 0))
69 return 0;
70 }
71 return (addr >= symfile_objfile->ei.deprecated_entry_file_lowpc &&
72 addr < symfile_objfile->ei.deprecated_entry_file_highpc);
73 }
74
75 /* Test whether PC is in the range of addresses that corresponds to
76 the "main" function. */
77
78 int
79 inside_main_func (CORE_ADDR pc)
80 {
81 struct minimal_symbol *msymbol;
82
83 if (symfile_objfile == 0)
84 return 0;
85
86 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
87
88 /* If the address range hasn't been set up at symbol reading time,
89 set it up now. */
90
91 if (msymbol != NULL
92 && symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC
93 && symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
94 {
95 /* brobecker/2003-10-10: We used to rely on lookup_symbol() to
96 search the symbol associated to the "main" function.
97 Unfortunately, lookup_symbol() uses the current-language
98 la_lookup_symbol_nonlocal function to do the global symbol
99 search. Depending on the language, this can introduce
100 certain side-effects, because certain languages, for instance
101 Ada, may find more than one match. Therefore we prefer to
102 search the "main" function symbol using its address rather
103 than its name. */
104 struct symbol *mainsym =
105 find_pc_function (SYMBOL_VALUE_ADDRESS (msymbol));
106
107 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
108 {
109 symfile_objfile->ei.main_func_lowpc =
110 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
111 symfile_objfile->ei.main_func_highpc =
112 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
113 }
114 }
115
116 /* Not in the normal symbol tables, see if "main" is in the partial
117 symbol table. If it's not, then give up. */
118 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_text)
119 {
120 CORE_ADDR maddr = SYMBOL_VALUE_ADDRESS (msymbol);
121 asection *msect = SYMBOL_BFD_SECTION (msymbol);
122 struct obj_section *osect = find_pc_sect_section (maddr, msect);
123
124 if (osect != NULL)
125 {
126 int i;
127
128 /* Step over other symbols at this same address, and symbols
129 in other sections, to find the next symbol in this
130 section with a different address. */
131 for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
132 {
133 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != maddr
134 && SYMBOL_BFD_SECTION (msymbol + i) == msect)
135 break;
136 }
137
138 symfile_objfile->ei.main_func_lowpc = maddr;
139
140 /* Use the lesser of the next minimal symbol in the same
141 section, or the end of the section, as the end of the
142 function. */
143 if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL
144 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
145 symfile_objfile->ei.main_func_highpc =
146 SYMBOL_VALUE_ADDRESS (msymbol + i);
147 else
148 /* We got the start address from the last msymbol in the
149 objfile. So the end address is the end of the
150 section. */
151 symfile_objfile->ei.main_func_highpc = osect->endaddr;
152 }
153 }
154
155 return (symfile_objfile->ei.main_func_lowpc <= pc
156 && symfile_objfile->ei.main_func_highpc > pc);
157 }
158
159 /* Test whether THIS_FRAME is inside the process entry point function. */
160
161 int
162 inside_entry_func (struct frame_info *this_frame)
163 {
164 return (get_frame_func (this_frame) == entry_point_address ());
165 }
166
167 /* Similar to inside_entry_func, but accomodating legacy frame code. */
168
169 static int
170 legacy_inside_entry_func (CORE_ADDR pc)
171 {
172 if (symfile_objfile == 0)
173 return 0;
174
175 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
176 {
177 /* Do not stop backtracing if the program counter is in the call
178 dummy at the entry point. */
179 /* FIXME: This won't always work with zeros for the last two
180 arguments. */
181 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
182 return 0;
183 }
184
185 return (symfile_objfile->ei.entry_func_lowpc <= pc
186 && symfile_objfile->ei.entry_func_highpc > pc);
187 }
188
189 /* Return nonzero if the function for this frame lacks a prologue. Many
190 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
191 function. */
192
193 int
194 frameless_look_for_prologue (struct frame_info *frame)
195 {
196 CORE_ADDR func_start;
197
198 func_start = get_frame_func (frame);
199 if (func_start)
200 {
201 func_start += FUNCTION_START_OFFSET;
202 /* This is faster, since only care whether there *is* a
203 prologue, not how long it is. */
204 return PROLOGUE_FRAMELESS_P (func_start);
205 }
206 else if (get_frame_pc (frame) == 0)
207 /* A frame with a zero PC is usually created by dereferencing a
208 NULL function pointer, normally causing an immediate core dump
209 of the inferior. Mark function as frameless, as the inferior
210 has no chance of setting up a stack frame. */
211 return 1;
212 else
213 /* If we can't find the start of the function, we don't really
214 know whether the function is frameless, but we should be able
215 to get a reasonable (i.e. best we can do under the
216 circumstances) backtrace by saying that it isn't. */
217 return 0;
218 }
219
220 /* Return the innermost lexical block in execution
221 in a specified stack frame. The frame address is assumed valid.
222
223 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
224 address we used to choose the block. We use this to find a source
225 line, to decide which macro definitions are in scope.
226
227 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
228 PC, and may not really be a valid PC at all. For example, in the
229 caller of a function declared to never return, the code at the
230 return address will never be reached, so the call instruction may
231 be the very last instruction in the block. So the address we use
232 to choose the block is actually one byte before the return address
233 --- hopefully pointing us at the call instruction, or its delay
234 slot instruction. */
235
236 struct block *
237 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
238 {
239 const CORE_ADDR pc = get_frame_address_in_block (frame);
240
241 if (addr_in_block)
242 *addr_in_block = pc;
243
244 return block_for_pc (pc);
245 }
246
247 CORE_ADDR
248 get_pc_function_start (CORE_ADDR pc)
249 {
250 struct block *bl;
251 struct minimal_symbol *msymbol;
252
253 bl = block_for_pc (pc);
254 if (bl)
255 {
256 struct symbol *symbol = block_function (bl);
257
258 if (symbol)
259 {
260 bl = SYMBOL_BLOCK_VALUE (symbol);
261 return BLOCK_START (bl);
262 }
263 }
264
265 msymbol = lookup_minimal_symbol_by_pc (pc);
266 if (msymbol)
267 {
268 CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
269
270 if (find_pc_section (fstart))
271 return fstart;
272 }
273
274 return 0;
275 }
276
277 /* Return the symbol for the function executing in frame FRAME. */
278
279 struct symbol *
280 get_frame_function (struct frame_info *frame)
281 {
282 struct block *bl = get_frame_block (frame, 0);
283 if (bl == 0)
284 return 0;
285 return block_function (bl);
286 }
287 \f
288
289 /* Return the function containing pc value PC in section SECTION.
290 Returns 0 if function is not known. */
291
292 struct symbol *
293 find_pc_sect_function (CORE_ADDR pc, struct bfd_section *section)
294 {
295 struct block *b = block_for_pc_sect (pc, section);
296 if (b == 0)
297 return 0;
298 return block_function (b);
299 }
300
301 /* Return the function containing pc value PC.
302 Returns 0 if function is not known. Backward compatibility, no section */
303
304 struct symbol *
305 find_pc_function (CORE_ADDR pc)
306 {
307 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
308 }
309
310 /* These variables are used to cache the most recent result
311 * of find_pc_partial_function. */
312
313 static CORE_ADDR cache_pc_function_low = 0;
314 static CORE_ADDR cache_pc_function_high = 0;
315 static char *cache_pc_function_name = 0;
316 static struct bfd_section *cache_pc_function_section = NULL;
317
318 /* Clear cache, e.g. when symbol table is discarded. */
319
320 void
321 clear_pc_function_cache (void)
322 {
323 cache_pc_function_low = 0;
324 cache_pc_function_high = 0;
325 cache_pc_function_name = (char *) 0;
326 cache_pc_function_section = NULL;
327 }
328
329 /* Finds the "function" (text symbol) that is smaller than PC but
330 greatest of all of the potential text symbols in SECTION. Sets
331 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
332 If ENDADDR is non-null, then set *ENDADDR to be the end of the
333 function (exclusive), but passing ENDADDR as non-null means that
334 the function might cause symbols to be read. This function either
335 succeeds or fails (not halfway succeeds). If it succeeds, it sets
336 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
337 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
338 returns 0. */
339
340 int
341 find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
342 CORE_ADDR *address, CORE_ADDR *endaddr)
343 {
344 struct partial_symtab *pst;
345 struct symbol *f;
346 struct minimal_symbol *msymbol;
347 struct partial_symbol *psb;
348 struct obj_section *osect;
349 int i;
350 CORE_ADDR mapped_pc;
351
352 mapped_pc = overlay_mapped_address (pc, section);
353
354 if (mapped_pc >= cache_pc_function_low
355 && mapped_pc < cache_pc_function_high
356 && section == cache_pc_function_section)
357 goto return_cached_value;
358
359 /* If sigtramp is in the u area, it counts as a function (especially
360 important for step_1). */
361 if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
362 {
363 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
364 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
365 cache_pc_function_name = "<sigtramp>";
366 cache_pc_function_section = section;
367 goto return_cached_value;
368 }
369
370 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
371 pst = find_pc_sect_psymtab (mapped_pc, section);
372 if (pst)
373 {
374 /* Need to read the symbols to get a good value for the end address. */
375 if (endaddr != NULL && !pst->readin)
376 {
377 /* Need to get the terminal in case symbol-reading produces
378 output. */
379 target_terminal_ours_for_output ();
380 PSYMTAB_TO_SYMTAB (pst);
381 }
382
383 if (pst->readin)
384 {
385 /* Checking whether the msymbol has a larger value is for the
386 "pathological" case mentioned in print_frame_info. */
387 f = find_pc_sect_function (mapped_pc, section);
388 if (f != NULL
389 && (msymbol == NULL
390 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
391 >= SYMBOL_VALUE_ADDRESS (msymbol))))
392 {
393 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
394 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
395 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
396 cache_pc_function_section = section;
397 goto return_cached_value;
398 }
399 }
400 else
401 {
402 /* Now that static symbols go in the minimal symbol table, perhaps
403 we could just ignore the partial symbols. But at least for now
404 we use the partial or minimal symbol, whichever is larger. */
405 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
406
407 if (psb
408 && (msymbol == NULL ||
409 (SYMBOL_VALUE_ADDRESS (psb)
410 >= SYMBOL_VALUE_ADDRESS (msymbol))))
411 {
412 /* This case isn't being cached currently. */
413 if (address)
414 *address = SYMBOL_VALUE_ADDRESS (psb);
415 if (name)
416 *name = DEPRECATED_SYMBOL_NAME (psb);
417 /* endaddr non-NULL can't happen here. */
418 return 1;
419 }
420 }
421 }
422
423 /* Not in the normal symbol tables, see if the pc is in a known section.
424 If it's not, then give up. This ensures that anything beyond the end
425 of the text seg doesn't appear to be part of the last function in the
426 text segment. */
427
428 osect = find_pc_sect_section (mapped_pc, section);
429
430 if (!osect)
431 msymbol = NULL;
432
433 /* Must be in the minimal symbol table. */
434 if (msymbol == NULL)
435 {
436 /* No available symbol. */
437 if (name != NULL)
438 *name = 0;
439 if (address != NULL)
440 *address = 0;
441 if (endaddr != NULL)
442 *endaddr = 0;
443 return 0;
444 }
445
446 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
447 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
448 cache_pc_function_section = section;
449
450 /* Use the lesser of the next minimal symbol in the same section, or
451 the end of the section, as the end of the function. */
452
453 /* Step over other symbols at this same address, and symbols in
454 other sections, to find the next symbol in this section with
455 a different address. */
456
457 for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
458 {
459 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
460 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
461 break;
462 }
463
464 if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
465 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
466 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
467 else
468 /* We got the start address from the last msymbol in the objfile.
469 So the end address is the end of the section. */
470 cache_pc_function_high = osect->endaddr;
471
472 return_cached_value:
473
474 if (address)
475 {
476 if (pc_in_unmapped_range (pc, section))
477 *address = overlay_unmapped_address (cache_pc_function_low, section);
478 else
479 *address = cache_pc_function_low;
480 }
481
482 if (name)
483 *name = cache_pc_function_name;
484
485 if (endaddr)
486 {
487 if (pc_in_unmapped_range (pc, section))
488 {
489 /* Because the high address is actually beyond the end of
490 the function (and therefore possibly beyond the end of
491 the overlay), we must actually convert (high - 1) and
492 then add one to that. */
493
494 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
495 section);
496 }
497 else
498 *endaddr = cache_pc_function_high;
499 }
500
501 return 1;
502 }
503
504 /* Backward compatibility, no section argument. */
505
506 int
507 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
508 CORE_ADDR *endaddr)
509 {
510 asection *section;
511
512 section = find_pc_overlay (pc);
513 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
514 }
515
516 /* Return the innermost stack frame executing inside of BLOCK,
517 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
518
519 struct frame_info *
520 block_innermost_frame (struct block *block)
521 {
522 struct frame_info *frame;
523 CORE_ADDR start;
524 CORE_ADDR end;
525 CORE_ADDR calling_pc;
526
527 if (block == NULL)
528 return NULL;
529
530 start = BLOCK_START (block);
531 end = BLOCK_END (block);
532
533 frame = NULL;
534 while (1)
535 {
536 frame = get_prev_frame (frame);
537 if (frame == NULL)
538 return NULL;
539 calling_pc = get_frame_address_in_block (frame);
540 if (calling_pc >= start && calling_pc < end)
541 return frame;
542 }
543 }
544
545 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
546 below is for infrun.c, which may give the macro a pc without that
547 subtracted out. */
548
549 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
550 top of the stack frame which we are checking, where "bottom" and
551 "top" refer to some section of memory which contains the code for
552 the call dummy. Calls to this macro assume that the contents of
553 SP_REGNUM and DEPRECATED_FP_REGNUM (or the saved values thereof),
554 respectively, are the things to pass.
555
556 This won't work on the 29k, where SP_REGNUM and
557 DEPRECATED_FP_REGNUM don't have that meaning, but the 29k doesn't
558 use ON_STACK. This could be fixed by generalizing this scheme,
559 perhaps by passing in a frame and adding a few fields, at least on
560 machines which need them for DEPRECATED_PC_IN_CALL_DUMMY.
561
562 Something simpler, like checking for the stack segment, doesn't work,
563 since various programs (threads implementations, gcc nested function
564 stubs, etc) may either allocate stack frames in another segment, or
565 allocate other kinds of code on the stack. */
566
567 int
568 deprecated_pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp,
569 CORE_ADDR frame_address)
570 {
571 return (INNER_THAN ((sp), (pc))
572 && (frame_address != 0)
573 && INNER_THAN ((pc), (frame_address)));
574 }
575
576 int
577 deprecated_pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
578 CORE_ADDR frame_address)
579 {
580 CORE_ADDR addr = entry_point_address ();
581 if (DEPRECATED_CALL_DUMMY_ADDRESS_P ())
582 addr = DEPRECATED_CALL_DUMMY_ADDRESS ();
583 return ((pc) >= addr && (pc) <= (addr + DECR_PC_AFTER_BREAK));
584 }
585
586 /* Returns true for a user frame or a call_function_by_hand dummy
587 frame, and false for the CRT0 start-up frame. Purpose is to
588 terminate backtrace. */
589
590 int
591 legacy_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
592 {
593 /* Don't prune CALL_DUMMY frames. */
594 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES
595 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
596 return 1;
597
598 /* If the new frame pointer is zero, then it isn't valid. */
599 if (fp == 0)
600 return 0;
601
602 /* If the new frame would be inside (younger than) the previous frame,
603 then it isn't valid. */
604 if (INNER_THAN (fp, get_frame_base (fi)))
605 return 0;
606
607 /* If the architecture has a custom DEPRECATED_FRAME_CHAIN_VALID,
608 call it now. */
609 if (DEPRECATED_FRAME_CHAIN_VALID_P ())
610 return DEPRECATED_FRAME_CHAIN_VALID (fp, fi);
611
612 /* If we're already inside the entry function for the main objfile, then it
613 isn't valid. */
614 if (legacy_inside_entry_func (get_frame_pc (fi)))
615 return 0;
616
617 /* If we're inside the entry file, it isn't valid. */
618 /* NOTE/drow 2002-12-25: should there be a way to disable this check? It
619 assumes a single small entry file, and the way some debug readers (e.g.
620 dbxread) figure out which object is the entry file is somewhat hokey. */
621 if (deprecated_inside_entry_file (frame_pc_unwind (fi)))
622 return 0;
623
624 return 1;
625 }
This page took 0.045404 seconds and 4 git commands to generate.