2004-06-18 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "objfiles.h"
29 #include "frame.h"
30 #include "gdbcore.h"
31 #include "value.h" /* for read_register */
32 #include "target.h" /* for target_has_stack */
33 #include "inferior.h" /* for read_pc */
34 #include "annotate.h"
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "dummy-frame.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "block.h"
41
42 /* Prototypes for exported functions. */
43
44 void _initialize_blockframe (void);
45
46 /* Test whether PC is in the range of addresses that corresponds to
47 the "main" function. */
48
49 int
50 inside_main_func (CORE_ADDR pc)
51 {
52 struct minimal_symbol *msymbol;
53
54 if (symfile_objfile == 0)
55 return 0;
56
57 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
58
59 /* If the address range hasn't been set up at symbol reading time,
60 set it up now. */
61
62 if (msymbol != NULL
63 && symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC
64 && symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
65 {
66 /* brobecker/2003-10-10: We used to rely on lookup_symbol() to
67 search the symbol associated to the "main" function.
68 Unfortunately, lookup_symbol() uses the current-language
69 la_lookup_symbol_nonlocal function to do the global symbol
70 search. Depending on the language, this can introduce
71 certain side-effects, because certain languages, for instance
72 Ada, may find more than one match. Therefore we prefer to
73 search the "main" function symbol using its address rather
74 than its name. */
75 struct symbol *mainsym =
76 find_pc_function (SYMBOL_VALUE_ADDRESS (msymbol));
77
78 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
79 {
80 symfile_objfile->ei.main_func_lowpc =
81 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
82 symfile_objfile->ei.main_func_highpc =
83 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
84 }
85 }
86
87 /* Not in the normal symbol tables, see if "main" is in the partial
88 symbol table. If it's not, then give up. */
89 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_text)
90 {
91 CORE_ADDR maddr = SYMBOL_VALUE_ADDRESS (msymbol);
92 asection *msect = SYMBOL_BFD_SECTION (msymbol);
93 struct obj_section *osect = find_pc_sect_section (maddr, msect);
94
95 if (osect != NULL)
96 {
97 int i;
98
99 /* Step over other symbols at this same address, and symbols
100 in other sections, to find the next symbol in this
101 section with a different address. */
102 for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
103 {
104 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != maddr
105 && SYMBOL_BFD_SECTION (msymbol + i) == msect)
106 break;
107 }
108
109 symfile_objfile->ei.main_func_lowpc = maddr;
110
111 /* Use the lesser of the next minimal symbol in the same
112 section, or the end of the section, as the end of the
113 function. */
114 if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL
115 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
116 symfile_objfile->ei.main_func_highpc =
117 SYMBOL_VALUE_ADDRESS (msymbol + i);
118 else
119 /* We got the start address from the last msymbol in the
120 objfile. So the end address is the end of the
121 section. */
122 symfile_objfile->ei.main_func_highpc = osect->endaddr;
123 }
124 }
125
126 return (symfile_objfile->ei.main_func_lowpc <= pc
127 && symfile_objfile->ei.main_func_highpc > pc);
128 }
129
130 /* Test whether THIS_FRAME is inside the process entry point function. */
131
132 int
133 inside_entry_func (struct frame_info *this_frame)
134 {
135 return (get_frame_func (this_frame) == entry_point_address ());
136 }
137
138 /* Return nonzero if the function for this frame lacks a prologue.
139 Many machines can define DEPRECATED_FRAMELESS_FUNCTION_INVOCATION
140 to just call this function. */
141
142 int
143 legacy_frameless_look_for_prologue (struct frame_info *frame)
144 {
145 CORE_ADDR func_start;
146
147 func_start = get_frame_func (frame);
148 if (func_start)
149 {
150 func_start += DEPRECATED_FUNCTION_START_OFFSET;
151 /* NOTE: cagney/2004-02-09: Eliminated per-architecture
152 PROLOGUE_FRAMELESS_P call as architectures with custom
153 implementations had all been deleted. Eventually even this
154 function can go - GDB no longer tries to differentiate
155 between framed, frameless and stackless functions. They are
156 all now considered equally evil :-^. */
157 /* If skipping the prologue ends up skips nothing, there must be
158 no prologue and hence no code creating a frame. There for
159 the function is "frameless" :-/. */
160 return func_start == SKIP_PROLOGUE (func_start);
161 }
162 else if (get_frame_pc (frame) == 0)
163 /* A frame with a zero PC is usually created by dereferencing a
164 NULL function pointer, normally causing an immediate core dump
165 of the inferior. Mark function as frameless, as the inferior
166 has no chance of setting up a stack frame. */
167 return 1;
168 else
169 /* If we can't find the start of the function, we don't really
170 know whether the function is frameless, but we should be able
171 to get a reasonable (i.e. best we can do under the
172 circumstances) backtrace by saying that it isn't. */
173 return 0;
174 }
175
176 /* Return the innermost lexical block in execution
177 in a specified stack frame. The frame address is assumed valid.
178
179 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
180 address we used to choose the block. We use this to find a source
181 line, to decide which macro definitions are in scope.
182
183 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
184 PC, and may not really be a valid PC at all. For example, in the
185 caller of a function declared to never return, the code at the
186 return address will never be reached, so the call instruction may
187 be the very last instruction in the block. So the address we use
188 to choose the block is actually one byte before the return address
189 --- hopefully pointing us at the call instruction, or its delay
190 slot instruction. */
191
192 struct block *
193 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
194 {
195 const CORE_ADDR pc = get_frame_address_in_block (frame);
196
197 if (addr_in_block)
198 *addr_in_block = pc;
199
200 return block_for_pc (pc);
201 }
202
203 CORE_ADDR
204 get_pc_function_start (CORE_ADDR pc)
205 {
206 struct block *bl;
207 struct minimal_symbol *msymbol;
208
209 bl = block_for_pc (pc);
210 if (bl)
211 {
212 struct symbol *symbol = block_function (bl);
213
214 if (symbol)
215 {
216 bl = SYMBOL_BLOCK_VALUE (symbol);
217 return BLOCK_START (bl);
218 }
219 }
220
221 msymbol = lookup_minimal_symbol_by_pc (pc);
222 if (msymbol)
223 {
224 CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
225
226 if (find_pc_section (fstart))
227 return fstart;
228 }
229
230 return 0;
231 }
232
233 /* Return the symbol for the function executing in frame FRAME. */
234
235 struct symbol *
236 get_frame_function (struct frame_info *frame)
237 {
238 struct block *bl = get_frame_block (frame, 0);
239 if (bl == 0)
240 return 0;
241 return block_function (bl);
242 }
243 \f
244
245 /* Return the function containing pc value PC in section SECTION.
246 Returns 0 if function is not known. */
247
248 struct symbol *
249 find_pc_sect_function (CORE_ADDR pc, struct bfd_section *section)
250 {
251 struct block *b = block_for_pc_sect (pc, section);
252 if (b == 0)
253 return 0;
254 return block_function (b);
255 }
256
257 /* Return the function containing pc value PC.
258 Returns 0 if function is not known. Backward compatibility, no section */
259
260 struct symbol *
261 find_pc_function (CORE_ADDR pc)
262 {
263 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
264 }
265
266 /* These variables are used to cache the most recent result
267 * of find_pc_partial_function. */
268
269 static CORE_ADDR cache_pc_function_low = 0;
270 static CORE_ADDR cache_pc_function_high = 0;
271 static char *cache_pc_function_name = 0;
272 static struct bfd_section *cache_pc_function_section = NULL;
273
274 /* Clear cache, e.g. when symbol table is discarded. */
275
276 void
277 clear_pc_function_cache (void)
278 {
279 cache_pc_function_low = 0;
280 cache_pc_function_high = 0;
281 cache_pc_function_name = (char *) 0;
282 cache_pc_function_section = NULL;
283 }
284
285 /* Finds the "function" (text symbol) that is smaller than PC but
286 greatest of all of the potential text symbols in SECTION. Sets
287 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
288 If ENDADDR is non-null, then set *ENDADDR to be the end of the
289 function (exclusive), but passing ENDADDR as non-null means that
290 the function might cause symbols to be read. This function either
291 succeeds or fails (not halfway succeeds). If it succeeds, it sets
292 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
293 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
294 returns 0. */
295
296 /* Backward compatibility, no section argument. */
297
298 int
299 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
300 CORE_ADDR *endaddr)
301 {
302 struct bfd_section *section;
303 struct partial_symtab *pst;
304 struct symbol *f;
305 struct minimal_symbol *msymbol;
306 struct partial_symbol *psb;
307 struct obj_section *osect;
308 int i;
309 CORE_ADDR mapped_pc;
310
311 /* To ensure that the symbol returned belongs to the correct setion
312 (and that the last [random] symbol from the previous section
313 isn't returned) try to find the section containing PC. First try
314 the overlay code (which by default returns NULL); and second try
315 the normal section code (which almost always succeeds). */
316 section = find_pc_overlay (pc);
317 if (section == NULL)
318 {
319 struct obj_section *obj_section = find_pc_section (pc);
320 if (obj_section == NULL)
321 section = NULL;
322 else
323 section = obj_section->the_bfd_section;
324 }
325
326 mapped_pc = overlay_mapped_address (pc, section);
327
328 if (mapped_pc >= cache_pc_function_low
329 && mapped_pc < cache_pc_function_high
330 && section == cache_pc_function_section)
331 goto return_cached_value;
332
333 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
334 pst = find_pc_sect_psymtab (mapped_pc, section);
335 if (pst)
336 {
337 /* Need to read the symbols to get a good value for the end address. */
338 if (endaddr != NULL && !pst->readin)
339 {
340 /* Need to get the terminal in case symbol-reading produces
341 output. */
342 target_terminal_ours_for_output ();
343 PSYMTAB_TO_SYMTAB (pst);
344 }
345
346 if (pst->readin)
347 {
348 /* Checking whether the msymbol has a larger value is for the
349 "pathological" case mentioned in print_frame_info. */
350 f = find_pc_sect_function (mapped_pc, section);
351 if (f != NULL
352 && (msymbol == NULL
353 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
354 >= SYMBOL_VALUE_ADDRESS (msymbol))))
355 {
356 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
357 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
358 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
359 cache_pc_function_section = section;
360 goto return_cached_value;
361 }
362 }
363 else
364 {
365 /* Now that static symbols go in the minimal symbol table, perhaps
366 we could just ignore the partial symbols. But at least for now
367 we use the partial or minimal symbol, whichever is larger. */
368 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
369
370 if (psb
371 && (msymbol == NULL ||
372 (SYMBOL_VALUE_ADDRESS (psb)
373 >= SYMBOL_VALUE_ADDRESS (msymbol))))
374 {
375 /* This case isn't being cached currently. */
376 if (address)
377 *address = SYMBOL_VALUE_ADDRESS (psb);
378 if (name)
379 *name = DEPRECATED_SYMBOL_NAME (psb);
380 /* endaddr non-NULL can't happen here. */
381 return 1;
382 }
383 }
384 }
385
386 /* Not in the normal symbol tables, see if the pc is in a known section.
387 If it's not, then give up. This ensures that anything beyond the end
388 of the text seg doesn't appear to be part of the last function in the
389 text segment. */
390
391 osect = find_pc_sect_section (mapped_pc, section);
392
393 if (!osect)
394 msymbol = NULL;
395
396 /* Must be in the minimal symbol table. */
397 if (msymbol == NULL)
398 {
399 /* No available symbol. */
400 if (name != NULL)
401 *name = 0;
402 if (address != NULL)
403 *address = 0;
404 if (endaddr != NULL)
405 *endaddr = 0;
406 return 0;
407 }
408
409 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
410 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
411 cache_pc_function_section = section;
412
413 /* Use the lesser of the next minimal symbol in the same section, or
414 the end of the section, as the end of the function. */
415
416 /* Step over other symbols at this same address, and symbols in
417 other sections, to find the next symbol in this section with
418 a different address. */
419
420 for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
421 {
422 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
423 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
424 break;
425 }
426
427 if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
428 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
429 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
430 else
431 /* We got the start address from the last msymbol in the objfile.
432 So the end address is the end of the section. */
433 cache_pc_function_high = osect->endaddr;
434
435 return_cached_value:
436
437 if (address)
438 {
439 if (pc_in_unmapped_range (pc, section))
440 *address = overlay_unmapped_address (cache_pc_function_low, section);
441 else
442 *address = cache_pc_function_low;
443 }
444
445 if (name)
446 *name = cache_pc_function_name;
447
448 if (endaddr)
449 {
450 if (pc_in_unmapped_range (pc, section))
451 {
452 /* Because the high address is actually beyond the end of
453 the function (and therefore possibly beyond the end of
454 the overlay), we must actually convert (high - 1) and
455 then add one to that. */
456
457 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
458 section);
459 }
460 else
461 *endaddr = cache_pc_function_high;
462 }
463
464 return 1;
465 }
466
467 /* Return the innermost stack frame executing inside of BLOCK,
468 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
469
470 struct frame_info *
471 block_innermost_frame (struct block *block)
472 {
473 struct frame_info *frame;
474 CORE_ADDR start;
475 CORE_ADDR end;
476 CORE_ADDR calling_pc;
477
478 if (block == NULL)
479 return NULL;
480
481 start = BLOCK_START (block);
482 end = BLOCK_END (block);
483
484 frame = NULL;
485 while (1)
486 {
487 frame = get_prev_frame (frame);
488 if (frame == NULL)
489 return NULL;
490 calling_pc = get_frame_address_in_block (frame);
491 if (calling_pc >= start && calling_pc < end)
492 return frame;
493 }
494 }
495
496 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
497 below is for infrun.c, which may give the macro a pc without that
498 subtracted out. */
499
500 /* Returns true for a user frame or a call_function_by_hand dummy
501 frame, and false for the CRT0 start-up frame. Purpose is to
502 terminate backtrace. */
503
504 int
505 legacy_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
506 {
507 /* Don't prune CALL_DUMMY frames. */
508 if (deprecated_pc_in_call_dummy (get_frame_pc (fi)))
509 return 1;
510
511 /* If the new frame pointer is zero, then it isn't valid. */
512 if (fp == 0)
513 return 0;
514
515 /* If the new frame would be inside (younger than) the previous frame,
516 then it isn't valid. */
517 if (INNER_THAN (fp, get_frame_base (fi)))
518 return 0;
519
520 /* If the architecture has a custom DEPRECATED_FRAME_CHAIN_VALID,
521 call it now. */
522 if (DEPRECATED_FRAME_CHAIN_VALID_P ())
523 return DEPRECATED_FRAME_CHAIN_VALID (fp, fi);
524
525 /* If we're already inside the entry function for the main objfile,
526 then it isn't valid. */
527 if (symfile_objfile != NULL
528 && (symfile_objfile->ei.entry_func_lowpc <= get_frame_pc (fi)
529 && symfile_objfile->ei.entry_func_highpc > get_frame_pc (fi)))
530 return 0;
531
532 return 1;
533 }
This page took 0.055806 seconds and 4 git commands to generate.