import gdb-1999-12-13 snapshot
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
3 Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "frame.h"
29 #include "gdbcore.h"
30 #include "value.h" /* for read_register */
31 #include "target.h" /* for target_has_stack */
32 #include "inferior.h" /* for read_pc */
33 #include "annotate.h"
34
35 /* Prototypes for exported functions. */
36
37 void _initialize_blockframe (void);
38
39 /* A default FRAME_CHAIN_VALID, in the form that is suitable for most
40 targets. If FRAME_CHAIN_VALID returns zero it means that the given
41 frame is the outermost one and has no caller. */
42
43 int
44 file_frame_chain_valid (chain, thisframe)
45 CORE_ADDR chain;
46 struct frame_info *thisframe;
47 {
48 return ((chain) != 0
49 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
50 }
51
52 /* Use the alternate method of avoiding running up off the end of the
53 frame chain or following frames back into the startup code. See
54 the comments in objfiles.h. */
55
56 int
57 func_frame_chain_valid (chain, thisframe)
58 CORE_ADDR chain;
59 struct frame_info *thisframe;
60 {
61 return ((chain) != 0
62 && !inside_main_func ((thisframe)->pc)
63 && !inside_entry_func ((thisframe)->pc));
64 }
65
66 /* A very simple method of determining a valid frame */
67
68 int
69 nonnull_frame_chain_valid (chain, thisframe)
70 CORE_ADDR chain;
71 struct frame_info *thisframe;
72 {
73 return ((chain) != 0);
74 }
75
76 /* Is ADDR inside the startup file? Note that if your machine
77 has a way to detect the bottom of the stack, there is no need
78 to call this function from FRAME_CHAIN_VALID; the reason for
79 doing so is that some machines have no way of detecting bottom
80 of stack.
81
82 A PC of zero is always considered to be the bottom of the stack. */
83
84 int
85 inside_entry_file (addr)
86 CORE_ADDR addr;
87 {
88 if (addr == 0)
89 return 1;
90 if (symfile_objfile == 0)
91 return 0;
92 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
93 {
94 /* Do not stop backtracing if the pc is in the call dummy
95 at the entry point. */
96 /* FIXME: Won't always work with zeros for the last two arguments */
97 if (PC_IN_CALL_DUMMY (addr, 0, 0))
98 return 0;
99 }
100 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
101 addr < symfile_objfile->ei.entry_file_highpc);
102 }
103
104 /* Test a specified PC value to see if it is in the range of addresses
105 that correspond to the main() function. See comments above for why
106 we might want to do this.
107
108 Typically called from FRAME_CHAIN_VALID.
109
110 A PC of zero is always considered to be the bottom of the stack. */
111
112 int
113 inside_main_func (pc)
114 CORE_ADDR pc;
115 {
116 if (pc == 0)
117 return 1;
118 if (symfile_objfile == 0)
119 return 0;
120
121 /* If the addr range is not set up at symbol reading time, set it up now.
122 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
123 it is unable to set it up and symbol reading time. */
124
125 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
126 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
127 {
128 struct symbol *mainsym;
129
130 mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
131 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
132 {
133 symfile_objfile->ei.main_func_lowpc =
134 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
135 symfile_objfile->ei.main_func_highpc =
136 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
137 }
138 }
139 return (symfile_objfile->ei.main_func_lowpc <= pc &&
140 symfile_objfile->ei.main_func_highpc > pc);
141 }
142
143 /* Test a specified PC value to see if it is in the range of addresses
144 that correspond to the process entry point function. See comments
145 in objfiles.h for why we might want to do this.
146
147 Typically called from FRAME_CHAIN_VALID.
148
149 A PC of zero is always considered to be the bottom of the stack. */
150
151 int
152 inside_entry_func (pc)
153 CORE_ADDR pc;
154 {
155 if (pc == 0)
156 return 1;
157 if (symfile_objfile == 0)
158 return 0;
159 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
160 {
161 /* Do not stop backtracing if the pc is in the call dummy
162 at the entry point. */
163 /* FIXME: Won't always work with zeros for the last two arguments */
164 if (PC_IN_CALL_DUMMY (pc, 0, 0))
165 return 0;
166 }
167 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
168 symfile_objfile->ei.entry_func_highpc > pc);
169 }
170
171 /* Info about the innermost stack frame (contents of FP register) */
172
173 static struct frame_info *current_frame;
174
175 /* Cache for frame addresses already read by gdb. Valid only while
176 inferior is stopped. Control variables for the frame cache should
177 be local to this module. */
178
179 static struct obstack frame_cache_obstack;
180
181 void *
182 frame_obstack_alloc (size)
183 unsigned long size;
184 {
185 return obstack_alloc (&frame_cache_obstack, size);
186 }
187
188 void
189 frame_saved_regs_zalloc (fi)
190 struct frame_info *fi;
191 {
192 fi->saved_regs = (CORE_ADDR *)
193 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
194 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
195 }
196
197
198 /* Return the innermost (currently executing) stack frame. */
199
200 struct frame_info *
201 get_current_frame ()
202 {
203 if (current_frame == NULL)
204 {
205 if (target_has_stack)
206 current_frame = create_new_frame (read_fp (), read_pc ());
207 else
208 error ("No stack.");
209 }
210 return current_frame;
211 }
212
213 void
214 set_current_frame (frame)
215 struct frame_info *frame;
216 {
217 current_frame = frame;
218 }
219
220 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
221 Always returns a non-NULL value. */
222
223 struct frame_info *
224 create_new_frame (addr, pc)
225 CORE_ADDR addr;
226 CORE_ADDR pc;
227 {
228 struct frame_info *fi;
229 char *name;
230
231 fi = (struct frame_info *)
232 obstack_alloc (&frame_cache_obstack,
233 sizeof (struct frame_info));
234
235 /* Arbitrary frame */
236 fi->saved_regs = NULL;
237 fi->next = NULL;
238 fi->prev = NULL;
239 fi->frame = addr;
240 fi->pc = pc;
241 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
242 fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
243
244 #ifdef INIT_EXTRA_FRAME_INFO
245 INIT_EXTRA_FRAME_INFO (0, fi);
246 #endif
247
248 return fi;
249 }
250
251 /* Return the frame that FRAME calls (NULL if FRAME is the innermost
252 frame). */
253
254 struct frame_info *
255 get_next_frame (frame)
256 struct frame_info *frame;
257 {
258 return frame->next;
259 }
260
261 /* Flush the entire frame cache. */
262
263 void
264 flush_cached_frames ()
265 {
266 /* Since we can't really be sure what the first object allocated was */
267 obstack_free (&frame_cache_obstack, 0);
268 obstack_init (&frame_cache_obstack);
269
270 current_frame = NULL; /* Invalidate cache */
271 select_frame (NULL, -1);
272 annotate_frames_invalid ();
273 }
274
275 /* Flush the frame cache, and start a new one if necessary. */
276
277 void
278 reinit_frame_cache ()
279 {
280 flush_cached_frames ();
281
282 /* FIXME: The inferior_pid test is wrong if there is a corefile. */
283 if (inferior_pid != 0)
284 {
285 select_frame (get_current_frame (), 0);
286 }
287 }
288
289 /* Return nonzero if the function for this frame lacks a prologue. Many
290 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
291 function. */
292
293 int
294 frameless_look_for_prologue (frame)
295 struct frame_info *frame;
296 {
297 CORE_ADDR func_start, after_prologue;
298
299 func_start = get_pc_function_start (frame->pc);
300 if (func_start)
301 {
302 func_start += FUNCTION_START_OFFSET;
303 after_prologue = func_start;
304 #ifdef SKIP_PROLOGUE_FRAMELESS_P
305 /* This is faster, since only care whether there *is* a
306 prologue, not how long it is. */
307 after_prologue = SKIP_PROLOGUE_FRAMELESS_P (after_prologue);
308 #else
309 after_prologue = SKIP_PROLOGUE (after_prologue);
310 #endif
311 return after_prologue == func_start;
312 }
313 else if (frame->pc == 0)
314 /* A frame with a zero PC is usually created by dereferencing a
315 NULL function pointer, normally causing an immediate core dump
316 of the inferior. Mark function as frameless, as the inferior
317 has no chance of setting up a stack frame. */
318 return 1;
319 else
320 /* If we can't find the start of the function, we don't really
321 know whether the function is frameless, but we should be able
322 to get a reasonable (i.e. best we can do under the
323 circumstances) backtrace by saying that it isn't. */
324 return 0;
325 }
326
327 /* Default a few macros that people seldom redefine. */
328
329 #if !defined (INIT_FRAME_PC)
330 #define INIT_FRAME_PC(fromleaf, prev) \
331 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
332 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
333 #endif
334
335 #ifndef FRAME_CHAIN_COMBINE
336 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
337 #endif
338
339 /* Return a structure containing various interesting information
340 about the frame that called NEXT_FRAME. Returns NULL
341 if there is no such frame. */
342
343 struct frame_info *
344 get_prev_frame (next_frame)
345 struct frame_info *next_frame;
346 {
347 CORE_ADDR address = 0;
348 struct frame_info *prev;
349 int fromleaf = 0;
350 char *name;
351
352 /* If the requested entry is in the cache, return it.
353 Otherwise, figure out what the address should be for the entry
354 we're about to add to the cache. */
355
356 if (!next_frame)
357 {
358 #if 0
359 /* This screws value_of_variable, which just wants a nice clean
360 NULL return from block_innermost_frame if there are no frames.
361 I don't think I've ever seen this message happen otherwise.
362 And returning NULL here is a perfectly legitimate thing to do. */
363 if (!current_frame)
364 {
365 error ("You haven't set up a process's stack to examine.");
366 }
367 #endif
368
369 return current_frame;
370 }
371
372 /* If we have the prev one, return it */
373 if (next_frame->prev)
374 return next_frame->prev;
375
376 /* On some machines it is possible to call a function without
377 setting up a stack frame for it. On these machines, we
378 define this macro to take two args; a frameinfo pointer
379 identifying a frame and a variable to set or clear if it is
380 or isn't leafless. */
381
382 /* Still don't want to worry about this except on the innermost
383 frame. This macro will set FROMLEAF if NEXT_FRAME is a
384 frameless function invocation. */
385 if (!(next_frame->next))
386 {
387 fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
388 if (fromleaf)
389 address = FRAME_FP (next_frame);
390 }
391
392 if (!fromleaf)
393 {
394 /* Two macros defined in tm.h specify the machine-dependent
395 actions to be performed here.
396 First, get the frame's chain-pointer.
397 If that is zero, the frame is the outermost frame or a leaf
398 called by the outermost frame. This means that if start
399 calls main without a frame, we'll return 0 (which is fine
400 anyway).
401
402 Nope; there's a problem. This also returns when the current
403 routine is a leaf of main. This is unacceptable. We move
404 this to after the ffi test; I'd rather have backtraces from
405 start go curfluy than have an abort called from main not show
406 main. */
407 address = FRAME_CHAIN (next_frame);
408 if (!FRAME_CHAIN_VALID (address, next_frame))
409 return 0;
410 address = FRAME_CHAIN_COMBINE (address, next_frame);
411 }
412 if (address == 0)
413 return 0;
414
415 prev = (struct frame_info *)
416 obstack_alloc (&frame_cache_obstack,
417 sizeof (struct frame_info));
418
419 prev->saved_regs = NULL;
420 if (next_frame)
421 next_frame->prev = prev;
422 prev->next = next_frame;
423 prev->prev = (struct frame_info *) 0;
424 prev->frame = address;
425 prev->signal_handler_caller = 0;
426
427 /* This change should not be needed, FIXME! We should
428 determine whether any targets *need* INIT_FRAME_PC to happen
429 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
430 express what goes on here.
431
432 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
433 (where the PC is already set up) and here (where it isn't).
434 INIT_FRAME_PC is only called from here, always after
435 INIT_EXTRA_FRAME_INFO.
436
437 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
438 value (which hasn't been set yet). Some other machines appear to
439 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
440
441 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
442 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
443
444 Assuming that some machines need INIT_FRAME_PC after
445 INIT_EXTRA_FRAME_INFO, one possible scheme:
446
447 SETUP_INNERMOST_FRAME()
448 Default version is just create_new_frame (read_fp ()),
449 read_pc ()). Machines with extra frame info would do that (or the
450 local equivalent) and then set the extra fields.
451 SETUP_ARBITRARY_FRAME(argc, argv)
452 Only change here is that create_new_frame would no longer init extra
453 frame info; SETUP_ARBITRARY_FRAME would have to do that.
454 INIT_PREV_FRAME(fromleaf, prev)
455 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
456 also return a flag saying whether to keep the new frame, or
457 whether to discard it, because on some machines (e.g. mips) it
458 is really awkward to have FRAME_CHAIN_VALID called *before*
459 INIT_EXTRA_FRAME_INFO (there is no good way to get information
460 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
461 std_frame_pc(fromleaf, prev)
462 This is the default setting for INIT_PREV_FRAME. It just does what
463 the default INIT_FRAME_PC does. Some machines will call it from
464 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
465 Some machines won't use it.
466 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
467
468 #ifdef INIT_FRAME_PC_FIRST
469 INIT_FRAME_PC_FIRST (fromleaf, prev);
470 #endif
471
472 #ifdef INIT_EXTRA_FRAME_INFO
473 INIT_EXTRA_FRAME_INFO (fromleaf, prev);
474 #endif
475
476 /* This entry is in the frame queue now, which is good since
477 FRAME_SAVED_PC may use that queue to figure out its value
478 (see tm-sparc.h). We want the pc saved in the inferior frame. */
479 INIT_FRAME_PC (fromleaf, prev);
480
481 /* If ->frame and ->pc are unchanged, we are in the process of getting
482 ourselves into an infinite backtrace. Some architectures check this
483 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
484 this can't be an architecture-independent check. */
485 if (next_frame != NULL)
486 {
487 if (prev->frame == next_frame->frame
488 && prev->pc == next_frame->pc)
489 {
490 next_frame->prev = NULL;
491 obstack_free (&frame_cache_obstack, prev);
492 return NULL;
493 }
494 }
495
496 find_pc_partial_function (prev->pc, &name,
497 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
498 if (IN_SIGTRAMP (prev->pc, name))
499 prev->signal_handler_caller = 1;
500
501 return prev;
502 }
503
504 CORE_ADDR
505 get_frame_pc (frame)
506 struct frame_info *frame;
507 {
508 return frame->pc;
509 }
510
511
512 #ifdef FRAME_FIND_SAVED_REGS
513 /* XXX - deprecated. This is a compatibility function for targets
514 that do not yet implement FRAME_INIT_SAVED_REGS. */
515 /* Find the addresses in which registers are saved in FRAME. */
516
517 void
518 get_frame_saved_regs (frame, saved_regs_addr)
519 struct frame_info *frame;
520 struct frame_saved_regs *saved_regs_addr;
521 {
522 if (frame->saved_regs == NULL)
523 {
524 frame->saved_regs = (CORE_ADDR *)
525 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
526 }
527 if (saved_regs_addr == NULL)
528 {
529 struct frame_saved_regs saved_regs;
530 FRAME_FIND_SAVED_REGS (frame, saved_regs);
531 memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
532 }
533 else
534 {
535 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
536 memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
537 }
538 }
539 #endif
540
541 /* Return the innermost lexical block in execution
542 in a specified stack frame. The frame address is assumed valid. */
543
544 struct block *
545 get_frame_block (frame)
546 struct frame_info *frame;
547 {
548 CORE_ADDR pc;
549
550 pc = frame->pc;
551 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
552 /* We are not in the innermost frame and we were not interrupted
553 by a signal. We need to subtract one to get the correct block,
554 in case the call instruction was the last instruction of the block.
555 If there are any machines on which the saved pc does not point to
556 after the call insn, we probably want to make frame->pc point after
557 the call insn anyway. */
558 --pc;
559 return block_for_pc (pc);
560 }
561
562 struct block *
563 get_current_block ()
564 {
565 return block_for_pc (read_pc ());
566 }
567
568 CORE_ADDR
569 get_pc_function_start (pc)
570 CORE_ADDR pc;
571 {
572 register struct block *bl;
573 register struct symbol *symbol;
574 register struct minimal_symbol *msymbol;
575 CORE_ADDR fstart;
576
577 if ((bl = block_for_pc (pc)) != NULL &&
578 (symbol = block_function (bl)) != NULL)
579 {
580 bl = SYMBOL_BLOCK_VALUE (symbol);
581 fstart = BLOCK_START (bl);
582 }
583 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
584 {
585 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
586 }
587 else
588 {
589 fstart = 0;
590 }
591 return (fstart);
592 }
593
594 /* Return the symbol for the function executing in frame FRAME. */
595
596 struct symbol *
597 get_frame_function (frame)
598 struct frame_info *frame;
599 {
600 register struct block *bl = get_frame_block (frame);
601 if (bl == 0)
602 return 0;
603 return block_function (bl);
604 }
605 \f
606
607 /* Return the blockvector immediately containing the innermost lexical block
608 containing the specified pc value and section, or 0 if there is none.
609 PINDEX is a pointer to the index value of the block. If PINDEX
610 is NULL, we don't pass this information back to the caller. */
611
612 struct blockvector *
613 blockvector_for_pc_sect (pc, section, pindex, symtab)
614 register CORE_ADDR pc;
615 struct sec *section;
616 int *pindex;
617 struct symtab *symtab;
618
619 {
620 register struct block *b;
621 register int bot, top, half;
622 struct blockvector *bl;
623
624 if (symtab == 0) /* if no symtab specified by caller */
625 {
626 /* First search all symtabs for one whose file contains our pc */
627 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
628 return 0;
629 }
630
631 bl = BLOCKVECTOR (symtab);
632 b = BLOCKVECTOR_BLOCK (bl, 0);
633
634 /* Then search that symtab for the smallest block that wins. */
635 /* Use binary search to find the last block that starts before PC. */
636
637 bot = 0;
638 top = BLOCKVECTOR_NBLOCKS (bl);
639
640 while (top - bot > 1)
641 {
642 half = (top - bot + 1) >> 1;
643 b = BLOCKVECTOR_BLOCK (bl, bot + half);
644 if (BLOCK_START (b) <= pc)
645 bot += half;
646 else
647 top = bot + half;
648 }
649
650 /* Now search backward for a block that ends after PC. */
651
652 while (bot >= 0)
653 {
654 b = BLOCKVECTOR_BLOCK (bl, bot);
655 if (BLOCK_END (b) > pc)
656 {
657 if (pindex)
658 *pindex = bot;
659 return bl;
660 }
661 bot--;
662 }
663 return 0;
664 }
665
666 /* Return the blockvector immediately containing the innermost lexical block
667 containing the specified pc value, or 0 if there is none.
668 Backward compatibility, no section. */
669
670 struct blockvector *
671 blockvector_for_pc (pc, pindex)
672 register CORE_ADDR pc;
673 int *pindex;
674 {
675 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
676 pindex, NULL);
677 }
678
679 /* Return the innermost lexical block containing the specified pc value
680 in the specified section, or 0 if there is none. */
681
682 struct block *
683 block_for_pc_sect (pc, section)
684 register CORE_ADDR pc;
685 struct sec *section;
686 {
687 register struct blockvector *bl;
688 int index;
689
690 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
691 if (bl)
692 return BLOCKVECTOR_BLOCK (bl, index);
693 return 0;
694 }
695
696 /* Return the innermost lexical block containing the specified pc value,
697 or 0 if there is none. Backward compatibility, no section. */
698
699 struct block *
700 block_for_pc (pc)
701 register CORE_ADDR pc;
702 {
703 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
704 }
705
706 /* Return the function containing pc value PC in section SECTION.
707 Returns 0 if function is not known. */
708
709 struct symbol *
710 find_pc_sect_function (pc, section)
711 CORE_ADDR pc;
712 struct sec *section;
713 {
714 register struct block *b = block_for_pc_sect (pc, section);
715 if (b == 0)
716 return 0;
717 return block_function (b);
718 }
719
720 /* Return the function containing pc value PC.
721 Returns 0 if function is not known. Backward compatibility, no section */
722
723 struct symbol *
724 find_pc_function (pc)
725 CORE_ADDR pc;
726 {
727 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
728 }
729
730 /* These variables are used to cache the most recent result
731 * of find_pc_partial_function. */
732
733 static CORE_ADDR cache_pc_function_low = 0;
734 static CORE_ADDR cache_pc_function_high = 0;
735 static char *cache_pc_function_name = 0;
736 static struct sec *cache_pc_function_section = NULL;
737
738 /* Clear cache, e.g. when symbol table is discarded. */
739
740 void
741 clear_pc_function_cache ()
742 {
743 cache_pc_function_low = 0;
744 cache_pc_function_high = 0;
745 cache_pc_function_name = (char *) 0;
746 cache_pc_function_section = NULL;
747 }
748
749 /* Finds the "function" (text symbol) that is smaller than PC but
750 greatest of all of the potential text symbols in SECTION. Sets
751 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
752 If ENDADDR is non-null, then set *ENDADDR to be the end of the
753 function (exclusive), but passing ENDADDR as non-null means that
754 the function might cause symbols to be read. This function either
755 succeeds or fails (not halfway succeeds). If it succeeds, it sets
756 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
757 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
758 returns 0. */
759
760 int
761 find_pc_sect_partial_function (pc, section, name, address, endaddr)
762 CORE_ADDR pc;
763 asection *section;
764 char **name;
765 CORE_ADDR *address;
766 CORE_ADDR *endaddr;
767 {
768 struct partial_symtab *pst;
769 struct symbol *f;
770 struct minimal_symbol *msymbol;
771 struct partial_symbol *psb;
772 struct obj_section *osect;
773 int i;
774 CORE_ADDR mapped_pc;
775
776 mapped_pc = overlay_mapped_address (pc, section);
777
778 if (mapped_pc >= cache_pc_function_low &&
779 mapped_pc < cache_pc_function_high &&
780 section == cache_pc_function_section)
781 goto return_cached_value;
782
783 /* If sigtramp is in the u area, it counts as a function (especially
784 important for step_1). */
785 #if defined SIGTRAMP_START
786 if (IN_SIGTRAMP (mapped_pc, (char *) NULL))
787 {
788 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
789 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
790 cache_pc_function_name = "<sigtramp>";
791 cache_pc_function_section = section;
792 goto return_cached_value;
793 }
794 #endif
795
796 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
797 pst = find_pc_sect_psymtab (mapped_pc, section);
798 if (pst)
799 {
800 /* Need to read the symbols to get a good value for the end address. */
801 if (endaddr != NULL && !pst->readin)
802 {
803 /* Need to get the terminal in case symbol-reading produces
804 output. */
805 target_terminal_ours_for_output ();
806 PSYMTAB_TO_SYMTAB (pst);
807 }
808
809 if (pst->readin)
810 {
811 /* Checking whether the msymbol has a larger value is for the
812 "pathological" case mentioned in print_frame_info. */
813 f = find_pc_sect_function (mapped_pc, section);
814 if (f != NULL
815 && (msymbol == NULL
816 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
817 >= SYMBOL_VALUE_ADDRESS (msymbol))))
818 {
819 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
820 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
821 cache_pc_function_name = SYMBOL_NAME (f);
822 cache_pc_function_section = section;
823 goto return_cached_value;
824 }
825 }
826 else
827 {
828 /* Now that static symbols go in the minimal symbol table, perhaps
829 we could just ignore the partial symbols. But at least for now
830 we use the partial or minimal symbol, whichever is larger. */
831 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
832
833 if (psb
834 && (msymbol == NULL ||
835 (SYMBOL_VALUE_ADDRESS (psb)
836 >= SYMBOL_VALUE_ADDRESS (msymbol))))
837 {
838 /* This case isn't being cached currently. */
839 if (address)
840 *address = SYMBOL_VALUE_ADDRESS (psb);
841 if (name)
842 *name = SYMBOL_NAME (psb);
843 /* endaddr non-NULL can't happen here. */
844 return 1;
845 }
846 }
847 }
848
849 /* Not in the normal symbol tables, see if the pc is in a known section.
850 If it's not, then give up. This ensures that anything beyond the end
851 of the text seg doesn't appear to be part of the last function in the
852 text segment. */
853
854 osect = find_pc_sect_section (mapped_pc, section);
855
856 if (!osect)
857 msymbol = NULL;
858
859 /* Must be in the minimal symbol table. */
860 if (msymbol == NULL)
861 {
862 /* No available symbol. */
863 if (name != NULL)
864 *name = 0;
865 if (address != NULL)
866 *address = 0;
867 if (endaddr != NULL)
868 *endaddr = 0;
869 return 0;
870 }
871
872 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
873 cache_pc_function_name = SYMBOL_NAME (msymbol);
874 cache_pc_function_section = section;
875
876 /* Use the lesser of the next minimal symbol in the same section, or
877 the end of the section, as the end of the function. */
878
879 /* Step over other symbols at this same address, and symbols in
880 other sections, to find the next symbol in this section with
881 a different address. */
882
883 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
884 {
885 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
886 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
887 break;
888 }
889
890 if (SYMBOL_NAME (msymbol + i) != NULL
891 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
892 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
893 else
894 /* We got the start address from the last msymbol in the objfile.
895 So the end address is the end of the section. */
896 cache_pc_function_high = osect->endaddr;
897
898 return_cached_value:
899
900 if (address)
901 {
902 if (pc_in_unmapped_range (pc, section))
903 *address = overlay_unmapped_address (cache_pc_function_low, section);
904 else
905 *address = cache_pc_function_low;
906 }
907
908 if (name)
909 *name = cache_pc_function_name;
910
911 if (endaddr)
912 {
913 if (pc_in_unmapped_range (pc, section))
914 {
915 /* Because the high address is actually beyond the end of
916 the function (and therefore possibly beyond the end of
917 the overlay), we must actually convert (high - 1)
918 and then add one to that. */
919
920 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
921 section);
922 }
923 else
924 *endaddr = cache_pc_function_high;
925 }
926
927 return 1;
928 }
929
930 /* Backward compatibility, no section argument */
931
932 int
933 find_pc_partial_function (pc, name, address, endaddr)
934 CORE_ADDR pc;
935 char **name;
936 CORE_ADDR *address;
937 CORE_ADDR *endaddr;
938 {
939 asection *section;
940
941 section = find_pc_overlay (pc);
942 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
943 }
944
945 /* Return the innermost stack frame executing inside of BLOCK,
946 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
947
948 struct frame_info *
949 block_innermost_frame (block)
950 struct block *block;
951 {
952 struct frame_info *frame;
953 register CORE_ADDR start;
954 register CORE_ADDR end;
955
956 if (block == NULL)
957 return NULL;
958
959 start = BLOCK_START (block);
960 end = BLOCK_END (block);
961
962 frame = NULL;
963 while (1)
964 {
965 frame = get_prev_frame (frame);
966 if (frame == NULL)
967 return NULL;
968 if (frame->pc >= start && frame->pc < end)
969 return frame;
970 }
971 }
972
973 /* Return the full FRAME which corresponds to the given CORE_ADDR
974 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
975
976 struct frame_info *
977 find_frame_addr_in_frame_chain (frame_addr)
978 CORE_ADDR frame_addr;
979 {
980 struct frame_info *frame = NULL;
981
982 if (frame_addr == (CORE_ADDR) 0)
983 return NULL;
984
985 while (1)
986 {
987 frame = get_prev_frame (frame);
988 if (frame == NULL)
989 return NULL;
990 if (FRAME_FP (frame) == frame_addr)
991 return frame;
992 }
993 }
994
995 #ifdef SIGCONTEXT_PC_OFFSET
996 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
997
998 CORE_ADDR
999 sigtramp_saved_pc (frame)
1000 struct frame_info *frame;
1001 {
1002 CORE_ADDR sigcontext_addr;
1003 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
1004 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1005 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
1006
1007 /* Get sigcontext address, it is the third parameter on the stack. */
1008 if (frame->next)
1009 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
1010 + FRAME_ARGS_SKIP
1011 + sigcontext_offs,
1012 ptrbytes);
1013 else
1014 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
1015 + sigcontext_offs,
1016 ptrbytes);
1017
1018 /* Don't cause a memory_error when accessing sigcontext in case the stack
1019 layout has changed or the stack is corrupt. */
1020 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
1021 return extract_unsigned_integer (buf, ptrbytes);
1022 }
1023 #endif /* SIGCONTEXT_PC_OFFSET */
1024
1025
1026 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
1027 below is for infrun.c, which may give the macro a pc without that
1028 subtracted out. */
1029
1030 extern CORE_ADDR text_end;
1031
1032 int
1033 pc_in_call_dummy_before_text_end (pc, sp, frame_address)
1034 CORE_ADDR pc;
1035 CORE_ADDR sp;
1036 CORE_ADDR frame_address;
1037 {
1038 return ((pc) >= text_end - CALL_DUMMY_LENGTH
1039 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
1040 }
1041
1042 int
1043 pc_in_call_dummy_after_text_end (pc, sp, frame_address)
1044 CORE_ADDR pc;
1045 CORE_ADDR sp;
1046 CORE_ADDR frame_address;
1047 {
1048 return ((pc) >= text_end
1049 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
1050 }
1051
1052 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
1053 top of the stack frame which we are checking, where "bottom" and
1054 "top" refer to some section of memory which contains the code for
1055 the call dummy. Calls to this macro assume that the contents of
1056 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
1057 are the things to pass.
1058
1059 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
1060 have that meaning, but the 29k doesn't use ON_STACK. This could be
1061 fixed by generalizing this scheme, perhaps by passing in a frame
1062 and adding a few fields, at least on machines which need them for
1063 PC_IN_CALL_DUMMY.
1064
1065 Something simpler, like checking for the stack segment, doesn't work,
1066 since various programs (threads implementations, gcc nested function
1067 stubs, etc) may either allocate stack frames in another segment, or
1068 allocate other kinds of code on the stack. */
1069
1070 int
1071 pc_in_call_dummy_on_stack (pc, sp, frame_address)
1072 CORE_ADDR pc;
1073 CORE_ADDR sp;
1074 CORE_ADDR frame_address;
1075 {
1076 return (INNER_THAN ((sp), (pc))
1077 && (frame_address != 0)
1078 && INNER_THAN ((pc), (frame_address)));
1079 }
1080
1081 int
1082 pc_in_call_dummy_at_entry_point (pc, sp, frame_address)
1083 CORE_ADDR pc;
1084 CORE_ADDR sp;
1085 CORE_ADDR frame_address;
1086 {
1087 return ((pc) >= CALL_DUMMY_ADDRESS ()
1088 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
1089 }
1090
1091
1092 /*
1093 * GENERIC DUMMY FRAMES
1094 *
1095 * The following code serves to maintain the dummy stack frames for
1096 * inferior function calls (ie. when gdb calls into the inferior via
1097 * call_function_by_hand). This code saves the machine state before
1098 * the call in host memory, so we must maintain an independant stack
1099 * and keep it consistant etc. I am attempting to make this code
1100 * generic enough to be used by many targets.
1101 *
1102 * The cheapest and most generic way to do CALL_DUMMY on a new target
1103 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
1104 * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
1105 * to define PUSH_RETURN_ADDRESS, because no call instruction will be
1106 * being executed by the target. Also FRAME_CHAIN_VALID as
1107 * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
1108 * generic_fix_call_dummy. */
1109
1110 /* Dummy frame. This saves the processor state just prior to setting
1111 up the inferior function call. Older targets save the registers
1112 target stack (but that really slows down function calls). */
1113
1114 struct dummy_frame
1115 {
1116 struct dummy_frame *next;
1117
1118 CORE_ADDR pc;
1119 CORE_ADDR fp;
1120 CORE_ADDR sp;
1121 CORE_ADDR top;
1122 char *registers;
1123 };
1124
1125 static struct dummy_frame *dummy_frame_stack = NULL;
1126
1127 /* Function: find_dummy_frame(pc, fp, sp)
1128 Search the stack of dummy frames for one matching the given PC, FP and SP.
1129 This is the work-horse for pc_in_call_dummy and read_register_dummy */
1130
1131 char *
1132 generic_find_dummy_frame (pc, fp)
1133 CORE_ADDR pc;
1134 CORE_ADDR fp;
1135 {
1136 struct dummy_frame *dummyframe;
1137
1138 if (pc != entry_point_address ())
1139 return 0;
1140
1141 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
1142 dummyframe = dummyframe->next)
1143 if (fp == dummyframe->fp
1144 || fp == dummyframe->sp
1145 || fp == dummyframe->top)
1146 /* The frame in question lies between the saved fp and sp, inclusive */
1147 return dummyframe->registers;
1148
1149 return 0;
1150 }
1151
1152 /* Function: pc_in_call_dummy (pc, fp)
1153 Return true if this is a dummy frame created by gdb for an inferior call */
1154
1155 int
1156 generic_pc_in_call_dummy (pc, sp, fp)
1157 CORE_ADDR pc;
1158 CORE_ADDR sp;
1159 CORE_ADDR fp;
1160 {
1161 /* if find_dummy_frame succeeds, then PC is in a call dummy */
1162 /* Note: SP and not FP is passed on. */
1163 return (generic_find_dummy_frame (pc, sp) != 0);
1164 }
1165
1166 /* Function: read_register_dummy
1167 Find a saved register from before GDB calls a function in the inferior */
1168
1169 CORE_ADDR
1170 generic_read_register_dummy (pc, fp, regno)
1171 CORE_ADDR pc;
1172 CORE_ADDR fp;
1173 int regno;
1174 {
1175 char *dummy_regs = generic_find_dummy_frame (pc, fp);
1176
1177 if (dummy_regs)
1178 return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
1179 REGISTER_RAW_SIZE (regno));
1180 else
1181 return 0;
1182 }
1183
1184 /* Save all the registers on the dummy frame stack. Most ports save the
1185 registers on the target stack. This results in lots of unnecessary memory
1186 references, which are slow when debugging via a serial line. Instead, we
1187 save all the registers internally, and never write them to the stack. The
1188 registers get restored when the called function returns to the entry point,
1189 where a breakpoint is laying in wait. */
1190
1191 void
1192 generic_push_dummy_frame ()
1193 {
1194 struct dummy_frame *dummy_frame;
1195 CORE_ADDR fp = (get_current_frame ())->frame;
1196
1197 /* check to see if there are stale dummy frames,
1198 perhaps left over from when a longjump took us out of a
1199 function that was called by the debugger */
1200
1201 dummy_frame = dummy_frame_stack;
1202 while (dummy_frame)
1203 if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
1204 {
1205 dummy_frame_stack = dummy_frame->next;
1206 free (dummy_frame->registers);
1207 free (dummy_frame);
1208 dummy_frame = dummy_frame_stack;
1209 }
1210 else
1211 dummy_frame = dummy_frame->next;
1212
1213 dummy_frame = xmalloc (sizeof (struct dummy_frame));
1214 dummy_frame->registers = xmalloc (REGISTER_BYTES);
1215
1216 dummy_frame->pc = read_register (PC_REGNUM);
1217 dummy_frame->sp = read_register (SP_REGNUM);
1218 dummy_frame->top = dummy_frame->sp;
1219 dummy_frame->fp = fp;
1220 read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1221 dummy_frame->next = dummy_frame_stack;
1222 dummy_frame_stack = dummy_frame;
1223 }
1224
1225 void
1226 generic_save_dummy_frame_tos (sp)
1227 CORE_ADDR sp;
1228 {
1229 dummy_frame_stack->top = sp;
1230 }
1231
1232 /* Function: pop_frame
1233 Restore the machine state from either the saved dummy stack or a
1234 real stack frame. */
1235
1236 void
1237 generic_pop_current_frame (pop)
1238 void (*pop) (struct frame_info * frame);
1239 {
1240 struct frame_info *frame = get_current_frame ();
1241 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1242 generic_pop_dummy_frame ();
1243 else
1244 pop (frame);
1245 }
1246
1247 /* Function: pop_dummy_frame
1248 Restore the machine state from a saved dummy stack frame. */
1249
1250 void
1251 generic_pop_dummy_frame ()
1252 {
1253 struct dummy_frame *dummy_frame = dummy_frame_stack;
1254
1255 /* FIXME: what if the first frame isn't the right one, eg..
1256 because one call-by-hand function has done a longjmp into another one? */
1257
1258 if (!dummy_frame)
1259 error ("Can't pop dummy frame!");
1260 dummy_frame_stack = dummy_frame->next;
1261 write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1262 flush_cached_frames ();
1263
1264 free (dummy_frame->registers);
1265 free (dummy_frame);
1266 }
1267
1268 /* Function: frame_chain_valid
1269 Returns true for a user frame or a call_function_by_hand dummy frame,
1270 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
1271
1272 int
1273 generic_file_frame_chain_valid (fp, fi)
1274 CORE_ADDR fp;
1275 struct frame_info *fi;
1276 {
1277 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
1278 return 1; /* don't prune CALL_DUMMY frames */
1279 else /* fall back to default algorithm (see frame.h) */
1280 return (fp != 0
1281 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1282 && !inside_entry_file (FRAME_SAVED_PC (fi)));
1283 }
1284
1285 int
1286 generic_func_frame_chain_valid (fp, fi)
1287 CORE_ADDR fp;
1288 struct frame_info *fi;
1289 {
1290 if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp))
1291 return 1; /* don't prune CALL_DUMMY frames */
1292 else /* fall back to default algorithm (see frame.h) */
1293 return (fp != 0
1294 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1295 && !inside_main_func ((fi)->pc)
1296 && !inside_entry_func ((fi)->pc));
1297 }
1298
1299 /* Function: fix_call_dummy
1300 Stub function. Generic dumy frames typically do not need to fix
1301 the frame being created */
1302
1303 void
1304 generic_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1305 char *dummy;
1306 CORE_ADDR pc;
1307 CORE_ADDR fun;
1308 int nargs;
1309 struct value **args;
1310 struct type *type;
1311 int gcc_p;
1312 {
1313 return;
1314 }
1315
1316 /* Function: get_saved_register
1317 Find register number REGNUM relative to FRAME and put its (raw,
1318 target format) contents in *RAW_BUFFER.
1319
1320 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1321 fetched). Note that this is never set to anything other than zero
1322 in this implementation.
1323
1324 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1325 whether the value was fetched from memory, from a register, or in a
1326 strange and non-modifiable way (e.g. a frame pointer which was
1327 calculated rather than fetched). We will use not_lval for values
1328 fetched from generic dummy frames.
1329
1330 Set *ADDRP to the address, either in memory on as a REGISTER_BYTE
1331 offset into the registers array. If the value is stored in a dummy
1332 frame, set *ADDRP to zero.
1333
1334 To use this implementation, define a function called
1335 "get_saved_register" in your target code, which simply passes all
1336 of its arguments to this function.
1337
1338 The argument RAW_BUFFER must point to aligned memory. */
1339
1340 void
1341 generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
1342 char *raw_buffer;
1343 int *optimized;
1344 CORE_ADDR *addrp;
1345 struct frame_info *frame;
1346 int regnum;
1347 enum lval_type *lval;
1348 {
1349 if (!target_has_registers)
1350 error ("No registers.");
1351
1352 /* Normal systems don't optimize out things with register numbers. */
1353 if (optimized != NULL)
1354 *optimized = 0;
1355
1356 if (addrp) /* default assumption: not found in memory */
1357 *addrp = 0;
1358
1359 /* Note: since the current frame's registers could only have been
1360 saved by frames INTERIOR TO the current frame, we skip examining
1361 the current frame itself: otherwise, we would be getting the
1362 previous frame's registers which were saved by the current frame. */
1363
1364 while (frame && ((frame = frame->next) != NULL))
1365 {
1366 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1367 {
1368 if (lval) /* found it in a CALL_DUMMY frame */
1369 *lval = not_lval;
1370 if (raw_buffer)
1371 memcpy (raw_buffer,
1372 generic_find_dummy_frame (frame->pc, frame->frame) +
1373 REGISTER_BYTE (regnum),
1374 REGISTER_RAW_SIZE (regnum));
1375 return;
1376 }
1377
1378 FRAME_INIT_SAVED_REGS (frame);
1379 if (frame->saved_regs != NULL
1380 && frame->saved_regs[regnum] != 0)
1381 {
1382 if (lval) /* found it saved on the stack */
1383 *lval = lval_memory;
1384 if (regnum == SP_REGNUM)
1385 {
1386 if (raw_buffer) /* SP register treated specially */
1387 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
1388 frame->saved_regs[regnum]);
1389 }
1390 else
1391 {
1392 if (addrp) /* any other register */
1393 *addrp = frame->saved_regs[regnum];
1394 if (raw_buffer)
1395 read_memory (frame->saved_regs[regnum], raw_buffer,
1396 REGISTER_RAW_SIZE (regnum));
1397 }
1398 return;
1399 }
1400 }
1401
1402 /* If we get thru the loop to this point, it means the register was
1403 not saved in any frame. Return the actual live-register value. */
1404
1405 if (lval) /* found it in a live register */
1406 *lval = lval_register;
1407 if (addrp)
1408 *addrp = REGISTER_BYTE (regnum);
1409 if (raw_buffer)
1410 read_register_gen (regnum, raw_buffer);
1411 }
1412
1413 void
1414 _initialize_blockframe (void)
1415 {
1416 obstack_init (&frame_cache_obstack);
1417 }
This page took 0.058715 seconds and 4 git commands to generate.