* config/djgpp/fnchange.lst: Add file mappings as per last weekly
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
3 Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "bfd.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "frame.h"
29 #include "gdbcore.h"
30 #include "value.h" /* for read_register */
31 #include "target.h" /* for target_has_stack */
32 #include "inferior.h" /* for read_pc */
33 #include "annotate.h"
34
35 /* Prototypes for exported functions. */
36
37 void _initialize_blockframe (void);
38
39 /* A default FRAME_CHAIN_VALID, in the form that is suitable for most
40 targets. If FRAME_CHAIN_VALID returns zero it means that the given
41 frame is the outermost one and has no caller. */
42
43 int
44 file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
45 {
46 return ((chain) != 0
47 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
48 }
49
50 /* Use the alternate method of avoiding running up off the end of the
51 frame chain or following frames back into the startup code. See
52 the comments in objfiles.h. */
53
54 int
55 func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
56 {
57 return ((chain) != 0
58 && !inside_main_func ((thisframe)->pc)
59 && !inside_entry_func ((thisframe)->pc));
60 }
61
62 /* A very simple method of determining a valid frame */
63
64 int
65 nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
66 {
67 return ((chain) != 0);
68 }
69
70 /* Is ADDR inside the startup file? Note that if your machine
71 has a way to detect the bottom of the stack, there is no need
72 to call this function from FRAME_CHAIN_VALID; the reason for
73 doing so is that some machines have no way of detecting bottom
74 of stack.
75
76 A PC of zero is always considered to be the bottom of the stack. */
77
78 int
79 inside_entry_file (CORE_ADDR addr)
80 {
81 if (addr == 0)
82 return 1;
83 if (symfile_objfile == 0)
84 return 0;
85 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
86 {
87 /* Do not stop backtracing if the pc is in the call dummy
88 at the entry point. */
89 /* FIXME: Won't always work with zeros for the last two arguments */
90 if (PC_IN_CALL_DUMMY (addr, 0, 0))
91 return 0;
92 }
93 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
94 addr < symfile_objfile->ei.entry_file_highpc);
95 }
96
97 /* Test a specified PC value to see if it is in the range of addresses
98 that correspond to the main() function. See comments above for why
99 we might want to do this.
100
101 Typically called from FRAME_CHAIN_VALID.
102
103 A PC of zero is always considered to be the bottom of the stack. */
104
105 int
106 inside_main_func (CORE_ADDR pc)
107 {
108 if (pc == 0)
109 return 1;
110 if (symfile_objfile == 0)
111 return 0;
112
113 /* If the addr range is not set up at symbol reading time, set it up now.
114 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
115 it is unable to set it up and symbol reading time. */
116
117 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
118 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
119 {
120 struct symbol *mainsym;
121
122 mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
123 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
124 {
125 symfile_objfile->ei.main_func_lowpc =
126 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
127 symfile_objfile->ei.main_func_highpc =
128 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
129 }
130 }
131 return (symfile_objfile->ei.main_func_lowpc <= pc &&
132 symfile_objfile->ei.main_func_highpc > pc);
133 }
134
135 /* Test a specified PC value to see if it is in the range of addresses
136 that correspond to the process entry point function. See comments
137 in objfiles.h for why we might want to do this.
138
139 Typically called from FRAME_CHAIN_VALID.
140
141 A PC of zero is always considered to be the bottom of the stack. */
142
143 int
144 inside_entry_func (CORE_ADDR pc)
145 {
146 if (pc == 0)
147 return 1;
148 if (symfile_objfile == 0)
149 return 0;
150 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
151 {
152 /* Do not stop backtracing if the pc is in the call dummy
153 at the entry point. */
154 /* FIXME: Won't always work with zeros for the last two arguments */
155 if (PC_IN_CALL_DUMMY (pc, 0, 0))
156 return 0;
157 }
158 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
159 symfile_objfile->ei.entry_func_highpc > pc);
160 }
161
162 /* Info about the innermost stack frame (contents of FP register) */
163
164 static struct frame_info *current_frame;
165
166 /* Cache for frame addresses already read by gdb. Valid only while
167 inferior is stopped. Control variables for the frame cache should
168 be local to this module. */
169
170 static struct obstack frame_cache_obstack;
171
172 void *
173 frame_obstack_alloc (unsigned long size)
174 {
175 return obstack_alloc (&frame_cache_obstack, size);
176 }
177
178 void
179 frame_saved_regs_zalloc (struct frame_info *fi)
180 {
181 fi->saved_regs = (CORE_ADDR *)
182 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
183 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
184 }
185
186
187 /* Return the innermost (currently executing) stack frame. */
188
189 struct frame_info *
190 get_current_frame (void)
191 {
192 if (current_frame == NULL)
193 {
194 if (target_has_stack)
195 current_frame = create_new_frame (read_fp (), read_pc ());
196 else
197 error ("No stack.");
198 }
199 return current_frame;
200 }
201
202 void
203 set_current_frame (struct frame_info *frame)
204 {
205 current_frame = frame;
206 }
207
208 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
209 Always returns a non-NULL value. */
210
211 struct frame_info *
212 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
213 {
214 struct frame_info *fi;
215 char *name;
216
217 fi = (struct frame_info *)
218 obstack_alloc (&frame_cache_obstack,
219 sizeof (struct frame_info));
220
221 /* Arbitrary frame */
222 fi->saved_regs = NULL;
223 fi->next = NULL;
224 fi->prev = NULL;
225 fi->frame = addr;
226 fi->pc = pc;
227 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
228 fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
229
230 #ifdef INIT_EXTRA_FRAME_INFO
231 INIT_EXTRA_FRAME_INFO (0, fi);
232 #endif
233
234 return fi;
235 }
236
237 /* Return the frame that FRAME calls (NULL if FRAME is the innermost
238 frame). */
239
240 struct frame_info *
241 get_next_frame (struct frame_info *frame)
242 {
243 return frame->next;
244 }
245
246 /* Flush the entire frame cache. */
247
248 void
249 flush_cached_frames (void)
250 {
251 /* Since we can't really be sure what the first object allocated was */
252 obstack_free (&frame_cache_obstack, 0);
253 obstack_init (&frame_cache_obstack);
254
255 current_frame = NULL; /* Invalidate cache */
256 select_frame (NULL, -1);
257 annotate_frames_invalid ();
258 }
259
260 /* Flush the frame cache, and start a new one if necessary. */
261
262 void
263 reinit_frame_cache (void)
264 {
265 flush_cached_frames ();
266
267 /* FIXME: The inferior_pid test is wrong if there is a corefile. */
268 if (inferior_pid != 0)
269 {
270 select_frame (get_current_frame (), 0);
271 }
272 }
273
274 /* Return nonzero if the function for this frame lacks a prologue. Many
275 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
276 function. */
277
278 int
279 frameless_look_for_prologue (struct frame_info *frame)
280 {
281 CORE_ADDR func_start, after_prologue;
282
283 func_start = get_pc_function_start (frame->pc);
284 if (func_start)
285 {
286 func_start += FUNCTION_START_OFFSET;
287 /* This is faster, since only care whether there *is* a
288 prologue, not how long it is. */
289 return PROLOGUE_FRAMELESS_P (func_start);
290 }
291 else if (frame->pc == 0)
292 /* A frame with a zero PC is usually created by dereferencing a
293 NULL function pointer, normally causing an immediate core dump
294 of the inferior. Mark function as frameless, as the inferior
295 has no chance of setting up a stack frame. */
296 return 1;
297 else
298 /* If we can't find the start of the function, we don't really
299 know whether the function is frameless, but we should be able
300 to get a reasonable (i.e. best we can do under the
301 circumstances) backtrace by saying that it isn't. */
302 return 0;
303 }
304
305 /* Default a few macros that people seldom redefine. */
306
307 #if !defined (INIT_FRAME_PC)
308 #define INIT_FRAME_PC(fromleaf, prev) \
309 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
310 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
311 #endif
312
313 #ifndef FRAME_CHAIN_COMBINE
314 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
315 #endif
316
317 /* Return a structure containing various interesting information
318 about the frame that called NEXT_FRAME. Returns NULL
319 if there is no such frame. */
320
321 struct frame_info *
322 get_prev_frame (struct frame_info *next_frame)
323 {
324 CORE_ADDR address = 0;
325 struct frame_info *prev;
326 int fromleaf = 0;
327 char *name;
328
329 /* If the requested entry is in the cache, return it.
330 Otherwise, figure out what the address should be for the entry
331 we're about to add to the cache. */
332
333 if (!next_frame)
334 {
335 #if 0
336 /* This screws value_of_variable, which just wants a nice clean
337 NULL return from block_innermost_frame if there are no frames.
338 I don't think I've ever seen this message happen otherwise.
339 And returning NULL here is a perfectly legitimate thing to do. */
340 if (!current_frame)
341 {
342 error ("You haven't set up a process's stack to examine.");
343 }
344 #endif
345
346 return current_frame;
347 }
348
349 /* If we have the prev one, return it */
350 if (next_frame->prev)
351 return next_frame->prev;
352
353 /* On some machines it is possible to call a function without
354 setting up a stack frame for it. On these machines, we
355 define this macro to take two args; a frameinfo pointer
356 identifying a frame and a variable to set or clear if it is
357 or isn't leafless. */
358
359 /* Still don't want to worry about this except on the innermost
360 frame. This macro will set FROMLEAF if NEXT_FRAME is a
361 frameless function invocation. */
362 if (!(next_frame->next))
363 {
364 fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
365 if (fromleaf)
366 address = FRAME_FP (next_frame);
367 }
368
369 if (!fromleaf)
370 {
371 /* Two macros defined in tm.h specify the machine-dependent
372 actions to be performed here.
373 First, get the frame's chain-pointer.
374 If that is zero, the frame is the outermost frame or a leaf
375 called by the outermost frame. This means that if start
376 calls main without a frame, we'll return 0 (which is fine
377 anyway).
378
379 Nope; there's a problem. This also returns when the current
380 routine is a leaf of main. This is unacceptable. We move
381 this to after the ffi test; I'd rather have backtraces from
382 start go curfluy than have an abort called from main not show
383 main. */
384 address = FRAME_CHAIN (next_frame);
385 if (!FRAME_CHAIN_VALID (address, next_frame))
386 return 0;
387 address = FRAME_CHAIN_COMBINE (address, next_frame);
388 }
389 if (address == 0)
390 return 0;
391
392 prev = (struct frame_info *)
393 obstack_alloc (&frame_cache_obstack,
394 sizeof (struct frame_info));
395
396 prev->saved_regs = NULL;
397 if (next_frame)
398 next_frame->prev = prev;
399 prev->next = next_frame;
400 prev->prev = (struct frame_info *) 0;
401 prev->frame = address;
402 prev->signal_handler_caller = 0;
403
404 /* This change should not be needed, FIXME! We should
405 determine whether any targets *need* INIT_FRAME_PC to happen
406 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
407 express what goes on here.
408
409 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
410 (where the PC is already set up) and here (where it isn't).
411 INIT_FRAME_PC is only called from here, always after
412 INIT_EXTRA_FRAME_INFO.
413
414 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
415 value (which hasn't been set yet). Some other machines appear to
416 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
417
418 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
419 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
420
421 Assuming that some machines need INIT_FRAME_PC after
422 INIT_EXTRA_FRAME_INFO, one possible scheme:
423
424 SETUP_INNERMOST_FRAME()
425 Default version is just create_new_frame (read_fp ()),
426 read_pc ()). Machines with extra frame info would do that (or the
427 local equivalent) and then set the extra fields.
428 SETUP_ARBITRARY_FRAME(argc, argv)
429 Only change here is that create_new_frame would no longer init extra
430 frame info; SETUP_ARBITRARY_FRAME would have to do that.
431 INIT_PREV_FRAME(fromleaf, prev)
432 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
433 also return a flag saying whether to keep the new frame, or
434 whether to discard it, because on some machines (e.g. mips) it
435 is really awkward to have FRAME_CHAIN_VALID called *before*
436 INIT_EXTRA_FRAME_INFO (there is no good way to get information
437 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
438 std_frame_pc(fromleaf, prev)
439 This is the default setting for INIT_PREV_FRAME. It just does what
440 the default INIT_FRAME_PC does. Some machines will call it from
441 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
442 Some machines won't use it.
443 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
444
445 #ifdef INIT_FRAME_PC_FIRST
446 INIT_FRAME_PC_FIRST (fromleaf, prev);
447 #endif
448
449 #ifdef INIT_EXTRA_FRAME_INFO
450 INIT_EXTRA_FRAME_INFO (fromleaf, prev);
451 #endif
452
453 /* This entry is in the frame queue now, which is good since
454 FRAME_SAVED_PC may use that queue to figure out its value
455 (see tm-sparc.h). We want the pc saved in the inferior frame. */
456 INIT_FRAME_PC (fromleaf, prev);
457
458 /* If ->frame and ->pc are unchanged, we are in the process of getting
459 ourselves into an infinite backtrace. Some architectures check this
460 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
461 this can't be an architecture-independent check. */
462 if (next_frame != NULL)
463 {
464 if (prev->frame == next_frame->frame
465 && prev->pc == next_frame->pc)
466 {
467 next_frame->prev = NULL;
468 obstack_free (&frame_cache_obstack, prev);
469 return NULL;
470 }
471 }
472
473 find_pc_partial_function (prev->pc, &name,
474 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
475 if (IN_SIGTRAMP (prev->pc, name))
476 prev->signal_handler_caller = 1;
477
478 return prev;
479 }
480
481 CORE_ADDR
482 get_frame_pc (struct frame_info *frame)
483 {
484 return frame->pc;
485 }
486
487
488 #ifdef FRAME_FIND_SAVED_REGS
489 /* XXX - deprecated. This is a compatibility function for targets
490 that do not yet implement FRAME_INIT_SAVED_REGS. */
491 /* Find the addresses in which registers are saved in FRAME. */
492
493 void
494 get_frame_saved_regs (struct frame_info *frame,
495 struct frame_saved_regs *saved_regs_addr)
496 {
497 if (frame->saved_regs == NULL)
498 {
499 frame->saved_regs = (CORE_ADDR *)
500 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
501 }
502 if (saved_regs_addr == NULL)
503 {
504 struct frame_saved_regs saved_regs;
505 FRAME_FIND_SAVED_REGS (frame, saved_regs);
506 memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
507 }
508 else
509 {
510 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
511 memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
512 }
513 }
514 #endif
515
516 /* Return the innermost lexical block in execution
517 in a specified stack frame. The frame address is assumed valid. */
518
519 struct block *
520 get_frame_block (struct frame_info *frame)
521 {
522 CORE_ADDR pc;
523
524 pc = frame->pc;
525 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
526 /* We are not in the innermost frame and we were not interrupted
527 by a signal. We need to subtract one to get the correct block,
528 in case the call instruction was the last instruction of the block.
529 If there are any machines on which the saved pc does not point to
530 after the call insn, we probably want to make frame->pc point after
531 the call insn anyway. */
532 --pc;
533 return block_for_pc (pc);
534 }
535
536 struct block *
537 get_current_block (void)
538 {
539 return block_for_pc (read_pc ());
540 }
541
542 CORE_ADDR
543 get_pc_function_start (CORE_ADDR pc)
544 {
545 register struct block *bl;
546 register struct symbol *symbol;
547 register struct minimal_symbol *msymbol;
548 CORE_ADDR fstart;
549
550 if ((bl = block_for_pc (pc)) != NULL &&
551 (symbol = block_function (bl)) != NULL)
552 {
553 bl = SYMBOL_BLOCK_VALUE (symbol);
554 fstart = BLOCK_START (bl);
555 }
556 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
557 {
558 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
559 }
560 else
561 {
562 fstart = 0;
563 }
564 return (fstart);
565 }
566
567 /* Return the symbol for the function executing in frame FRAME. */
568
569 struct symbol *
570 get_frame_function (struct frame_info *frame)
571 {
572 register struct block *bl = get_frame_block (frame);
573 if (bl == 0)
574 return 0;
575 return block_function (bl);
576 }
577 \f
578
579 /* Return the blockvector immediately containing the innermost lexical block
580 containing the specified pc value and section, or 0 if there is none.
581 PINDEX is a pointer to the index value of the block. If PINDEX
582 is NULL, we don't pass this information back to the caller. */
583
584 struct blockvector *
585 blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
586 int *pindex, struct symtab *symtab)
587 {
588 register struct block *b;
589 register int bot, top, half;
590 struct blockvector *bl;
591
592 if (symtab == 0) /* if no symtab specified by caller */
593 {
594 /* First search all symtabs for one whose file contains our pc */
595 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
596 return 0;
597 }
598
599 bl = BLOCKVECTOR (symtab);
600 b = BLOCKVECTOR_BLOCK (bl, 0);
601
602 /* Then search that symtab for the smallest block that wins. */
603 /* Use binary search to find the last block that starts before PC. */
604
605 bot = 0;
606 top = BLOCKVECTOR_NBLOCKS (bl);
607
608 while (top - bot > 1)
609 {
610 half = (top - bot + 1) >> 1;
611 b = BLOCKVECTOR_BLOCK (bl, bot + half);
612 if (BLOCK_START (b) <= pc)
613 bot += half;
614 else
615 top = bot + half;
616 }
617
618 /* Now search backward for a block that ends after PC. */
619
620 while (bot >= 0)
621 {
622 b = BLOCKVECTOR_BLOCK (bl, bot);
623 if (BLOCK_END (b) > pc)
624 {
625 if (pindex)
626 *pindex = bot;
627 return bl;
628 }
629 bot--;
630 }
631 return 0;
632 }
633
634 /* Return the blockvector immediately containing the innermost lexical block
635 containing the specified pc value, or 0 if there is none.
636 Backward compatibility, no section. */
637
638 struct blockvector *
639 blockvector_for_pc (register CORE_ADDR pc, int *pindex)
640 {
641 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
642 pindex, NULL);
643 }
644
645 /* Return the innermost lexical block containing the specified pc value
646 in the specified section, or 0 if there is none. */
647
648 struct block *
649 block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
650 {
651 register struct blockvector *bl;
652 int index;
653
654 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
655 if (bl)
656 return BLOCKVECTOR_BLOCK (bl, index);
657 return 0;
658 }
659
660 /* Return the innermost lexical block containing the specified pc value,
661 or 0 if there is none. Backward compatibility, no section. */
662
663 struct block *
664 block_for_pc (register CORE_ADDR pc)
665 {
666 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
667 }
668
669 /* Return the function containing pc value PC in section SECTION.
670 Returns 0 if function is not known. */
671
672 struct symbol *
673 find_pc_sect_function (CORE_ADDR pc, struct sec *section)
674 {
675 register struct block *b = block_for_pc_sect (pc, section);
676 if (b == 0)
677 return 0;
678 return block_function (b);
679 }
680
681 /* Return the function containing pc value PC.
682 Returns 0 if function is not known. Backward compatibility, no section */
683
684 struct symbol *
685 find_pc_function (CORE_ADDR pc)
686 {
687 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
688 }
689
690 /* These variables are used to cache the most recent result
691 * of find_pc_partial_function. */
692
693 static CORE_ADDR cache_pc_function_low = 0;
694 static CORE_ADDR cache_pc_function_high = 0;
695 static char *cache_pc_function_name = 0;
696 static struct sec *cache_pc_function_section = NULL;
697
698 /* Clear cache, e.g. when symbol table is discarded. */
699
700 void
701 clear_pc_function_cache (void)
702 {
703 cache_pc_function_low = 0;
704 cache_pc_function_high = 0;
705 cache_pc_function_name = (char *) 0;
706 cache_pc_function_section = NULL;
707 }
708
709 /* Finds the "function" (text symbol) that is smaller than PC but
710 greatest of all of the potential text symbols in SECTION. Sets
711 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
712 If ENDADDR is non-null, then set *ENDADDR to be the end of the
713 function (exclusive), but passing ENDADDR as non-null means that
714 the function might cause symbols to be read. This function either
715 succeeds or fails (not halfway succeeds). If it succeeds, it sets
716 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
717 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
718 returns 0. */
719
720 int
721 find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
722 CORE_ADDR *address, CORE_ADDR *endaddr)
723 {
724 struct partial_symtab *pst;
725 struct symbol *f;
726 struct minimal_symbol *msymbol;
727 struct partial_symbol *psb;
728 struct obj_section *osect;
729 int i;
730 CORE_ADDR mapped_pc;
731
732 mapped_pc = overlay_mapped_address (pc, section);
733
734 if (mapped_pc >= cache_pc_function_low &&
735 mapped_pc < cache_pc_function_high &&
736 section == cache_pc_function_section)
737 goto return_cached_value;
738
739 /* If sigtramp is in the u area, it counts as a function (especially
740 important for step_1). */
741 #if defined SIGTRAMP_START
742 if (IN_SIGTRAMP (mapped_pc, (char *) NULL))
743 {
744 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
745 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
746 cache_pc_function_name = "<sigtramp>";
747 cache_pc_function_section = section;
748 goto return_cached_value;
749 }
750 #endif
751
752 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
753 pst = find_pc_sect_psymtab (mapped_pc, section);
754 if (pst)
755 {
756 /* Need to read the symbols to get a good value for the end address. */
757 if (endaddr != NULL && !pst->readin)
758 {
759 /* Need to get the terminal in case symbol-reading produces
760 output. */
761 target_terminal_ours_for_output ();
762 PSYMTAB_TO_SYMTAB (pst);
763 }
764
765 if (pst->readin)
766 {
767 /* Checking whether the msymbol has a larger value is for the
768 "pathological" case mentioned in print_frame_info. */
769 f = find_pc_sect_function (mapped_pc, section);
770 if (f != NULL
771 && (msymbol == NULL
772 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
773 >= SYMBOL_VALUE_ADDRESS (msymbol))))
774 {
775 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
776 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
777 cache_pc_function_name = SYMBOL_NAME (f);
778 cache_pc_function_section = section;
779 goto return_cached_value;
780 }
781 }
782 else
783 {
784 /* Now that static symbols go in the minimal symbol table, perhaps
785 we could just ignore the partial symbols. But at least for now
786 we use the partial or minimal symbol, whichever is larger. */
787 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
788
789 if (psb
790 && (msymbol == NULL ||
791 (SYMBOL_VALUE_ADDRESS (psb)
792 >= SYMBOL_VALUE_ADDRESS (msymbol))))
793 {
794 /* This case isn't being cached currently. */
795 if (address)
796 *address = SYMBOL_VALUE_ADDRESS (psb);
797 if (name)
798 *name = SYMBOL_NAME (psb);
799 /* endaddr non-NULL can't happen here. */
800 return 1;
801 }
802 }
803 }
804
805 /* Not in the normal symbol tables, see if the pc is in a known section.
806 If it's not, then give up. This ensures that anything beyond the end
807 of the text seg doesn't appear to be part of the last function in the
808 text segment. */
809
810 osect = find_pc_sect_section (mapped_pc, section);
811
812 if (!osect)
813 msymbol = NULL;
814
815 /* Must be in the minimal symbol table. */
816 if (msymbol == NULL)
817 {
818 /* No available symbol. */
819 if (name != NULL)
820 *name = 0;
821 if (address != NULL)
822 *address = 0;
823 if (endaddr != NULL)
824 *endaddr = 0;
825 return 0;
826 }
827
828 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
829 cache_pc_function_name = SYMBOL_NAME (msymbol);
830 cache_pc_function_section = section;
831
832 /* Use the lesser of the next minimal symbol in the same section, or
833 the end of the section, as the end of the function. */
834
835 /* Step over other symbols at this same address, and symbols in
836 other sections, to find the next symbol in this section with
837 a different address. */
838
839 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
840 {
841 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
842 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
843 break;
844 }
845
846 if (SYMBOL_NAME (msymbol + i) != NULL
847 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
848 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
849 else
850 /* We got the start address from the last msymbol in the objfile.
851 So the end address is the end of the section. */
852 cache_pc_function_high = osect->endaddr;
853
854 return_cached_value:
855
856 if (address)
857 {
858 if (pc_in_unmapped_range (pc, section))
859 *address = overlay_unmapped_address (cache_pc_function_low, section);
860 else
861 *address = cache_pc_function_low;
862 }
863
864 if (name)
865 *name = cache_pc_function_name;
866
867 if (endaddr)
868 {
869 if (pc_in_unmapped_range (pc, section))
870 {
871 /* Because the high address is actually beyond the end of
872 the function (and therefore possibly beyond the end of
873 the overlay), we must actually convert (high - 1)
874 and then add one to that. */
875
876 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
877 section);
878 }
879 else
880 *endaddr = cache_pc_function_high;
881 }
882
883 return 1;
884 }
885
886 /* Backward compatibility, no section argument */
887
888 int
889 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
890 CORE_ADDR *endaddr)
891 {
892 asection *section;
893
894 section = find_pc_overlay (pc);
895 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
896 }
897
898 /* Return the innermost stack frame executing inside of BLOCK,
899 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
900
901 struct frame_info *
902 block_innermost_frame (struct block *block)
903 {
904 struct frame_info *frame;
905 register CORE_ADDR start;
906 register CORE_ADDR end;
907
908 if (block == NULL)
909 return NULL;
910
911 start = BLOCK_START (block);
912 end = BLOCK_END (block);
913
914 frame = NULL;
915 while (1)
916 {
917 frame = get_prev_frame (frame);
918 if (frame == NULL)
919 return NULL;
920 if (frame->pc >= start && frame->pc < end)
921 return frame;
922 }
923 }
924
925 /* Return the full FRAME which corresponds to the given CORE_ADDR
926 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
927
928 struct frame_info *
929 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
930 {
931 struct frame_info *frame = NULL;
932
933 if (frame_addr == (CORE_ADDR) 0)
934 return NULL;
935
936 while (1)
937 {
938 frame = get_prev_frame (frame);
939 if (frame == NULL)
940 return NULL;
941 if (FRAME_FP (frame) == frame_addr)
942 return frame;
943 }
944 }
945
946 #ifdef SIGCONTEXT_PC_OFFSET
947 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
948
949 CORE_ADDR
950 sigtramp_saved_pc (struct frame_info *frame)
951 {
952 CORE_ADDR sigcontext_addr;
953 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
954 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
955 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
956
957 /* Get sigcontext address, it is the third parameter on the stack. */
958 if (frame->next)
959 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
960 + FRAME_ARGS_SKIP
961 + sigcontext_offs,
962 ptrbytes);
963 else
964 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
965 + sigcontext_offs,
966 ptrbytes);
967
968 /* Don't cause a memory_error when accessing sigcontext in case the stack
969 layout has changed or the stack is corrupt. */
970 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
971 return extract_unsigned_integer (buf, ptrbytes);
972 }
973 #endif /* SIGCONTEXT_PC_OFFSET */
974
975
976 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
977 below is for infrun.c, which may give the macro a pc without that
978 subtracted out. */
979
980 extern CORE_ADDR text_end;
981
982 int
983 pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
984 CORE_ADDR frame_address)
985 {
986 return ((pc) >= text_end - CALL_DUMMY_LENGTH
987 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
988 }
989
990 int
991 pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
992 CORE_ADDR frame_address)
993 {
994 return ((pc) >= text_end
995 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
996 }
997
998 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
999 top of the stack frame which we are checking, where "bottom" and
1000 "top" refer to some section of memory which contains the code for
1001 the call dummy. Calls to this macro assume that the contents of
1002 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
1003 are the things to pass.
1004
1005 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
1006 have that meaning, but the 29k doesn't use ON_STACK. This could be
1007 fixed by generalizing this scheme, perhaps by passing in a frame
1008 and adding a few fields, at least on machines which need them for
1009 PC_IN_CALL_DUMMY.
1010
1011 Something simpler, like checking for the stack segment, doesn't work,
1012 since various programs (threads implementations, gcc nested function
1013 stubs, etc) may either allocate stack frames in another segment, or
1014 allocate other kinds of code on the stack. */
1015
1016 int
1017 pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
1018 {
1019 return (INNER_THAN ((sp), (pc))
1020 && (frame_address != 0)
1021 && INNER_THAN ((pc), (frame_address)));
1022 }
1023
1024 int
1025 pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
1026 CORE_ADDR frame_address)
1027 {
1028 return ((pc) >= CALL_DUMMY_ADDRESS ()
1029 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
1030 }
1031
1032
1033 /*
1034 * GENERIC DUMMY FRAMES
1035 *
1036 * The following code serves to maintain the dummy stack frames for
1037 * inferior function calls (ie. when gdb calls into the inferior via
1038 * call_function_by_hand). This code saves the machine state before
1039 * the call in host memory, so we must maintain an independant stack
1040 * and keep it consistant etc. I am attempting to make this code
1041 * generic enough to be used by many targets.
1042 *
1043 * The cheapest and most generic way to do CALL_DUMMY on a new target
1044 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
1045 * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
1046 * to define PUSH_RETURN_ADDRESS, because no call instruction will be
1047 * being executed by the target. Also FRAME_CHAIN_VALID as
1048 * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
1049 * generic_fix_call_dummy. */
1050
1051 /* Dummy frame. This saves the processor state just prior to setting
1052 up the inferior function call. Older targets save the registers
1053 on the target stack (but that really slows down function calls). */
1054
1055 struct dummy_frame
1056 {
1057 struct dummy_frame *next;
1058
1059 CORE_ADDR pc;
1060 CORE_ADDR fp;
1061 CORE_ADDR sp;
1062 CORE_ADDR top;
1063 char *registers;
1064 };
1065
1066 static struct dummy_frame *dummy_frame_stack = NULL;
1067
1068 /* Function: find_dummy_frame(pc, fp, sp)
1069 Search the stack of dummy frames for one matching the given PC, FP and SP.
1070 This is the work-horse for pc_in_call_dummy and read_register_dummy */
1071
1072 char *
1073 generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
1074 {
1075 struct dummy_frame *dummyframe;
1076
1077 if (pc != entry_point_address ())
1078 return 0;
1079
1080 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
1081 dummyframe = dummyframe->next)
1082 if (fp == dummyframe->fp
1083 || fp == dummyframe->sp
1084 || fp == dummyframe->top)
1085 /* The frame in question lies between the saved fp and sp, inclusive */
1086 return dummyframe->registers;
1087
1088 return 0;
1089 }
1090
1091 /* Function: pc_in_call_dummy (pc, fp)
1092 Return true if this is a dummy frame created by gdb for an inferior call */
1093
1094 int
1095 generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1096 {
1097 /* if find_dummy_frame succeeds, then PC is in a call dummy */
1098 /* Note: SP and not FP is passed on. */
1099 return (generic_find_dummy_frame (pc, sp) != 0);
1100 }
1101
1102 /* Function: read_register_dummy
1103 Find a saved register from before GDB calls a function in the inferior */
1104
1105 CORE_ADDR
1106 generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
1107 {
1108 char *dummy_regs = generic_find_dummy_frame (pc, fp);
1109
1110 if (dummy_regs)
1111 return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
1112 REGISTER_RAW_SIZE (regno));
1113 else
1114 return 0;
1115 }
1116
1117 /* Save all the registers on the dummy frame stack. Most ports save the
1118 registers on the target stack. This results in lots of unnecessary memory
1119 references, which are slow when debugging via a serial line. Instead, we
1120 save all the registers internally, and never write them to the stack. The
1121 registers get restored when the called function returns to the entry point,
1122 where a breakpoint is laying in wait. */
1123
1124 void
1125 generic_push_dummy_frame (void)
1126 {
1127 struct dummy_frame *dummy_frame;
1128 CORE_ADDR fp = (get_current_frame ())->frame;
1129
1130 /* check to see if there are stale dummy frames,
1131 perhaps left over from when a longjump took us out of a
1132 function that was called by the debugger */
1133
1134 dummy_frame = dummy_frame_stack;
1135 while (dummy_frame)
1136 if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
1137 {
1138 dummy_frame_stack = dummy_frame->next;
1139 free (dummy_frame->registers);
1140 free (dummy_frame);
1141 dummy_frame = dummy_frame_stack;
1142 }
1143 else
1144 dummy_frame = dummy_frame->next;
1145
1146 dummy_frame = xmalloc (sizeof (struct dummy_frame));
1147 dummy_frame->registers = xmalloc (REGISTER_BYTES);
1148
1149 dummy_frame->pc = read_pc ();
1150 dummy_frame->sp = read_sp ();
1151 dummy_frame->top = dummy_frame->sp;
1152 dummy_frame->fp = fp;
1153 read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1154 dummy_frame->next = dummy_frame_stack;
1155 dummy_frame_stack = dummy_frame;
1156 }
1157
1158 void
1159 generic_save_dummy_frame_tos (CORE_ADDR sp)
1160 {
1161 dummy_frame_stack->top = sp;
1162 }
1163
1164 /* Restore the machine state from either the saved dummy stack or a
1165 real stack frame. */
1166
1167 void
1168 generic_pop_current_frame (void (*popper) (struct frame_info * frame))
1169 {
1170 struct frame_info *frame = get_current_frame ();
1171
1172 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1173 generic_pop_dummy_frame ();
1174 else
1175 (*popper) (frame);
1176 }
1177
1178 /* Function: pop_dummy_frame
1179 Restore the machine state from a saved dummy stack frame. */
1180
1181 void
1182 generic_pop_dummy_frame (void)
1183 {
1184 struct dummy_frame *dummy_frame = dummy_frame_stack;
1185
1186 /* FIXME: what if the first frame isn't the right one, eg..
1187 because one call-by-hand function has done a longjmp into another one? */
1188
1189 if (!dummy_frame)
1190 error ("Can't pop dummy frame!");
1191 dummy_frame_stack = dummy_frame->next;
1192 write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
1193 flush_cached_frames ();
1194
1195 free (dummy_frame->registers);
1196 free (dummy_frame);
1197 }
1198
1199 /* Function: frame_chain_valid
1200 Returns true for a user frame or a call_function_by_hand dummy frame,
1201 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
1202
1203 int
1204 generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1205 {
1206 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
1207 return 1; /* don't prune CALL_DUMMY frames */
1208 else /* fall back to default algorithm (see frame.h) */
1209 return (fp != 0
1210 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1211 && !inside_entry_file (FRAME_SAVED_PC (fi)));
1212 }
1213
1214 int
1215 generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1216 {
1217 if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp))
1218 return 1; /* don't prune CALL_DUMMY frames */
1219 else /* fall back to default algorithm (see frame.h) */
1220 return (fp != 0
1221 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1222 && !inside_main_func ((fi)->pc)
1223 && !inside_entry_func ((fi)->pc));
1224 }
1225
1226 /* Function: fix_call_dummy
1227 Stub function. Generic dumy frames typically do not need to fix
1228 the frame being created */
1229
1230 void
1231 generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1232 struct value **args, struct type *type, int gcc_p)
1233 {
1234 return;
1235 }
1236
1237 /* Function: get_saved_register
1238 Find register number REGNUM relative to FRAME and put its (raw,
1239 target format) contents in *RAW_BUFFER.
1240
1241 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1242 fetched). Note that this is never set to anything other than zero
1243 in this implementation.
1244
1245 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1246 whether the value was fetched from memory, from a register, or in a
1247 strange and non-modifiable way (e.g. a frame pointer which was
1248 calculated rather than fetched). We will use not_lval for values
1249 fetched from generic dummy frames.
1250
1251 Set *ADDRP to the address, either in memory on as a REGISTER_BYTE
1252 offset into the registers array. If the value is stored in a dummy
1253 frame, set *ADDRP to zero.
1254
1255 To use this implementation, define a function called
1256 "get_saved_register" in your target code, which simply passes all
1257 of its arguments to this function.
1258
1259 The argument RAW_BUFFER must point to aligned memory. */
1260
1261 void
1262 generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
1263 struct frame_info *frame, int regnum,
1264 enum lval_type *lval)
1265 {
1266 if (!target_has_registers)
1267 error ("No registers.");
1268
1269 /* Normal systems don't optimize out things with register numbers. */
1270 if (optimized != NULL)
1271 *optimized = 0;
1272
1273 if (addrp) /* default assumption: not found in memory */
1274 *addrp = 0;
1275
1276 /* Note: since the current frame's registers could only have been
1277 saved by frames INTERIOR TO the current frame, we skip examining
1278 the current frame itself: otherwise, we would be getting the
1279 previous frame's registers which were saved by the current frame. */
1280
1281 while (frame && ((frame = frame->next) != NULL))
1282 {
1283 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1284 {
1285 if (lval) /* found it in a CALL_DUMMY frame */
1286 *lval = not_lval;
1287 if (raw_buffer)
1288 memcpy (raw_buffer,
1289 generic_find_dummy_frame (frame->pc, frame->frame) +
1290 REGISTER_BYTE (regnum),
1291 REGISTER_RAW_SIZE (regnum));
1292 return;
1293 }
1294
1295 FRAME_INIT_SAVED_REGS (frame);
1296 if (frame->saved_regs != NULL
1297 && frame->saved_regs[regnum] != 0)
1298 {
1299 if (lval) /* found it saved on the stack */
1300 *lval = lval_memory;
1301 if (regnum == SP_REGNUM)
1302 {
1303 if (raw_buffer) /* SP register treated specially */
1304 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
1305 frame->saved_regs[regnum]);
1306 }
1307 else
1308 {
1309 if (addrp) /* any other register */
1310 *addrp = frame->saved_regs[regnum];
1311 if (raw_buffer)
1312 read_memory (frame->saved_regs[regnum], raw_buffer,
1313 REGISTER_RAW_SIZE (regnum));
1314 }
1315 return;
1316 }
1317 }
1318
1319 /* If we get thru the loop to this point, it means the register was
1320 not saved in any frame. Return the actual live-register value. */
1321
1322 if (lval) /* found it in a live register */
1323 *lval = lval_register;
1324 if (addrp)
1325 *addrp = REGISTER_BYTE (regnum);
1326 if (raw_buffer)
1327 read_register_gen (regnum, raw_buffer);
1328 }
1329
1330 void
1331 _initialize_blockframe (void)
1332 {
1333 obstack_init (&frame_cache_obstack);
1334 }
This page took 0.058741 seconds and 4 git commands to generate.