* macrotab.h: Do not include "obstack.h" or "bcache.h".
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
6 Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "frame.h"
31 #include "gdbcore.h"
32 #include "value.h" /* for read_register */
33 #include "target.h" /* for target_has_stack */
34 #include "inferior.h" /* for read_pc */
35 #include "annotate.h"
36 #include "regcache.h"
37 #include "gdb_assert.h"
38
39 /* Prototypes for exported functions. */
40
41 static void generic_call_dummy_register_unwind (struct frame_info *frame,
42 void **cache,
43 int regnum,
44 int *optimized,
45 enum lval_type *lval,
46 CORE_ADDR *addrp,
47 int *realnum,
48 void *raw_buffer);
49 static void frame_saved_regs_register_unwind (struct frame_info *frame,
50 void **cache,
51 int regnum,
52 int *optimized,
53 enum lval_type *lval,
54 CORE_ADDR *addrp,
55 int *realnum,
56 void *buffer);
57
58
59 void _initialize_blockframe (void);
60
61 /* A default FRAME_CHAIN_VALID, in the form that is suitable for most
62 targets. If FRAME_CHAIN_VALID returns zero it means that the given
63 frame is the outermost one and has no caller. */
64
65 int
66 file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
67 {
68 return ((chain) != 0
69 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
70 }
71
72 /* Use the alternate method of avoiding running up off the end of the
73 frame chain or following frames back into the startup code. See
74 the comments in objfiles.h. */
75
76 int
77 func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
78 {
79 return ((chain) != 0
80 && !inside_main_func ((thisframe)->pc)
81 && !inside_entry_func ((thisframe)->pc));
82 }
83
84 /* A very simple method of determining a valid frame */
85
86 int
87 nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
88 {
89 return ((chain) != 0);
90 }
91
92 /* Is ADDR inside the startup file? Note that if your machine
93 has a way to detect the bottom of the stack, there is no need
94 to call this function from FRAME_CHAIN_VALID; the reason for
95 doing so is that some machines have no way of detecting bottom
96 of stack.
97
98 A PC of zero is always considered to be the bottom of the stack. */
99
100 int
101 inside_entry_file (CORE_ADDR addr)
102 {
103 if (addr == 0)
104 return 1;
105 if (symfile_objfile == 0)
106 return 0;
107 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
108 {
109 /* Do not stop backtracing if the pc is in the call dummy
110 at the entry point. */
111 /* FIXME: Won't always work with zeros for the last two arguments */
112 if (PC_IN_CALL_DUMMY (addr, 0, 0))
113 return 0;
114 }
115 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
116 addr < symfile_objfile->ei.entry_file_highpc);
117 }
118
119 /* Test a specified PC value to see if it is in the range of addresses
120 that correspond to the main() function. See comments above for why
121 we might want to do this.
122
123 Typically called from FRAME_CHAIN_VALID.
124
125 A PC of zero is always considered to be the bottom of the stack. */
126
127 int
128 inside_main_func (CORE_ADDR pc)
129 {
130 if (pc == 0)
131 return 1;
132 if (symfile_objfile == 0)
133 return 0;
134
135 /* If the addr range is not set up at symbol reading time, set it up now.
136 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
137 it is unable to set it up and symbol reading time. */
138
139 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
140 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
141 {
142 struct symbol *mainsym;
143
144 mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL);
145 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
146 {
147 symfile_objfile->ei.main_func_lowpc =
148 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
149 symfile_objfile->ei.main_func_highpc =
150 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
151 }
152 }
153 return (symfile_objfile->ei.main_func_lowpc <= pc &&
154 symfile_objfile->ei.main_func_highpc > pc);
155 }
156
157 /* Test a specified PC value to see if it is in the range of addresses
158 that correspond to the process entry point function. See comments
159 in objfiles.h for why we might want to do this.
160
161 Typically called from FRAME_CHAIN_VALID.
162
163 A PC of zero is always considered to be the bottom of the stack. */
164
165 int
166 inside_entry_func (CORE_ADDR pc)
167 {
168 if (pc == 0)
169 return 1;
170 if (symfile_objfile == 0)
171 return 0;
172 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
173 {
174 /* Do not stop backtracing if the pc is in the call dummy
175 at the entry point. */
176 /* FIXME: Won't always work with zeros for the last two arguments */
177 if (PC_IN_CALL_DUMMY (pc, 0, 0))
178 return 0;
179 }
180 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
181 symfile_objfile->ei.entry_func_highpc > pc);
182 }
183
184 /* Info about the innermost stack frame (contents of FP register) */
185
186 static struct frame_info *current_frame;
187
188 /* Cache for frame addresses already read by gdb. Valid only while
189 inferior is stopped. Control variables for the frame cache should
190 be local to this module. */
191
192 static struct obstack frame_cache_obstack;
193
194 void *
195 frame_obstack_alloc (unsigned long size)
196 {
197 return obstack_alloc (&frame_cache_obstack, size);
198 }
199
200 void
201 frame_saved_regs_zalloc (struct frame_info *fi)
202 {
203 fi->saved_regs = (CORE_ADDR *)
204 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
205 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
206 }
207
208
209 /* Return the innermost (currently executing) stack frame. */
210
211 struct frame_info *
212 get_current_frame (void)
213 {
214 if (current_frame == NULL)
215 {
216 if (target_has_stack)
217 current_frame = create_new_frame (read_fp (), read_pc ());
218 else
219 error ("No stack.");
220 }
221 return current_frame;
222 }
223
224 void
225 set_current_frame (struct frame_info *frame)
226 {
227 current_frame = frame;
228 }
229
230
231 /* Using the PC, select a mechanism for unwinding a frame returning
232 the previous frame. The register unwind function should, on
233 demand, initialize the ->context object. */
234
235 static void
236 set_unwind_by_pc (CORE_ADDR pc, CORE_ADDR fp,
237 frame_register_unwind_ftype **unwind)
238 {
239 if (!USE_GENERIC_DUMMY_FRAMES)
240 /* Still need to set this to something. The ``info frame'' code
241 calls this function to find out where the saved registers are.
242 Hopefully this is robust enough to stop any core dumps and
243 return vaguely correct values.. */
244 *unwind = frame_saved_regs_register_unwind;
245 else if (PC_IN_CALL_DUMMY (pc, fp, fp))
246 *unwind = generic_call_dummy_register_unwind;
247 else
248 *unwind = frame_saved_regs_register_unwind;
249 }
250
251 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
252 Always returns a non-NULL value. */
253
254 struct frame_info *
255 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
256 {
257 struct frame_info *fi;
258 char *name;
259
260 fi = (struct frame_info *)
261 obstack_alloc (&frame_cache_obstack,
262 sizeof (struct frame_info));
263
264 /* Zero all fields by default. */
265 memset (fi, 0, sizeof (struct frame_info));
266
267 fi->frame = addr;
268 fi->pc = pc;
269 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
270 fi->signal_handler_caller = PC_IN_SIGTRAMP (fi->pc, name);
271
272 if (INIT_EXTRA_FRAME_INFO_P ())
273 INIT_EXTRA_FRAME_INFO (0, fi);
274
275 /* Select/initialize an unwind function. */
276 set_unwind_by_pc (fi->pc, fi->frame, &fi->register_unwind);
277
278 return fi;
279 }
280
281 /* Return the frame that FRAME calls (NULL if FRAME is the innermost
282 frame). */
283
284 struct frame_info *
285 get_next_frame (struct frame_info *frame)
286 {
287 return frame->next;
288 }
289
290 /* Flush the entire frame cache. */
291
292 void
293 flush_cached_frames (void)
294 {
295 /* Since we can't really be sure what the first object allocated was */
296 obstack_free (&frame_cache_obstack, 0);
297 obstack_init (&frame_cache_obstack);
298
299 current_frame = NULL; /* Invalidate cache */
300 select_frame (NULL);
301 annotate_frames_invalid ();
302 }
303
304 /* Flush the frame cache, and start a new one if necessary. */
305
306 void
307 reinit_frame_cache (void)
308 {
309 flush_cached_frames ();
310
311 /* FIXME: The inferior_ptid test is wrong if there is a corefile. */
312 if (PIDGET (inferior_ptid) != 0)
313 {
314 select_frame (get_current_frame ());
315 }
316 }
317
318 /* Return nonzero if the function for this frame lacks a prologue. Many
319 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
320 function. */
321
322 int
323 frameless_look_for_prologue (struct frame_info *frame)
324 {
325 CORE_ADDR func_start, after_prologue;
326
327 func_start = get_pc_function_start (frame->pc);
328 if (func_start)
329 {
330 func_start += FUNCTION_START_OFFSET;
331 /* This is faster, since only care whether there *is* a
332 prologue, not how long it is. */
333 return PROLOGUE_FRAMELESS_P (func_start);
334 }
335 else if (frame->pc == 0)
336 /* A frame with a zero PC is usually created by dereferencing a
337 NULL function pointer, normally causing an immediate core dump
338 of the inferior. Mark function as frameless, as the inferior
339 has no chance of setting up a stack frame. */
340 return 1;
341 else
342 /* If we can't find the start of the function, we don't really
343 know whether the function is frameless, but we should be able
344 to get a reasonable (i.e. best we can do under the
345 circumstances) backtrace by saying that it isn't. */
346 return 0;
347 }
348
349 /* Return a structure containing various interesting information
350 about the frame that called NEXT_FRAME. Returns NULL
351 if there is no such frame. */
352
353 struct frame_info *
354 get_prev_frame (struct frame_info *next_frame)
355 {
356 CORE_ADDR address = 0;
357 struct frame_info *prev;
358 int fromleaf = 0;
359 char *name;
360
361 /* If the requested entry is in the cache, return it.
362 Otherwise, figure out what the address should be for the entry
363 we're about to add to the cache. */
364
365 if (!next_frame)
366 {
367 #if 0
368 /* This screws value_of_variable, which just wants a nice clean
369 NULL return from block_innermost_frame if there are no frames.
370 I don't think I've ever seen this message happen otherwise.
371 And returning NULL here is a perfectly legitimate thing to do. */
372 if (!current_frame)
373 {
374 error ("You haven't set up a process's stack to examine.");
375 }
376 #endif
377
378 return current_frame;
379 }
380
381 /* If we have the prev one, return it */
382 if (next_frame->prev)
383 return next_frame->prev;
384
385 /* On some machines it is possible to call a function without
386 setting up a stack frame for it. On these machines, we
387 define this macro to take two args; a frameinfo pointer
388 identifying a frame and a variable to set or clear if it is
389 or isn't leafless. */
390
391 /* Still don't want to worry about this except on the innermost
392 frame. This macro will set FROMLEAF if NEXT_FRAME is a
393 frameless function invocation. */
394 if (!(next_frame->next))
395 {
396 fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
397 if (fromleaf)
398 address = FRAME_FP (next_frame);
399 }
400
401 if (!fromleaf)
402 {
403 /* Two macros defined in tm.h specify the machine-dependent
404 actions to be performed here.
405 First, get the frame's chain-pointer.
406 If that is zero, the frame is the outermost frame or a leaf
407 called by the outermost frame. This means that if start
408 calls main without a frame, we'll return 0 (which is fine
409 anyway).
410
411 Nope; there's a problem. This also returns when the current
412 routine is a leaf of main. This is unacceptable. We move
413 this to after the ffi test; I'd rather have backtraces from
414 start go curfluy than have an abort called from main not show
415 main. */
416 address = FRAME_CHAIN (next_frame);
417
418 /* FIXME: cagney/2002-06-08: There should be two tests here.
419 The first would check for a valid frame chain based on a user
420 selectable policy. The default being ``stop at main'' (as
421 implemented by generic_func_frame_chain_valid()). Other
422 policies would be available - stop at NULL, .... The second
423 test, if provided by the target architecture, would check for
424 more exotic cases - most target architectures wouldn't bother
425 with this second case. */
426 if (!FRAME_CHAIN_VALID (address, next_frame))
427 return 0;
428 }
429 if (address == 0)
430 return 0;
431
432 prev = (struct frame_info *)
433 obstack_alloc (&frame_cache_obstack,
434 sizeof (struct frame_info));
435
436 /* Zero all fields by default. */
437 memset (prev, 0, sizeof (struct frame_info));
438
439 if (next_frame)
440 next_frame->prev = prev;
441 prev->next = next_frame;
442 prev->frame = address;
443 prev->level = next_frame->level + 1;
444
445 /* This change should not be needed, FIXME! We should
446 determine whether any targets *need* INIT_FRAME_PC to happen
447 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
448 express what goes on here.
449
450 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
451 (where the PC is already set up) and here (where it isn't).
452 INIT_FRAME_PC is only called from here, always after
453 INIT_EXTRA_FRAME_INFO.
454
455 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
456 value (which hasn't been set yet). Some other machines appear to
457 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
458
459 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
460 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
461
462 Assuming that some machines need INIT_FRAME_PC after
463 INIT_EXTRA_FRAME_INFO, one possible scheme:
464
465 SETUP_INNERMOST_FRAME()
466 Default version is just create_new_frame (read_fp ()),
467 read_pc ()). Machines with extra frame info would do that (or the
468 local equivalent) and then set the extra fields.
469 SETUP_ARBITRARY_FRAME(argc, argv)
470 Only change here is that create_new_frame would no longer init extra
471 frame info; SETUP_ARBITRARY_FRAME would have to do that.
472 INIT_PREV_FRAME(fromleaf, prev)
473 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
474 also return a flag saying whether to keep the new frame, or
475 whether to discard it, because on some machines (e.g. mips) it
476 is really awkward to have FRAME_CHAIN_VALID called *before*
477 INIT_EXTRA_FRAME_INFO (there is no good way to get information
478 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
479 std_frame_pc(fromleaf, prev)
480 This is the default setting for INIT_PREV_FRAME. It just does what
481 the default INIT_FRAME_PC does. Some machines will call it from
482 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
483 Some machines won't use it.
484 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
485
486 INIT_FRAME_PC_FIRST (fromleaf, prev);
487
488 if (INIT_EXTRA_FRAME_INFO_P ())
489 INIT_EXTRA_FRAME_INFO (fromleaf, prev);
490
491 /* This entry is in the frame queue now, which is good since
492 FRAME_SAVED_PC may use that queue to figure out its value
493 (see tm-sparc.h). We want the pc saved in the inferior frame. */
494 INIT_FRAME_PC (fromleaf, prev);
495
496 /* If ->frame and ->pc are unchanged, we are in the process of getting
497 ourselves into an infinite backtrace. Some architectures check this
498 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
499 this can't be an architecture-independent check. */
500 if (next_frame != NULL)
501 {
502 if (prev->frame == next_frame->frame
503 && prev->pc == next_frame->pc)
504 {
505 next_frame->prev = NULL;
506 obstack_free (&frame_cache_obstack, prev);
507 return NULL;
508 }
509 }
510
511 /* Initialize the code used to unwind the frame PREV based on the PC
512 (and probably other architectural information). The PC lets you
513 check things like the debug info at that point (dwarf2cfi?) and
514 use that to decide how the frame should be unwound. */
515 set_unwind_by_pc (prev->pc, prev->frame, &prev->register_unwind);
516
517 find_pc_partial_function (prev->pc, &name,
518 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
519 if (PC_IN_SIGTRAMP (prev->pc, name))
520 prev->signal_handler_caller = 1;
521
522 return prev;
523 }
524
525 CORE_ADDR
526 get_frame_pc (struct frame_info *frame)
527 {
528 return frame->pc;
529 }
530
531
532 #ifdef FRAME_FIND_SAVED_REGS
533 /* XXX - deprecated. This is a compatibility function for targets
534 that do not yet implement FRAME_INIT_SAVED_REGS. */
535 /* Find the addresses in which registers are saved in FRAME. */
536
537 void
538 get_frame_saved_regs (struct frame_info *frame,
539 struct frame_saved_regs *saved_regs_addr)
540 {
541 if (frame->saved_regs == NULL)
542 {
543 frame->saved_regs = (CORE_ADDR *)
544 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
545 }
546 if (saved_regs_addr == NULL)
547 {
548 struct frame_saved_regs saved_regs;
549 FRAME_FIND_SAVED_REGS (frame, saved_regs);
550 memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
551 }
552 else
553 {
554 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
555 memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
556 }
557 }
558 #endif
559
560 /* Return the innermost lexical block in execution
561 in a specified stack frame. The frame address is assumed valid.
562
563 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
564 address we used to choose the block. We use this to find a source
565 line, to decide which macro definitions are in scope.
566
567 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
568 PC, and may not really be a valid PC at all. For example, in the
569 caller of a function declared to never return, the code at the
570 return address will never be reached, so the call instruction may
571 be the very last instruction in the block. So the address we use
572 to choose the block is actually one byte before the return address
573 --- hopefully pointing us at the call instruction, or its delay
574 slot instruction. */
575
576 struct block *
577 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
578 {
579 CORE_ADDR pc;
580
581 pc = frame->pc;
582 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
583 /* We are not in the innermost frame and we were not interrupted
584 by a signal. We need to subtract one to get the correct block,
585 in case the call instruction was the last instruction of the block.
586 If there are any machines on which the saved pc does not point to
587 after the call insn, we probably want to make frame->pc point after
588 the call insn anyway. */
589 --pc;
590
591 if (addr_in_block)
592 *addr_in_block = pc;
593
594 return block_for_pc (pc);
595 }
596
597 struct block *
598 get_current_block (CORE_ADDR *addr_in_block)
599 {
600 CORE_ADDR pc = read_pc ();
601
602 if (addr_in_block)
603 *addr_in_block = pc;
604
605 return block_for_pc (pc);
606 }
607
608 CORE_ADDR
609 get_pc_function_start (CORE_ADDR pc)
610 {
611 register struct block *bl;
612 register struct symbol *symbol;
613 register struct minimal_symbol *msymbol;
614 CORE_ADDR fstart;
615
616 if ((bl = block_for_pc (pc)) != NULL &&
617 (symbol = block_function (bl)) != NULL)
618 {
619 bl = SYMBOL_BLOCK_VALUE (symbol);
620 fstart = BLOCK_START (bl);
621 }
622 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
623 {
624 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
625 }
626 else
627 {
628 fstart = 0;
629 }
630 return (fstart);
631 }
632
633 /* Return the symbol for the function executing in frame FRAME. */
634
635 struct symbol *
636 get_frame_function (struct frame_info *frame)
637 {
638 register struct block *bl = get_frame_block (frame, 0);
639 if (bl == 0)
640 return 0;
641 return block_function (bl);
642 }
643 \f
644
645 /* Return the blockvector immediately containing the innermost lexical block
646 containing the specified pc value and section, or 0 if there is none.
647 PINDEX is a pointer to the index value of the block. If PINDEX
648 is NULL, we don't pass this information back to the caller. */
649
650 struct blockvector *
651 blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
652 int *pindex, struct symtab *symtab)
653 {
654 register struct block *b;
655 register int bot, top, half;
656 struct blockvector *bl;
657
658 if (symtab == 0) /* if no symtab specified by caller */
659 {
660 /* First search all symtabs for one whose file contains our pc */
661 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
662 return 0;
663 }
664
665 bl = BLOCKVECTOR (symtab);
666 b = BLOCKVECTOR_BLOCK (bl, 0);
667
668 /* Then search that symtab for the smallest block that wins. */
669 /* Use binary search to find the last block that starts before PC. */
670
671 bot = 0;
672 top = BLOCKVECTOR_NBLOCKS (bl);
673
674 while (top - bot > 1)
675 {
676 half = (top - bot + 1) >> 1;
677 b = BLOCKVECTOR_BLOCK (bl, bot + half);
678 if (BLOCK_START (b) <= pc)
679 bot += half;
680 else
681 top = bot + half;
682 }
683
684 /* Now search backward for a block that ends after PC. */
685
686 while (bot >= 0)
687 {
688 b = BLOCKVECTOR_BLOCK (bl, bot);
689 if (BLOCK_END (b) > pc)
690 {
691 if (pindex)
692 *pindex = bot;
693 return bl;
694 }
695 bot--;
696 }
697 return 0;
698 }
699
700 /* Return the blockvector immediately containing the innermost lexical block
701 containing the specified pc value, or 0 if there is none.
702 Backward compatibility, no section. */
703
704 struct blockvector *
705 blockvector_for_pc (register CORE_ADDR pc, int *pindex)
706 {
707 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
708 pindex, NULL);
709 }
710
711 /* Return the innermost lexical block containing the specified pc value
712 in the specified section, or 0 if there is none. */
713
714 struct block *
715 block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
716 {
717 register struct blockvector *bl;
718 int index;
719
720 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
721 if (bl)
722 return BLOCKVECTOR_BLOCK (bl, index);
723 return 0;
724 }
725
726 /* Return the innermost lexical block containing the specified pc value,
727 or 0 if there is none. Backward compatibility, no section. */
728
729 struct block *
730 block_for_pc (register CORE_ADDR pc)
731 {
732 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
733 }
734
735 /* Return the function containing pc value PC in section SECTION.
736 Returns 0 if function is not known. */
737
738 struct symbol *
739 find_pc_sect_function (CORE_ADDR pc, struct sec *section)
740 {
741 register struct block *b = block_for_pc_sect (pc, section);
742 if (b == 0)
743 return 0;
744 return block_function (b);
745 }
746
747 /* Return the function containing pc value PC.
748 Returns 0 if function is not known. Backward compatibility, no section */
749
750 struct symbol *
751 find_pc_function (CORE_ADDR pc)
752 {
753 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
754 }
755
756 /* These variables are used to cache the most recent result
757 * of find_pc_partial_function. */
758
759 static CORE_ADDR cache_pc_function_low = 0;
760 static CORE_ADDR cache_pc_function_high = 0;
761 static char *cache_pc_function_name = 0;
762 static struct sec *cache_pc_function_section = NULL;
763
764 /* Clear cache, e.g. when symbol table is discarded. */
765
766 void
767 clear_pc_function_cache (void)
768 {
769 cache_pc_function_low = 0;
770 cache_pc_function_high = 0;
771 cache_pc_function_name = (char *) 0;
772 cache_pc_function_section = NULL;
773 }
774
775 /* Finds the "function" (text symbol) that is smaller than PC but
776 greatest of all of the potential text symbols in SECTION. Sets
777 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
778 If ENDADDR is non-null, then set *ENDADDR to be the end of the
779 function (exclusive), but passing ENDADDR as non-null means that
780 the function might cause symbols to be read. This function either
781 succeeds or fails (not halfway succeeds). If it succeeds, it sets
782 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
783 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
784 returns 0. */
785
786 int
787 find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
788 CORE_ADDR *address, CORE_ADDR *endaddr)
789 {
790 struct partial_symtab *pst;
791 struct symbol *f;
792 struct minimal_symbol *msymbol;
793 struct partial_symbol *psb;
794 struct obj_section *osect;
795 int i;
796 CORE_ADDR mapped_pc;
797
798 mapped_pc = overlay_mapped_address (pc, section);
799
800 if (mapped_pc >= cache_pc_function_low &&
801 mapped_pc < cache_pc_function_high &&
802 section == cache_pc_function_section)
803 goto return_cached_value;
804
805 /* If sigtramp is in the u area, it counts as a function (especially
806 important for step_1). */
807 #if defined SIGTRAMP_START
808 if (PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
809 {
810 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
811 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
812 cache_pc_function_name = "<sigtramp>";
813 cache_pc_function_section = section;
814 goto return_cached_value;
815 }
816 #endif
817
818 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
819 pst = find_pc_sect_psymtab (mapped_pc, section);
820 if (pst)
821 {
822 /* Need to read the symbols to get a good value for the end address. */
823 if (endaddr != NULL && !pst->readin)
824 {
825 /* Need to get the terminal in case symbol-reading produces
826 output. */
827 target_terminal_ours_for_output ();
828 PSYMTAB_TO_SYMTAB (pst);
829 }
830
831 if (pst->readin)
832 {
833 /* Checking whether the msymbol has a larger value is for the
834 "pathological" case mentioned in print_frame_info. */
835 f = find_pc_sect_function (mapped_pc, section);
836 if (f != NULL
837 && (msymbol == NULL
838 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
839 >= SYMBOL_VALUE_ADDRESS (msymbol))))
840 {
841 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
842 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
843 cache_pc_function_name = SYMBOL_NAME (f);
844 cache_pc_function_section = section;
845 goto return_cached_value;
846 }
847 }
848 else
849 {
850 /* Now that static symbols go in the minimal symbol table, perhaps
851 we could just ignore the partial symbols. But at least for now
852 we use the partial or minimal symbol, whichever is larger. */
853 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
854
855 if (psb
856 && (msymbol == NULL ||
857 (SYMBOL_VALUE_ADDRESS (psb)
858 >= SYMBOL_VALUE_ADDRESS (msymbol))))
859 {
860 /* This case isn't being cached currently. */
861 if (address)
862 *address = SYMBOL_VALUE_ADDRESS (psb);
863 if (name)
864 *name = SYMBOL_NAME (psb);
865 /* endaddr non-NULL can't happen here. */
866 return 1;
867 }
868 }
869 }
870
871 /* Not in the normal symbol tables, see if the pc is in a known section.
872 If it's not, then give up. This ensures that anything beyond the end
873 of the text seg doesn't appear to be part of the last function in the
874 text segment. */
875
876 osect = find_pc_sect_section (mapped_pc, section);
877
878 if (!osect)
879 msymbol = NULL;
880
881 /* Must be in the minimal symbol table. */
882 if (msymbol == NULL)
883 {
884 /* No available symbol. */
885 if (name != NULL)
886 *name = 0;
887 if (address != NULL)
888 *address = 0;
889 if (endaddr != NULL)
890 *endaddr = 0;
891 return 0;
892 }
893
894 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
895 cache_pc_function_name = SYMBOL_NAME (msymbol);
896 cache_pc_function_section = section;
897
898 /* Use the lesser of the next minimal symbol in the same section, or
899 the end of the section, as the end of the function. */
900
901 /* Step over other symbols at this same address, and symbols in
902 other sections, to find the next symbol in this section with
903 a different address. */
904
905 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
906 {
907 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
908 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
909 break;
910 }
911
912 if (SYMBOL_NAME (msymbol + i) != NULL
913 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
914 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
915 else
916 /* We got the start address from the last msymbol in the objfile.
917 So the end address is the end of the section. */
918 cache_pc_function_high = osect->endaddr;
919
920 return_cached_value:
921
922 if (address)
923 {
924 if (pc_in_unmapped_range (pc, section))
925 *address = overlay_unmapped_address (cache_pc_function_low, section);
926 else
927 *address = cache_pc_function_low;
928 }
929
930 if (name)
931 *name = cache_pc_function_name;
932
933 if (endaddr)
934 {
935 if (pc_in_unmapped_range (pc, section))
936 {
937 /* Because the high address is actually beyond the end of
938 the function (and therefore possibly beyond the end of
939 the overlay), we must actually convert (high - 1)
940 and then add one to that. */
941
942 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
943 section);
944 }
945 else
946 *endaddr = cache_pc_function_high;
947 }
948
949 return 1;
950 }
951
952 /* Backward compatibility, no section argument */
953
954 int
955 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
956 CORE_ADDR *endaddr)
957 {
958 asection *section;
959
960 section = find_pc_overlay (pc);
961 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
962 }
963
964 /* Return the innermost stack frame executing inside of BLOCK,
965 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
966
967 struct frame_info *
968 block_innermost_frame (struct block *block)
969 {
970 struct frame_info *frame;
971 register CORE_ADDR start;
972 register CORE_ADDR end;
973
974 if (block == NULL)
975 return NULL;
976
977 start = BLOCK_START (block);
978 end = BLOCK_END (block);
979
980 frame = NULL;
981 while (1)
982 {
983 frame = get_prev_frame (frame);
984 if (frame == NULL)
985 return NULL;
986 if (frame->pc >= start && frame->pc < end)
987 return frame;
988 }
989 }
990
991 /* Return the full FRAME which corresponds to the given CORE_ADDR
992 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
993
994 struct frame_info *
995 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
996 {
997 struct frame_info *frame = NULL;
998
999 if (frame_addr == (CORE_ADDR) 0)
1000 return NULL;
1001
1002 while (1)
1003 {
1004 frame = get_prev_frame (frame);
1005 if (frame == NULL)
1006 return NULL;
1007 if (FRAME_FP (frame) == frame_addr)
1008 return frame;
1009 }
1010 }
1011
1012 #ifdef SIGCONTEXT_PC_OFFSET
1013 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
1014
1015 CORE_ADDR
1016 sigtramp_saved_pc (struct frame_info *frame)
1017 {
1018 CORE_ADDR sigcontext_addr;
1019 char *buf;
1020 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1021 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
1022
1023 buf = alloca (ptrbytes);
1024 /* Get sigcontext address, it is the third parameter on the stack. */
1025 if (frame->next)
1026 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
1027 + FRAME_ARGS_SKIP
1028 + sigcontext_offs,
1029 ptrbytes);
1030 else
1031 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
1032 + sigcontext_offs,
1033 ptrbytes);
1034
1035 /* Don't cause a memory_error when accessing sigcontext in case the stack
1036 layout has changed or the stack is corrupt. */
1037 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
1038 return extract_unsigned_integer (buf, ptrbytes);
1039 }
1040 #endif /* SIGCONTEXT_PC_OFFSET */
1041
1042
1043 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
1044 below is for infrun.c, which may give the macro a pc without that
1045 subtracted out. */
1046
1047 extern CORE_ADDR text_end;
1048
1049 int
1050 pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
1051 CORE_ADDR frame_address)
1052 {
1053 return ((pc) >= text_end - CALL_DUMMY_LENGTH
1054 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
1055 }
1056
1057 int
1058 pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
1059 CORE_ADDR frame_address)
1060 {
1061 return ((pc) >= text_end
1062 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
1063 }
1064
1065 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
1066 top of the stack frame which we are checking, where "bottom" and
1067 "top" refer to some section of memory which contains the code for
1068 the call dummy. Calls to this macro assume that the contents of
1069 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
1070 are the things to pass.
1071
1072 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
1073 have that meaning, but the 29k doesn't use ON_STACK. This could be
1074 fixed by generalizing this scheme, perhaps by passing in a frame
1075 and adding a few fields, at least on machines which need them for
1076 PC_IN_CALL_DUMMY.
1077
1078 Something simpler, like checking for the stack segment, doesn't work,
1079 since various programs (threads implementations, gcc nested function
1080 stubs, etc) may either allocate stack frames in another segment, or
1081 allocate other kinds of code on the stack. */
1082
1083 int
1084 pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
1085 {
1086 return (INNER_THAN ((sp), (pc))
1087 && (frame_address != 0)
1088 && INNER_THAN ((pc), (frame_address)));
1089 }
1090
1091 int
1092 pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
1093 CORE_ADDR frame_address)
1094 {
1095 return ((pc) >= CALL_DUMMY_ADDRESS ()
1096 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
1097 }
1098
1099
1100 /*
1101 * GENERIC DUMMY FRAMES
1102 *
1103 * The following code serves to maintain the dummy stack frames for
1104 * inferior function calls (ie. when gdb calls into the inferior via
1105 * call_function_by_hand). This code saves the machine state before
1106 * the call in host memory, so we must maintain an independent stack
1107 * and keep it consistant etc. I am attempting to make this code
1108 * generic enough to be used by many targets.
1109 *
1110 * The cheapest and most generic way to do CALL_DUMMY on a new target
1111 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
1112 * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
1113 * to define PUSH_RETURN_ADDRESS, because no call instruction will be
1114 * being executed by the target. Also FRAME_CHAIN_VALID as
1115 * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
1116 * generic_fix_call_dummy. */
1117
1118 /* Dummy frame. This saves the processor state just prior to setting
1119 up the inferior function call. Older targets save the registers
1120 on the target stack (but that really slows down function calls). */
1121
1122 struct dummy_frame
1123 {
1124 struct dummy_frame *next;
1125
1126 CORE_ADDR pc;
1127 CORE_ADDR fp;
1128 CORE_ADDR sp;
1129 CORE_ADDR top;
1130 struct regcache *regcache;
1131
1132 /* Address range of the call dummy code. Look for PC in the range
1133 [LO..HI) (after allowing for DECR_PC_AFTER_BREAK). */
1134 CORE_ADDR call_lo;
1135 CORE_ADDR call_hi;
1136 };
1137
1138 static struct dummy_frame *dummy_frame_stack = NULL;
1139
1140 /* Function: find_dummy_frame(pc, fp, sp)
1141
1142 Search the stack of dummy frames for one matching the given PC, FP
1143 and SP. Unlike PC_IN_CALL_DUMMY, this function doesn't need to
1144 adjust for DECR_PC_AFTER_BREAK. This is because it is only legal
1145 to call this function after the PC has been adjusted. */
1146
1147 static struct regcache *
1148 generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
1149 {
1150 struct dummy_frame *dummyframe;
1151
1152 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
1153 dummyframe = dummyframe->next)
1154 if ((pc >= dummyframe->call_lo && pc < dummyframe->call_hi)
1155 && (fp == dummyframe->fp
1156 || fp == dummyframe->sp
1157 || fp == dummyframe->top))
1158 /* The frame in question lies between the saved fp and sp, inclusive */
1159 return dummyframe->regcache;
1160
1161 return 0;
1162 }
1163
1164 char *
1165 deprecated_generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
1166 {
1167 struct regcache *regcache = generic_find_dummy_frame (pc, fp);
1168 if (regcache == NULL)
1169 return NULL;
1170 return deprecated_grub_regcache_for_registers (regcache);
1171 }
1172
1173 /* Function: pc_in_call_dummy (pc, sp, fp)
1174
1175 Return true if the PC falls in a dummy frame created by gdb for an
1176 inferior call. The code below which allows DECR_PC_AFTER_BREAK is
1177 for infrun.c, which may give the function a PC without that
1178 subtracted out. */
1179
1180 int
1181 generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1182 {
1183 struct dummy_frame *dummyframe;
1184 for (dummyframe = dummy_frame_stack;
1185 dummyframe != NULL;
1186 dummyframe = dummyframe->next)
1187 {
1188 if ((pc >= dummyframe->call_lo)
1189 && (pc < dummyframe->call_hi + DECR_PC_AFTER_BREAK))
1190 return 1;
1191 }
1192 return 0;
1193 }
1194
1195 /* Function: read_register_dummy
1196 Find a saved register from before GDB calls a function in the inferior */
1197
1198 CORE_ADDR
1199 generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
1200 {
1201 struct regcache *dummy_regs = generic_find_dummy_frame (pc, fp);
1202
1203 if (dummy_regs)
1204 return regcache_read_as_address (dummy_regs, regno);
1205 else
1206 return 0;
1207 }
1208
1209 /* Save all the registers on the dummy frame stack. Most ports save the
1210 registers on the target stack. This results in lots of unnecessary memory
1211 references, which are slow when debugging via a serial line. Instead, we
1212 save all the registers internally, and never write them to the stack. The
1213 registers get restored when the called function returns to the entry point,
1214 where a breakpoint is laying in wait. */
1215
1216 void
1217 generic_push_dummy_frame (void)
1218 {
1219 struct dummy_frame *dummy_frame;
1220 CORE_ADDR fp = (get_current_frame ())->frame;
1221
1222 /* check to see if there are stale dummy frames,
1223 perhaps left over from when a longjump took us out of a
1224 function that was called by the debugger */
1225
1226 dummy_frame = dummy_frame_stack;
1227 while (dummy_frame)
1228 if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
1229 {
1230 dummy_frame_stack = dummy_frame->next;
1231 regcache_xfree (dummy_frame->regcache);
1232 xfree (dummy_frame);
1233 dummy_frame = dummy_frame_stack;
1234 }
1235 else
1236 dummy_frame = dummy_frame->next;
1237
1238 dummy_frame = xmalloc (sizeof (struct dummy_frame));
1239 dummy_frame->regcache = regcache_xmalloc (current_gdbarch);
1240
1241 dummy_frame->pc = read_pc ();
1242 dummy_frame->sp = read_sp ();
1243 dummy_frame->top = dummy_frame->sp;
1244 dummy_frame->fp = fp;
1245 regcache_cpy (dummy_frame->regcache, current_regcache);
1246 dummy_frame->next = dummy_frame_stack;
1247 dummy_frame_stack = dummy_frame;
1248 }
1249
1250 void
1251 generic_save_dummy_frame_tos (CORE_ADDR sp)
1252 {
1253 dummy_frame_stack->top = sp;
1254 }
1255
1256 /* Record the upper/lower bounds on the address of the call dummy. */
1257
1258 void
1259 generic_save_call_dummy_addr (CORE_ADDR lo, CORE_ADDR hi)
1260 {
1261 dummy_frame_stack->call_lo = lo;
1262 dummy_frame_stack->call_hi = hi;
1263 }
1264
1265 /* Restore the machine state from either the saved dummy stack or a
1266 real stack frame. */
1267
1268 void
1269 generic_pop_current_frame (void (*popper) (struct frame_info * frame))
1270 {
1271 struct frame_info *frame = get_current_frame ();
1272
1273 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1274 generic_pop_dummy_frame ();
1275 else
1276 (*popper) (frame);
1277 }
1278
1279 /* Function: pop_dummy_frame
1280 Restore the machine state from a saved dummy stack frame. */
1281
1282 void
1283 generic_pop_dummy_frame (void)
1284 {
1285 struct dummy_frame *dummy_frame = dummy_frame_stack;
1286
1287 /* FIXME: what if the first frame isn't the right one, eg..
1288 because one call-by-hand function has done a longjmp into another one? */
1289
1290 if (!dummy_frame)
1291 error ("Can't pop dummy frame!");
1292 dummy_frame_stack = dummy_frame->next;
1293 regcache_cpy (current_regcache, dummy_frame->regcache);
1294 flush_cached_frames ();
1295
1296 regcache_xfree (dummy_frame->regcache);
1297 xfree (dummy_frame);
1298 }
1299
1300 /* Function: frame_chain_valid
1301 Returns true for a user frame or a call_function_by_hand dummy frame,
1302 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
1303
1304 int
1305 generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1306 {
1307 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
1308 return 1; /* don't prune CALL_DUMMY frames */
1309 else /* fall back to default algorithm (see frame.h) */
1310 return (fp != 0
1311 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1312 && !inside_entry_file (FRAME_SAVED_PC (fi)));
1313 }
1314
1315 int
1316 generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1317 {
1318 if (USE_GENERIC_DUMMY_FRAMES
1319 && PC_IN_CALL_DUMMY ((fi)->pc, 0, 0))
1320 return 1; /* don't prune CALL_DUMMY frames */
1321 else /* fall back to default algorithm (see frame.h) */
1322 return (fp != 0
1323 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1324 && !inside_main_func ((fi)->pc)
1325 && !inside_entry_func ((fi)->pc));
1326 }
1327
1328 /* Function: fix_call_dummy
1329 Stub function. Generic dummy frames typically do not need to fix
1330 the frame being created */
1331
1332 void
1333 generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1334 struct value **args, struct type *type, int gcc_p)
1335 {
1336 return;
1337 }
1338
1339 /* Given a call-dummy dummy-frame, return the registers. Here the
1340 register value is taken from the local copy of the register buffer. */
1341
1342 static void
1343 generic_call_dummy_register_unwind (struct frame_info *frame, void **cache,
1344 int regnum, int *optimized,
1345 enum lval_type *lvalp, CORE_ADDR *addrp,
1346 int *realnum, void *bufferp)
1347 {
1348 gdb_assert (frame != NULL);
1349 gdb_assert (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame));
1350
1351 /* Describe the register's location. Generic dummy frames always
1352 have the register value in an ``expression''. */
1353 *optimized = 0;
1354 *lvalp = not_lval;
1355 *addrp = 0;
1356 *realnum = -1;
1357
1358 /* If needed, find and return the value of the register. */
1359 if (bufferp != NULL)
1360 {
1361 struct regcache *registers;
1362 #if 1
1363 /* Get the address of the register buffer that contains all the
1364 saved registers for this dummy frame. Cache that address. */
1365 registers = (*cache);
1366 if (registers == NULL)
1367 {
1368 registers = generic_find_dummy_frame (frame->pc, frame->frame);
1369 (*cache) = registers;
1370 }
1371 #else
1372 /* Get the address of the register buffer that contains the
1373 saved registers and then extract the value from that. */
1374 registers = generic_find_dummy_frame (frame->pc, frame->frame);
1375 #endif
1376 gdb_assert (registers != NULL);
1377 /* Return the actual value. */
1378 /* FIXME: cagney/2002-06-26: This should be via the
1379 gdbarch_register_read() method so that it, on the fly,
1380 constructs either a raw or pseudo register from the raw
1381 register cache. */
1382 regcache_read (registers, regnum, bufferp);
1383 }
1384 }
1385
1386 /* Return the register saved in the simplistic ``saved_regs'' cache.
1387 If the value isn't here AND a value is needed, try the next inner
1388 most frame. */
1389
1390 static void
1391 frame_saved_regs_register_unwind (struct frame_info *frame, void **cache,
1392 int regnum, int *optimizedp,
1393 enum lval_type *lvalp, CORE_ADDR *addrp,
1394 int *realnump, void *bufferp)
1395 {
1396 /* There is always a frame at this point. And THIS is the frame
1397 we're interested in. */
1398 gdb_assert (frame != NULL);
1399 gdb_assert (!PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame));
1400
1401 /* Load the saved_regs register cache. */
1402 if (frame->saved_regs == NULL)
1403 FRAME_INIT_SAVED_REGS (frame);
1404
1405 if (frame->saved_regs != NULL
1406 && frame->saved_regs[regnum] != 0)
1407 {
1408 if (regnum == SP_REGNUM)
1409 {
1410 /* SP register treated specially. */
1411 *optimizedp = 0;
1412 *lvalp = not_lval;
1413 *addrp = 0;
1414 *realnump = -1;
1415 if (bufferp != NULL)
1416 store_address (bufferp, REGISTER_RAW_SIZE (regnum),
1417 frame->saved_regs[regnum]);
1418 }
1419 else
1420 {
1421 /* Any other register is saved in memory, fetch it but cache
1422 a local copy of its value. */
1423 *optimizedp = 0;
1424 *lvalp = lval_memory;
1425 *addrp = frame->saved_regs[regnum];
1426 *realnump = -1;
1427 if (bufferp != NULL)
1428 {
1429 #if 1
1430 /* Save each register value, as it is read in, in a
1431 frame based cache. */
1432 void **regs = (*cache);
1433 if (regs == NULL)
1434 {
1435 int sizeof_cache = ((NUM_REGS + NUM_PSEUDO_REGS)
1436 * sizeof (void *));
1437 regs = frame_obstack_alloc (sizeof_cache);
1438 memset (regs, 0, sizeof_cache);
1439 (*cache) = regs;
1440 }
1441 if (regs[regnum] == NULL)
1442 {
1443 regs[regnum]
1444 = frame_obstack_alloc (REGISTER_RAW_SIZE (regnum));
1445 read_memory (frame->saved_regs[regnum], regs[regnum],
1446 REGISTER_RAW_SIZE (regnum));
1447 }
1448 memcpy (bufferp, regs[regnum], REGISTER_RAW_SIZE (regnum));
1449 #else
1450 /* Read the value in from memory. */
1451 read_memory (frame->saved_regs[regnum], bufferp,
1452 REGISTER_RAW_SIZE (regnum));
1453 #endif
1454 }
1455 }
1456 return;
1457 }
1458
1459 /* No luck, assume this and the next frame have the same register
1460 value. If a value is needed, pass the request on down the chain;
1461 otherwise just return an indication that the value is in the same
1462 register as the next frame. */
1463 if (bufferp == NULL)
1464 {
1465 *optimizedp = 0;
1466 *lvalp = lval_register;
1467 *addrp = 0;
1468 *realnump = regnum;
1469 }
1470 else
1471 {
1472 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
1473 realnump, bufferp);
1474 }
1475 }
1476
1477 /* Function: get_saved_register
1478 Find register number REGNUM relative to FRAME and put its (raw,
1479 target format) contents in *RAW_BUFFER.
1480
1481 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1482 fetched). Note that this is never set to anything other than zero
1483 in this implementation.
1484
1485 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1486 whether the value was fetched from memory, from a register, or in a
1487 strange and non-modifiable way (e.g. a frame pointer which was
1488 calculated rather than fetched). We will use not_lval for values
1489 fetched from generic dummy frames.
1490
1491 Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
1492 offset into the registers array. If the value is stored in a dummy
1493 frame, set *ADDRP to zero.
1494
1495 To use this implementation, define a function called
1496 "get_saved_register" in your target code, which simply passes all
1497 of its arguments to this function.
1498
1499 The argument RAW_BUFFER must point to aligned memory. */
1500
1501 void
1502 generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
1503 struct frame_info *frame, int regnum,
1504 enum lval_type *lval)
1505 {
1506 if (!target_has_registers)
1507 error ("No registers.");
1508
1509 /* Normal systems don't optimize out things with register numbers. */
1510 if (optimized != NULL)
1511 *optimized = 0;
1512
1513 if (addrp) /* default assumption: not found in memory */
1514 *addrp = 0;
1515
1516 /* Note: since the current frame's registers could only have been
1517 saved by frames INTERIOR TO the current frame, we skip examining
1518 the current frame itself: otherwise, we would be getting the
1519 previous frame's registers which were saved by the current frame. */
1520
1521 while (frame && ((frame = frame->next) != NULL))
1522 {
1523 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1524 {
1525 if (lval) /* found it in a CALL_DUMMY frame */
1526 *lval = not_lval;
1527 if (raw_buffer)
1528 /* FIXME: cagney/2002-06-26: This should be via the
1529 gdbarch_register_read() method so that it, on the fly,
1530 constructs either a raw or pseudo register from the raw
1531 register cache. */
1532 regcache_read (generic_find_dummy_frame (frame->pc, frame->frame),
1533 regnum, raw_buffer);
1534 return;
1535 }
1536
1537 FRAME_INIT_SAVED_REGS (frame);
1538 if (frame->saved_regs != NULL
1539 && frame->saved_regs[regnum] != 0)
1540 {
1541 if (lval) /* found it saved on the stack */
1542 *lval = lval_memory;
1543 if (regnum == SP_REGNUM)
1544 {
1545 if (raw_buffer) /* SP register treated specially */
1546 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
1547 frame->saved_regs[regnum]);
1548 }
1549 else
1550 {
1551 if (addrp) /* any other register */
1552 *addrp = frame->saved_regs[regnum];
1553 if (raw_buffer)
1554 read_memory (frame->saved_regs[regnum], raw_buffer,
1555 REGISTER_RAW_SIZE (regnum));
1556 }
1557 return;
1558 }
1559 }
1560
1561 /* If we get thru the loop to this point, it means the register was
1562 not saved in any frame. Return the actual live-register value. */
1563
1564 if (lval) /* found it in a live register */
1565 *lval = lval_register;
1566 if (addrp)
1567 *addrp = REGISTER_BYTE (regnum);
1568 if (raw_buffer)
1569 read_register_gen (regnum, raw_buffer);
1570 }
1571
1572 void
1573 _initialize_blockframe (void)
1574 {
1575 obstack_init (&frame_cache_obstack);
1576 }
This page took 0.065543 seconds and 4 git commands to generate.