0d0e89a8d5f03f9ecb542de2e0077325fec47bdd
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
3 Copyright 1986, 1987, 1988, 1989, 1991 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "bfd.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "frame.h"
27 #include "gdbcore.h"
28 #include "value.h" /* for read_register */
29 #include "target.h" /* for target_has_stack */
30 #include "inferior.h" /* for read_pc */
31
32 /* Is ADDR inside the startup file? Note that if your machine
33 has a way to detect the bottom of the stack, there is no need
34 to call this function from FRAME_CHAIN_VALID; the reason for
35 doing so is that some machines have no way of detecting bottom
36 of stack.
37
38 A PC of zero is always considered to be the bottom of the stack. */
39
40 int
41 inside_entry_file (addr)
42 CORE_ADDR addr;
43 {
44 if (addr == 0)
45 return 1;
46 if (symfile_objfile == 0)
47 return 0;
48 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
49 /* Do not stop backtracing if the pc is in the call dummy
50 at the entry point. */
51 if (PC_IN_CALL_DUMMY (addr, 0, 0))
52 return 0;
53 #endif
54 return (addr >= symfile_objfile -> ei.entry_file_lowpc &&
55 addr < symfile_objfile -> ei.entry_file_highpc);
56 }
57
58 /* Test a specified PC value to see if it is in the range of addresses
59 that correspond to the main() function. See comments above for why
60 we might want to do this.
61
62 Typically called from FRAME_CHAIN_VALID.
63
64 A PC of zero is always considered to be the bottom of the stack. */
65
66 int
67 inside_main_func (pc)
68 CORE_ADDR pc;
69 {
70 if (pc == 0)
71 return 1;
72 if (symfile_objfile == 0)
73 return 0;
74 return (symfile_objfile -> ei.main_func_lowpc <= pc &&
75 symfile_objfile -> ei.main_func_highpc > pc);
76 }
77
78 /* Test a specified PC value to see if it is in the range of addresses
79 that correspond to the process entry point function. See comments
80 in objfiles.h for why we might want to do this.
81
82 Typically called from FRAME_CHAIN_VALID.
83
84 A PC of zero is always considered to be the bottom of the stack. */
85
86 int
87 inside_entry_func (pc)
88 CORE_ADDR pc;
89 {
90 if (pc == 0)
91 return 1;
92 if (symfile_objfile == 0)
93 return 0;
94 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
95 /* Do not stop backtracing if the pc is in the call dummy
96 at the entry point. */
97 if (PC_IN_CALL_DUMMY (pc, 0, 0))
98 return 0;
99 #endif
100 return (symfile_objfile -> ei.entry_func_lowpc <= pc &&
101 symfile_objfile -> ei.entry_func_highpc > pc);
102 }
103
104 /* Address of innermost stack frame (contents of FP register) */
105
106 static FRAME current_frame;
107
108 /*
109 * Cache for frame addresses already read by gdb. Valid only while
110 * inferior is stopped. Control variables for the frame cache should
111 * be local to this module.
112 */
113 struct obstack frame_cache_obstack;
114
115 /* Return the innermost (currently executing) stack frame. */
116
117 FRAME
118 get_current_frame ()
119 {
120 /* We assume its address is kept in a general register;
121 param.h says which register. */
122
123 return current_frame;
124 }
125
126 void
127 set_current_frame (frame)
128 FRAME frame;
129 {
130 current_frame = frame;
131 }
132
133 FRAME
134 create_new_frame (addr, pc)
135 FRAME_ADDR addr;
136 CORE_ADDR pc;
137 {
138 struct frame_info *fci; /* Same type as FRAME */
139 char *name;
140
141 fci = (struct frame_info *)
142 obstack_alloc (&frame_cache_obstack,
143 sizeof (struct frame_info));
144
145 /* Arbitrary frame */
146 fci->next = (struct frame_info *) 0;
147 fci->prev = (struct frame_info *) 0;
148 fci->frame = addr;
149 fci->pc = pc;
150 find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
151 fci->signal_handler_caller = IN_SIGTRAMP (fci->pc, name);
152
153 #ifdef INIT_EXTRA_FRAME_INFO
154 INIT_EXTRA_FRAME_INFO (0, fci);
155 #endif
156
157 return fci;
158 }
159
160 /* Return the frame that called FRAME.
161 If FRAME is the original frame (it has no caller), return 0. */
162
163 FRAME
164 get_prev_frame (frame)
165 FRAME frame;
166 {
167 /* We're allowed to know that FRAME and "struct frame_info *" are
168 the same */
169 return get_prev_frame_info (frame);
170 }
171
172 /* Return the frame that FRAME calls (0 if FRAME is the innermost
173 frame). */
174
175 FRAME
176 get_next_frame (frame)
177 FRAME frame;
178 {
179 /* We're allowed to know that FRAME and "struct frame_info *" are
180 the same */
181 return frame->next;
182 }
183
184 /*
185 * Flush the entire frame cache.
186 */
187 void
188 flush_cached_frames ()
189 {
190 /* Since we can't really be sure what the first object allocated was */
191 obstack_free (&frame_cache_obstack, 0);
192 obstack_init (&frame_cache_obstack);
193
194 current_frame = (struct frame_info *) 0; /* Invalidate cache */
195 }
196
197 /* Flush the frame cache, and start a new one if necessary. */
198 void
199 reinit_frame_cache ()
200 {
201 flush_cached_frames ();
202 if (target_has_stack)
203 {
204 set_current_frame (create_new_frame (read_fp (), read_pc ()));
205 select_frame (get_current_frame (), 0);
206 }
207 else
208 {
209 set_current_frame (0);
210 select_frame ((FRAME) 0, -1);
211 }
212 }
213
214 /* Return a structure containing various interesting information
215 about a specified stack frame. */
216 /* How do I justify including this function? Well, the FRAME
217 identifier format has gone through several changes recently, and
218 it's not completely inconceivable that it could happen again. If
219 it does, have this routine around will help */
220
221 struct frame_info *
222 get_frame_info (frame)
223 FRAME frame;
224 {
225 return frame;
226 }
227
228 /* If a machine allows frameless functions, it should define a macro
229 FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct
230 frame_info for the frame, and FRAMELESS should be set to nonzero
231 if it represents a frameless function invocation. */
232
233 /* Return nonzero if the function for this frame lacks a prologue. Many
234 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
235 function. */
236
237 int
238 frameless_look_for_prologue (frame)
239 FRAME frame;
240 {
241 CORE_ADDR func_start, after_prologue;
242 func_start = (get_pc_function_start (frame->pc) +
243 FUNCTION_START_OFFSET);
244 if (func_start)
245 {
246 after_prologue = func_start;
247 #ifdef SKIP_PROLOGUE_FRAMELESS_P
248 /* This is faster, since only care whether there *is* a prologue,
249 not how long it is. */
250 SKIP_PROLOGUE_FRAMELESS_P (after_prologue);
251 #else
252 SKIP_PROLOGUE (after_prologue);
253 #endif
254 return after_prologue == func_start;
255 }
256 else
257 /* If we can't find the start of the function, we don't really
258 know whether the function is frameless, but we should be able
259 to get a reasonable (i.e. best we can do under the
260 circumstances) backtrace by saying that it isn't. */
261 return 0;
262 }
263
264 /* Default a few macros that people seldom redefine. */
265
266 #if !defined (INIT_FRAME_PC)
267 #define INIT_FRAME_PC(fromleaf, prev) \
268 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
269 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
270 #endif
271
272 #ifndef FRAME_CHAIN_COMBINE
273 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
274 #endif
275
276 /* Return a structure containing various interesting information
277 about the frame that called NEXT_FRAME. Returns NULL
278 if there is no such frame. */
279
280 struct frame_info *
281 get_prev_frame_info (next_frame)
282 FRAME next_frame;
283 {
284 FRAME_ADDR address = 0;
285 struct frame_info *prev;
286 int fromleaf = 0;
287 char *name;
288
289 /* If the requested entry is in the cache, return it.
290 Otherwise, figure out what the address should be for the entry
291 we're about to add to the cache. */
292
293 if (!next_frame)
294 {
295 if (!current_frame)
296 {
297 error ("You haven't set up a process's stack to examine.");
298 }
299
300 return current_frame;
301 }
302
303 /* If we have the prev one, return it */
304 if (next_frame->prev)
305 return next_frame->prev;
306
307 /* On some machines it is possible to call a function without
308 setting up a stack frame for it. On these machines, we
309 define this macro to take two args; a frameinfo pointer
310 identifying a frame and a variable to set or clear if it is
311 or isn't leafless. */
312 #ifdef FRAMELESS_FUNCTION_INVOCATION
313 /* Still don't want to worry about this except on the innermost
314 frame. This macro will set FROMLEAF if NEXT_FRAME is a
315 frameless function invocation. */
316 if (!(next_frame->next))
317 {
318 FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf);
319 if (fromleaf)
320 address = next_frame->frame;
321 }
322 #endif
323
324 if (!fromleaf)
325 {
326 /* Two macros defined in tm.h specify the machine-dependent
327 actions to be performed here.
328 First, get the frame's chain-pointer.
329 If that is zero, the frame is the outermost frame or a leaf
330 called by the outermost frame. This means that if start
331 calls main without a frame, we'll return 0 (which is fine
332 anyway).
333
334 Nope; there's a problem. This also returns when the current
335 routine is a leaf of main. This is unacceptable. We move
336 this to after the ffi test; I'd rather have backtraces from
337 start go curfluy than have an abort called from main not show
338 main. */
339 address = FRAME_CHAIN (next_frame);
340 if (!FRAME_CHAIN_VALID (address, next_frame))
341 return 0;
342 address = FRAME_CHAIN_COMBINE (address, next_frame);
343 }
344 if (address == 0)
345 return 0;
346
347 prev = (struct frame_info *)
348 obstack_alloc (&frame_cache_obstack,
349 sizeof (struct frame_info));
350
351 if (next_frame)
352 next_frame->prev = prev;
353 prev->next = next_frame;
354 prev->prev = (struct frame_info *) 0;
355 prev->frame = address;
356 prev->signal_handler_caller = 0;
357
358 /* This change should not be needed, FIXME! We should
359 determine whether any targets *need* INIT_FRAME_PC to happen
360 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
361 express what goes on here.
362
363 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
364 (where the PC is already set up) and here (where it isn't).
365 INIT_FRAME_PC is only called from here, always after
366 INIT_EXTRA_FRAME_INFO.
367
368 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
369 value (which hasn't been set yet). Some other machines appear to
370 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
371
372 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
373 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
374
375 To answer the question, yes the sparc needs INIT_FRAME_PC after
376 INIT_EXTRA_FRAME_INFO. Suggested scheme:
377
378 SETUP_INNERMOST_FRAME()
379 Default version is just create_new_frame (read_fp ()),
380 read_pc ()). Machines with extra frame info would do that (or the
381 local equivalent) and then set the extra fields.
382 SETUP_ARBITRARY_FRAME(argc, argv)
383 Only change here is that create_new_frame would no longer init extra
384 frame info; SETUP_ARBITRARY_FRAME would have to do that.
385 INIT_PREV_FRAME(fromleaf, prev)
386 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC.
387 std_frame_pc(fromleaf, prev)
388 This is the default setting for INIT_PREV_FRAME. It just does what
389 the default INIT_FRAME_PC does. Some machines will call it from
390 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
391 Some machines won't use it.
392 kingdon@cygnus.com, 13Apr93. */
393
394 #ifdef INIT_FRAME_PC_FIRST
395 INIT_FRAME_PC_FIRST (fromleaf, prev);
396 #endif
397
398 #ifdef INIT_EXTRA_FRAME_INFO
399 INIT_EXTRA_FRAME_INFO(fromleaf, prev);
400 #endif
401
402 /* This entry is in the frame queue now, which is good since
403 FRAME_SAVED_PC may use that queue to figure out it's value
404 (see tm-sparc.h). We want the pc saved in the inferior frame. */
405 INIT_FRAME_PC(fromleaf, prev);
406
407 find_pc_partial_function (prev->pc, &name,
408 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
409 if (IN_SIGTRAMP (prev->pc, name))
410 prev->signal_handler_caller = 1;
411
412 return prev;
413 }
414
415 CORE_ADDR
416 get_frame_pc (frame)
417 FRAME frame;
418 {
419 struct frame_info *fi;
420 fi = get_frame_info (frame);
421 return fi->pc;
422 }
423
424 #if defined (FRAME_FIND_SAVED_REGS)
425 /* Find the addresses in which registers are saved in FRAME. */
426
427 void
428 get_frame_saved_regs (frame_info_addr, saved_regs_addr)
429 struct frame_info *frame_info_addr;
430 struct frame_saved_regs *saved_regs_addr;
431 {
432 FRAME_FIND_SAVED_REGS (frame_info_addr, *saved_regs_addr);
433 }
434 #endif
435
436 /* Return the innermost lexical block in execution
437 in a specified stack frame. The frame address is assumed valid. */
438
439 struct block *
440 get_frame_block (frame)
441 FRAME frame;
442 {
443 struct frame_info *fi;
444 CORE_ADDR pc;
445
446 fi = get_frame_info (frame);
447
448 pc = fi->pc;
449 if (fi->next != 0)
450 /* We are not in the innermost frame. We need to subtract one to
451 get the correct block, in case the call instruction was the
452 last instruction of the block. If there are any machines on
453 which the saved pc does not point to after the call insn, we
454 probably want to make fi->pc point after the call insn anyway. */
455 --pc;
456 return block_for_pc (pc);
457 }
458
459 struct block *
460 get_current_block ()
461 {
462 return block_for_pc (read_pc ());
463 }
464
465 CORE_ADDR
466 get_pc_function_start (pc)
467 CORE_ADDR pc;
468 {
469 register struct block *bl;
470 register struct symbol *symbol;
471 register struct minimal_symbol *msymbol;
472 CORE_ADDR fstart;
473
474 if ((bl = block_for_pc (pc)) != NULL &&
475 (symbol = block_function (bl)) != NULL)
476 {
477 bl = SYMBOL_BLOCK_VALUE (symbol);
478 fstart = BLOCK_START (bl);
479 }
480 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
481 {
482 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
483 }
484 else
485 {
486 fstart = 0;
487 }
488 return (fstart);
489 }
490
491 /* Return the symbol for the function executing in frame FRAME. */
492
493 struct symbol *
494 get_frame_function (frame)
495 FRAME frame;
496 {
497 register struct block *bl = get_frame_block (frame);
498 if (bl == 0)
499 return 0;
500 return block_function (bl);
501 }
502 \f
503 /* Return the blockvector immediately containing the innermost lexical block
504 containing the specified pc value, or 0 if there is none.
505 PINDEX is a pointer to the index value of the block. If PINDEX
506 is NULL, we don't pass this information back to the caller. */
507
508 struct blockvector *
509 blockvector_for_pc (pc, pindex)
510 register CORE_ADDR pc;
511 int *pindex;
512 {
513 register struct block *b;
514 register int bot, top, half;
515 register struct symtab *s;
516 struct blockvector *bl;
517
518 /* First search all symtabs for one whose file contains our pc */
519 s = find_pc_symtab (pc);
520 if (s == 0)
521 return 0;
522
523 bl = BLOCKVECTOR (s);
524 b = BLOCKVECTOR_BLOCK (bl, 0);
525
526 /* Then search that symtab for the smallest block that wins. */
527 /* Use binary search to find the last block that starts before PC. */
528
529 bot = 0;
530 top = BLOCKVECTOR_NBLOCKS (bl);
531
532 while (top - bot > 1)
533 {
534 half = (top - bot + 1) >> 1;
535 b = BLOCKVECTOR_BLOCK (bl, bot + half);
536 if (BLOCK_START (b) <= pc)
537 bot += half;
538 else
539 top = bot + half;
540 }
541
542 /* Now search backward for a block that ends after PC. */
543
544 while (bot >= 0)
545 {
546 b = BLOCKVECTOR_BLOCK (bl, bot);
547 if (BLOCK_END (b) > pc)
548 {
549 if (pindex)
550 *pindex = bot;
551 return bl;
552 }
553 bot--;
554 }
555
556 return 0;
557 }
558
559 /* Return the innermost lexical block containing the specified pc value,
560 or 0 if there is none. */
561
562 struct block *
563 block_for_pc (pc)
564 register CORE_ADDR pc;
565 {
566 register struct blockvector *bl;
567 int index;
568
569 bl = blockvector_for_pc (pc, &index);
570 if (bl)
571 return BLOCKVECTOR_BLOCK (bl, index);
572 return 0;
573 }
574
575 /* Return the function containing pc value PC.
576 Returns 0 if function is not known. */
577
578 struct symbol *
579 find_pc_function (pc)
580 CORE_ADDR pc;
581 {
582 register struct block *b = block_for_pc (pc);
583 if (b == 0)
584 return 0;
585 return block_function (b);
586 }
587
588 /* These variables are used to cache the most recent result
589 * of find_pc_partial_function. */
590
591 static CORE_ADDR cache_pc_function_low = 0;
592 static CORE_ADDR cache_pc_function_high = 0;
593 static char *cache_pc_function_name = 0;
594
595 /* Clear cache, e.g. when symbol table is discarded. */
596
597 void
598 clear_pc_function_cache()
599 {
600 cache_pc_function_low = 0;
601 cache_pc_function_high = 0;
602 cache_pc_function_name = (char *)0;
603 }
604
605 /* Finds the "function" (text symbol) that is smaller than PC but
606 greatest of all of the potential text symbols. Sets *NAME and/or
607 *ADDRESS conditionally if that pointer is non-null. If ENDADDR is
608 non-null, then set *ENDADDR to be the end of the function
609 (exclusive), but passing ENDADDR as non-null means that the
610 function might cause symbols to be read. This function either
611 succeeds or fails (not halfway succeeds). If it succeeds, it sets
612 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
613 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero
614 and returns 0. */
615
616 int
617 find_pc_partial_function (pc, name, address, endaddr)
618 CORE_ADDR pc;
619 char **name;
620 CORE_ADDR *address;
621 CORE_ADDR *endaddr;
622 {
623 struct partial_symtab *pst;
624 struct symbol *f;
625 struct minimal_symbol *msymbol;
626 struct partial_symbol *psb;
627 struct obj_section *sec;
628
629 if (pc >= cache_pc_function_low && pc < cache_pc_function_high)
630 goto return_cached_value;
631
632 /* If sigtramp is in the u area, it counts as a function (especially
633 important for step_1). */
634 #if defined SIGTRAMP_START
635 if (IN_SIGTRAMP (pc, (char *)NULL))
636 {
637 cache_pc_function_low = SIGTRAMP_START;
638 cache_pc_function_high = SIGTRAMP_END;
639 cache_pc_function_name = "<sigtramp>";
640
641 goto return_cached_value;
642 }
643 #endif
644
645 msymbol = lookup_minimal_symbol_by_pc (pc);
646 pst = find_pc_psymtab (pc);
647 if (pst)
648 {
649 /* Need to read the symbols to get a good value for the end address. */
650 if (endaddr != NULL && !pst->readin)
651 PSYMTAB_TO_SYMTAB (pst);
652
653 if (pst->readin)
654 {
655 /* Checking whether the msymbol has a larger value is for the
656 "pathological" case mentioned in print_frame_info. */
657 f = find_pc_function (pc);
658 if (f != NULL
659 && (msymbol == NULL
660 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
661 >= SYMBOL_VALUE_ADDRESS (msymbol))))
662 {
663 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
664 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
665 cache_pc_function_name = SYMBOL_NAME (f);
666 goto return_cached_value;
667 }
668 }
669 else
670 {
671 /* Now that static symbols go in the minimal symbol table, perhaps
672 we could just ignore the partial symbols. But at least for now
673 we use the partial or minimal symbol, whichever is larger. */
674 psb = find_pc_psymbol (pst, pc);
675
676 if (psb
677 && (msymbol == NULL ||
678 (SYMBOL_VALUE_ADDRESS (psb)
679 >= SYMBOL_VALUE_ADDRESS (msymbol))))
680 {
681 /* This case isn't being cached currently. */
682 if (address)
683 *address = SYMBOL_VALUE_ADDRESS (psb);
684 if (name)
685 *name = SYMBOL_NAME (psb);
686 /* endaddr non-NULL can't happen here. */
687 return 1;
688 }
689 }
690 }
691
692 /* Not in the normal symbol tables, see if the pc is in a known section.
693 If it's not, then give up. This ensures that anything beyond the end
694 of the text seg doesn't appear to be part of the last function in the
695 text segment. */
696
697 sec = find_pc_section (pc);
698
699 if (!sec)
700 msymbol = NULL;
701
702 /* Must be in the minimal symbol table. */
703 if (msymbol == NULL)
704 {
705 /* No available symbol. */
706 if (name != NULL)
707 *name = 0;
708 if (address != NULL)
709 *address = 0;
710 if (endaddr != NULL)
711 *endaddr = 0;
712 return 0;
713 }
714
715 /* See if we're in a transfer table for Sun shared libs. */
716
717 if (msymbol -> type == mst_text)
718 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
719 else
720 /* It is a transfer table for Sun shared libraries. */
721 cache_pc_function_low = pc - FUNCTION_START_OFFSET;
722
723 cache_pc_function_name = SYMBOL_NAME (msymbol);
724
725 /* Use the lesser of the next minimal symbol, or the end of the section, as
726 the end of the function. */
727
728 if (SYMBOL_NAME (msymbol + 1) != NULL
729 && SYMBOL_VALUE_ADDRESS (msymbol + 1) < sec->endaddr)
730 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + 1);
731 else
732 /* We got the start address from the last msymbol in the objfile.
733 So the end address is the end of the section. */
734 cache_pc_function_high = sec->endaddr;
735
736 return_cached_value:
737 if (address)
738 *address = cache_pc_function_low;
739 if (name)
740 *name = cache_pc_function_name;
741 if (endaddr)
742 *endaddr = cache_pc_function_high;
743 return 1;
744 }
745
746 /* Return the innermost stack frame executing inside of BLOCK,
747 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
748
749 FRAME
750 block_innermost_frame (block)
751 struct block *block;
752 {
753 struct frame_info *fi;
754 register FRAME frame;
755 register CORE_ADDR start;
756 register CORE_ADDR end;
757
758 if (block == NULL)
759 return NULL;
760
761 start = BLOCK_START (block);
762 end = BLOCK_END (block);
763
764 frame = 0;
765 while (1)
766 {
767 frame = get_prev_frame (frame);
768 if (frame == 0)
769 return 0;
770 fi = get_frame_info (frame);
771 if (fi->pc >= start && fi->pc < end)
772 return frame;
773 }
774 }
775
776 #ifdef SIGCONTEXT_PC_OFFSET
777 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
778
779 CORE_ADDR
780 sigtramp_saved_pc (frame)
781 FRAME frame;
782 {
783 CORE_ADDR sigcontext_addr;
784 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
785 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
786 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
787
788 /* Get sigcontext address, it is the third parameter on the stack. */
789 if (frame->next)
790 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
791 + FRAME_ARGS_SKIP + sigcontext_offs,
792 ptrbytes);
793 else
794 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
795 + sigcontext_offs,
796 ptrbytes);
797
798 /* Don't cause a memory_error when accessing sigcontext in case the stack
799 layout has changed or the stack is corrupt. */
800 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
801 return extract_unsigned_integer (buf, ptrbytes);
802 }
803 #endif /* SIGCONTEXT_PC_OFFSET */
804
805 void
806 _initialize_blockframe ()
807 {
808 obstack_init (&frame_cache_obstack);
809 }
This page took 0.048788 seconds and 4 git commands to generate.