* alpha-tdep.c (heuristic_proc_desc): Increase search limit
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
3 Copyright 1986, 1987, 1988, 1989, 1991, 1994, 1995, 1996, 1997
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "bfd.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "frame.h"
28 #include "gdbcore.h"
29 #include "value.h" /* for read_register */
30 #include "target.h" /* for target_has_stack */
31 #include "inferior.h" /* for read_pc */
32 #include "annotate.h"
33
34 /* Is ADDR inside the startup file? Note that if your machine
35 has a way to detect the bottom of the stack, there is no need
36 to call this function from FRAME_CHAIN_VALID; the reason for
37 doing so is that some machines have no way of detecting bottom
38 of stack.
39
40 A PC of zero is always considered to be the bottom of the stack. */
41
42 int
43 inside_entry_file (addr)
44 CORE_ADDR addr;
45 {
46 if (addr == 0)
47 return 1;
48 if (symfile_objfile == 0)
49 return 0;
50 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
51 /* Do not stop backtracing if the pc is in the call dummy
52 at the entry point. */
53 /* FIXME: Won't always work with zeros for the last two arguments */
54 if (PC_IN_CALL_DUMMY (addr, 0, 0))
55 return 0;
56 #endif
57 return (addr >= symfile_objfile -> ei.entry_file_lowpc &&
58 addr < symfile_objfile -> ei.entry_file_highpc);
59 }
60
61 /* Test a specified PC value to see if it is in the range of addresses
62 that correspond to the main() function. See comments above for why
63 we might want to do this.
64
65 Typically called from FRAME_CHAIN_VALID.
66
67 A PC of zero is always considered to be the bottom of the stack. */
68
69 int
70 inside_main_func (pc)
71 CORE_ADDR pc;
72 {
73 if (pc == 0)
74 return 1;
75 if (symfile_objfile == 0)
76 return 0;
77
78 /* If the addr range is not set up at symbol reading time, set it up now.
79 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
80 it is unable to set it up and symbol reading time. */
81
82 if (symfile_objfile -> ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
83 symfile_objfile -> ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
84 {
85 struct symbol *mainsym;
86
87 mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
88 if (mainsym && SYMBOL_CLASS(mainsym) == LOC_BLOCK)
89 {
90 symfile_objfile->ei.main_func_lowpc = BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
91 symfile_objfile->ei.main_func_highpc = BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
92 }
93 }
94 return (symfile_objfile -> ei.main_func_lowpc <= pc &&
95 symfile_objfile -> ei.main_func_highpc > pc);
96 }
97
98 /* Test a specified PC value to see if it is in the range of addresses
99 that correspond to the process entry point function. See comments
100 in objfiles.h for why we might want to do this.
101
102 Typically called from FRAME_CHAIN_VALID.
103
104 A PC of zero is always considered to be the bottom of the stack. */
105
106 int
107 inside_entry_func (pc)
108 CORE_ADDR pc;
109 {
110 if (pc == 0)
111 return 1;
112 if (symfile_objfile == 0)
113 return 0;
114 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
115 /* Do not stop backtracing if the pc is in the call dummy
116 at the entry point. */
117 /* FIXME: Won't always work with zeros for the last two arguments */
118 if (PC_IN_CALL_DUMMY (pc, 0, 0))
119 return 0;
120 #endif
121 return (symfile_objfile -> ei.entry_func_lowpc <= pc &&
122 symfile_objfile -> ei.entry_func_highpc > pc);
123 }
124
125 /* Info about the innermost stack frame (contents of FP register) */
126
127 static struct frame_info *current_frame;
128
129 /* Cache for frame addresses already read by gdb. Valid only while
130 inferior is stopped. Control variables for the frame cache should
131 be local to this module. */
132
133 struct obstack frame_cache_obstack;
134
135 /* Return the innermost (currently executing) stack frame. */
136
137 struct frame_info *
138 get_current_frame ()
139 {
140 if (current_frame == NULL)
141 {
142 if (target_has_stack)
143 current_frame = create_new_frame (read_fp (), read_pc ());
144 else
145 error ("No stack.");
146 }
147 return current_frame;
148 }
149
150 void
151 set_current_frame (frame)
152 struct frame_info *frame;
153 {
154 current_frame = frame;
155 }
156
157 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
158 Always returns a non-NULL value. */
159
160 struct frame_info *
161 create_new_frame (addr, pc)
162 CORE_ADDR addr;
163 CORE_ADDR pc;
164 {
165 struct frame_info *fi;
166 char *name;
167
168 fi = (struct frame_info *)
169 obstack_alloc (&frame_cache_obstack,
170 sizeof (struct frame_info));
171
172 /* Arbitrary frame */
173 fi->next = NULL;
174 fi->prev = NULL;
175 fi->frame = addr;
176 fi->pc = pc;
177 find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
178 fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
179
180 #ifdef INIT_EXTRA_FRAME_INFO
181 INIT_EXTRA_FRAME_INFO (0, fi);
182 #endif
183
184 return fi;
185 }
186
187 /* Return the frame that called FI.
188 If FI is the original frame (it has no caller), return 0. */
189
190 struct frame_info *
191 get_prev_frame (frame)
192 struct frame_info *frame;
193 {
194 return get_prev_frame_info (frame);
195 }
196
197 /* Return the frame that FRAME calls (NULL if FRAME is the innermost
198 frame). */
199
200 struct frame_info *
201 get_next_frame (frame)
202 struct frame_info *frame;
203 {
204 return frame->next;
205 }
206
207 /* Flush the entire frame cache. */
208
209 void
210 flush_cached_frames ()
211 {
212 /* Since we can't really be sure what the first object allocated was */
213 obstack_free (&frame_cache_obstack, 0);
214 obstack_init (&frame_cache_obstack);
215
216 current_frame = NULL; /* Invalidate cache */
217 select_frame (NULL, -1);
218 annotate_frames_invalid ();
219 }
220
221 /* Flush the frame cache, and start a new one if necessary. */
222
223 void
224 reinit_frame_cache ()
225 {
226 flush_cached_frames ();
227
228 /* FIXME: The inferior_pid test is wrong if there is a corefile. */
229 if (inferior_pid != 0)
230 {
231 select_frame (get_current_frame (), 0);
232 }
233 }
234
235 /* If a machine allows frameless functions, it should define a macro
236 FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct
237 frame_info for the frame, and FRAMELESS should be set to nonzero
238 if it represents a frameless function invocation. */
239
240 /* Return nonzero if the function for this frame lacks a prologue. Many
241 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
242 function. */
243
244 int
245 frameless_look_for_prologue (frame)
246 struct frame_info *frame;
247 {
248 CORE_ADDR func_start, after_prologue;
249 func_start = get_pc_function_start (frame->pc);
250 if (func_start)
251 {
252 func_start += FUNCTION_START_OFFSET;
253 after_prologue = func_start;
254 #ifdef SKIP_PROLOGUE_FRAMELESS_P
255 /* This is faster, since only care whether there *is* a prologue,
256 not how long it is. */
257 SKIP_PROLOGUE_FRAMELESS_P (after_prologue);
258 #else
259 SKIP_PROLOGUE (after_prologue);
260 #endif
261 return after_prologue == func_start;
262 }
263 else if (frame->pc == 0)
264 /* A frame with a zero PC is usually created by dereferencing a NULL
265 function pointer, normally causing an immediate core dump of the
266 inferior. Mark function as frameless, as the inferior has no chance
267 of setting up a stack frame. */
268 return 1;
269 else
270 /* If we can't find the start of the function, we don't really
271 know whether the function is frameless, but we should be able
272 to get a reasonable (i.e. best we can do under the
273 circumstances) backtrace by saying that it isn't. */
274 return 0;
275 }
276
277 /* Default a few macros that people seldom redefine. */
278
279 #if !defined (INIT_FRAME_PC)
280 #define INIT_FRAME_PC(fromleaf, prev) \
281 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
282 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
283 #endif
284
285 #ifndef FRAME_CHAIN_COMBINE
286 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
287 #endif
288
289 /* Return a structure containing various interesting information
290 about the frame that called NEXT_FRAME. Returns NULL
291 if there is no such frame. */
292
293 struct frame_info *
294 get_prev_frame_info (next_frame)
295 struct frame_info *next_frame;
296 {
297 CORE_ADDR address = 0;
298 struct frame_info *prev;
299 int fromleaf = 0;
300 char *name;
301
302 /* If the requested entry is in the cache, return it.
303 Otherwise, figure out what the address should be for the entry
304 we're about to add to the cache. */
305
306 if (!next_frame)
307 {
308 #if 0
309 /* This screws value_of_variable, which just wants a nice clean
310 NULL return from block_innermost_frame if there are no frames.
311 I don't think I've ever seen this message happen otherwise.
312 And returning NULL here is a perfectly legitimate thing to do. */
313 if (!current_frame)
314 {
315 error ("You haven't set up a process's stack to examine.");
316 }
317 #endif
318
319 return current_frame;
320 }
321
322 /* If we have the prev one, return it */
323 if (next_frame->prev)
324 return next_frame->prev;
325
326 /* On some machines it is possible to call a function without
327 setting up a stack frame for it. On these machines, we
328 define this macro to take two args; a frameinfo pointer
329 identifying a frame and a variable to set or clear if it is
330 or isn't leafless. */
331 #ifdef FRAMELESS_FUNCTION_INVOCATION
332 /* Still don't want to worry about this except on the innermost
333 frame. This macro will set FROMLEAF if NEXT_FRAME is a
334 frameless function invocation. */
335 if (!(next_frame->next))
336 {
337 FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf);
338 if (fromleaf)
339 address = FRAME_FP (next_frame);
340 }
341 #endif
342
343 if (!fromleaf)
344 {
345 /* Two macros defined in tm.h specify the machine-dependent
346 actions to be performed here.
347 First, get the frame's chain-pointer.
348 If that is zero, the frame is the outermost frame or a leaf
349 called by the outermost frame. This means that if start
350 calls main without a frame, we'll return 0 (which is fine
351 anyway).
352
353 Nope; there's a problem. This also returns when the current
354 routine is a leaf of main. This is unacceptable. We move
355 this to after the ffi test; I'd rather have backtraces from
356 start go curfluy than have an abort called from main not show
357 main. */
358 address = FRAME_CHAIN (next_frame);
359 if (!FRAME_CHAIN_VALID (address, next_frame))
360 return 0;
361 address = FRAME_CHAIN_COMBINE (address, next_frame);
362 }
363 if (address == 0)
364 return 0;
365
366 prev = (struct frame_info *)
367 obstack_alloc (&frame_cache_obstack,
368 sizeof (struct frame_info));
369
370 if (next_frame)
371 next_frame->prev = prev;
372 prev->next = next_frame;
373 prev->prev = (struct frame_info *) 0;
374 prev->frame = address;
375 prev->signal_handler_caller = 0;
376
377 /* This change should not be needed, FIXME! We should
378 determine whether any targets *need* INIT_FRAME_PC to happen
379 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
380 express what goes on here.
381
382 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
383 (where the PC is already set up) and here (where it isn't).
384 INIT_FRAME_PC is only called from here, always after
385 INIT_EXTRA_FRAME_INFO.
386
387 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
388 value (which hasn't been set yet). Some other machines appear to
389 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
390
391 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
392 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
393
394 Assuming that some machines need INIT_FRAME_PC after
395 INIT_EXTRA_FRAME_INFO, one possible scheme:
396
397 SETUP_INNERMOST_FRAME()
398 Default version is just create_new_frame (read_fp ()),
399 read_pc ()). Machines with extra frame info would do that (or the
400 local equivalent) and then set the extra fields.
401 SETUP_ARBITRARY_FRAME(argc, argv)
402 Only change here is that create_new_frame would no longer init extra
403 frame info; SETUP_ARBITRARY_FRAME would have to do that.
404 INIT_PREV_FRAME(fromleaf, prev)
405 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
406 also return a flag saying whether to keep the new frame, or
407 whether to discard it, because on some machines (e.g. mips) it
408 is really awkward to have FRAME_CHAIN_VALID called *before*
409 INIT_EXTRA_FRAME_INFO (there is no good way to get information
410 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
411 std_frame_pc(fromleaf, prev)
412 This is the default setting for INIT_PREV_FRAME. It just does what
413 the default INIT_FRAME_PC does. Some machines will call it from
414 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
415 Some machines won't use it.
416 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
417
418 #ifdef INIT_FRAME_PC_FIRST
419 INIT_FRAME_PC_FIRST (fromleaf, prev);
420 #endif
421
422 #ifdef INIT_EXTRA_FRAME_INFO
423 INIT_EXTRA_FRAME_INFO(fromleaf, prev);
424 #endif
425
426 /* This entry is in the frame queue now, which is good since
427 FRAME_SAVED_PC may use that queue to figure out its value
428 (see tm-sparc.h). We want the pc saved in the inferior frame. */
429 INIT_FRAME_PC(fromleaf, prev);
430
431 /* If ->frame and ->pc are unchanged, we are in the process of getting
432 ourselves into an infinite backtrace. Some architectures check this
433 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
434 this can't be an architecture-independent check. */
435 if (next_frame != NULL)
436 {
437 if (prev->frame == next_frame->frame
438 && prev->pc == next_frame->pc)
439 {
440 next_frame->prev = NULL;
441 obstack_free (&frame_cache_obstack, prev);
442 return NULL;
443 }
444 }
445
446 find_pc_partial_function (prev->pc, &name,
447 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
448 if (IN_SIGTRAMP (prev->pc, name))
449 prev->signal_handler_caller = 1;
450
451 return prev;
452 }
453
454 CORE_ADDR
455 get_frame_pc (frame)
456 struct frame_info *frame;
457 {
458 return frame->pc;
459 }
460
461 #if defined (FRAME_FIND_SAVED_REGS)
462 /* Find the addresses in which registers are saved in FRAME. */
463
464 void
465 get_frame_saved_regs (frame, saved_regs_addr)
466 struct frame_info *frame;
467 struct frame_saved_regs *saved_regs_addr;
468 {
469 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
470 }
471 #endif
472
473 /* Return the innermost lexical block in execution
474 in a specified stack frame. The frame address is assumed valid. */
475
476 struct block *
477 get_frame_block (frame)
478 struct frame_info *frame;
479 {
480 CORE_ADDR pc;
481
482 pc = frame->pc;
483 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
484 /* We are not in the innermost frame and we were not interrupted
485 by a signal. We need to subtract one to get the correct block,
486 in case the call instruction was the last instruction of the block.
487 If there are any machines on which the saved pc does not point to
488 after the call insn, we probably want to make frame->pc point after
489 the call insn anyway. */
490 --pc;
491 return block_for_pc (pc);
492 }
493
494 struct block *
495 get_current_block ()
496 {
497 return block_for_pc (read_pc ());
498 }
499
500 CORE_ADDR
501 get_pc_function_start (pc)
502 CORE_ADDR pc;
503 {
504 register struct block *bl;
505 register struct symbol *symbol;
506 register struct minimal_symbol *msymbol;
507 CORE_ADDR fstart;
508
509 if ((bl = block_for_pc (pc)) != NULL &&
510 (symbol = block_function (bl)) != NULL)
511 {
512 bl = SYMBOL_BLOCK_VALUE (symbol);
513 fstart = BLOCK_START (bl);
514 }
515 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
516 {
517 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
518 }
519 else
520 {
521 fstart = 0;
522 }
523 return (fstart);
524 }
525
526 /* Return the symbol for the function executing in frame FRAME. */
527
528 struct symbol *
529 get_frame_function (frame)
530 struct frame_info *frame;
531 {
532 register struct block *bl = get_frame_block (frame);
533 if (bl == 0)
534 return 0;
535 return block_function (bl);
536 }
537 \f
538 /* Return the blockvector immediately containing the innermost lexical block
539 containing the specified pc value, or 0 if there is none.
540 PINDEX is a pointer to the index value of the block. If PINDEX
541 is NULL, we don't pass this information back to the caller. */
542
543 struct blockvector *
544 blockvector_for_pc (pc, pindex)
545 register CORE_ADDR pc;
546 int *pindex;
547 {
548 register struct block *b;
549 register int bot, top, half;
550 register struct symtab *s;
551 struct blockvector *bl;
552
553 /* First search all symtabs for one whose file contains our pc */
554 s = find_pc_symtab (pc);
555 if (s == 0)
556 return 0;
557
558 bl = BLOCKVECTOR (s);
559 b = BLOCKVECTOR_BLOCK (bl, 0);
560
561 /* Then search that symtab for the smallest block that wins. */
562 /* Use binary search to find the last block that starts before PC. */
563
564 bot = 0;
565 top = BLOCKVECTOR_NBLOCKS (bl);
566
567 while (top - bot > 1)
568 {
569 half = (top - bot + 1) >> 1;
570 b = BLOCKVECTOR_BLOCK (bl, bot + half);
571 if (BLOCK_START (b) <= pc)
572 bot += half;
573 else
574 top = bot + half;
575 }
576
577 /* Now search backward for a block that ends after PC. */
578
579 while (bot >= 0)
580 {
581 b = BLOCKVECTOR_BLOCK (bl, bot);
582 if (BLOCK_END (b) > pc)
583 {
584 if (pindex)
585 *pindex = bot;
586 return bl;
587 }
588 bot--;
589 }
590
591 return 0;
592 }
593
594 /* Return the innermost lexical block containing the specified pc value,
595 or 0 if there is none. */
596
597 struct block *
598 block_for_pc (pc)
599 register CORE_ADDR pc;
600 {
601 register struct blockvector *bl;
602 int index;
603
604 bl = blockvector_for_pc (pc, &index);
605 if (bl)
606 return BLOCKVECTOR_BLOCK (bl, index);
607 return 0;
608 }
609
610 /* Return the function containing pc value PC.
611 Returns 0 if function is not known. */
612
613 struct symbol *
614 find_pc_function (pc)
615 CORE_ADDR pc;
616 {
617 register struct block *b = block_for_pc (pc);
618 if (b == 0)
619 return 0;
620 return block_function (b);
621 }
622
623 /* These variables are used to cache the most recent result
624 * of find_pc_partial_function. */
625
626 static CORE_ADDR cache_pc_function_low = 0;
627 static CORE_ADDR cache_pc_function_high = 0;
628 static char *cache_pc_function_name = 0;
629
630 /* Clear cache, e.g. when symbol table is discarded. */
631
632 void
633 clear_pc_function_cache()
634 {
635 cache_pc_function_low = 0;
636 cache_pc_function_high = 0;
637 cache_pc_function_name = (char *)0;
638 }
639
640 /* Finds the "function" (text symbol) that is smaller than PC but
641 greatest of all of the potential text symbols. Sets *NAME and/or
642 *ADDRESS conditionally if that pointer is non-null. If ENDADDR is
643 non-null, then set *ENDADDR to be the end of the function
644 (exclusive), but passing ENDADDR as non-null means that the
645 function might cause symbols to be read. This function either
646 succeeds or fails (not halfway succeeds). If it succeeds, it sets
647 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
648 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero
649 and returns 0. */
650
651 int
652 find_pc_partial_function (pc, name, address, endaddr)
653 CORE_ADDR pc;
654 char **name;
655 CORE_ADDR *address;
656 CORE_ADDR *endaddr;
657 {
658 struct partial_symtab *pst;
659 struct symbol *f;
660 struct minimal_symbol *msymbol;
661 struct partial_symbol *psb;
662 struct obj_section *sec;
663
664 if (pc >= cache_pc_function_low && pc < cache_pc_function_high)
665 goto return_cached_value;
666
667 /* If sigtramp is in the u area, it counts as a function (especially
668 important for step_1). */
669 #if defined SIGTRAMP_START
670 if (IN_SIGTRAMP (pc, (char *)NULL))
671 {
672 cache_pc_function_low = SIGTRAMP_START (pc);
673 cache_pc_function_high = SIGTRAMP_END (pc);
674 cache_pc_function_name = "<sigtramp>";
675
676 goto return_cached_value;
677 }
678 #endif
679
680 msymbol = lookup_minimal_symbol_by_pc (pc);
681 pst = find_pc_psymtab (pc);
682 if (pst)
683 {
684 /* Need to read the symbols to get a good value for the end address. */
685 if (endaddr != NULL && !pst->readin)
686 {
687 /* Need to get the terminal in case symbol-reading produces
688 output. */
689 target_terminal_ours_for_output ();
690 PSYMTAB_TO_SYMTAB (pst);
691 }
692
693 if (pst->readin)
694 {
695 /* Checking whether the msymbol has a larger value is for the
696 "pathological" case mentioned in print_frame_info. */
697 f = find_pc_function (pc);
698 if (f != NULL
699 && (msymbol == NULL
700 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
701 >= SYMBOL_VALUE_ADDRESS (msymbol))))
702 {
703 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
704 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
705 cache_pc_function_name = SYMBOL_NAME (f);
706 goto return_cached_value;
707 }
708 }
709 else
710 {
711 /* Now that static symbols go in the minimal symbol table, perhaps
712 we could just ignore the partial symbols. But at least for now
713 we use the partial or minimal symbol, whichever is larger. */
714 psb = find_pc_psymbol (pst, pc);
715
716 if (psb
717 && (msymbol == NULL ||
718 (SYMBOL_VALUE_ADDRESS (psb)
719 >= SYMBOL_VALUE_ADDRESS (msymbol))))
720 {
721 /* This case isn't being cached currently. */
722 if (address)
723 *address = SYMBOL_VALUE_ADDRESS (psb);
724 if (name)
725 *name = SYMBOL_NAME (psb);
726 /* endaddr non-NULL can't happen here. */
727 return 1;
728 }
729 }
730 }
731
732 /* Not in the normal symbol tables, see if the pc is in a known section.
733 If it's not, then give up. This ensures that anything beyond the end
734 of the text seg doesn't appear to be part of the last function in the
735 text segment. */
736
737 sec = find_pc_section (pc);
738
739 if (!sec)
740 msymbol = NULL;
741
742 /* Must be in the minimal symbol table. */
743 if (msymbol == NULL)
744 {
745 /* No available symbol. */
746 if (name != NULL)
747 *name = 0;
748 if (address != NULL)
749 *address = 0;
750 if (endaddr != NULL)
751 *endaddr = 0;
752 return 0;
753 }
754
755 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
756 cache_pc_function_name = SYMBOL_NAME (msymbol);
757
758 /* Use the lesser of the next minimal symbol, or the end of the section, as
759 the end of the function. */
760
761 if (SYMBOL_NAME (msymbol + 1) != NULL
762 && SYMBOL_VALUE_ADDRESS (msymbol + 1) < sec->endaddr)
763 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + 1);
764 else
765 /* We got the start address from the last msymbol in the objfile.
766 So the end address is the end of the section. */
767 cache_pc_function_high = sec->endaddr;
768
769 return_cached_value:
770 if (address)
771 *address = cache_pc_function_low;
772 if (name)
773 *name = cache_pc_function_name;
774 if (endaddr)
775 *endaddr = cache_pc_function_high;
776 return 1;
777 }
778
779 /* Return the innermost stack frame executing inside of BLOCK,
780 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
781
782 struct frame_info *
783 block_innermost_frame (block)
784 struct block *block;
785 {
786 struct frame_info *frame;
787 register CORE_ADDR start;
788 register CORE_ADDR end;
789
790 if (block == NULL)
791 return NULL;
792
793 start = BLOCK_START (block);
794 end = BLOCK_END (block);
795
796 frame = NULL;
797 while (1)
798 {
799 frame = get_prev_frame (frame);
800 if (frame == NULL)
801 return NULL;
802 if (frame->pc >= start && frame->pc < end)
803 return frame;
804 }
805 }
806
807 /* Return the full FRAME which corresponds to the given CORE_ADDR
808 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
809
810 struct frame_info *
811 find_frame_addr_in_frame_chain (frame_addr)
812 CORE_ADDR frame_addr;
813 {
814 struct frame_info *frame = NULL;
815
816 if (frame_addr == (CORE_ADDR)0)
817 return NULL;
818
819 while (1)
820 {
821 frame = get_prev_frame (frame);
822 if (frame == NULL)
823 return NULL;
824 if (FRAME_FP (frame) == frame_addr)
825 return frame;
826 }
827 }
828
829 #ifdef SIGCONTEXT_PC_OFFSET
830 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
831
832 CORE_ADDR
833 sigtramp_saved_pc (frame)
834 struct frame_info *frame;
835 {
836 CORE_ADDR sigcontext_addr;
837 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
838 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
839 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
840
841 /* Get sigcontext address, it is the third parameter on the stack. */
842 if (frame->next)
843 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
844 + FRAME_ARGS_SKIP
845 + sigcontext_offs,
846 ptrbytes);
847 else
848 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
849 + sigcontext_offs,
850 ptrbytes);
851
852 /* Don't cause a memory_error when accessing sigcontext in case the stack
853 layout has changed or the stack is corrupt. */
854 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
855 return extract_unsigned_integer (buf, ptrbytes);
856 }
857 #endif /* SIGCONTEXT_PC_OFFSET */
858
859 #ifdef USE_GENERIC_DUMMY_FRAMES
860
861 /*
862 * GENERIC DUMMY FRAMES
863 *
864 * The following code serves to maintain the dummy stack frames for
865 * inferior function calls (ie. when gdb calls into the inferior via
866 * call_function_by_hand). This code saves the machine state before
867 * the call in host memory, so we must maintain an independant stack
868 * and keep it consistant etc. I am attempting to make this code
869 * generic enough to be used by many targets.
870 *
871 * The cheapest and most generic way to do CALL_DUMMY on a new target
872 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to zero,
873 * and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember to define
874 * PUSH_RETURN_ADDRESS, because no call instruction will be being
875 * executed by the target.
876 */
877
878 static struct dummy_frame *dummy_frame_stack = NULL;
879
880 /* Function: find_dummy_frame(pc, fp, sp)
881 Search the stack of dummy frames for one matching the given PC, FP and SP.
882 This is the work-horse for pc_in_call_dummy and read_register_dummy */
883
884 char *
885 generic_find_dummy_frame (pc, fp)
886 CORE_ADDR pc;
887 CORE_ADDR fp;
888 {
889 struct dummy_frame * dummyframe;
890
891 if (pc != entry_point_address ())
892 return 0;
893
894 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
895 dummyframe = dummyframe->next)
896 if (fp == dummyframe->fp || fp == dummyframe->sp)
897 /* The frame in question lies between the saved fp and sp, inclusive */
898 return dummyframe->regs;
899
900 return 0;
901 }
902
903 /* Function: pc_in_call_dummy (pc, fp)
904 Return true if this is a dummy frame created by gdb for an inferior call */
905
906 int
907 generic_pc_in_call_dummy (pc, fp)
908 CORE_ADDR pc;
909 CORE_ADDR fp;
910 {
911 /* if find_dummy_frame succeeds, then PC is in a call dummy */
912 return (generic_find_dummy_frame (pc, fp) != 0);
913 }
914
915 /* Function: read_register_dummy
916 Find a saved register from before GDB calls a function in the inferior */
917
918 CORE_ADDR
919 generic_read_register_dummy (pc, fp, regno)
920 CORE_ADDR pc;
921 CORE_ADDR fp;
922 int regno;
923 {
924 char *dummy_regs = generic_find_dummy_frame (pc, fp);
925
926 if (dummy_regs)
927 return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
928 REGISTER_RAW_SIZE(regno));
929 else
930 return 0;
931 }
932
933 /* Save all the registers on the dummy frame stack. Most ports save the
934 registers on the target stack. This results in lots of unnecessary memory
935 references, which are slow when debugging via a serial line. Instead, we
936 save all the registers internally, and never write them to the stack. The
937 registers get restored when the called function returns to the entry point,
938 where a breakpoint is laying in wait. */
939
940 void
941 generic_push_dummy_frame ()
942 {
943 struct dummy_frame *dummy_frame;
944 CORE_ADDR fp = (get_current_frame ())->frame;
945
946 /* check to see if there are stale dummy frames,
947 perhaps left over from when a longjump took us out of a
948 function that was called by the debugger */
949
950 dummy_frame = dummy_frame_stack;
951 while (dummy_frame)
952 if (dummy_frame->fp INNER_THAN fp) /* stale -- destroy! */
953 {
954 dummy_frame_stack = dummy_frame->next;
955 free (dummy_frame);
956 dummy_frame = dummy_frame_stack;
957 }
958 else
959 dummy_frame = dummy_frame->next;
960
961 dummy_frame = xmalloc (sizeof (struct dummy_frame));
962 dummy_frame->pc = read_register (PC_REGNUM);
963 dummy_frame->sp = read_register (SP_REGNUM);
964 dummy_frame->fp = fp;
965 read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
966 dummy_frame->next = dummy_frame_stack;
967 dummy_frame_stack = dummy_frame;
968 }
969
970 /* Function: pop_dummy_frame
971 Restore the machine state from a saved dummy stack frame. */
972
973 void
974 generic_pop_dummy_frame ()
975 {
976 struct dummy_frame *dummy_frame = dummy_frame_stack;
977
978 /* FIXME: what if the first frame isn't the right one, eg..
979 because one call-by-hand function has done a longjmp into another one? */
980
981 if (!dummy_frame)
982 error ("Can't pop dummy frame!");
983 dummy_frame_stack = dummy_frame->next;
984 write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
985 free (dummy_frame);
986 }
987
988 /* Function: frame_chain_valid
989 Returns true for a user frame or a call_function_by_hand dummy frame,
990 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
991
992 int
993 generic_frame_chain_valid (fp, fi)
994 CORE_ADDR fp;
995 struct frame_info *fi;
996 {
997 if (PC_IN_CALL_DUMMY(FRAME_SAVED_PC(fi), fp, fp))
998 return 1; /* don't prune CALL_DUMMY frames */
999 else /* fall back to default algorithm (see frame.h) */
1000 return (fp != 0
1001 && fi->frame INNER_THAN fp
1002 && !inside_entry_file (FRAME_SAVED_PC(fi)));
1003 }
1004
1005 /* Function: get_saved_register
1006 Find register number REGNUM relative to FRAME and put its (raw,
1007 target format) contents in *RAW_BUFFER.
1008
1009 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1010 fetched). Note that this is never set to anything other than zero
1011 in this implementation.
1012
1013 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1014 whether the value was fetched from memory, from a register, or in a
1015 strange and non-modifiable way (e.g. a frame pointer which was
1016 calculated rather than fetched). We will use not_lval for values
1017 fetched from generic dummy frames.
1018
1019 Set *ADDRP to the address, either in memory on as a REGISTER_BYTE
1020 offset into the registers array. If the value is stored in a dummy
1021 frame, set *ADDRP to zero.
1022
1023 To use this implementation, define a function called
1024 "get_saved_register" in your target code, which simply passes all
1025 of its arguments to this function.
1026
1027 The argument RAW_BUFFER must point to aligned memory. */
1028
1029 void
1030 generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
1031 char *raw_buffer;
1032 int *optimized;
1033 CORE_ADDR *addrp;
1034 struct frame_info *frame;
1035 int regnum;
1036 enum lval_type *lval;
1037 {
1038 CORE_ADDR addr;
1039 struct frame_saved_regs fsr;
1040
1041 if (!target_has_registers)
1042 error ("No registers.");
1043
1044 /* Normal systems don't optimize out things with register numbers. */
1045 if (optimized != NULL)
1046 *optimized = 0;
1047
1048 if (addrp) /* default assumption: not found in memory */
1049 *addrp = 0;
1050
1051 /* Note: since the current frame's registers could only have been
1052 saved by frames INTERIOR TO the current frame, we skip examining
1053 the current frame itself: otherwise, we would be getting the
1054 previous frame's registers which were saved by the current frame. */
1055
1056 while (frame && ((frame = frame->next) != NULL))
1057 {
1058 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1059 {
1060 if (lval) /* found it in a CALL_DUMMY frame */
1061 *lval = not_lval;
1062 if (raw_buffer)
1063 memcpy (raw_buffer,
1064 generic_find_dummy_frame (frame->pc, frame->frame) +
1065 REGISTER_BYTE (regnum),
1066 REGISTER_RAW_SIZE (regnum));
1067 return;
1068 }
1069
1070 FRAME_FIND_SAVED_REGS(frame, fsr);
1071 if (fsr.regs[regnum] != 0)
1072 {
1073 if (lval) /* found it saved on the stack */
1074 *lval = lval_memory;
1075 if (regnum == SP_REGNUM)
1076 {
1077 if (raw_buffer) /* SP register treated specially */
1078 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
1079 fsr.regs[regnum]);
1080 }
1081 else
1082 {
1083 if (addrp) /* any other register */
1084 *addrp = fsr.regs[regnum];
1085 if (raw_buffer)
1086 read_memory (fsr.regs[regnum], raw_buffer,
1087 REGISTER_RAW_SIZE (regnum));
1088 }
1089 return;
1090 }
1091 }
1092
1093 /* If we get thru the loop to this point, it means the register was
1094 not saved in any frame. Return the actual live-register value. */
1095
1096 if (lval) /* found it in a live register */
1097 *lval = lval_register;
1098 if (addrp)
1099 *addrp = REGISTER_BYTE (regnum);
1100 if (raw_buffer)
1101 read_register_gen (regnum, raw_buffer);
1102 }
1103 #endif /* USE_GENERIC_DUMMY_FRAMES */
1104
1105 void
1106 _initialize_blockframe ()
1107 {
1108 obstack_init (&frame_cache_obstack);
1109 }
This page took 0.05487 seconds and 4 git commands to generate.